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In this paper we explore a research problem of Greene: to find inequalities for the Miibius 
function which become equalities in the presence of modularity. We replace these inequalities 
with identities and give combinatorial interpretations for the difference. 

1. Introduction 

The purpose of this paper is to continue the study initiated in [2] of the 
broken-circuit complex of a combinatorial geometry. In the present paper we use 
this complex and its simplex numbers in order to explain and generalize identities 
due to Brylawski, Greene, Oxley, Stanley, and Zaslavsky involving the charac- 
teristic polynomial (and Miibius function) of a geometry. In particular, we study 
the quotient and remainder when the characteristic polynomial x(G) of a 
geometry G is divided by x(x), the characteristic polynomial of a flat (or, more 
generally, a subgeometry). 

The broken-circuit complex is used here as a tool, the ordering on the points 
being chosen to suit our purpose. In particular, the points of G are identified with 
the interval n = (0, 1, . . . , n} and the flat x is labeled with the initial segment m. It 
is the subject of another paper [4] to explore what happens to the complex under 
arbitrary orderings. 

If T’(G) is the complete Brown truncation of the geometry G with respect to a 
flat x, then whenever x is modular, x(G) = x(x)x( Z’,( G))/(A - 1) [ 11. We prove 
the converse of this identity by interpreting the remainder x(G) - 
x(x)x(~~(G>)/(h - 1) in a number of ways when x is not modular (introducing the 
concept of d-nonmodularity, the degree of the difference polynomial. as a 
measure of how far x is from being modular). 

2. De&&ions and preliminary results 

We assume that the reader is familiar with the basic concepts of matroid theory, 
especially that of the characteristic polynomial of a combinatorial geometry and 

* Partially supported by N.S.F. Grant No. MCS 78-01149. 
** Partially supported by a CSIRO (Australia) Postgraduate Studentship. 

161 



162 T. Brylawski, J. Gxley 

its many applications (see [3, 5, 8, 9, 11, and 121). The results for the broken- 
circuit complex needed in (2.1) below are introduced in [2] while the relevant 
theory for modular flats comes from [l]. 

2.1. The broken-circuit complex 

Let G be a (combinatorial) geometry (i.e. a matroid without loops or multiple 
points) of rank r on the set n - (0, 1, . . . , n). The broken-circuits of G are subsets 
of n of the form C-(p) where C is a circuit of G, p E C, and p c q for all 
q E C-(p). A x-independent set is a subset containing no broken-circuit. The 
collection of all X-independent sets forms a pure simplicial complex (e(G) [2] 
whose facets (maximal simplices) are certain of the bases of G called Z-bases (all 
of which contain 0). A basis B is a Z-basis if and only if for all p E n - B, there is 
point 4 E B such that 4 C p and (B -{4}) U {p) is a basis. Similarly, an indepen- 
dent set is x-independent if and only if for all p E n - I, either {p) U I is independent 
or (Z -(q}) U(p) is independent for some 4 E I, 4 <p. Equivalently, I is x- 
independent in G if and only if Z is a Z-basis of the flat I’ which it spans. 

When 0 is deleted from every simplex which contains it, we get the reduced 
broken-circuit complex q’(G). The simplices and facets of %’ are called reduced 
X-independent sets and reduced Z-bases respectively. The Whitney polynomial 
wig&) of %(G) is defined by w(q) =C wih’ where Wi is the number of x- 
independent sets of size I - i. Then, 

w(S) = (A + l)w(%‘) = (-l)“G’~(G, -A) 

wh,:re x(G, A) is the characteristic poZynomia1 of 6. The constant term of w(%‘) (or) 
~(9 ‘)) is the (absolute) Miibius function Ip(O, l)i computed in the lattice of flats 
of G. Thus, Ip(O, 1)1 is the number of z-bases of G. 

Results in [2] are proved by deleting or contracting the greatest point where 
loops can never be deleted or contracted and isthmuses never deleted. Combining 
a number of these operations we obtain that if A and B are disjoint subsets of 
n - m, if ICI > IAl for all circuits C of G, and if r((G/A) - B) = r(G) - r(A), then 
SW/A)- B) consists of those subsets &I of n - (A U B) such that D U A is in 
S(G). 

If ‘S, and gz are simplicial complexes on disjoint sets, their join Gel v Ce2 is the 
complex whose simplices are those subsmets of the form C, U Cz where Ci is a 
simplex Of %i (i = 1,2). 

2.2. TIze complete Brown truncation 

Let x = G(m) be a flat of G of rank k whose ground set is the initial segment m 
of n. The complete Brown truncation of G by X, denoted a,( GJ, is the geometry 
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onthepoints(n-Jn)tJ{O}={O,m+l,m+2,..., n} whose bases are subsets of the 
form Z3i or Z3; U (0) where Bi and Z3J are independent subsets (in G) of n - m with 
lZ3J = n - k + 1, lZ3iI =n-k, and r(BiUx)=r(B,‘lJX)=rm 

Alternatively, T,(G) is obtained from G by putting a set P of k - 1 indepen- 
dent points freely on the flat x, contracting P, and then identifying the multiple 
point m as the single point 0. Since P is free in x, (I- Zx) U P is ind$:pendent in G 
for any independent set I where I, = Z (I x and I, has size k - 1. The bases of G/P 
may then be partitioned into those which contain some p E x (and give a basis of 
T,(G) of the form Z31 W {0}), and those which contain no such point. A subset I of 
n - m is a subset of the set BS (where BJ (where Z?; U (0) is a basis of T, (G)) if and only if 

r(ZU x) = r(x) + Izl. 

Z is then said to be independent of x. 
When x is not a flat, the complete Brown truncation of G by the subgeometry x 

is defined to be T,(G), where jE is the closure of x in G. The construction of the 
previous paragraph also gives T,(G) in this case (when multiple points are 
identified), however there is little loss of generality in the theory below when x is 
assumed to bs a flat. 

2.3. Modular flats 

A flat x is modular when r(x) + r(y) = r(x v y) + r(x A y) for every flat y in the 
geometric lattice of G. A subset A of 1~ is a mocMar flat if and only if either of 
the following (equivalent) conditions holds: 

2.3.1. For every circuit C of G which intersects n -A, there is a point p E 4 
such that (C-A)U{p) is dependent in G. 

2.3.2. Every subset I which is independent of each point of A is independent 
of A. That is, if Zc,n-A and r(ZU{p})=(Z(+l for all PEA, then r(ZUA)= 

I4 + r(A). 

Proposition 2.4. Let B1 be a Z-basis of the rank k flat x whose points form the 
initial segment na and let B2 be a reduced Z-basis of T’(G). Then, the (disjoint) 
union B1 U B2 is a Z-basis of G which intersects x in k points. Conversely, if B is a 
Z-basis of G which intersects x in k points; then B f3 x is a Z-basis of x and B - x is 
a reduced Z-basis of T,(G). 

The reduced x-independent sets of T,( 9;) are those subsets of n - x which are 
independent of x and ,x-independent in G. 

Roof. The reduced Z-bases of T,(G) are certainly included among the sets Bi of 
(2.2). Thus, by remarks in (2.2), B = B1 U B2 is a basis of G. If p E G-B, then 
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either PE m - B, or PE (n - m)- &. In the former case, by (2.1), there is a 9 <p 

such that Sl, = 0% - (91) U {PI is a basis of x. But, by (2.2), B’, U B2 is a basis of G. 

If, on the other hand, p E (n - m) - &, there is a 9 in B2 U (0) such that 9 < p and 

& =; (82 U (0, p)j - (91 is a basis of T,(G)., If q#O, then Z31 U(B$-CO}) = 

(B WH9) is a basis of G. If 9 = 0, then Bz U {p} is a basis of T,(G) so that 

Z3, II S, U(p) spans G and therefore there is a point 9% &, (with 9’C p since 
9’~ m and p E n - m) such that (B -{9’}) U(p) is a basis of G. Since basis 
exc’lange exists with a. lower point in either case, Z3 is a Z-basis whose intersection 
wit& x has cardinality lZ3,I = k. 

To prove the converse, suppose Z3 is a Z-basis of G intersecting x in k points. 
Then 13 contains no broken-circuit so that Z3 n x is x-independent and spans x 
and is thus a Z-basis for x. Similarly, B’= Z3 -x is a reduced Z-basis for T,(G). 

TO see this note that B’U (0) is a basis of T,(G) by (2.2j. Moreover, if p E n - m, 
there is a 9 E Z3 with 9 < p such that (B - (9)) U p is a basis of G. If 95! X, then 

(B’ U (0, PI> - 191 is a basis of TX(G), while if 9 E x, then, using (2.2), Z3’ U {p) = 
((B’U{O}j-(O)jU{p} is a basis of T,(G). 

The final statement follows since 2 is a reduced x-independent set in T’(G) is 
and only if it is a subset of a Z-basis ES2 of TJ G). But this occurs if and only if Z 
is in a Z-basis Z3 of G which intersects x maximally. We may now apply the 
argumenti+ of the previous paragraph to Z3. 

RoposMon U. Let G(A) b#e a subgeometry of G and let s equal the size of the 
smallest independent subset of IL - A which is independent of each point of A but is 
not independent of A itself. Zf no such set exists, set s = r. Then 

2.5.1. s = min(lC- Aj, r) where the minimum is over all circuits C of G such that 
C$ A and (C-A)U{p} is independent for every point p E A. 
Further, if A = m, 

2.5.2, s = min(lZl, r) where the minimum is over all x-independent subsets Z of II 
(or, equivalently, of n-m) which are not contained in a Z-basis B of G with 
jBnAl=r(A). 

Proof. Since G is a geometry, it is easy to see that A is not closed if and only if 
s = 1 for all three conditions. Thus, we may assume that A is a flat. Property 
(2.51 j is easily seen to be equivalent to tbc! definition of s where the independent 
set Z of (2.5) is the set C-A of (2.5.1),, Ft r example, if Z ;a: independent of each 
point of A but is not independent of A, then there is an independent subset .Z 
of A such that .Z U Z is dependent. If 1.Z LJ ZI is minimal wir:h this property, then 
.Z U Z is a circuit while Z U {p) is independent for all p E A. 

To show (2.5.2), let Z be a x-independent subset or’ G an3 assume that I- A 
can be extended to a Z-basis Z3 which intersects A maximally. If Z3i is a Z-basis 
of the flat A which contains the x-independent set Z n A, then by (2.4), (B - A) U 

BI is a Z-basis which contains Z and intersects A, maximal@ Thus, the minimal 
nonexten Jable x-independent set is a subset of rr - M. 
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If 1 is a x-independent set, then, since na is least labeled, 2 must be indepen- 
dent of each point of m while if I were independent of m, 3 would be contained in 
a Z-basis which maximally intersects A by (2.4). Conversely, among all minimal 
independent sets satisfying (2.5), let I be the lexicographic minimum. Then it is 
x-independent since if it contained a broken-circuit C (where C U(p) is a circuit), 
then PE n-m since otherwise I would not be independent of p. However, if 
p E n - lat, then, for any 4 E C, (I U(p)) -{4) is a lexicographically smaller subset 
which, by a straightforward application of circuit exchange, satisfies (2.5). But as I 
is not independent of A, I is not contained in any basis which intersects A 
maximally, let alone a Z-basis. 

3. Identities for the characteristic polynomial and Miibius function 

In this section we present our principal results giving, via arguments for the 
broken-circuit complex, combinatorial interpretations for the quotient and re- 
mainder when x(G) is divided by x(x) for a flat (or subgeometry) X. 

In [l, 2, and lo] the modularity of a Wat x is shown to produce a factorization 
of x(G). We first give a broken-circuit theoretic proof of the converse of this 
result. The rest of this section deals with the remainder when x is not modular. 
An examyle to illustrate the main results is given at the end of the section. 

Lemma 3.1. Let G be a geomeiry of rank r on the ground set n and let the initial 
segment m form a flat x of rank k. Then the simplicial complex %(x)vW(T,(G)) 
consists of ail x-independent sets contained in a Z-basis of G which intersects x in k 
points. 

Proof. This is essentially the broken-circuit complex restatement of (2.4). 

Theorem 3.2. Let x be a subgeometry af G and let d be the degree of the polynomial 
x(G) - x(x)x( TX (G))/( A - 1) (or the degree of the polynomial w( %( G)) - 

w(~(x))w(%‘(T, (G)))) where the degree of the zero polynomial is defintid to be 0. 
Then d = r - s where s is defined in (2.5) to be the size of the smallest independent 
subset of S- x which is independent of each point of x but is not independent of x. 

Proof. If x is not a flat, then s = 1 in (2.5) while the degree of x(G) - 

x(x)x(T,(G))/(A - 1) equals r- 1 since the coefficient of A’-’ in the difference 
equals the number of points in X - x. Thus, we may assume that x is a flat in which 

case by (2.5.2), if x is labeled by zn initial segment, r-s equals the maximal 
codimension of a x-independent subset of G which is not contained in any 
Z-basis which intersects x maximally. Now w(%(G)) tabulates all x-independent 
sets and (3.1) shows that M@(X)) w (%‘( T,( G))) tabulates those which intersect x 
maximally. Thus d, the ilzgree of w(Ce(G))- w(%(x))w(%‘(T,(G))j, equals r-s. 



We may interpret the d in (4.2) as a gauge of the nonmodularity of the 
subgeometry x defining x to be d-nonmodular if the difference polynomial has 
degree d. Not,: that x is (r - 1).nonmodular if and only if it is not closed, and a 
nonmodular tlat of rank k is at least (k - I)-nonmodular. Therefore, for example, 
a nonmodular hyperplane is always br -2).nonmod.:~lar. Also, using (2.3), x is 
0-nonmodular if and only if it is modular. This fact is expressed in the following 
corollary. 

Coronap~ 33. I&G>1 a lp(~)p(T,(G))j with equality if arid only if x is a modwfar 
Pt L(. 

Cor&uy 3.4. rf x is a flat of rank k and is (1% - l)-nonmodular, then x(x) cannot 
divide x(G). 

The follot.ving iheorem was first proved for the hyperplane case (c = 1) in [9] 
(where the result was shown to hold for an arbitrary matroid) using an inductive 
argument, We give the present gesreralization and proof as we believe it gives 
more insight into how the simplices of the broken-circuit complex can be 
partitioneal in the presence of certain flats. We also remark that many corollaries 
are given in [o] based on the fact, which also holds under our more general 
hypotheses below, that the difference polynomial x(G) - x(x)x(T,( G))/(h - 1) or 
its negative can be expressed as a sum of characteristic polynomials of minors of 
G. 

‘I’heolrem 3.5. Let G be a geometry on the set n and let x be a flat of G of corank c 
whose ground set is the initial segment m. Assume all the circuits of G have 
cardinality at least c + 2. Then the Miibius junction satisfies the following identity: 

Ip(G)i = IP(x)P(T,(G))I + c IP(GCTI)I (3.5.1) 

the sum being taken over all subsets T of II! - m such that ITI = c + 1 and r( G[T]) = 
r-c - 1 where if T= (i,-, < k-C+l c l l - <i,), then G[fl= G/T-{i : i > i,-=, 
i# i,-rtl.. . . , i,}. Further, if x is d-nonmodular with d s r - c - 1, then 

x(G) = x(x)x(T,(G))l(h - 1)+-U=+’ c x(G[T]) (3.5.2) 

where the summation is over the same subsets as in (351). 

Proof. We wiI1 prove (3.5.1) by showing the right-hand side counts the Z-bases 

of G. BY (2.4), IP(x)P(TJG))I is the: number of Z-bases which intersect x 
maximally (i.e. in r - c points). All other Z-bases must contain at least c + 1 points 
from n-m. Let B ={iO, . . . , i,_=, . . . , ii,) where i,< l l l <i,-, < l l l <i,. Then, 
results of (2.2) show that B is a Z-basis of G if and only if B - T is a Z-basis of 
G[ T] tihere T = {i,_,, . . . , ‘;I}. (Th’ IS can be seen by contracting and deleting the 
indi,-ated points of G in reverse order starting with n and finishing with i,_C. 
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The hypothesis that no circuit has size less than or equal to c + 1 guarantees that 
no loop is deleted or contracted while the condition that r( G[T]) = r - c - 1 
ensures that no isthmus is deleted.) 

The identity (3.5.2) is proved similarly noting that the additional hypothesis on 
low nonmodularity implies that every x-independent set I which is not in a 
Z-basis counted in 1x(x)x( T,(G))1 has at least c + 1 points in n - m. If the c + 1 
greatest points of I are represented by T, 1 is counted in the unique summand 
x(G[ZJ) of (3.5.2) with the same exponent of A (viz. r-111). 

CoroIIary 3.6. If G(n) is a geometry of rank v and x is a hypevplane having ground 
set m, then 

xW=W-n+m)xW+ c x(Wb qW ii : i > p, i # q}h 
{P. 41: mcpcq 

Proof. The hypotheses of (3.52) are all satisfied for c = 1 since a geometry has no 
one-point or two-point circuits. Further, a hyperplane is (r - &nonmddular (by 
remarks following (3.2)) while, it is easy to check that r(G[T]) = v-2. 

Corollary 3.7. If G is a geometry of rank v and x is a hypevplane, then x(G) - 
x(x)x(T,(G))/(A - 1) has degree v - 2 and the coefficient of A’-* is equal to x(111 - 1) 
where the sum is over all lines 1 which do not intersect I:. 

Proof. Every subset {p, q) in the right-hand summ:&ion of (3.5.2) spans a line 1. If 
I intersects x, a loop will be produced in x when {p, 9) is contracted and so 
X(G[T]) is zero (the broken-circuit complex is empty). On the other hand, if I is 
parallel to x, a loop will occur (and not be deleted) unless p is the least-labeled 
point of 1, in which case a manic polynomial of degree v - 2 will contribute to the 
summand for each of the 111 - 1 choices for 9. 

Another application of (3.5) is in the case c = 0 where the following corollary 

can be given an elementary deletion-contraction proof. 

CoroIIary 3.8. If m spans a loopless matvoid G, then 

x(G)=x(G(m))- c xWlp)-bP~lh 
p:p>m 

Theorem 3.9. If x is a flat of rank k in a geometry G of rank v, then 

x(T,(G)) = (A - 1) c ~(0, y)A’-k-“y’ 

where the sum is over all flats y of G such that v(x v y) = v(y) + k. 

Proof. The above identity, when interpreted for simplex polynomials, states that 
every reduced x-independent set in W( T,( G)) corresponds to a Z-basis of some 
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flat y which forms a modular pair with x and is 
exponent of A adjusts the codimension of each such 
to the appropriate codimension of I in % ‘(T..(G))). 

disjoint from it (where t?p 
x-independent set I in %(J , 

Let Z be a subset of 1~- m. Then, as we have seen in (2.4), I is a reduced 
X-independent set of T’.‘.(G) if and only if I is independent of x and I is 
X-independent in G. But the latter condition is equivalent by (2.1) to the property 
that I is a Z-basis of 1 (so that I contributes to z(y)) while the former condivion 
is equivalent to the fact that 

r(Z)=r(i)=r(y)=r(ZUx)-r(x)=r(yvx)-k. 

The inequality in the following corollary is proved by Greene in [6] by the 
Mtibius algebra and in [7] by induction. In addition [?] shows how most of the 
known theorems regarding nonmodular inequalities for p(G) follow from (3.9). 

coaoacuy 3&L lP(G)I=+Wl lCy:ylx CL (0, y)l where the sum is 02rev all fiats 
which are n&ular complements of x (i.e. all y such that i(x) + r(y) = v(x v y) = r). 

FurtJler, ip( - I&J\ Z y:y_&(~, y)I=lcc(G)l-l~~(~)~~:~~*~~(O,y)l is equal 
10 the number of Z-bases of G which do not intersect x maximally and this number 
is zero if and only if x is modular. 

Roof. When A is set equal to 0 in (3.9) only those flats whose exponent is zero 
(i.e. those for which r(y)+ r(x) = r) contribute. Thus &:Ylx ~(0, y)l= (ti(T,(G))I. 
We may now apply (3.4). 

P(T,(G)) = (- l)r(c;)-r(xb 
y : .,V,E,..,,, p(o7 y, 

where for any geome@y H, p(H) = (-l)““‘+‘[d,~(H)/dh]~=l [3, 8, 11, OY 121. 

Roof. 

P(T,(G)) = (-l)r(q(G))+’ c 4 x(T,(G))\ 

by the product rule for derivatives and (3.9). 
If the flat x in (3.11) is a point p of G, then T,(G) = G and we have the 

LaA JA=I 

=(-1) r(G)-r(x) 

c j-40, y) 

y:r(xvy)=adx)+r(y) 

following result of [ 12, p. 761. 

Cor~bry 3.12. Zf p is a point of a geometry G, 

P(G) = C-l)‘-’ 1 ~(0, y). 
Y Z&Y 
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Example 3.13. We now illustrate some of the previous results for the geometry 
whose points are the vertices of a triangular prism with later11 faces (circuits) 
0123, 0145, and 2345. 

Let x be the line 0 1. Then x(x) = (A - 1)2 and T,(G) is the geometry consisting 
of the two intersecting lines 023 and 045. Its reduced Z-bases are 24, 2534, and 
35, the (Z-bases of the) modular complements of x (3.10). 

and 

x(x)x(T,(G)),“(A- l)=(A- 1)2(A-2)2= A4-6A3+ 13A2- l2A+4 

where the latter coefficients are the simplex numbers of the subcomplex of Cc(G) 
whose facets are the Z-bases 0124,0125, 0134, and 0135, all of which intersect x 

x(T,(G)) = (h - l)(A - 2J2 

maximally (i.e. in r(x) = 2 points). 
The othL.* Z-bases, all of which contain at least c + 1 = 3 points greater than 1 

are 0234, 0235, and 0245. Thus, (3.5.1) is satisfied where G[345] contains the 
loop 2. 

The subset 23 is x-independent but is in no Z-basis which intersects x 
maximally. In fact 23 is independent of both 0 and 1 but not of 01 (it forms the 
circuit 0123 with x). Thus s = 2 in (2.5j so that x is d-nonmodular where 
d = 4 - 2 = 2. Therefore the hypotheses of (3.5.2) are not satisfied and 

x(G)- (x(x)x(T,(Gj)l(A - lj + (- lj” 1 x(G[T]jj 

=(A”-6A3+ 15A2- 17A +7j-((A - 1)2(A -2)2-3(A - 1)) 

=2A2-2A. 

The coefficients of this digerence count the four x-independent sets 23, 45, 023, 
and 045 which are neither contained in a Z-basis intersecting x maximal!y nor 
intersect 2345 in at least three points. 
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