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In this paper we explore a research problem of Greene: to find inequalities for the Mdbius
function which become equalities in the presence of modularity. We replace these inequalities
with identities and give combinatorial interpretations for the difference.

1. Introduction

The purpose of this paper is to continue the study initiated in [2] of the
broken-circuit complex of a combinatorial geometry. In the present paper we use
this complex and its simplex numbers in order to explain and generalize identities
due to Brylawski, Greene, Oxley, Stanley, and Zaslavsky involving the charac-
teristic polynomial (and Mdbius function) of a geometry. In particular, we study
the quotient and remainder when the characteristic polynomial x(G) of a
geometry G is divided by x(x), the characteristic polynomial of a flat (or, more
generally, a subgeometry).

The broken-circuit complex is used here as a tool, the ordering on the points
being chosen to suit our purpose. In particular, the points of G are identified with
the interval n ={0, 1, .. ., n} and the flat x is labeled with the initial segment m. It
is the subject of another paper [4] to explore what happens to the complex under
arbitrary orderings.

If T,(G) is the complete Brown truncation of the geometry G with respect to a
flat x, then whenever x is modular, x(G)= x(x)x(T,(G))/(A—1) [1]). We prove
the converse of this identity by interpreting the remainder x(G)-
x(x)x(T,(G})/(A — 1) in a number of ways when x is not modular (introducing the
concept of d-nonmodularity, the degree of the difference polynomial, as a
measure of how far x is from being modular).

2. Definitions and preliminary results

We assume that the reader is familiar with the basic concepts of matroid theory,
especially that of the characteristic polynomial of a combinatorial geometry and
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its many applications (see [3, 5, 8, 9, 11, and 12]). The results for the broken-
circuit complex needed in (2.1) below are introduced in [2] while the relevant
theory for modular flats comes from [1].

2.1. The broken-circuit complex

Let G be a (combinatorial) geometry (i.e. a matroid without loops or multiple
points) of rank r on the set n={0, 1, ..., n}. The broken-circuits of G are subsets
of a of the form C—{p} where C is a circuit of G, peC, and p<gq for all
qgeC—{p}. A x-independent set is a subset containing no broken-circuit. The
collection of all y-independent sets forms a pure simplicial complex 4(G) [2]
whose facets (maximal simplices) are certain of the bases of G called Z-bases (all
of which contain 0). A basis B is a Z-basis if and only if for all pe n— B, there is
point g€ B such that q<p and (B—{q})U{p} is a basis. Similarly, an indepen-
dent set is x-independent if and only if for all p e n — I, either {p} U I is independent
or (I-{ghpuU{p} is independent for some qel, q<p. Equivalently, I is x-
independent in G if and only if I is a Z-basis of the flat T which it spans.

When 0 is deleted from every simplex which contains it, we get the reduced
broken-circuit complex €'(G). The simplices and facets of 6’ are called reduced
x-independent sets and reduced Z-bases respectively. The Whitney polynomial
w(€) of €(G) is defined by w(€)=Y wA' where w; is the number of -
independent sets of size r—i. Then,

w(€)=(A+1)w(6")=(-1)Dx(G,-2)

where x(G. A) is the characteristic polynomial of G. The constant term of w(%) (or)
w(¢")) is the (absolute) Mobius function | (0, 1)j computed in the lattice of flats
of G. Thus, |u(0, 1)| is the number of Z-bases of G.

Results in [2] are proved by deleting or contracting the greatest point where
loops can never be deleted or contracted and isthmuses never deleted. Combining
a number of these operations we obtain that if A and B are disjoint subsets of
n—m, if |C|>|A]| for all circuits C of G, and if r((G/A)— B)=r(G)—r(A), then
46((G/A)— B) consists of those subsets I) of mn—(A U B) such that DU A is in
€(G).

If €, and €, are simplicial complexes on disjoint sets, their join 6,v €, is the
complex whose simplices are those subsets of the form C; U C, where C, is a
simplex of 6, (i=1,2).

2.2. The complete Brown truncation

Let x = G(m) be a flat of G of rank k whose ground set is the initial segment m
of n. Thc complete Brown truncation of G by x, denoted T, (G), is the geometry
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on the points (n —m) J{0}={0, m+1, m+2, ..., n} whose bases are subsets of the
form B, or B;U{0} where B; and B are independent subsets (in G) of n —m with
|B/=n—-k+1, |Bl=n-k, and r(B,Ux)=r(BjUx)=r.

Alternatively, T, (G) is obtained from G by putting a set F of k-1 indepen-
dent points freely on the flat x, contracting P, and then identifying the multiple
point m as the single point 0. Since P is free in x, (I—I,) U P is ind.:pendent in G
for any independent set I where I, = INx and I, has size k — 1. The bases of G/P
may then be partitionzd into those which contain some p € x (and give a basis of
T, (G) of the form B}U{0}), and those which contain no such point. A subset I of
n — m isasubsetof the set B (where B} (where B} U{0}isatasisof T, (G))if andonly if

r(IUx) = r(x)+|I|.

I is then said to be independent of x.

When x is not a flat, the complete Brown truncation of G by the subgeometry x
is defined to be T;(G), where x is the closure of x in G. The construction of the
previous paragraph also gives T, (G) in this case (when multiple points are
identified), however there is little loss of generality in the theory below when x is
assumed to b2 a flat.

2.3. Modular flats

A flat x is modular when r(x)+r(y)=r(xvy)+r(xAy}) for every flat y in the
geometric lattice of G. A subset A of n is a mocular flat if and only if either of
the following (equivalent) conditions holds:

2.3.1. For every circuit C of G which intersects n — A, there is a point pe A
such that (C— A)U{p} is dependent in G.

2.3.2. Every subset I which is independent of each point of A is independent
of A. That is, if Icm—A and r(JU{p}) =|I|+1 for all pe A, then {IUA)=
III + T(A) :

Proposition 2.4. Let B, be a Z-basis of the rank k flat x whose points form the
initial segment m and let B, be a reduced Z-basis of T,(G). Then, the (disjoint)
union B,U B, is a Z-basis of G which intersects x in k points. Conversely, if B is a
Z-basis of G which intersects x in k points; then BN x is a Z-basis of x and B—x is
a reduced Z-basis of T (G).

The reduced x-independent sets of T,(G) are those subsets of n—x which are
independent of x and x-independent in G.

Proof. The reduced Z-bases of T,(G) are certainly included among the sets B of
(2.2). Thus, by remarks in (2.2), B=B,UB, is a basis of G. If pe G- B, then
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either pe m — B, or pe(n—m)— B,. In the former case, by (2.1), there is a q<p
such that B} = (B, —{q}) U{p} is a basis of x. But, by (2.2), B{U B, is a basis of G.
If, on the other hand, pe(n—m)— B,, there is a q in B, U{0} such that q<p and
B4 = (B,U{0, p})—{q} is a basis of T.(G). If q#0, then B,U(B5—{0})=
(BL{p})—{q} is a basis of G. If g=0, then B,U{p} is a basis of T, (G) so that
B,UB,U{p} spans G and therefore there is a point q’€ B, (with ¢’ <p since
qg'em and pen—m) such that (B—{q'})U{p} is a basis of G. Since basis
exchange exists with a lower point in either case, B is a Z-basis whose intersection
with x has cardinality |B,|= k.

To prove the converse, suppose B is a Z-basis of G intersecting x in k points.
Then B contains no broken-circuit so that BN x is x-indepeadent and spans x
and is thus a Z-basis for x. Similarly, B’= B—x is a reduced Z-basis for T (G).
o see this note that B’U{0} is a basis of T,(G) by (2.2). Moreover, if pen—m,
there is a ge B with q<p such that (B—{q})Up is a basis of G. If q¢ x, then
(B'U{0, p})—1{q} is a basis of T,(G), while if q€ x, then, using (2.2), B’U{p}=
(B'U{oh—-{0ph LU{p} is a basis of T.(G).

The final statement follows since I is a reduced x-independent set in T, (G) is
and only if it is a subset of a Z-basis B, of T,(G). But this occurs if and only if I
is in a Z-basis B of G which intersects x maximally. We may now apply the
arguments of the previous paragraph to B.

Proposition 2.5. Let G(A) be a subgeometry of G and let s equal the size of the
smallest independent siubset of n — A which is independent of each point of A but is
not independent of A itself. If no such set exists, set s=r. Then

2.5.1. s=min(|C— Al, r) where the minimum is over a!l circuits C of G such that
C1 A and (C- A)U{p} is independent for every point p € A.
Further, if A =m,

2.5.2. s=min(|I|, r) where the minimum is over all x-independent subsets I of n
(or, equivalently, of n—m) which are noi contained in a Z-basis B of G with
IBNA|=r(A).

Proof. Since G is a geometry, it is easy to see that A is not closed if and only if
s=1 for all three conditions. Thus, we may assume that A is a flat. Property
(2.5.1) is easily seen to be equivalent to the definition of s where the independent
set I of (2.5) is the set C— A of (2.5.1), F. r example, if T ‘- independent of each
point of A but is not independent of A, then there is an independent subset J
of A such that JUI is dependent. If |[J U !| is minimal with this property, then
JUT is a circuit while TU{p} is independent for all pe A. :

To show (2.5.2), let I be a x-independent subset of G and assume that I— A
can be extended to a Z-basis B which intersects A maximally. If B, is a Z-basis
of the flat A which contains the x-independent set I N A, then by (2.4), (B— A)U
B, is a Z-basis which contains I and intersects A maximaily. Thus, the minimal
nonexten fable x-independent set is a subset of n—m.
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If I is a x-independent set, then, since m is least labeled, I must be indepen-
dent of each pcint of m while if I were independent of m, I would be contained in
a Z-basis which maximally intersects A by (2.4). Conversely, among all minimal
independent sets satisfying (2.5), let I be the lexicographic minimum. Then it is
x-independent since if it contained a broken-circuit C (where C U{p} is a circuit),
then pen—m since otherwise I would not be independent of p. However, if
pEn—m, then, for any qe C, (IU{p})—{q} is a lexicographically smaller subset
which, by a straightforward application of circuit exchange, satisfies (2.5). But as I
is not independent of A, I is not contained in any basis which intersects A
maximally, let alone a Z-basis.

3. Identities for the characteristic polynomial and Mdbius function

In this section we present our principal results giving. via arguments for the
broken-circuit complex, combinatorial interpretztions for the quotient and re-
mainder when x(G) is divided by x(x) for a flat (or subgeometry) x.

In [1, 2, and 10] the modularity of a flat x is shown to produce a factorization
of x(G). We first give a broken-circuit theoretic proof of the converse of this
result. The rest of this section deals with the remainder when x is not modular.
An exampie to illustrate the main results is given at the end of the section.

Lemma 3.1. Let G be a geomeiry of rank r on the ground set n and let the initial
segment m form a flat x of rank k. Then the simplicial complex 6(x)v €'(T,(G))
consists of all x-independent sets contained in a Z-basis of G which intersecis x in k
points.

Proof. This is essentially the broken-circuit complex restatement of (2.4).

Theorem 3.2. Let x be a subgeometry of G and let d be the degree of the polynomial
x(G)—x(x)x(T(G)/(A—=1) (or the degree of the polynomial w(%(G))—
“w(€(x))w(€'(T,(G)))) where the degree of the zero polynomial is defincd to be 0.
Then d = r—s where s is defined in (2.5) to be the size of the smallest independent
subset of S— x which is independent of each point of x but is not independent of x.

Proof. If x is not a flat, then s=1 in (2.5) while the degree of x(G)-
x (x)x(T(G))/(A — 1) equals r—1 since the coefficient of A""! in the difference
equals the number of points in ¥ — x. Thus, we may assume that x is a flat in which
case by (2.5.2), if x is labeled by un initial segment, r—s equals the maximal
codimension of a y-independent subset of G which is not contained in any
Z-basis which intersects x maximally. Now w(%(G)) tabulates all x-independent
sets and (3.1) shows that w(4(x))w(%'(T,(G))) tabulates those which intersect x
maximally. Thus d, the iegree of w(6(G))— w(€(x))w(6'(T,(G))), equals r—s.
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We may interpret the d in (4.2) as a gauge of the nonmodularity of the
subgeometry x defining x to be d-nonmodular if the difference polynomial has
degree d. Notz that x is (r— 1)-nomnodular if and only if it is not closed, and a
nonmodular flat of rank k is at least (k — 1)-nonmodular. Therefore, for example,
a nonmodular hyperplane is always (r—2)-nonmodular. Also, using (2.3), x is
0-nonmodular if and only if it is modular. This fact is expressed in the following
coroflary.

Corollazy 3.3. |1(G)|=|u(x)u(T(G))| with equality if and only if x is a modular
flat.

Corollary 3.4, If x is a flat of rank k and is (k — 1)-nonmodular, then x(x) carnot
divide x(G).

The following iheorem was first proved for the hyperplane case (c =1) in [9]
{where the result was shown to hold for an arbitrary matroid) using an inductive
argument. We give the present geueralization and proof as we believe it gives
more insight into how the simplices of the broken-circuit complex can be
partitioned in the presence of certain flats. We also remark that many corollaries
are given in [9] based on the fact, which also holds under our more general
hypotheses below, that the difference polynomial x(G)— x(x)x(T,(G))/(A—1) or
its negative can be expressed as a sum of characteristic polynomials of minors of
G.

Theorem 3.5. Let G be a geometry on the set n and let x be a flat of G of corank ¢
whose ground set is the initial segment m. Assume all the circuits of G have
cardinality as least ¢ +2. Then the Mobius function satisfies the following identity:

|(G) = |p()(T(G)|+ Y, |G T (3.5.1)

the sum being taken over all subsets T of n—m such that |T|=c+1 and r(G[T)) =
r-c—1 where if T={i,_.<i_..1<---<i}, then G[T]=G/IT-{i:i>i_,
i#i,_..y....,1,). Further, if x is d-nonmodular with d<r—c—-1, then

x(G)= x(X)X(T(G)/A - D+{=1)*' Y x(G[T) (3.5.2)

where the summation is over the same subsets as in (3.5.1).

Proof. We will prove (3.5.1) by showing the right-hand side counts the Z-bases
of G. By (2.4), |u(x)u(T(G))| is the number of Z-bases which intersect x
maximally (i.e. in r — ¢ points). All other Z-bases must contain at least ¢ + 1 points
from n~m. Let B={iy,...,i,...,4} where ip<---<i__<---<i. Then,
results of (2.2) show that B is a Z-basis of G if and only if B— T is a Z-basis of
G[T] where T={i,__,...,%}. (This can be seen by contracting and deleting the
indi.ated points of G in reverse order starting with n and finishing with i _..
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The hypothesis that no circuit has size less than or equal to ¢+ 1 guarantees that
no loop is deleted or contracted while the condition that r(G[T)=r—c-1
ensures that no isthmus is deleted.)

The identity (3.5.2) is proved similarly noting that the additional hypothesis on
iow nonmodularity implies that every y-independent set I which is not in a
Z-basis counted in |x(x)x(T,(G))| has at least c+1 points in n—m. If the c+1
greatest points of I are represented by T, I is counted in the unique summand
X(G[T) of (3.5.2) with the same exponent of A (viz. r—|I|).

Corollary 3.6. If G(n) is a geometry of rank r and x is a hyperplane having ground
set m, then

x(G)=(A-n+m)x(x)+ Y  x(GHp.a)-{i:i>p,i#q).

{p.q}:m<p<q

Proof. The hypotheses of (3.5.2) are all satisfied for ¢ = 1 since a geometry has no
one-point or two-point circuits. Further, a hyperplane is (r— 2)-nonmoudular (by
remarks following (3.2)) while, it is easy to check that r(G[T]) =r—2.

Corollary 3.7. If G is a geometry of rank r and x is a hyperplane, then x(G)—
X (xX)x(T(G))/(A — 1) has degree r — 2 and the coefficient of A"~ is equal to ¥ (|I| - 1)
where the sum is over all lines | which do not intersect »..

Proof. Every subset {p, q} in the right-hand summution of (3.5.2) spans a line [. If
| intersects x, a loop will be produced in x when {p, q} is contracted and so
x(G[T)) is zero (the broken-circuit complex is empty). On the other hand, if ! is
parallel to x, 2 loop will occur (and not be deleted) unless p is the least-labeled
point of [, in which case a monic polynomial of degree r—2 will contribute to the
summand for each of the |I|—1 choices for q.

Another application of (3.5) is in the case ¢ =0 where the following corollary
can be given an elementary deletion-contraction proof.

Corollary 3.8. If m spans a loopless matroid G, then
x(G)=x(G(m)~ Y x((G/p)—{a:a>p}).

p:p>m

Theorem 3.9. If x is a flat of rank k in a geometry G of rank r, then

x(T(G)=A-1) Y u(0, y)Ar*r®»
where the sum is over all flats y of G such that r(xvy)=r(y)+k.

Proof. The above identity, when interpreted for simplex polynomials, states that
every reduced x-independent set in 6’(T,(G)) corresponds to a Z-basis of some
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flat y which forms a modular pair with x and is disjoint from it (where th-
exponent of A adjusts the codimension of each such x-independent set I in €(y .
to the appropriate codimension of I in 6'(T,(G))).

Let I be a subset of n—m. Then, as we have seen in (2.4), I iz a reduced
x-independent set of T, (G) if and only if I is independent of x and I is
x-independent in G. But the latter condition is equivalent by (2.1) to the property
that [ is a Z-basis of I (so that I contributes to %(y)) while the former condition
is equivalent to the fact that

r(D=ri=r(y)=r(IUx)~r(x)=r(yvx)—k.

The incquality in the following corollary is proved by Greene in [6] by the
Moébius algebra and in [7] by induction. In addition [71 shows how most of the
known theorems regarding nonmodular inequalities for u(G) follow from (3.9).

Covollary 3.1, |n(G)|=|n(x)|[X,.y . (0, y)| where the sum is over all flats
which are n'odular complements of x (i.e. all y such that 1(x)+r(y) =r(xvy)=r).

Further, ju(G)| = |n(x) L,y 1« |00, Y| =1(G) = |u(x) X, ., .« (0, y)| is equal
1o the number of Z-bases of G which do not intersect x maximally and this number
is zero if and only if x is modular.

Proof. When A is set equal to 0 in (3.9) only those flats whose exponent is zero
(i.e. those for which r(y) + r(x) = r) contribute. Thus |¥,., , , n(0, y)| = |u(T(G))|.
We may now apply (3.4).

Corollary 3.11.
B(Tx(c))=(_l)r((i)~r(x) Z “(0’ y)

y:r(xvy)=r(y)+r(x)

where for any geometry H, B(H) = (—1)*"*'[dx(H)/dA], _,[3, 8, 11, or 12].

Proof.

B(TAG)) = (~ 1y TG [5‘} X(T(G)

A=1

=(_1)r(G)~r(x) Z }L(O, y)

y:rixvy)=r{x)+r(y)
by the product rule for derivatives and (3.9).
If the flat x in (3.11) is a point p of G, then T,(G)=G and we have the

following result of [12, p. 76].
Corollary 3.12. If p is a point of a geometry G,
BG)=(-1y" ¥ p(,y).

y:pty
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Example 3.13. We now illustrate some of the previous results for the geometry
whose points are the vertices of a triangular prism with lateral faces (circuits)
0123, 0145, and 2345.

Let x be the line 01. Then x(x)=(A —1)* and T,(G) is the geometry consisting
of the two intersecting lines 023 and 045. Its reduced Z-bases are 24, 25, 34, and
35, the (Z-bases of the) modular complements of x (3.10).

X(T(G)=(A-1)(A-2)
and
XEXTAGHA—1D=A—1D2(A—-2)>=A*-6A3+13A%- 121 +4

where the latter coefficients are the simplex numbers of the subcomplex of €(G)
whose facets are the Z-bases 0124, G125, 0134, and 0135, all of which intersect x
maximally (i.e. in r(x)=2 points).

The othe. Z-bases, all of which contain at least ¢ + 1 =3 points greater than 1
are 0234, 0235, and 0245. Thus, (3.5.1) is satisfied where G[345] contains the
loop 2.

The subset 23 is x-independent but is in no Z-basis which intersects x
maximally. In fact 23 is independent of both 0 and 1 but not of 01 (it forms the
circuit 0123 with x). Thus s=2 in (2.5) so that x is d-nonmodular where
d =4-2=2. Therefore the hypotheses of {3.5.2) are not satisfied and

X(G) = (x()X(TAGN/A - 1)+(=1)* Y, x(G[TD)
=(A*=6A3+ 150 2= 1TA+T) = (A = 1)2(A=2)*=3(A - 1))
=2A%2-2A.

The coefficients of this difference count the four y-independent sets 23, 45, 023,
and 045 which are neither contained in a Z-basis intersecting x maximally nor
intersect 2345 in at least three points.
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