
Discrete Applied Mathematics 130 (2003) 291–328
www.elsevier.com/locate/dam

A satis�ability procedure for quanti�ed
Boolean formulae

David A. Plaisteda , Armin Biereb , Yunshan Zhuc
aComputer Science Department, University of North Carolina at Chapel Hill, Chapel Hill,

NC 27599-3175, USA
bETH Z$urich, Computer Systems Institute, 8092 Z$urich, Switzerland

cAdvanced Technology Group, Synopsys Inc., Mountain View, CA 94040, USA

Received 20 July 2000; received in revised form 7 March 2001; accepted 3 March 2002

Abstract

We present a satis�ability tester QSAT for quanti�ed Boolean formulae and a restriction
QSATCNF of QSAT to unquanti�ed conjunctive normal form formulae. QSAT makes use of pro-
cedures which replace subformulae of a formula by equivalent formulae. By a sequence of
such replacements, the original formula can be simpli�ed to true or false. It may also be
necessary to transform the original formula to generate a subformula to replace. QSATCNF

eliminates collections of variables from an unquanti�ed clause form formula until all vari-
ables have been eliminated. QSAT and QSATCNF can be applied to hardware veri�cation and
symbolic model checking. Results of an implementation of QSATCNF are described, as well
as some complexity results for QSAT and QSATCNF. QSAT runs in linear time on a class
of quanti�ed Boolean formulae related to symbolic model checking. We present the class of
“long and thin” unquanti�ed formulae and give evidence that this class is common in appli-
cations. We also give theoretical and empirical evidence that QSATCNF is often faster than
Davis and Putnam-type satis�ability checkers and ordered binary decision diagrams (OBDDs)
on this class of formulae. We give an example where QSATCNF is exponentially faster than
BDDs.
? 2003 Elsevier B.V. All rights reserved.

Keywords: QBF; Satis�ability; Davis and Putnam procedure; BDDs; Cut width; Circuit veri�cation; Model
checking

E-mail addresses: plaisted@cs.unc.edu (D.A. Plaisted),
biere@inf.ethz.ch (A. Biere), yunshan@synopsys.com (Y. Zhu).

0166-218X/03/$ - see front matter ? 2003 Elsevier B.V. All rights reserved.
PII: S0166 -218X(02)00409 -2

mailto:plaisted@cs.unc.edu
mailto:biere@inf.ethz.ch
mailto:yunshan@synopsys.com


292 D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328

0. Introduction

QSAT is a new decision procedure for satis�ability of quanti�ed Boolean formu-
lae with potential applications to hardware veri�cation and symbolic model checking.
The philosophy of QSAT is to test satis�ability of a formula by repeatedly replacing
subformulae by simpler equivalent subformulae. QSATCNF is an application of QSAT

to unquanti�ed clause form formulae, interpreted as quanti�ed Boolean formulae by
considering all free variables to be existentially quanti�ed. QSAT and QSATCNF test
satis�ability of a formula by successively eliminating variables from it, producing an
equivalent formula, until all variables have been eliminated. The motivation for QSAT

and QSATCNF is that satis�ability testers for unquanti�ed formulae such as the Davis
and Putnam method seem to be more eGcient than BDDs (ordered BDDs, OBDDs)
when there is not too much backtracking. BDDs can process large (unquanti�ed) formu-
lae because they make use of an ordering of the variables which breaks the processing
down into smaller steps that are easier to perform. The idea of QSAT and QSATCNF

is to import this BDD philosophy into satis�ability testing, by applying a modi�ca-
tion of the Davis and Putnam method not to the whole formula at once, but piece by
piece, where each application of the modi�ed Davis and Putnam method to a piece
of the formula simpli�es the formula. This reduces the amount of backtracking. QSAT

and QSATCNF can be built on top of any satis�ability tester for unquanti�ed Boolean
formulae, including StHalmarck’s method [26].
It appears (see Section 11) that BDDs are good for systems that are long and thin,

such as adders. These are also systems for which QSATCNF should be eGcient, because
such systems can be broken into parts having a limited amount of communication
between them. Each part corresponds to a subformula of the original formula. QSATCNF

can simplify one such subformula, and then be applied recursively to the remaining
formula. Thus it may be that QSATCNF is eGcient on a large number of applications
where BDDs are currently used. Similarly, QSAT should be eGcient for quanti�ed
Boolean formulae that are long and thin, in a certain sense. BDDs can also be eGcient
on problems that are not long and thin, such as some versions of barrel shifters.
QSATCNF may not be as fast on such problems.
The general method by which Boolean formulae are used for system testing is the

following:

(1) A Boolean formula G is constructed from a system S and its speci�cation, ex-
pressing that the system does not satisfy its speci�cation. Methods for generating
G are well known.

(2) The formula G is tested for satis�ability (consistency).
(3) If G is unsatis�able, then S is correct. If G is satis�able, then there is an error in

S, and the nature of the satis�ability of G can help to identify the error in S.

The system S can be a computer circuit or some system containing interconnected
objects, which can be de�ned as a component or part of a physical system, such as
a gate in a circuit. The formula G can be obtained by de�ning the formula A as a
Boolean formula representing the system S and B as a Boolean formula representing the



D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328 293

statement that S fails to satisfy its speci�cation. Then G can be taken to be the con-
junction A∧B of these two formulae, expressing that S fails to satisfy its speci�cation.

Binary decision diagrams (BDDs) [4] have been widely used in CAD applications
such as logic synthesis, testing and formal veri�cation. BDDs transform a circuit into
a canonical form, depending on an ordering of the Boolean variables, and two circuits
are equivalent if and only if they have the same canonical form. For many kinds of
circuits, BDDs work very well, especially when a good ordering of the variables can
be found. Equivalence checking [2,18] is important, because one can verify a new
or optimized circuit by showing that it is equivalent to an old and trusted circuit.
Commercial equivalence checkers can now verify circuits with millions of gates which
are clearly out of reach for traditional simulation.
Satis�ability algorithms for Boolean formulae in clause form can also be used for

hardware veri�cation [17]. In this approach, the formula G above is in clause form,
which is a special form of unquanti�ed Boolean formula. An eGcient method such as
the Davis and Putnam method can then be applied to test if the formula G is satis�able.
The Davis and Putnam method was �rst described in the paper [11], though modern
implementations diLer in some ways. Most modern implementations use the method of
DPLL [12], which eliminates variables by case analysis rather than ordered resolution.
A recent, very eGcient implementation of DPLL is described in [31]. Gupta and Ashar
[16] combined BDDs and satis�ability testers to solve veri�cation problems. Another
method for satis�ability testing of unquanti�ed Boolean formulae, not necessarily in
clause form, is disclosed in [26]. This method works breadth-�rst, trying all possible
truth assignments to small subsets of the variables of a formula. From these assign-
ments, information about dependencies between variables is obtained which can aid in
determining satis�ability.
Automatic test pattern generation (ATPG) is another important problem in CAD.

Given a combinational circuit, a stuck-at fault causes a wire to have a constant value.
The task of ATPG is to generate input patterns that detect such stuck-at faults. It was
well known that ATPG is equivalent to propositional satis�ability. EGcient SAT-based
ATPG techniques have been developed [27].
Symbolic model checking [6,10,19] is concerned with verifying sequential systems.

The use of BDDs for symbolic model checking was a breakthrough, because it permit-
ted much larger systems to be veri�ed than was possible before. BDDs permit the state
of a system to be represented and manipulated eGciently, in many cases. However,
the paper [3] gives some Boolean formulae obtained from symbolic model checking
problems on which satis�ability algorithms such as DPLL and Stalmarck’s method are
more eGcient than BDDs. Other examples are given in [17] in which the smallest BDD
for a Boolean function is of exponential size, regardless of the variable ordering used.
There is therefore also an interest in seeing how far satis�ability-based approaches can
extend in symbolic model checking applications.
Boolean satis�ability has been extensively studied. See [15] for an excellent survey of

a wide range of satis�ability techniques. However some important problems in hardware
veri�cation cannot be expressed with quanti�er-free Boolean formulae. Computing �xed
points in symbolic model checking is one such example. Therefore there is a need for
satis�ability testers for quanti�ed Boolean formulae. There has been some work in



294 D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328

decision procedures for quanti�ed Boolean formulae [7,23]. Our technique diLers from
the previous work in that it modi�es the quanti�ed Boolean formula from the inside
out, rather from the outside in. That is, QSAT can choose to process a quanti�er other
than one of the outermost quanti�ers of the formula.
The same Qexibility in the processing of quanti�ers is inherent in QSATCNF. This

Qexibility enables QSATCNF to exploit structures in the hardware veri�cation domain.
In particular, QSATCNF is very eGcient in handling long and thin circuits. Note that the
propositional satis�ability problem without quanti�ers is a special case of quanti�ed
Boolean formulae where all variables are assumed to be existentially or universally
quanti�ed. Since QSATCNF resembles the behaviors of BDDs, it complements the tra-
ditional DPLL style SAT solvers. An interesting future research direction is to combine
the two approaches.
Many of the problems mentioned in [22] are “long and thin”, meaning that they

have small cut widths. Actually, the de�nition of cut width diLers somewhat from one
paper to another, but all such de�nitions capture approximately the same idea. We will
show below that many of the problems from [9] are also long and thin, as well as
several other benchmark problems we constructed. In fact all problems we tried from
[9] have an average cut width of 19 or less. This suggests that the class of long and thin
problems is fairly common in applications. It turns out that the worst-case time bound
for QSATCNF on this class of long and thin problems is better than that of BDD’s and
the Davis and Putnam method by an exponential factor. We also have examples where
the QSATCNF implementation is faster than BDD’s and the Davis and Putnam method
on this class of problems. This gives empirical and theoretical evidence that QSATCNF

will be faster on many problems from this class.
The �rst author has obtained US patent 6,131,078 on QSAT.

1. Terminology

1.1. Boolean quanti:ers and operators

∃ is used for existential quanti�cation and ∀ for universal quanti�cation. ∧ is used for
logical conjunction (and), ∨ for logical disjunction (or), and @ for logical negation.
The symbol ↔ is used for equivalence and + for exclusive or. The constants true
and false are called truth values. The Boolean operators are de�ned on truth values in
standard ways, so that x ∧ y is true if and only if x is true and y is true, x ∨ y is
true if and only if x is true or y is true, @x is true if and only if x is false, x ↔ y
is true if and only if x and y have diLerent truth value, and x+ y is true if and only
if x and y have diLerent truth values. Capital letters (like X and Y ) refer to sets or
sequences of Boolean variables.

1.2. Formulae

A quanti:ed Boolean formula is a formula built up from Boolean variables and the
Boolean operators of conjunction, disjunction, negation, and other Boolean operators.
Thus (x∧(y∨z)) is a quanti�ed Boolean formula. Boolean quanti�ers are also allowed



D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328 295

to occur in quanti�ed Boolean formulae. Thus if B is a quanti�ed Boolean formula and
X is a set of Boolean variables, then ∃X [B] and ∀X [B] are also quanti�ed Boolean
formulae, where ∃X is considered an existential quanti�er and ∀X is considered a
universal quanti�er. ∀X [B] is often considered to abbreviate @∃X [@B]. If X is the set
or list {x; y; z}, then ∃X [A] abbreviates the quanti�ed Boolean formula ∃x[∃y[∃z[A]]].
An example of a quanti�ed Boolean formula is ∃x[x ∧@∃y[y ∨ z]]. Often the term
“quanti�ed” is dropped. A quanti�ed Boolean formula without any occurrences of
quanti�ers is said to be unquanti:ed. An occurrence of a variable x in a formula A is
called free if this occurrence is not within the scope of a quanti�er ∃x or ∀x. Only the
occurrence of z is free in the example formula. Variable occurrences that are not free
are called bound. If A is a quanti�ed Boolean formula and X is a set of variables, then
A[X ] denotes a formula A that contains the free variables X . A formula B having the
free variables X is often taken to abbreviate ∃X [B] or ∀X [B]. A literal is a Boolean
variable or its negation. If y is a variable, it is assumed that @@y is identical to y.
The literal @y is the complement of y, and likewise y is the complement of @y. The
literals y and @y are said to be complementary. A clause is a disjunction of literals,
as, x ∨@y ∨ z. A set of clauses, also termed a conjunctive normal form formula, is
a conjunction of clauses, such as C ∧ D ∧ E, where C, D, and E are clauses.

1.3. Subformulae

Each Boolean formula A is a subformula of itself. Also, if A is of the form B⊗ C,
where ⊗ is a Boolean operator, and D is a subformula of B or C, then D is also a
subformula of A. Likewise, if D is a subformula of B, then D is a subformula of @B
and a subformula of �X [B] where � is ∃ or ∀.

1.4. Simpli:cations

For a Boolean formula A, A|y refers to A with all free occurrences of the Boolean
variable y replaced by true, and the resulting formula simpli�ed as many times as
possible with respect to usual Boolean simplications. These are the following: B∧ true
simpli�es to B, B ∧ false simpli�es to false, and other standard simpli�cations for
eliminating true and false from Boolean expressions. Also, ∃x[B] and ∀x[B] simplify
to B if there are no free occurrences of the variable x in B. Let A|@y refer to A with all
free occurrences of the variable y replaced by false, and the resulting formula likewise
simpli�ed. There are also the additional simpli�cations B∧p simpli�es to B|p ∧p and
p ∧ B simpli�es to p ∧ B|p if p is a literal. Also, B ∨ p simpli�es to B|@p ∨ p and
p ∨ B simpli�es to p ∨ B|@p. If A is a Boolean formula and x is a Boolean variable,
then ∃x[A] is de�ned to be equivalent to the formula A|x ∨ A|@x.

1.5. Interpretations

An interpretation is a set I of literals, often viewed as a conjunction of its elements,
such that no pair of complementary literals occur in I . If I is an interpretation and A is
a Boolean formula, then A|I is A with all occurrences of x replaced by true, for x∈ I ,



296 D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328

and all occurrences of x replaced by false, for x such that @x∈ I , with simpli�cations
applied as before. The formula A|I is read “A relative to I”. A formula B is satis�able
if there is an interpretation I such that B|I is true. Such an interpretation I is said to
satisfy B. An interpretation I such that B|I is false is said to contradict or falsify B. A
formula B is falsi�able if there is an interpretation I such that B|I is false. If B is not
satis�able, then B is unsatis�able. A formula B is a tautology if for all I which assign
truth values to all free variables of B; B|I is true. A formula B is a contradiction if for
all I which assign truth values to all free variables of B, B|I is false. Two formulae
A and B are equivalent (A ≡ B) if and only if for all interpretations I of their free
variables, A|I is true if and only if B|I is true. A formula A is said to logically imply
a formula B if and only if for all interpretations I of the free variables of A and B, if
A|I is true then B|I is true. Also, a formula A logically implies B if and only if the
formula @A ∨ B is a tautology.

1.6. Equivalences

As the standard Boolean equivalences which may be used for transforming formulae
into equivalent formulae, the following may be taken, possibly with others added:
(A⊗B) ≡ (B⊗A) where ⊗ is ∧, ∨, ↔, or +, (A⊗B)⊗C ≡ A⊗ (B⊗C), where ⊗ is
∧ ∨, ↔, or +, @@B ≡ B, @(A ∧ B) ≡@A ∨@B, @(A ∨ B) ≡@A ∧@B, together
with other equivalences for pushing negation inside connectives and distributing ∧ over
∨ and de�ning other connectives in terms of negation, ∧ and ∨. Also, �X [A ⊗ B] ≡
(�X [A]) ⊗ B where ⊗ is ∧ or ∨ and � is ∃ or ∀, and the variables X do not occur
free in B, �X [B] ≡ B if the variables X do not occur free in B, ∀X [B] ≡@∃X [@B],
∃X [B] ≡@∀X [@B], ∃X [∃Y [B]] ≡ ∃Y [∃X [B]], ∀X [∀Y [B]] ≡ ∀Y [∀X [B]], ∃X [A∨B] ≡
(∃X [A])∨ (∃X [B]), and ∀X [A∧B] ≡ (∀X [A])∧ (∀X [B]). These may be used in either
direction.

1.7. Duals

If a formula A has only the Boolean operators ∧, ∨, and @ and quanti�ers, then a
formula B is called the dual of A if B is obtained from A by interchanging the Boolean
operators ∧ and ∨ and interchanging the quanti�ers ∀ and ∃ and adding an additional
negation to all the Boolean variables. Such a B is equivalent to @A. It is often the
case that a method which applies to a formula A can also be applied to the dual B of
A with small modi�cations. For example, A is satis�able if and only if the dual B of
A is not a tautology.
Formulae are constructed from circuits as follows. A signal on a wire is identi�ed

with a Boolean variable. Each gate is converted into a Boolean formula expressing the
required relationship between its input and output signals. Thus an OR-gate with inputs
x and y and output z would be converted into the formula z ↔ (x ∨ y). A formula
representing the entire circuit is obtained as the conjunction (and) of all the formulae for
its gates. This formula can be converted to clause form (if desired) by converting each
of the gate formulae to clause form; standard methods for doing this are known. For
example, the clause form for the formula z ↔ (x∨y) is (@z∨x∨y)∧(@x∨z)∧(@y∨z).



D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328 297

2. High-level description of QSAT

Let the relation � be de�ned so that F[∃Z[B]] � F[∃X [B1 ∧ B′
2]], where F , B1, B′

2,
X , and Z are as follows:
F is a quanti�ed Boolean formula with no free variables. ∃Z[B] is a subformula of

F , so we write F[∃Z[B]] to indicate this. Z is a list of variables which consists of the
variables in the lists X and Y in some order, so ∃Z[B] ≡ ∃X [∃Y [B]]. The formula B
is equivalent to B1 ∧ B2, where the variables Y do not occur free in B1. The formula
B′
2 is equivalent to ∃Y [B2] but does not have the quanti�ers ∃Y .
The relation � is de�ned dually on formulae of the form F[∀X [∀Y [B]]].

Theorem 1. If F � F ′ then F ≡ F ′.

Proof. ∃Z[B] ≡ ∃X [∃Y [B]] ≡ ∃X [∃Y [B1∧B2]] ≡ ∃X [B1∧∃Y [B2]] ≡ ∃X [B1∧B′
2].

Also, if F � F ′ then F ′ has some quanti�ers eliminated that appear in F . Let the
relation �∗ be de�ned by F1 �∗ Fn if Fi � Fi+1 for all i, 16 i¡n.

The algorithm QSAT is as follows:

procedure qsat(F);
�nd F ′ such that F �∗ F ′ and F ′ has no quanti�ers in it;
if F ′ is true then return true;
else if F ′ is false then return false;
else return error fi;

end qsat;

Theorem 2. If QSAT (F) returns true then F is a tautology and if QSAT (F) returns
false then F is unsatis:able. Also, for every formula F having no free variables, either
F �∗ true or F �∗ false.

Proof. If QSAT (F) returns true then F �∗ true, so F ≡ true and therefore F is a
tautology. If QSAT (F) returns false then F �∗ false, so F ≡ false and therefore F
is unsatis�able. For the rest, for any F containing at least one variable, one can �nd
F ′ containing fewer variables than F such that F � F ′. By repeated operations of
this form, all variables will be eliminated, yielding a formula equivalent to true or
false.

The diGcult parts of QSAT are (1) expressing B as B1 ∧ B2 and (2) �nding B′
2

equivalent to ∃Y [B2] but without the quanti�ers ∃Y occurring in B′
2. We refer to such

a selection of a subset Y of the variables of B as a cut of B. Finding B′
2 given Y and

B1 is done by the procedures simp and sat which will be described below. Finding B′
2

requires up to 2n calls to a satis�ability procedure, where n is the number of variables
in X that appear free in B2. Therefore it is important to �nd a cut of B that makes n
small. The quantity n will be called the cost of the cut. It is also important to �nd a



298 D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328

cut so that Y does not contain too many variables, because the amount of backtracking
increases with the size of Y .
Typically, B is a conjunction of subformulae and B2 will be chosen as all of these

subformulae that contain the variables Y free. Thus �nding a cut corresponds to choos-
ing a set Y of variables to eliminate from B. The quantity n will also be called the cost
of the set Y of variables. This quantity represents the connections between a portion of
the circuit or system represented by B2 and the rest of the circuit or system. Therefore,
it is important to choose the set Y of variables to eliminate as a set that is not too
large and is isolated from the rest of the system as much as possible. For long, thin
systems, one can choose Y as some of the variables that appear at one end of the
system, for example.
It is also possible to choose cuts based on an ordering of the variables Z . Recall

that B is typically a conjunction of many subformulae. Two variables z and z′ of
Z are said to be closely related if they appear free in the same subformula of B.
Recall that variables correspond to signals or parts of the system being veri�ed, and
often correspond to physical locations in this system. We can choose an ordering z1,
z2; : : : ; zk of the variables of Z so that variables that are closely related appear near
each other in this ordering. For example, if the system being veri�ed is long and thin,
then we can choose the ordering so that one progresses through the system from one
end to the other as one progresses up the ordering. If one is verifying that two systems
are equivalent, and both are long and thin, then the ordering can be chosen to progress
in parallel through both systems, from one end to the other, as one progresses up the
ordering. Once the ordering has been chosen, then the cuts can be chosen to eliminate
all variables larger than some bound b from B, where b is chosen so that the cost of
the cut is small and so that the number of variables being eliminated each time is not
too large.

3. simp and sat procedures

QSAT makes use of two procedures, simp and sat which can be used to replace a
quanti�ed Boolean formula by a simpler equivalent formula, together with a number of
re�nements which are subsequently described. The procedures simp and sat are applied
repeatedly in QSAT.
The procedure simp takes a Boolean formula A and produces another formula A′

equivalent to A. Informally, the procedure simp gathers together a complete collection
of interpretations Ii that make A false, and for each one it constructs a clause Di

expressing the negation of Ii. Then the conjunction (and) of the Di is equivalent to A,
because this conjunction expresses the fact that none of the Ii are true. Since all ways
of making the formula A false have been excluded, the fact that A is true has been
expressed. A formula A′ equivalent to A has been obtained, where A′ is the conjunction
of these Di.
We now express the procedure simp algorithmically. This procedure takes a Boolean

formula A and an interpretation I as arguments. It returns a set A′ of clauses containing
only the free variables of A such that if I is empty, then A′ is logically equivalent to A.



D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328 299

If A occurs in some other Boolean formula F , then let F ′ be F with an occurrence of
A replaced by A′. Then F ′ is equivalent to F . Thus satis�ability of F can be tested by
�nding some such subformula A, replacing it in F by A′, and testing satis�ability of F ′.
Since F ′ is often simpler than F (any non-free variables in A have been eliminated,
at least), it may be simpler to test satis�ability of F ′ than F . Of course, universal
quanti�ers in F can be replaced by existential quanti�ers using the fact that ∀X [C[X ]]
is equivalent to @∃X [@C[X ]]. This gives a decision procedure to decide if F is a
tautology (it simpli�es to true) or a contradiction (it simpli�es to false). This procedure
can also test if a formula F with free variables is satis�able, as follows: let Y be the
free variables in F . Then F is satis�able if and only if ∃Y [F] is a tautology, and
whether ∃Y [F] is a tautology can be tested by reducing it to true or false by successive
simpli�cations.
The procedures simp and sat make use of two auxiliary procedures unsat and taut.

The procedures unsat and taut can return true, false, or ↑ (unknown). These procedures
must satisfy the following conditions:

(1) If unsat(B) returns true, then B is unsatis�able.
(2) If B is unsatis�able and has no free variables, then unsat(B) returns true.
(3) If unsat(B) returns false, then B is satis�able.
(4) If B is satis�able and has no free variables, then unsat(B) returns false.
(5) If taut(B) returns true, then B is a tautology.
(5) If B is a tautology and has no free variables, then taut(B) returns true.

Intuitively, unsat is a procedure that tests whether a formula is unsatis�able, but it
can give up before an answer is computed and return ↑ (unknown) in some cases.
Also, taut is a procedure for testing whether a formula is a tautology, and it can also
give up before an answer is computed and return ↑ (unknown) in some cases. Both
unsat and taut can be arbitrary procedures for testing unsatis�ability or tautology. The
fact that any such procedures can be used makes it possible to implement simp and
sat without having to program unsat and taut and makes it possible for very eGcient
existing implementations of tests for unsatis�ability and tautology to be used.
The procedure simp is de�ned as follows:

procedure simp(A; I);
if unsat(A|I ) = true then return @d1 ∨@d2 ∨ · · · ∨@dn

where D = {d1; d2; : : : ; dn} is a subset of I such that A|D is unsatisfiable
else if taut(A|I ) = true then return true;
else

let y be some free variable in A such that neither y nor @y occurs in I ;
let A1 be simp(A; I ∪ {y});
if @y does not occur in any clause of A1|I and A1|I is unsatisfiable

then return A1; �;
let A2 be simp(A; I ∪ {@y});
if y does not occur in any clause of A2|I and A2|I is unsatisfiable

then return A2; �;



300 D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328

return A1 ∧ A2;
fi

end simp;

The two conditional statements involving y and @y are optimizations that may be
omitted. Now, simp(A) is de�ned for a Boolean formula A to be simp(A; { }), that
is, the result returned when simp(A; I) is called with I equal to the empty set. If
A has no free variables, then simp(A) is either true or false. When simp(A; I) re-
turns a formula A′, then it is said that the bound variables of A have been eliminated
from A to produce A′. The procedure simp can be called on a formula without bound
variables.

Theorem 3. The procedure simp(A; { }) returns a set S of clauses such that S ≡ A.

Proof. We show that for any interpretation I of the free variables of A, I |= A iL
I |= S.
Suppose I �|= A. Consider the set of J ⊆ I such that simp(A; J ) is called during the

execution of simp(A; {}). Since I �|= A, A|I = false hence A|J = false for some such J .
For some such J , unsat(A|J ) will return true. When simp(A; J ) is called for this J , a
clause D will be returned such that J �|= D and I �|= D. Such a D will be a clause in
S, so I �|= S as well.
Suppose I |= A. Consider again the set of J ⊆ I such that simp(A; J ) is called during

the execution of simp(A; { }). Since I |= A, A|I = true hence for no such J , A|J = false.
Thus no clause D will be returned such that I �|= D. Since S has no such clauses D,
I |= S as well.

The procedure sat is a faster version of simp that applies when the free variables of
A are existentially quanti�ed. This quanti�cation means looking for one interpretation
that makes A true. In this case, the procedure can be stopped as soon as one such
interpretation is found, and it is not necessary to continue looking for more.
The procedure sat tests if formulae A of the form ∃Y [B] are tautologies, assuming

that all free variables in B are mentioned in Y; and is de�ned as follows:

procedure sat(∃Y [B]);
if unsat(B) = true then return false;
else if unsat(B) = false then return true;
else

let y be some free variable in B;
let B1 be sat(∃Y [B|y]);
if B1 is true then return true �;
let B2 be sat(∃Y [B|@y]);
if B2 is true then return true �;
return false;

fi
end simp;



D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328 301

If B is satis�able, then sat(∃Y [B]) will return true, else sat(∃Y [B]) will return
false. Equivalently, if ∃Y [B] is a tautology, then sat(∃Y [B]) will return true, else
sat(∃Y [B]) will return false. The procedure sat has an advantage over simp in that
sat may stop sooner, and therefore take less time. However, sat cannot be called in
as many cases as simp can. The procedure sat can be called on a formula in which
the list X or Y of variables may be empty. The procedure sat can be extended to
formulae of the form ∀X [B] by calling sat on ∃X [@B]. If sat(∃X [@B]) returns false,
then sat(∀X [B]) returns true; if sat(∃X [@B]) returns true, then sat(∀X [B]) returns
false. This is justi�ed by the fact that ∀X [B] is equivalent to @∃X [@B]. Equivalently,
if B is not falsi�able (a tautology), then sat(∀Y [B]) will return true, else sat(∀Y [B])
will return false.

Theorem 4. The procedure sat(A) returns true i? A is satis:able, where A has no
free variables and is of the form ∃Y [B].

Proof. Suppose A is satis�able. Then there is an interpretation I of the variables Y
such that I |= B. Eventually, sat(∃Y [B|J ]) will be called on some J ⊆ I such that
B|J is true. For some such J , unsat(B|J ) will return false. Therefore sat(∃Y [B|J ]) will
return true, so sat(A) will return true.
Suppose A is unsatis�able. Then for no interpretation I of the variables Y , I |= B.

Thus sat(∃Y [B|J ]) will never be called on some J ⊆ I such that B|J is true. This
implies that unsat will never return false. Therefore sat will return false.

The tests unsat and taut (these tests are called within sat and simp) can be done
using an arbitrary decision procedure for quanti�ed Boolean formulae. These proce-
dures permit the procedures simp and sat to avoid some testing of quanti�ed Boolean
formulae in some cases. The procedures simp and sat can be called in two modes,
inner mode and free mode. In inner mode, it is assumed that whenever simp(A; I) or
sat(A) is called, then A is of the form ∃X [B(X; Y )] or ∀X [B(X; Y )] where B contains
no quanti�ers. Every quanti�ed Boolean formula will contain at least one such subfor-
mula, so inner mode is suGcient to handle any quanti�ed Boolean formula. In inner
mode, whenever unsat(A) or taut(A) is called, and A has no free variables, then A
is of the form ∃X [B(X )] or ∀X [B(X )] where B is an unquanti�ed Boolean formula,
that is, it contains no quanti�ers. The formula ∃X [B(X )] is equivalent to true if and
only if B is satis�able, otherwise it is equivalent to false. The formula ∀X [B(X )] is
equivalent to true if and only if @B(X ) is unsatis�able, otherwise it is equivalent to
false. Thus in all cases, unsat and taut can be implemented using a satis�ability test
for unquanti�ed Boolean formulae if inner mode is used. Many methods are known
for testing if unquanti�ed Boolean formulae are satis�able, including DPLL for for-
mulae in clause form. These tests are typically applied to an entire formula at once to
determine whether the whole formula is satis�able. The method QSAT works in smaller
steps, which can make the entire process signi�cantly more eGcient. In free mode,
the formula B(X; Y ) may contain Boolean quanti�ers. In this case, a procedure for
satis�ability of arbitrary quanti�ed Boolean formulae can be used. One possibility for
this is to call simp or sat recursively on the formula B. Also, these successive calls



302 D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328

to unsat and taut are permitted to have memory, in the sense that earlier calls may
record information about A that can make later calls more eGcient.
The part of the procedure simp that determines D can be done by unsat, as well; it

suGces to return @d1 ∨@d2 ∨ · · · ∨@dn where {d1; d2; : : : ; dn}= I when unsat(A|I )
returns true. It is also possible to describe procedures that return smaller formulae, by
noting which of the di are really necessary for showing that A|I is unsatis�able. For
correctness of the simp procedure, it is only necessary that some such D be returned
when unsat(A|I ) returns true. For smaller I , if some such D is returned, it can make
the procedure simp more eGcient, but it is not necessary for correctness.
The overall procedure for simplifying a quanti�ed Boolean formula F according to

QSAT is to �nd a sub-formula A of F or a formula equivalent to F to which the
procedure simp or sat can be applied. Such a formula A is then replaced by A′, A′

being simp(A) or sat(A) in F to obtain a simpler formula F ′ equivalent to F . This
procedure can be repeated on F ′ in turn any number of times, until one obtains a
formula that can be tested for satis�ability or tautology by some other means, or else
one may obtain simply true or false.
An example of the operation of the procedure simp will now be given. Suppose that

A is the formula ∃z[(x ∨ y ∨ z) ∧ (x ∨ y ∨@z) ∧ (@x ∨@y ∨ z) ∧ (@x ∨@y ∨@z)].
Thus Y is the list {x; y} of variables. When simp(A; I) is called with I equal to
{ }, the empty set, it is seen that A|I is not unsatis�able, nor is it a tautology. I
interpreted as a conjunction is true, so that A|I is equivalent to A, which is neither
a tautology nor unsatis�able. The next step is to pick a variable in Y , say x, and
call simp(A; {x}). This in turn will �nd that A|x is not unsatis�able, nor is A|x a
tautology. The formula A|x is obtained by replacing x by true and simplifying; this
yields ∃z[(true∨ y ∨ z)∧ (true∨ y ∨@z)∧ (@true∨@y ∨ z)∧ (@true∨@y ∨@z)],
which simpli�es to ∃z[(@y∨ z)∧ (@y∨@z)]. So the other variable in I , namely y is
next picked, and simp(A; {x; y}) is called. A|{x;y} is now found to be unsatis�able. The
next task is to �nd a subset D of {x; y} such that A|D is unsatis�able; in this case, the
only subset that works is {x; y}. Thus {@x;@y} (representing the clause @x ∨@y)
is returned as the value of simp(A; {x; y}). Now simp(A; {x;@y}) is called. A|{x;@y}
is found to be satis�able. Also, A|{x;@y} is true, which is a tautology. Thus, true is
returned. The call to simp(A; {x}) then returns the conjunction of these results, which
is (@x ∨@y) ∧ true, or, @x ∨@y. Now simp(A; {@x}) is called which in turn will
call simp(A; {@x; y}) and simp(A; {@x;@y}). The former returns true, and the latter
returns {x; y}, representing the clause x ∨ y. Thus the call to simp(A; {@x}) returns
the conjunction of these results, which is x∨y. Finally, the call to simp(A; {}) returns
the conjunction of @x ∨@y and x ∨ y, which is (@x ∨@y) ∧ (x ∨ y). It is indeed
true that (@x ∨@y) ∧ (x ∨ y) is equivalent to ∃z[(x ∨ y ∨ z) ∧ (x ∨ y ∨@z) ∧ (@x ∨
@y ∨ z) ∧ (@x ∨@y ∨@z)].
An optimization to QSAT is to speed up the satis�ability testing by noting when

a subformula can be expressed as a Boolean combination of two other formulae not
sharing free variables. Suppose the procedure simp or sat is testing a subformula of
the form ∃x[∃y[B(x; z) ∧ C(y; z)]] where z is the only free variable. A partial inter-
pretation I may assign a truth value to z, say, true. This formula A then becomes
∃x[∃y[B(x; true) ∧ C(y; true)]]. Such a formula will be given to the procedure unsat.



D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328 303

However, this formula can �rst be rearranged in an equivalence-preserving way to
obtain the formula ∃x[B(x; true)] ∧ ∃y[C(y; true)]. This formula consists of the two
subformulae ∃x[B(x; true)] and ∃y[C(y; true)] which do not share free variables. Thus
unsat can be more eGcient by testing satis�ability of these two subformulae separately
and combining the results.
Thus it is useful to detect when a formula can be processed more eGciently by

expressing it in terms of two other formulae not sharing free variables. In most cases,
the recognition of such decompositions must be done by the user. In the procedures
unsat and taut called by simp and sat, it is possible to test satis�ability or tautology of
formulae of the form B1⊗B2, where B1 and B2 have no free variables in common and
⊗ is either conjunction or disjunction, by testing satis�ability of B1 and B2 separately
and combining the results. Thus B1 ∧ B2 is satis�able if both Bi are, and B1 ∨ B2 is
satis�able if either Bi is. This idea can be incorporated into the simp and sat procedures
to improve their eGciency. It is possible for the user of the sat and simp procedures
to specify how such partitioning should take place: If B is a conjunction or disjunction
of many formulae Ci, then the order of these subformulae may have to be rearranged
in order to permit such a partitioning to take place. For this, the user can give some
guidance as to two sets of variables that do not occur together in any formula Ci, and
this can be used to reorder the formula into the form B1 ⊗ B2 where each Bi is a
conjunction or disjunction of many Ci, and B1 and B2 do not share free variables. The
same technique can be applied if a formula is C1 ⊗ C2 ⊗ · · · ⊗ Cn where ⊗ is either
exclusive or or equivalence, because these operators, like conjunction and disjunction,
are associative and commutative. Thus the user can obtain a formula of the form B1⊗B2

where B1 and B2 do not share free variables.

4. Applications to symbolic model checking

The procedures simp and sat can also be used to detect when �xpoints of repet-
itive systems have been attained. A repetitive formula is a formula of the form
A(X1; X2)∧A(X2; X3)∧· · ·∧A(Xn−1; Xn). Let us refer to this formula by An(X1; X2; : : : ; Xn).
The formula A(X; Y ) is often of the form ∃Z[A′(X; Z; Y )] for some formula A′. Such
formulae are often encountered in symbolic model checking. For symbolic model
checking applications, it is of interest to know for which n the formula B(X1) ∧
An(X1; X2; : : : ; Xn) ∧ C(Xn) is unsatis�able. It is often useful to know that this for-
mula is unsatis�able for all n. Thus a test is presented that can verify that the formula
B(X1) ∧ An(X1; X2; : : : ; Xn) ∧ C(Xn) is unsatis�able for all n.

Let Bn(Xn) be the formula

∃X1[∃X2[∃X3[ : : : [∃Xn−1[B(X1) ∧ An(X1; X2; : : : ; Xn)] : : : ]:

It is of interest to know whether for all n, Bn(Xn) ∧ C(Xn) is unsatis�able. This is
equivalent to the question whether (B1(X ) ∨ B2(X ) ∨ · · · ∨ Bn(X ) ∨ · · ·) ∧ C(X ) is
unsatis�able. This can be determined by �nding the smallest n such that Bn+1(X )
logically implies B1(X )∨B2(X )∨· · ·∨Bn(X ); such an n must exist by properties of these



304 D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328

formulae. One can test whether Bn+1(X ) logically implies B1(X )∨B2(X )∨· · ·∨Bn(X )
by testing whether the formula @Bn+1(X ) ∨ (B1(X ) ∨ B2(X ) ∨ · · · ∨ Bn(X )) is valid,
that is, whether ∀X [@Bn+1(X )∨B1(X )∨B2(X )∨· · ·∨Bn(X )] is a tautology. This is a
quanti�ed Boolean formula which can be simpli�ed to true using the above methods
iL it is a tautology. When such an n has been found, then one can test whether
Bj(X ) ∧ C(X ) is satis�able for any non-negative integer j not larger than n; if not,
then one knows that for all n, Bn(X ) ∧ C(X ) is unsatis�able. Otherwise, for some n,
Bn(X )∧C(X ) is satis�able. One can test whether Bj(X )∧C(X ) is satis�able by testing
whether ∃X [Bj(X ) ∧ C(X )] is a tautology.

5. Complexity bound for QSAT

It is possible to bound the complexity of QSAT on a special class of quanti�ed
Boolean formulae.

De(nition 5.1. A quanti�ed Boolean formula A is k width bounded if every subformula
of A has at most k free variables.

Theorem 5. If QSAT is applied to a formula A that has no free variables and is k
width bounded, and QSAT is called in inner mode, then the time taken is linear in the
length of A and exponential in k.

Proof. QSAT will perform a sequence of calls to simp, which will be called �rst on
the innermost formulae of the form ∀X [B] or ∃X [B]. Thus whenever simp is called
on a formula, it will be of the form ∀X [B] or ∃X [B] where all quanti�ers will al-
ready have been eliminated from B by previous calls to simp. Thus B will be of the
form (B1 op1 B2 op2 · · · opn−1 Bn) where the Bi are unquanti�ed formulae with
at most k variables and opi are binary Boolean connectives (if negations have been
pushed to the bottom). Each Bi will either be an unquanti�ed subformula of A or
an unquanti�ed conjunctive normal form formula obtained by previous calls to simp.
Each call to simp will eliminate at least one variable and will return an unquanti�ed
conjunctive normal form formula having at most k − 1 free variables. Also, each call
will take time O(ck)|B| for some constant c, where |B| is the length of B, because
of backtracking on the variables of B. The total time is bounded by

∑
B O(ck)|B|,

or by
∑

B O(ck)
∑

i |Bi| because |B|6 2
∑

i |Bi|. Let
∑′

B; i denote the sum over the
formulae Bi that have not been aLected by prior calls to simp, and thus were subfor-
mulae of A, and let

∑′′
B; i denote the sum over the formulae Bi that are obtained by

previous calls to simp. Note that these subformulae Bi of A referred to in
∑′

B; i will be
disjoint, because no occurrence of such a subformula will appear inside another such
occurrence. Thus

∑′
B; i |Bi|6 |A|: Also, we can assume that when simp returns a result,

it is in conjunctive normal form with tautologous and duplicate clauses deleted. This
implies that each such formula has at most 3k clauses and each clause has at most k
literals. Therefore each such formula Bi returned by simp satis�es |Bi|6 bk for some
constant b. Also, the total number of formulae Bi is bounded by |A|, because each



D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328 305

such Bi corresponds to a subformula of A and contributes to at most one B in the sum.
Thus

∑
B; i 16 |A|. Therefore

∑
B O(ck)

∑
i |Bi|=O(ck)

∑
B; i |Bi|6 O(ck)(

∑′
B; i |Bi|+

∑′′
B; i |Bi|)6O(ck)(|A|+max(|Bi|)(

∑
B; i 1)) = O(ck)(|A|+ bk |A|)6O((bc)k)|A|.

For a �xed k, this time bound is linear in |A|. Such formulae arise naturally in the
computation of �xed points for symbolic model checking.

Theorem 6. Suppose the formulae A, A′, B, and C are as in Section 4. Suppose
the formulae A′, B, and C are unquanti:ed Boolean formulae having at most k
free variables. Then the formulae ∀X [@Bn+1(X )∨ B1(X )∨ B2(X )∨ · · · ∨ Bn(X )] and
∃X [Bj(X )∧C(X )] are k-width bounded quanti:ed Boolean formulae, or may be made
so by moving quanti:ers in a linearly computable and equivalence-preserving manner.

Proof. The only part that does not follow immediately from the de�nitions is that the
formula Bn(Xn), de�ned as

∃X1[∃X2[∃X3[ : : : [∃Xn−1[B(X1) ∧ An(X1; X2; : : : ; Xn)] : : : ];

has to be expressed instead as

∃Xn−1[ : : :∃X2[∃X1[B(X1) ∧ A(X1; X2)] ∧ A(X2; X3)] ∧ · · · ∧ A(Xn−1; Xn)]

This manner of expressing the formula guarantees that all subformulae have at most k
free variables.

The length of the formula Bi is linear in i, so the length of the formula
∀X [@Bn+1(X )∨B1(X )∨B2(X )∨· · ·∨Bn(X )] is quadratic in n. The preceding theorem
then shows that QSAT can decide the satis�ability of this formula in time quadratic in
n. However, the formulae Bi share many subformulae. If this is taken into account, and
whenever simp(F) is called, all occurrences of F are replaced by simp(F), then the
time can be reduced to be linear in n. This also requires the formula ∀X [@Bn+1(X )∨
B1(X )∨ B2(X )∨ · · · ∨ Bn(X )] to be represented economically so that common subfor-
mulae are only stored once.

6. Complexity bounds for QSATCNF and BDDs

We now present some complexity bounds for QSATCNF, as well as some results for
BDDs. In harmony with our previous use of the term, we de�ne a cut of a set S of
clauses as a selection of a subset Y of the variables of S as bound variables and the
remainder as free. If the variables of S are linearly ordered and the bound variables Y
are selected as all those larger than a given variable x in S, then this cut is said to be a
cut at x, and also an ordered cut. The cost of a cut Y of S is the number of variables
x of S not in Y such that for some variable y in Y , and some clause C in S, x and y
both appear in S. The clause C is said to cross such a cut Y . The cost of the cut Y
corresponds to the number of variables in the set X mentioned above in the description



306 D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328

of QSATCNF. The average cost of a cut of S relative to an ordering on variables is
the average of the costs of the ordered cuts for this ordering. The maximum cost of a
cut relative to a variable ordering is de�ned similarly. This maximum cost of a cut is
also called the cut width or width of the circuit.
In [22], the complexity of automatic test pattern generation (ATPG) was studied. The

ATPG problem was reduced to a propositional satis�ability problem. It was shown that
the complexity of the SAT problem can be exponentially bounded with respect to the
cut width of a circuit. It was also shown that many practical problems have small cut
widths. Further, good variable orderings for these problems were found automatically
by a heuristic for reducing the cut width. This suggests that for problems having small
cut widths, �nding good variable orderings is often easy, even without an understanding
of the problem structure. The method of [22] is not restricted to conjunctive normal
form formulae but requires expensive rewriting at each variable assignment.

Theorem 7. The time taken by QSATCNF on sets S of clauses having n linearly or-
dered variables and maximum costs of ordered cuts w and in which a bounded number
d of variables are eliminated in each call to simp is O(n · 2w).

Proof. The time is dominated by the calls to taut and unsat. Calls to taut are very
fast. The number of calls to unsat is bounded by 2c and each call takes time at most bd

for some constant b. The time on each cut is then at most 2c · bd. Each cut eliminates
at least one variable, so at most n such cuts must be processed and the total time is at
most n · 2c · bd. Since c6w and b and d are bounded, the total time is O(n2w).

Corollary 6.1. The time taken by QSATCNF on sets S of clauses having n linearly
ordered variables and bounded maximum costs of ordered cuts and in which a bounded
number d of variables are eliminated in each call to simp is O(n).

Corollary 6.2. The time taken by QSATCNF on sets S of clauses having n linearly
ordered variables and O(log(n)) maximum costs of ordered cuts and in which a
bounded number d of variables are eliminated in each call to simp is polynomial.

Typically b is much smaller than 2, because only one model needs to be found in
the bound variable region (Y ) but all models need to be found in the free variable
region (X ). Thus the cost of the cuts has a much larger inQuence on the running time
of QSATCNF than the number d of variables that are eliminated.
In general, long and thin circuits correspond to sets S of clauses with small costs

of cuts, assuming that the circuit is laid out horizontally and variables are ordered left
to right according to the positions of the corresponding wires in the circuit. BDDs
with a good ordering typically do well on such circuits, but DPLL-type methods often
do not. A vertical line through such a circuit corresponds to a cut, and the num-
ber of wires that cross the line is proportional to the number of clauses that cross
the cut. In a long and thin circuit, this number of wires should be small, so the
cost of the cut should be small. Sometimes the cost of a cut can be small even if
many wires cross the vertical line. This corresponds to the case when many clauses



D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328 307

cross a cut but only a few variables are mentioned in these clauses. Since adders and
some other hardware circuits are long and thin, it is to be expected that QSATCNF

will be eGcient on them if the variables are properly ordered. If the variables are
improperly ordered, the costs of cuts can be very large, and QSATCNF can be very
slow.
A complexity analysis based on cut can also be applied to BDDs [1,19]. Given a set

of clauses S, we de�ne a graph G. Each node in G represents a variable in S. There
is an edge between two nodes in G iL there is a clause in S containing the variables
corresponding to the two nodes. The cut and the cost of the cut can de�ned based
on the graph structure. If the set of clauses S are generated by a structural translation
from a circuit, then G is essentially an undirected graph representation of the circuit
with the exception that G contains edges between inputs(outputs) of a gate. If each
gate in a circuit can only have constant fan-in and fan-out, adding the extra edges
in G does not aLect the complexity analysis. A circuit can also be represented as a
directed graph, where each node represents a wire and each directed edge represents
the connection from an input to an output of a gate. Based on this directed graph
structure, McMillan [19] de�ned the concepts of forward width and reverse width of
a circuit by distinguishing the directions of edges crossing a cut. It was shown that
if a circuit computes function f, the size of OBDD that represents f is O(n2wf 2

wr ),
where n is the number of inputs of the circuit and wf is the forward width and wr is
the reverse width of the circuit. For example, testing whether the output of a circuit
can be true can be represented as a Boolean satis�ability problem. A naive solution
is to build the OBDD for the circuit and see if there is a path to 1 in the OBDD.
This approach is doubly exponential in the cut width of the circuit, while QSATCNF

is single exponential. Intuitively, building an OBDD that represents the functionality
of the circuit is an overkill for the problem, as one assignment of input variables that
sets the output to be true is suGcient.
Some examples are known [3] for which DPLL-type satis�ability algorithms are

faster than BDDs. One can imagine stringing together a long sequence of such prob-
lems; such a sequence could not be solved by a BDD due to the diGculty of each
problem, and it could not be solved by a DPLL-type algorithm, either, because such al-
gorithms typically perform poorly on long and thin circuits. However, QSATCNF could
solve such a problem by solving the subproblems in sequence, one by one.
In fact, it is possible to give an explicit example for which QSATCNF is exponentially

faster than OBDDs.

De(nition 6.3. The hidden weighted bit function hwb is de�ned by

hwb(x1; : : : ; xn) = xsum;

where the xi are bits and x0 = 0 and sum is the number of i such that xi is 1.

Theorem 8. Consider the problem of verifying that for all x1; : : : ; xn,

(x1 ∨ x2 ∨ · · · ∨ xn) ⊃ hwb(x1; : : : ; xn; 0) = hwb(1; x1; : : : ; xn);



308 D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328

where n is 2k − 2 for some k. Then this problem, with a suitable variable ordering,
can be solved by QSATCNF in polynomial time, but for OBDDs with any variable
ordering it takes exponential time.

Proof. It is known [17, p. 78] that any OBDD for the hidden weighted bit function is
of exponential size, regardless of the variable ordering. This implies that OBDDs will
take exponential time to determine whether (x1 ∨ x2 ∨ · · · ∨ xn) ⊃ hwb(x1; : : : ; xn; 0) =
hwb(1; x1; : : : ; xn). The reason for this is that by setting some xi to 0, we can com-
pute hwb(x1; : : : ; xn=2) from hwb(x1; : : : ; xn; 0), but hwb(x1; : : : ; xn=2) requires an expo-
nential size OBDD. Therefore the OBDD for hwb(x1; : : : ; xn; 0) must be even
bigger.
However, the most natural representation of the function hwb(x1; : : : ; xn; xn+1) by

a set of clauses corresponding to a bounded fan-in circuit has cut width O(log(n)),
as follows: First, one can compute the sum of the xi by a tree of binary adders.
This can be done from left to right, by adding x1 and x2, adding the result to x3,
etc. It can also be done from right to left, adding xn and xn−1, adding the result to
xn−2, etc. Another way is to compute the sum by a nearly balanced binary tree of
adders. Any of these three possibilities will give the bound we desire. Next, the most
straightforward way to select the correct variable xsum is to use a barrel-shifter like
structure. This involves a binary tree in which one bit of the sum is used at each
node to determine whether to propogate the left or right child upwards. It is also
necessary to represent the formula (x1 ∨ x2 ∨ · · · ∨ xn). To do this with binary fan-in
gates requires a tree of disjunctions. The disjunctions can be associated to the left
or to the right, as the additions were, or computed in a nearly balanced binary tree
structure.
A suitable ordering on these variables results in a logarithmic cut width, and this

ordering can be found easily. First, each adder requires only O(log(n)) variables. The
general way to order variables is assign each variable x a horizontal position h(x) corre-
sponding to a reasonable layout of the circuit and order the variables by their horizontal
positions so that x¡y if h(x)¡h(y). The inputs can be ordered x1; x2; : : : ; xn from
left to right, at equally spaced intervals. Then any variable that depends on two others
can be given a position half-way between them. For example, if s1 is the sum of x1
and x2 then s1 would be half-way between x1 and x2, h(s1) = (h(x1) + h(x2))=2. Other
similar ordering schemes work just as well. This gives logarithmic cut width if the op-
erations are associated to the left or right or in a nearly balanced binary tree structure,
as suggested above. If a gate has a large fan-out, then it has a large eLect on the cut
width, so it may be necessary to consider a variety of positions for the output variable
of such a gate; in general, outputs of gates with large fan-out should be made small
in the ordering to reduce the cut width. One can also simply try all positions for such
variables and pick the one that minimizes the cut width.
This approach gives logarithmic (or even constant) cut widths for all parts of the

circuit. The only gates with large fan-out are those corresponding to bits of the sum,
and if these are ordered small in the ordering, then the cut width is logarithmic for these
also. Thus the total cut width is O(log(n)) and by Corollary 6.2, QSATCNF can test
satis�ability of a set of clauses representing the given problem in polynomial time.



D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328 309

This result should be seen as a theoretical result, that there exist circuits that are hard
for BDDs but easy for QSATCNF. If the circuit for computing hwb(x1; : : : ; xn; xn+1) were
not natural for the Boolean function being computed, the preceding theorem might not
be as interesting. However, the circuit seems to be the most straightforward method of
computing hwb. As for the ordering, there are a number of good and fully automatic
heuristics for ordering variables to reduce the cut width, such as those in [22], so it
does not seem diGcult to �nd an ordering as required by the theorem. For a human
having understanding of the structure of the circuit, the ordering is also very natural.
Finally, the use of mathematically de�ned functions such as hwb to obtain benchmarks
is standard practice, as for example the use of the pigeonhole problems, known to be
unsatis�able, to obtain benchmarks for propositional satis�ability checkers.
The same bound applies also to the original version of the Davis and Putnam method

[11] which uses ordered resolution. In fact, many of the complexity bounds and com-
ments about choosing variable orderings in this paper apply equally well to ordered
resolution. However, DPLL [12] is often much faster than ordered resolution, so one
would expect QSATCNF to be faster in many cases as well.
BDDs can also be used for satis�ability testing in other ways that may be faster. Let

B be the Boolean expression (x1∨x2∨· · ·∨xn) ⊃ hwb(x1; : : : ; xn; 0)=hwb(1; x1; : : : ; xn).
We can test if B is satis�able by building a BDD for B and testing if the BDD is
0 since an unsatis�able formula is identically false and has a BDD of 0. Since B is
unsatis�able, any BDD for B will be 0, which is very small (constant size). However,
in order to construct this BDD, intermediate BDDs need to be built that may be larger.
The complexity of constructing this BDD may depend on the manner in which these
intermediate BDDs are built. It is also possible to incorporate the intermediate signals
in a circuit for computing hwb into B when testing its satis�ability; this might lead to
a faster method.

7. QSATCNF implementation

Recall that an unquanti�ed Boolean formula S can be viewed as the quanti�ed
Boolean formula ∃Z[S] where Z includes all the free variables of S. Applying QSAT to
∃Z[S] gives a procedure to test whether the unquanti�ed Boolean formula S is satis�-
able. If QSAT (∃Z[S]) returns true then S is satis�able, else S is unsatis�able. Suppose
S is a clause form (conjunctive normal form) formula. Let Y be a non-empty subset
of the variables Z and let X be the remaining variables. Since S is a conjunction of
clauses, S may be written as S1 ∧ S2 where S2 is a conjunction of the clauses mention-
ing variables in Y and S1 is a conjunction of the remaining clauses in S. Then ∃Z[S]
≡ ∃X [∃Y [S1 ∧ S2]] ≡ ∃X [S1 ∧ ∃Y [S2]] ≡ ∃X [S1 ∧ simp(∃Y [S2])]. Let the conjunctive
normal form formula S ′

2 be simp(∃Y [S2]). Then the formula S1 ∧ S ′
2 is a conjunctive

normal form formula that has fewer free variables than S. Therefore the same pro-
cedure can be applied to this formula in turn, until all variables are eliminated. In
this way we obtain the restriction QSATCNF of QSAT to clause form formulae S. The
satis�ability problem for quanti�ed Boolean formulae is PSPACE-complete, but that
for quanti�er-free conjunctive normal form formulae is NP-complete, so the latter is



310 D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328

probably much easier. Note that the full simp procedure is not needed to implement
QSATCNF. Instead, one only needs the restriction simpCNF of simp to conjunctive nor-
mal form formulae. In fact, only simpCNF was implemented, and not the full simp
procedure.
To further illustrate the connection between QSAT and QSATCNF, we show how QSAT

could be implemented using only simpCNF. If A is an arbitrary quanti�er-free formula,
then simp(∃Z[A]) ≡ simpCNF(∃Z[∃W [A′]]) where A′ is a conjunctive normal form
formula and ∃W [A′] is equivalent to A. So for formulae of the form ∃Z[A] where A is
quanti�er-free, simp can be implemented on top of simpCNF using a conjunctive normal
form translator that has the option of adding extra existentially quanti�ed variables W
(as in the structure-preserving translation [21]). The structure-preserving translation
permits any Boolean formula to be put in conjunctive normal form in linear time.
Also, simpCNF can be extended to formulae of the form ∀Z[A] by duality where A
is quanti�er-free. If d indicates the dual, then simpCNF(∀Z[A]) = (simpCNF(∃Z[Ad]))d.
These techniques permit simp to be implemented on top of simpCNF. In this way,
QSAT could be implemented on top of simpCNF by always choosing to apply simp to a
subformula of the form ∃Z[A] or ∀Z[A], where A is quanti�er-free, as in inner mode.

A version of QSATCNF was implemented by Yakowenko [30] in C, and on certain
problems it did better than SATO. This implementation used fast data structures to
select good cuts rapidly. However, it did not have SATO’s sophisticated methods for
solving the basic satis�ability problem.
The version of QSATCNF we implemented and tested assumes that the variables Z

are linearly ordered, and that the variables Y are chosen as the d largest variables in
this ordering, for some d. With notation as above, with S as a set of clauses, we obtain
the following procedure:

procedure QSATCNF(S);
if S contains the empty clause then return false
else if S has no variables then return true;
let n be the number of variables in S;
choose a number d of variables to eliminate from S,
where 0¡d6 n;
let Y be the set of the d largest variables in S;
let T be the set of clauses in S mentioning variables in Y ;
let X be the variables in T not included in Y ;
return QSATCNF(S \ T ∪ simp(∃Y [T ]));

end QSATCNF;

The procedure simp eliminates the variables Y from T and returns a set T ′ of clauses
such that T ′ ≡ ∃Y [T ]. The clauses in T ′ are called output lemmas, or just lemmas,
of QSATCNF in the following description. These lemmas mention only variables in X
and are written on intermediate output �les during the execution of QSATCNF. Re-
call that simp performs a Davis and Putnam (DPLL [12])-like backtracking search of
partial interpretations of the free variables X in T , generating all models in the pro-
cess, and repeatedly calls unsat on subproblems generated during this search. unsat



D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328 311

is a Davis and Putnam (DPLL) procedure that stops at the �rst model. SATO has
been modi�ed so that both simp and unsat are performed by one call to SATO.
This modi�ed SATO procedure explores the X variables �rst, then the Y variables,
in a Davis and Putnam-type search. During the exploration of the X variables, all
models must be generated, but during the exploration of the Y variables, only one
model need be generated. The calls to unsat correspond to the portion of the exe-
cution of SATO that is spent searching the bound variables Y of T . Lemmas gen-
erated during this part of the search are not output, but are called internal lemmas
of QSATCNF.
QSATCNF was implemented by the �rst author in C on top of the signi�cantly modi-

�ed version of SATO3.2. QSATCNF calls this modi�ed version of SATO to implement
the procedure simp, and uses �le i/o to communicate the output lemmas between calls
to simp. Each such call is called a round of QSATCNF. The implementation only works
for clause form formulae, even though QSAT itself is de�ned more generally.
One wants to make the backtracking during the search of the X variables eGcient

by a purity test or something similar. It turns out that this is not sound. However, if at
a given point in the search, neither a variable x in X nor its negation appears in any
active clauses, then only one choice for x need be tried. This can signi�cantly improve
eGciency. In the Y region, a purity test as usual in DPLL can be used.
As an example of the unsoundness of the purity rule, suppose that S is p ∧ (@p ∨

@q) ∧ (q ∨ r) ∧@r. Suppose the variable r is eliminated. Then QSATCNF(S \ T ∪
simp(∃Y [T ])) is called, where T is (q ∨ r) ∧@r and S \ T is p ∧ (@p ∨@q). Note
that q is pure in T , but one cannot delete the clause containing q from T , because this
will result in simp(∃Y [T ]) returning true and QSATCNF(S) returning true. If no purity
rule is applied, simp(∃Y [T ]) returns q and QSATCNF(S) returns false. However, q is
not pure in S, so a modi�ed purity rule could be applied that considered the whole
clause set S and not just T .
The DPLL method used by SATO has been modi�ed in the following ways, among

others, in the QSATCNF implementation:
When splitting on a variable, QSATCNF chooses the variable and the truth value to

maximize the number of satis�ed clauses, subject to the restriction that variables in
X have to be chosen �rst. This is similar to GRASP [25]. This strategy tends to �nd
models sooner and also tends to generate fewer internal lemmas. This means that larger
lemmas can be tolerated; in fact, QSATCNF’s default bound on lemma size is 100.
The output lemmas generated by the QSATCNF implementation may have unnecessary

variables in them, because QSATCNF does not check that all literals in these lemmas
are really needed. Eliminating these extra variables could signi�cantly increase the
eGciency of the QSATCNF implementation.
The QSATCNF implementation computes the average and maximum cost of a cut

right away, so one can know quickly whether the problem is too hard. A good idea is
simply to call a standard satis�ability tester in such a case.
One technique that can make QSATCNF more eGcient is to reformulate the problem

by splitting clauses; this entails replacing a clause C1∪C2 by the two clauses C1∪{x}
and C2∪{@x} where x is a new variable, all variables in C1 are smaller in the ordering
than all variables in C2, and x is ordered in between C1 and C2. Splitting can reduce



312 D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328

the cost of cuts because each of the two resulting clauses will cross fewer cuts, and
the number of variables in each clause is less.

8. Methods of reordering variables

Because the costs of cuts can depend on the ordering of the variables, we imple-
mented a number of reordering routines which will now be described. In this section
we consider general methods that can be applied without any special knowledge of the
structure of the problem. In the next section we consider more specialized methods that
can be applied under human guidance when the structure of the problem is known.
It is probably best initially to use methods that take advantage of the structure of the
problem, and then try to improve the ordering using general heuristics.
Consider the variables V to be ordered by a function f :V → {1; : : : ; |V |} mapping

each variable x onto an integer f(x), so that x¡y if f(x)¡f(y). We assume that
some ordering of the variables is given initially. De�ne the inverse of an ordering to
be the ordering in which the order of the variables is reversed.
One reordering method reduces the average cost of a cut by interchanges of variables.

Such interchanges are continued until there is no further reduction in the average cost
of a cut.
Another lexicographic method reduces the cost of the maximum cut, namely, the

cut at the maximum variable, as much as possible, then does this for the cut at the
next largest variable, and so on. This routine is very fast, and may be expressed by
the following algorithm:

for (i =Max atom; i¿ 1; i- -){
for (j = i; j¿ 0; j- -)

Cj = cost of cut at i if i and j are exchanged;
pick j such that Cj is minimal;
exchange i and j

}
The ordering heuristic used in all our tests is to try four orderings and pick the one

that minimizes the maximum cost of a cut. These four orderings are:

(1) the original ordering,
(2) the inverse of the original ordering,
(3) the lexicographic ordering, applied to variables in the original ordering,
(4) the lexicographic ordering, applied to the variables in the inverse of their original

ordering.

Note that the maximum cost of a cut in an ordering may diLer considerably from the
maximum cost of a cut in the inverse ordering. Also, ties in the lexicographic ordering
are broken based on the original ordering of the variables, so the last two possibilities
above may give diLerent results.



D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328 313

If one has a good ordering on the input variables, this can be used to order all
the variables in a problem. Such orderings are often needed in any case for BDDs.
For example, the remaining variables can be ordered according to the ordering on
the maximum or minimum input variable on which they depend. This is sometimes
good for long, thin circuits like adders. Another good method is to use an ordering
as illustrated by the hidden weighted bit function in Section 6, in which variables are
ordered by real number positions and the position associated with the output of a gate
is the average of the positions of the inputs.
The eLectiveness of such orderings depends on the manner in which the formula is

expressed. Often a formula is translated to clause form using a “structure-preserving”
translation in which new Boolean variables are introduced for subformulae of the orig-
inal formula. When this is done, it is important to associate multiple conjunctions and
disjunctions properly to make this ordering yield a smaller cost of cut.
For example, suppose we have a formula A1 ∧ A2 ∧ · · · ∧ An where the maximum

input variable that Ai depends on is i. Then we should express this formula as ((A1 ∧
A2) ∧ A3) ∧ · · · and introduce new variables B1, B2, and B3, such that

B1 ≡ (A1 ∧ A2);

B2 ≡ (B1 ∧ A3);

B3 ≡ (B2 ∧ A4);

...

since then the maximum input variable that Bi depends on is i + 1. If this formula is
expressed by associating to the right, by

B1 ≡ (An−1 ∧ An);

B2 ≡ (An−2 ∧ B1);

...

then all Bi depend on An, so ordering by the maximum input variable that the Bi depend
on, does not order the Bi well. A survey of ordering methods for BDDs is given in
[17, Section 2.5.2]. These orderings roughly correspond to the orderings implemented
in QSATCNF, except that we did not implement the “sifting” approach which may give
better results.

9. Choosing an ordering for particular examples

We now give some ordering techniques that depend on a detailed knowledge of the
structure of the problem. Such methods are however fairly straightforward for a human
to apply. We illustrate these techniques on the benchmarks on which QSATCNF was
run. For simplicity in discussing these examples, we assume that the Boolean variables



314 D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328

are integers, so that we write i for the variable xi; this is the convention used for
DIMACS input.
We �rst discuss the maxmin example. This example expresses that

max(a; b)¿min(a; b);

where a and b are n-bit binary numbers and max and min are de�ned by

max(x; y) ≡ if x¿y then x else y;

min(x; y) ≡ if x¿y then y else x:

To encode this in clause form, we let a[i], b[i], max[i], and min[i] be Boolean vari-
ables representing the ith bits of a, b, max(a; b), and min(a; b), respectively. We also
let ge(a; b; i) be a variable signifying whether the i low-order bits of a are greater
than or equal to the i low-order bits of b, and similarly for ge(max; min; i). Finally,
ge(max; min) is a variable signifying whether max(a; b)¿min(a; b), and ge(a; b) is a
variable signifying whether a¿ b. Thus ge(max; min) ≡ ge(max; min; n) and ge(a; b) ≡
ge(a; b; n).
Now, the variables ge(a; b; i), ge(max; min; i), max(a; b; i), and min(a; b; i) can be

de�ned in terms of each other and the variables a[i] and b[i], as well as all these
quantities with i replaced by i − 1. In addition, ge(max; min) and ge(a; b) need to be
used in de�ning these variables.
The simplest way to order these variables is to order them by i. Since there are six

quantities, we could let a[i] be 6 · i, b[i] be 6 · i + 1, etc. The problem with this is
that ge(max; min) and ge(a; b) would then have large values. Since ge(max; min) and
ge(a; b) are related to so many other quantities, it is better to make them small. In this
way, we �nally obtain the following ordering:

ge(max; min) : 1 ge(a; b; i) : 6 · i − 1

ge(a; b) : 2 max[i] : 6 · i
a[i] : 6 · i − 3 min[i] : 6 · i + 1

b[i] : 6 · i − 2 ge(max; min; i) : 6 · i + 2

This is the ordering used in the “dpmaxmin” examples in the tables below. With this
ordering, the dpmaxmin example has a very small average cost of a cut, which is 4
even for large n. Other orderings, however, have a much larger cost. The “maxmin”
examples below are formalized with a diLerent ordering and a structure-preserving
translation. The maxmin examples can be solved quickly by BDDs.
We next consider the barrel shifter. This example has an n-bit register S holding a

quantity indicating how far another register X is to be rotated. This is formalized in
terms of time steps; at the �rst time step, the register X is either rotated one bit or zero
bits, depending on whether S[1] is 1 or 0. At the second time step, the register X is
rotated either two bits or zero bits, depending on whether S[2] is 1 or 0, and so forth.
The theorem to be proved is that the binary value of S gives the amount that the

register X is rotated. This can be expressed as one statement, but it is much better to



D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328 315

consider one bit of X at a time and verify that it gets shifted by the proper amount.
Even better is to verify for each value of S separately, 2n values in all, that the
speci�ed bit of X gets shifted the proper amount. With this encoding, this problem is
easily solved by QSATCNF, but the problems are so trivial that they are not included
in the following tables of runtimes. The version of this problem with all values of S
considered at once for one bit of X is problem “barrel” below. For these problems, it
is best to order the variables so that the bits of S occur early in the ordering, because
they are related to so many other variables. The other variables, representing bits of
X at various times, can be ordered in a natural manner, left to right.
We now discuss how to order clause sets having the structure of a nearly balanced bi-

nary tree. This can be expressed by the set {{xi;@x2·i ;@x2·i+1} | 16 i6 n} of clauses.
If the variables are ordered x1 ¡x2 ¡x3 : : : ; then the average cost of an (ordered) cut
will be linear. This is because each clause {xi;@x2·i ;@x2·i+1} contributes i+ 1 to the
sum of the costs of the cuts. (The cost is one for cuts from i + 1 to 2 · i and two for
the cut at 2 · i+1.) If the variables are ordered x1 ¿x2 ¿x3 : : : ; then the average cost
of a cut is about twice as large, because then the given clause contributes 2 · i + 1
to the sum of the costs of the cuts. However, if the tree is ordered pre�x, post�x, or
in�x, regarding xi as a node and x2·i and x2·i+1 as its children, then the average cost
of a cut is O(log(n)). Each cut is crossed by at most log(n) clauses in the tree. There
are about log(n) levels to the tree, and the probability of a clause at a given level
crossing a cut is about one half. Therefore the average cost of a cut is O(log(n)).
For these orderings, the average cost of a cut is about twice as large for pre�x as
for post�x, with the cost for in�x being in the middle. We note that a factor of two
in the average cost of a cut can make a tremendous diLerence in the eGciency of
QSATCNF.

We next illustrate the importance of the variable ordering with these clause sets:
{{x1; xi; xi+1} | 16 i6 n}. To reduce the costs of the cuts, the variable x1 should come
early in the ordering. If the variables are ordered x1 ¡x2 ¡x3 ¡: : : ; then the average
cost of a cut is constant. If the variables are ordered x1 ¿x2 ¿x3 : : : ; then the average
cost of a cut is linear in n. Even if the variables are ordered x1 ¿x2 ¿x3 : : : ; then
the average cost of a cut can be made constant by introducing the clause form of the
formulae x1 ≡ y1 and yi ≡ yi+1 for 16 i¡n. This is similar to splitting clauses. Then
instead of the clause {x1; xi; xi+1} the clause {yi; xi; xi+1} may be used, with the variable
ordering x1 ¿y1 ¿x2 ¿y2 ¿x3 ¿y3 : : : : This preserves the meaning of the formula
but reduces the average cost of a cut to a constant. This is one advantage of QSATCNF,
namely, the costs of cuts can be reduced by introducing new variables. This is not so
easy with BDDs. Of course, it is best to keep closely related variables near each
other in the ordering if possible. For example, the clauses {{xi; xi+1; xi+2} | 16 i6 n}
have a constant average cost of cut if the variables are ordered x1 ¡x2 ¡x3 : : : or
x1 ¿x2 ¿x3 : : : but the cost can be much larger if other orderings are used. The general
rule is to keep related variables close together, but variables that are closely related to
many others should occur early in the ordering or should be handled by splitting or
by introducing equivalences as above.
It will be clear from the test examples below that the choice of an ordering can have

a dramatic eLect on the average and maximum cost of a cut. It is probably best in



316 D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328

general to give a good variable ordering based on the topology and layout of circuit,
then perhaps optimize it using a reordering routine.

10. Choosing cuts

Even after a variable ordering is chosen, it is still necessary to choose which cuts
to process in QSATCNF. In many examples, some of the cuts will have larger costs
than others, and QSATCNF can be much faster if the cuts to be processed by simp are
chosen well. It is not obvious how to do this, however. For this purpose, we introduce a
mathematical model of the time taken to process a cut and use it to derive a systematic
method of choosing cuts that works well in practice.
Once we have a method of estimating the time t taken to process a cut, then the cut

is chosen which minimizes the ratio t=d of this time t to d, where d is the number of
variables eliminated (the variables considered to be bound in the call to simp). This
cut is chosen so that the average time required to eliminate each variable is as small
as possible.
The estimate used for the time t taken to process a cut is 2d=(2b)2c=2 where c is

the cost of the cut and d is the number of (bound) variables eliminated. Thus a large
value of b (called the best cut ratio) means that eliminating bound variables is easy
compared to handling free variables, so it’s best to eliminate many variables at a time
and choose large values of d. The default value for b is 30, which typically works well.
We also require that at least b=2 variables be eliminated each round. It is reasonable
that eliminating bound variables (Y ) is easy compared to eliminating the free variables
(X ) because in the calls to unsat it is only necessary to �nd one model of Y to know
whether the problem is satis�able but in the free variable region it is necessary to �nd
all models of X , which often takes much longer. Also, the procedure taut called by
simp is very fast for clause form formulae, because it is only necessary to test if every
clause is a tautology.
The best cut ratio b can be adjusted, too, based on the performance of QSATCNF. If

the average cost of a cut is small but QSATCNF is taking a long time per round, then it
must be that d is too large, so in this case b should be reduced. If each round is very
fast, then probably too few variables are being eliminated each round, and b should
be increased. If the average cost of a cut is large (say 50 or over), the only hope is
to do the whole problem at once; this can be done by making the best cut ratio very
large, say 1000, which essentially calls a DPLL algorithm once on the whole problem.
The estimate of the time taken on a cut could be improved by considering not only

the cost of the cut but also the number of clauses of various sizes that cross the cut.
This might give a more accurate estimate, and thereby improve the choice of cuts and
further reduce the execution time of QSATCNF.

11. Test results

We ran QSATCNF on several benchmarks and have some test results. The bench-
marks were chosen as problems typical of well-known hardware veri�cation problems



D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328 317

for which BDD’s perform well. Three such problems were chosen, together with the
problems from the IFIP problem set [9] which have been proposed as illustrative of
the eGciency of BDDs.
The general way to convert a problem to conjunctive normal form is as follows:

Suppose one has a circuit C to compute a Boolean function f. Corresponding to this
circuit there is a Boolean expression BC(X; Y; Z) where X are the input variables, Y are
the internal variables, and Z are the output variables of the circuit. Then BC(X; Y; Z) ⊃
(Z = f(X )). The formula (BC(X; Y; Z) ∧ BD(X;W; V )) ⊃ Z = V is valid iL C and D
are equivalent circuits. To show that circuits C and D are equivalent, one negates the
formula (BC(X; Y; Z) ∧ BD(X;W; V )) ⊃ Z = V , converts it to conjunctive normal form,
and shows that the resulting formula is unsatis�able. A structure-preserving translation
is used to avoid an exponential increase in size due to the conjunctive normal form
translation. Also, n-ary conjunctions and disjunctions are expressed in terms of binary
conjunctions and disjunctions in order to produce smaller clauses. The ordering of
the variables in the resulting formula is de�ned systematically in terms of a natural
ordering on the input variables for the problems “cmpadd”, “maxmin”, and “barrel”; in
general, variables that depend on larger input variables end up larger in the ordering.
In the Tables 1, 2 and 3, for each problem, the maximum and average cost of a

cut is given, both with variables renumbered to reduce these costs and for the original
problem. The number of Boolean variables and the run times for QSATCNF, the time
taken by QSATCNF after renumbering the variables, and the run times for GRASP,
SATO, and BDDs (two versions) are also given. BDD1 indicates the SMV tool [19]
with BDDs constructed using multiterminal BDDs (MTBDDs) as intermediates, which
is the default. This can be time consuming, so BDD2 gives a version of SMV with
another faster method (SMVFlatten) for creating the Boolean function from which
BDDs are constructed. In the tables, QSAT indicates QSATCNF. For the IFIP problems,
only QSATCNF was run, and the g (GROW) parameter was varied in some cases. This
Qag controls the maximum bound on lemma size. In these tables, (nr) indicates that
no variable reordering was done, and NA indicates that a problem was not attempted.
All problems were run on a Pentium II 450 running Linux, except that BDDs were run
on SMV on a Pentium III (Coppermine) 730 MHz, running Linux. Default parameters
for QSATCNF were used on all problems, including the default reordering routine,
except that in some cases it was speci�ed that no reordering should be done and in
some cases the GROW parameter was varied. Default parameters were also used for
GRASP, SATO, and BDDs. Sometimes the cut costs are not aLected by renumbering
(reordering) the variables, because if the renumbering is not giving small cuts, the
renumbering heuristic gives up quickly to save time and the original variable ordering
is used instead.

11.1. Statistics for QSATCNF

The cmpadd8-src2, cmpadd16-src2, : : : problems involve showing that a ripple-carry
adder with some number of bits (8; 16; : : :) is equivalent to a carry look-ahead adder.
The cmpadd8-src4, cmpadd16-src4, : : : problems are similar but with a diLerent variable
ordering. Both series of problems use a structure-preserving translation so that the



318 D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328

Table 1
Characteristics for several long thin problems

Renumbered Original

max avg max avg
Problem cut cut cut cut vbls

cmpadd8-src2 10 6 19 10 289
cmpadd16-src2 12 7 22 13 629
cmpadd32-src2 14 9 25 15 1345
cmpadd64-src2 18 11 28 18 2845
cmpadd64-src4 18 11 20 14 2841

maxmin16-mpc 56 31 114 64 666
maxmin20-mpc 67 35 142 79 838
maxmin24-mpc 76 40 170 95 1010
maxmin28-mpc 93 48 198 100 1182
maxmin29.cnf 344 200 344 200 4554

dpmaxmin10 6 4 6 4 62
dpmaxmin30 6 4 6 4 182
dpmaxmin50 6 4 6 4 302
dpmaxmin100 6 4 6 4 602
dpmaxmin200 6 4 6 4 1202
dpmaxmin300 6 4 6 4 1802
dpmaxmin400 6 4 6 4 2402
dpmaxmin500 6 4 6 4 3002

barrel8-sc 26 17 218 126 309
barrel16-sc 56 36 755 425 1006
barrel16-sc 56 36 755 425 1550
barrel32-sc 2336 1288 2336 1288 4639
barrel32-sc 2336 1288 2336 1288 4639
barrel64-sc

maximum number of variables per clause is three. The test results for these problems
are given in Table 2. It is interesting that cmpadd64 with a good renumbering can have
an average cost of cut of only 11; some of our other renumberings reduced this value
to 8. This suggests that problems on which BDDs are fast are typically very thin with
a proper variable ordering. QSATCNF has a much slower rate of growth than SATO
or GRASP on these problems, and takes only a few seconds, but is still slower than
BDDs.
The “maxmin” problems have been described above. The “mpc” versions have large

costs of cuts, but many of them are solved quickly anyway because QSATCNF essen-
tially calls SATO once on the whole problem or a large portion of it. SATO is slower
here largely because its default value for the GROW parameter is small.
The “dpmaxmin” problems are the maxmin problems with the ordering given in

Section 9. These problems have a maximum clause size of four. The cuts have very
small cost, indicating the importance of the problem formulation and the ordering. The



D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328 319

test results for the maxmin and dpmaxmin problems can also be found in Table 2.
Here again QSATCNF far outperforms SATO and GRASP, and gives small solution
times. In this case, QSATCNF is even faster than BDD’s for very large problems.
The “barrel-sc” problems formalize a barrel shifter and specify that one bit of the X

register is shifted properly for all values of the S register. These examples are solved
fast by QSATCNF, GRASP, and SATO, though the cut costs before renumbering are
very large. This is because QSATCNF simply calls SATO on the whole problem, and the
basic Davis and Putnam procedure works well on these problems. Though BDD’s per-
form well, they begin to blow up for the 64 bit case, at least when MTBDD’s are used
as intermediates. Note how dramatically the reordering heuristic reduces the cut costs.
The add4, addsub, mul7, mul8, and rip problems are all taken from the IFIP bench-

marks [9]. The clause form of these problems was provided by Stickel and Uribe.
Without knowing a good ordering on the input variables, it was diGcult to order the
variables, but the problems are generally easy nonetheless. Many of these problems
have small cut widths using our renumbering. Sometimes, as in the mul7 and mul8
problems, the performance depends highly on the lemma size bound g. However, this
does not reveal anything particular to QSATCNF, but rather general properties of the
Davis and Putnam algorithm, because SATO is called once on essentially the whole
problem, due to the large costs of the cuts. These test results are found in Table 3.
These tests show that for a satis�ability checker to perform well on problems suited to
BDDs, sometimes it is necessary to choose the g parameter carefully. Perhaps choosing
g small when cut costs are small is a good general heuristic.
We also tried a couple of randomly chosen problems from the DIMACS set [13].

These had large cut costs, but in both cases QSATCNF essentially called SATO on the
whole problem and in this way solved both problems quickly. Note however that the
“ssa” problem with reordering of variables, has small cut costs. These problems are
also given in Table 3.
The renumberings used for the IFIP and DIMACS examples were often done without

considering a good ordering on the input variables of the circuit. This information could
lead to better variable orderings and better performance for QSATCNF. Since BDDs
make use of variable orderings, this information could easily be supplied to QSATCNF

as well.
In general, QSATCNF appears to be suGciently fast on all examples tried where

BDDs are fast. The run times were at most a few seconds. Thus DPLL type methods
(including QSATCNF) appear to be competitive with BDDs on a few problems typi-
cal of those encountered in hardware veri�cation. QSATCNF is often much faster than
SATO and GRASP on long thin problems, and sometimes even faster than BDDs. It
is also of interest to note that many of these problems have small cut costs, espe-
cially when the variables are reordered, indicating that methods specialized for small
cut costs may have signi�cant applicability. Furthermore, even our simple heuristic
for minimizing cut costs was able to �nd orderings giving small cut costs in a few
seconds at most; this suggests that �nding a good variable ordering is not a signi�cant
diGculty. Of course, much better variable ordering routines may exist, such as that
used in [22], further reducing the costs of the cuts and increasing the applicability of
QSATCNF.



320 D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328

Table 2
Results for several long thin problems

Times in s

QSAT GRASP SATO BDD1 BDD2

Problem Total a. r.

cmpadd8-src2 0.23 0.19 0.19 0.05 0.01 0.01
cmpadd16-src2 1.57 1.38 2.05 1.09 0.01 0.02
cmpadd32-src2 2.35 1.58 58.76 NA 0.02 0.03
cmpadd64-src2 5.90 2.70 640.32 NA 0.09 0.06
cmpadd64-src4 4.23 2.41 NA NA NA NA

maxmin16-mpc 1.01 0.81 0.12 14.30 0.01 0.01
maxmin20-mpc 1.45 1.14 0.21 88.78 0.01 0.01
maxmin24-mpc 3.45 3.04 0.26 NA 0.02 0.02
maxmin28-mpc 4.76 4.24 0.46 NA 0.02 0.02
maxmin29.cnf 7.04 4.04 1.65 NA NA NA

dpmaxmin10 0.01 0.01 0.01 0.01 0.01 0.01
dpmaxmin30 0.17 0.15 0.19 0.49 0.02 0.03
dpmaxmin50 0.25 0.19 0.67 5.18 0.06 0.07
dpmaxmin100 0.45 0.34 5.57 74.95 0.22 0.28
dpmaxmin200 0.87 0.54 56.66 NA 1.24 1.61
dpmaxmin300 1.40 0.67 210.59 NA 4.27 5.54
dpmaxmin400 2.14 0.90 505.97 NA 10.95 13.6
dpmaxmin500 3.04 1.17 NA NA 22.81 28.8

barrel8-sc 0.11 0.02 0.02 0.01 0.01 0.01
barrel16-sc 1.12 0.21 0.18 0.11 0.03 0.07
barrel16-sc 0:18(nr)
barrel32-sc 6.73 2.23 1.53 2.90 0.27 0.53
barrel32-sc 2:10(nr)
barrel64-sc NA NA NA NA 81.67 3.91

12. Other methods

We now discuss the augmented sum method presented by Truemper in Chapter 11
of his book [28]. This method is expressed in matrix terms, but solves a satis�ability
problem essentially by eliminating variables and clauses from a set of clauses and
adding a set of constraints to express the eLect of the eliminated variables and clauses.
This gives a reduced problem which can be solved directly or in the same way, by
additional augmented sum solutions.
The diLerences between the augmented sum method and QSATCNF are the following:

(1) The augmented sum method eliminates both clauses and variables, while QSATCNF

eliminates only variables. Hence we will consider the version of the augmented
sum method that eliminates only variables.



D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328 321

Table 3
Results for IFIP and other problems

Renumbered Original Times in s

max avg max avg QSAT
Problem cut cut cut cut vbls g= 250 g= 100 g= 10

add4.11.clause 12 7 53 33 163 0.29 NA NA
add4.10.clause 15 10 49 30 150 0.30 NA NA
add4.9.clause 16 10 45 28 137 0.27 NA NA
add4.8.clause 12 8 41 25 124 0.21 NA NA
add4.7.clause 13 8 37 23 109 0.10 NA NA
add4.6.clause 13 8 33 20 96 0.13 NA NA

The rest are all under 0:5 s, too.

addsub.14.clause 10 6 44 24 113 0.13 NA NA

addsub.13.clause, etc. all under 0:5 s, too

mul7.9.clause 17 10 24 14 64 0.07 NA 0:04(nr)
mul7.8.clause 19 11 32 18 94 0.85 NA 0:13(nr)
mul7.7.clause 22 13 42 24 130 16.05 4:05(nr) 0:55(nr)
mul7.6.clause 23 15 50 28 164 NA NA 1:66(nr)
mul7.5.clause 22 16 56 31 194 NA NA 3:45(nr)
mul7.4.clause 25 17 60 33 218 NA 181:4(nr) 5:13(nr)
mul7.3.clause 25 17 63 35 236 NA NA 4:99(nr)
mul7.2.clause 23 17 65 36 248 NA NA 2:90(nr)
mul7.1.clause 24 17 66 37 254 8.98 NA 1:67(nr)
mul7.0.clause 24 17 66 37 254 0.99 NA 0:55(nr)

mul8.0.clause 27 19 84 47 338 10.45 NA 2:02(nr)
mul8.1.clause 27 19 84 47 338 ¿48 s NA 9:63(nr)
mul8.2.clause 26 19 83 46 332 NA NA 17:93(nr)

rip6.all.clause 9 5 24 13 43 0.21 NA NA
rip8.all.clause 10 6 31 17 55 0.18 NA NA
add3.all.clause 21 14 42 25 135 1.67 NA NA
mul4.all.clause 23 15 27 18 96 0.17 NA NA

bf1355-315.cnf 269 204 269 204 2287 1.21 NA NA
ssa0432-001.cnf 47 30 108 72 435 0.15 NA NA

(2) The augmented sum method eliminates all clauses containing eliminated variables
and adds new variables corresponding to the subsets of clauses consisting of elim-
inated variables. One such new variable is added per clause. In contrast, QSATCNF

adds no new variables.
(3) The augmented sum method adds new clauses relating the new variables to the

remaining variables. QSATCNF adds new clauses but they only mention remaining
(non-eliminated) variables.



322 D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328

Since the reduced problem in the augmented sum method might actually have more
clauses than the original problem, the method is not applied to cuts that would lead
to this result. However, QSATCNF may be applied even when the number of clauses
increases dramatically during the elimination of some variables. There are some other
diLerences between the two methods relating to the manner in which backtracking is
done and the manner in which new clauses are expressed. However, the basic philos-
ophy of the two methods is similar.
There is another method which can be polynomial on thin systems, namely, the

strategy0 option of SATO. We now discuss this option and prove that if lemmas are
generated properly, it runs in polynomial time on log width sets of clauses. As in
Theorem 8, this shows that this option can be exponentially faster than OBDDs on
some problems. However, in practice, this setting is sometimes exponential for SATO,
and we discuss the reasons for this. The strategy0 option is the one in which variables
in DPLL are chosen for splitting in their numerical order. Recall that the (cut) width
of a set S of clauses is the maximum cost of an ordered cut of S.
For this analysis we give a simpli�ed version of the DPLL [12] algorithm, but

the same analysis applies in general to DPLL. Recall that DPLL is the method in
which case analysis is used to eliminate variables that cannot be removed by other
methods; in the original Davis and Putnam paper [11] resolution was used for this
purpose. In our simpli�ed version of the DPLL algorithm, we use a LIFO stack s
to hold a sequence of literals representing the current interpretation. Whenever DPLL
is called, a literal is pushed onto s, and whenever DPLL returns, a literal is popped
oL s. The sequence of calls to DPLL can be thought of as constructing a binary tree
of partial interpretations and searching it depth-�rst. A stack s can also be thought
of as a node in this binary tree. At the top level, DPLL is called with an empty
stack.
Let I(s) be the (partial) interpretation making all literals on the stack true. Thus a

variable x is satis�ed by I(s) if x is on s, x is falsi�ed by I(s) if −x is on s, and
neither is true otherwise. We say that a set S of clauses is falsi:ed by I(s) if for some
clause C in S, every literal L in C appears negated on s. This is also written “S|I(s)
contains the empty clause”. If this is true we call s a conDict node for S. We also
say that I(s) falsi�es C in this case. When this happens, DPLL backtracks and tries
another possibility. We call push(x; s) and push(@x; s) children of s if neither x nor
@x appear on s. We also call push(x; s) and push(@x; s) siblings of each other.
We assume there is a lemma generation procedure lemma(s; S) which if S|I(s) is

unsatis�able returns a clause such that:

if S is falsi�ed by I(s)
then lemma(s; S) is a clause C in S that is falsi�ed by I(s), else

if x is not in lemma(push(x; s); S)
then lemma(s; S) = lemma(push(x; s); S) else

if @x is not in lemma(push(@x; s); S)
then lemma(s; S) = lemma(push(@x; s); S) else

lemma(s; S) = (lemma(push(x; s); S)− {x}) ∪ (lemma(push(@x; s); S)− {@x}).



D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328 323

We note that

(1) lemma(s; S) is a logical consequence of S;
(2) lemma(s; S) is falsi�ed by I(s);
(3) for every literal L in lemma(s; S) there is a clause C in S containing L such that

the variable in top(s) or some larger variable appears in C;
(4) if S is falsi�ed by I(s) then lemma(s; S) is a clause C in S.

Note also that the only time a new lemma is derived is when S is not falsi�ed by I(s)
and x is in lemma(push(x; s); S) and @x is in lemma(push(@x; S)).
We also assume that the variables are linearly ordered and that S is of width w

with respect to this ordering, that is, if a clause C in S contains both the ith and jth
variable in this ordering, then |i − j|6w. It follows from the third item above that
lemma(s; S) has at most w literals in it. The procedure DPLL(s; S) is as follows:

procedure DPLL(s; S) [[ test if S|I(s) is satis�able ]]
if S|I(s) contains the empty clause then return false else
if(all variables in S appear on s) then return true else {
let x be the smallest variable in S that does not appear on s;
if DPLL(push(x; s); S) then return true else
if x is not in lemma(push(x; s); S) then return false else
if DPLL(push(@x; s); S) then return true else
{if @x is in lemma(push(@x; S) then S ← S ∪ {lemma(s; S)};
return false};

}
end DPLL;

Note that a lemma can be added to S at most once. This is because after a lemma C
is added to S, if I(s) falsi�es C, then DPLL(s; S) will determine that S|I(s) contains the
empty clause and in this case no new lemmas are added to S. Furthermore, whenever
a lemma C is added to S, it must be the case that I(s) falsi�es C.

Theorem 9. If S is of width w then the run time for DPLL(3; S) with lemma genera-
tion on S as described above is O(ncw) where n is the number of variables in S and
c is a constant and 3 is the empty stack.

Proof. Internal nodes s of the binary tree correspond to new lemmas lemma(s; S) that
are generated by resolutions at s or in the subtree of s. Thus no lemma can appear
at two internal nodes at the same level. Each lemma appearing at an internal node
at level i has at most w literals, whose variables are selected from a �xed set of
w variables at level i. Therefore there are at most 3w lemmas altogether at internal
nodes at level i. Therefore the number of internal nodes at level i is at most 3w.
Because there are at most n levels, the size of the tree is at most O(n∗3w). Because
the work at each node is at most exponential in w, the total work is O(n∗cw) for
a constant c.



324 D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328

Corollary 12.1. If the set of clauses has O(log(n)) width, then DPLL with lemma
generation as described runs in polynomial time.

To obtain this result it is only necessary to generate new lemmas when both
S|I(push(x; s)) and S|I(push(@x; s)) contain the empty clause. Some of our test results (not
included) showed that SATO is not polynomial with the strategy0 option; this suggests
that SATO’s lemma mechanism diLers from that described above. Therefore modify-
ing SATO to achieve the polynomial time bound could already introduce a slowdown
into SATO because of the extra work to generate this kind of lemma, and because
of the additional lemmas that would be generated. This modi�ed version of DPLL
would have all lemmas from all levels stored together, further increasing the number
of lemmas. QSATCNF often does 30 or more variable elimination rounds. Thus DPLL
with the strategy0 Qag and lemma generation as indicated above would have perhaps
30 times as many lemmas as QSATCNF, probably a lot more because it would also be
necessary to modify SATO’s lemma mechanism. SATO has to go through all lemmas
and clauses containing a given variable a number of times on every step, so these
extra lemmas might slow it down. Also, all these lemmas could make this version of
DPLL use a lot more storage. These extra lemmas might make the cache behavior
much worse as well; QSATCNF only works on a small number of variables at a time,
and might have better cache performance. Still, the strategy0 option deserves looking
into.
We now discuss some other related papers. A discussion of the eGciency of the

original version of the Davis and Putnam method (which essentially performs ordered
resolution) can be found in [24]. The authors show that this method is eGcient for
long, thin circuits and give some complexity bounds. In fact, the complexity bounds
given for QSATCNF also apply to ordered resolution (with 2w replaced by aw for some
constant a). The authors also show how to construct a model of the set of clauses if it is
satis�able. The authors give a number of heuristics for choosing a variable ordering in
order to make ordered resolution eGcient. In addition, they consider two combinations
of the Davis and Putnam method with resolution. The �rst one simply bounds the size
of the resolvents that are kept, and is incomplete. The second one involves �nding a
cut set, a set of variables that disconnects the problem into two parts, and considering
truth assignments to the cut variables. For each such assignment, resolution can be
done on the two remaining parts, or they can be split again. This combination is
complete. Neither approach is the same as QSATCNF, although QSATCNF does have
some similarities to ordered resolution.
The paper [14] presents a satis�ability tester for unquanti�ed Boolean formulae simi-

lar to Stalmarck’s method. This method is not similar to QSATCNF either, but the paper
is interesting and gives some cases where satis�ability testers far outperform BDDs.
QSATCNF would probably do very well on such problems compared to BDDs, too.
Another approach to handling quanti�ed Boolean formulae is the Q-resolution of

Buening [5]. This is a version of resolution that operates on clauses whose literals
can be quanti�ed Boolean formulae. It permits the removal of universally quanti-
�ed Boolean variables during the resolution operation. This would not apply to QSAT

on clause form formulae because all variables are either existentially quanti�ed (the



D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328 325

variables Y ) or free variables (X ) whose universal quanti�er is outside the scope of the
resolution operations. Also, QSAT has a global approach to choosing which resolutions
are necessary.
Another variant of BDDs are the zero-suppressed OBDDs (ZBDDs) [20] in which a

value of zero is assumed as the default and the characteristic function of the non-zero
set is described. In [8], ZBDDs are used to represent very large sets of clauses. It is
shown that the original Davis and Putnam method (ordered resolution) can sometimes
be very eGcient when ZBDDs are used to represent the set of clauses obtained after
each group of ordered resolutions on a maximal variable. This method can work very
well when the original set of clauses has a simple structure, permitting sets of ordered
resolvents to be represented by small ZBDDs. On such sets, this approach can far
outperform the DPLL method.
The paper [29] gives comparisons between DPLL and BDDs on the IFIP benchmarks.

However, most of these problems are very easy for QSATCNF.

13. Discussion

Some theoretical results show that QSAT is eGcient on a class of quanti�ed Boolean
formulae related to symbolic model checking. Both theoretical and empirical results
show the superiority of QSATCNF over DPLL and BDDs on some problems. The the-
oretical results show that QSATCNF has a smaller worst case bound than DPLL and
BDDs on “long and thin” problems. An example was given on which BDDs are expo-
nentially slower than QSATCNF. The empirical results show that the QSATCNF imple-
mentation is often dramatically faster than GRASP and SATO on long, thin problems,
and sometimes faster than BDDs. It is also well known that DPLL itself is often much
faster than BDDs on problems with large cut widths; QSATCNF would have a simi-
lar behavior on these problems because it would just call DPLL once on the whole
problem.
The fact that many of the problems examined have small cut costs suggests that

such problems may be common. The fact that even our variable reordering routine was
often able to �nd good orderings suggests that in many cases, �nding a good variable
ordering is not a problem. Even in the paper [22], many of the problems considered had
a small cut width and �nding a good variable ordering was not diGcult. Furthermore,
if one has a knowledge of the overall structure of a problem, one can often devise a
signi�cantly better variable ordering.
One advantage of QSAT is that one has some a priori measure of how well QSAT

will perform on a quanti�ed Boolean formula, given by the minimum k for which the
formula is k width bounded. This means that one can attempt to preprocess the formula
to reduce k and make QSAT more eGcient, or not use QSAT on unsuitable formulae.
In the same way, the cut width of a clause form formula gives an a priori measure of
the eGciency of QSATCNF. One need not even use QSATCNF on formulae or variable
orderings that are unsuitable, and the suitability of a formula or variable ordering can
be precalculated without human guidance. By the same reasoning, one can generate
many variable orderings by diLerent techniques and pick the “best” one systematically.



326 D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328

Perhaps it is not so simple to compute a suitability measure for BDDs in advance, to
help in the choice of formulae or variable orderings to use.
A question that remains is how “thin” does a formula have to be for QSAT and

QSATCNF to be eGcient. The “dpmaxmin” examples are extreme, in that the average
cut width is only 4, and there are thousands of variables. Even if QSATCNF is su-
perior on such problems, there may not be many problems having such an extreme
structure. On the other hand, the QSATCNF implementation makes heavy use of �le i/o
to communicate between the rounds. If this were eliminated, and the implementation
optimized in other ways, it might be competitive even on problems whose cut width
was not so small.
Undoubtedly, there will continue to be improvements in the basic DPLL procedure,

and some of these new procedures may be as fast or faster than QSATCNF on long and
thin formulae. However, QSATCNF can be implemented on top of any DPLL procedure,
and so it can be made more eGcient at the same time. Furthermore, assuming these
faster DPLL procedures still have an exponential worst-case bound, QSATCNF will still
have a better worst case bound on long and thin formulae.

14. Conclusions

The QSAT algorithm for testing satis�ability of quanti�ed Boolean formulae has been
presented and analyzed on a class of quanti�ed Boolean formulae related to symbolic
model checking. A specialization QSATCNF of this algorithm to clause form formulae
has been given and analyzed theoretically. This method eliminates variables from a set
of clauses using a DPLL-like method [12]. A theoretical result showing that QSATCNF

can be exponentially faster than BDDs is also given. The same result applies to ordered
resolution [11], but QSATCNF is much faster than ordered resolution on some problems
because it is based on DPLL which is often much faster than ordered resolution. The
strategy0 option of SATO is analyzed theoretically and shown to be polynomial on
log width circuits if lemma generation is done properly. In fact, the complexity bounds
for QSATCNF also apply to the strategy0 option of SATO if lemma generation is
done properly. This implies that the strategy0 option of SATO can be exponentially
faster than BDD’s on some examples, if lemma generation is done properly. However,
modifying SATO in this way might incur a time or space penalty.
Though the results of this paper are mainly theoretical, test results of an implementa-

tion suggest that QSATCNF may be fast enough to be practical on clause form formulae
obtained from problems for which BDDs are fast. QSATCNF is often dramatically faster
than GRASP and SATO on the problems tested, and sometimes even faster than BDDs.
There may be many problems on which QSATCNF is superior to both DPLL and BDDs,
because most tests were done on problems that are ideal for BDDs. Some suggestions
for improving the QSATCNF implementation are given; a better implementation may be
signi�cantly faster.
A number of related previous works are discussed, and none appear to be identical

to QSATCNF. The closest is the augmented sum method presented by Truemper [28].
Applications of QSAT and QSATCNF to symbolic model checking are given, and it is



D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328 327

possible that these procedures could also be of practical use on problems from this
domain.

References

[1] C.L. Berman, Circuit width, register allocation and ordered binary decision diagrams, IEEE Trans. CAD
10 (8) (1991) 1059–1066.

[2] C.L. Berman, L.H Trevillyan, Functional comparison of logic designs for VLSI circuits, in: Proceedings
of International Conference on Computer Aided Design, 1989, pp. 456–459.

[3] A. Biere, A. Cimatti, E.M. Clarke, Y. Zhu, Symbolic model checking without BDDs, in: TACAS’99,
Lecture Notes in Computer Science, Vol. 1579, Springer, Berlin, 1999.

[4] R.E. Bryant, Graph-based algorithms for Boolean function manipulation, IEEE Trans. Comput. 35 (8)
(1986) 677–691.

[5] H.K. Buening, M. Karpinski, A. Fluegel, Resolution for quanti�ed Boolean formulas, Inform. and
Comput. 117 (1995) 12–18.

[6] J.R. Burch, E.M. Clarke, K.L. McMillan, Symbolic model checking: 1020 states and beyond, Inform.
Comput. 98 (1992) 142–170.

[7] M. Cadoli, A. Giovanardi, M. Schaerf, An algorithm to evaluate quanti�ed Boolean formulae, in:
J. Mostow and C. Rich (Eds), Proceedings of AAAI-98, Madison, WI, USA, July 26-30, 1998.

[8] P. Chatalic, L. Simon, ZRes: the old Davis–Putnam procedure meets ZBDD, in: International Conference
on Automated Deduction (CADE’00), Lecture Notes in Arti�cial Intelligence, Vol. 1831, Springer,
Berlin, 2000, pp. 449–454.

[9] L.J. Claesen, EGcient tautology checking algorithms, in: Formal VLSI Correctness Veri�cation—VLSI
Design Methods, Vol. II, Elsevier, Amsterdam, 1990 (Chapter 2).

[10] E.M. Clarke Jr., O. Grumberg, D.A. Peled, Model Checking, MIT Press, Cambridge MA, 1999.
[11] M. Davis, H. Putnam, A computing procedure for quanti�cation theory, J. ACM 7 (1960) 201–215.
[12] M. Davis, G. Logemann, D. Loveland, A machine program for theorem-proving, C. ACM 5 (1962)

394–397.
[13] DIMACS challenge benchmarks, ftp://ftp.rutgers.dimacs.edu/challenges/sat.
[14] J.F. Groote, J.P. Warners, The propositional formula checker Heer Hugo, J. Automated Reason. 24

(1–2) (2000) 101–125.
[15] J. Gu, P.W. Purdom, J. Franco, B.W. Wah, Algorithms for the satis�ability (SAT) problem: a survey,

DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 35 (1997) 19–151.
[16] A. Gupta, P. Ashar, Integrating a Boolean satis�ability checker and BDDs for combinational veri�cation,

in: Proceedings of VLSI Design, vol. 98, 1998, pp. 222–225.
[17] T. Kropf, Introduction to Formal Hardware Veri�cation, Springer, Berlin, 1999.
[18] A. Kuehlmann, A. Srinivasan, D.P. LaPotin, Verity—a formal veri�cation program for custom CMOS

circuits, IBM J. Res. Dev. 39 (1995) 149–165.
[19] K.L. McMillan, Symbolic Model Checking: An Approach to the State Explosion Problem, Kluwer

Academic Publishers, Dordrecht, 1993.
[20] S. Minato, Zero-suppressed BDD’s for set manipulation in combinatorial problems, in: 30th ACM/IEEE

Design Automation Conference, 1993, pp. 272–277.
[21] D. Plaisted, S. Greenbaum, A structure-preserving clause form translation, J. Symbolic Comput. 2 (1986)

293–304.
[22] M.R. Prasad, P. Chong, K. Keutzer, Why is ATPG easy?, in: Proceedings of the 36th Design Automation

Conference (DAC99), 1999, pp. 22–28.
[23] J. Rintanen, Improvements to the evaluation of quanti�ed Boolean formulae, in: T. Dean (Ed.),

Proceedings of the 16th International Joint Conference on Arti�cial Intelligence, Morgan Kaufmann,
Los Altos, CA, 1999, pp. 1192–1197.

[24] I. Rish, R. Dechter, Resolution versus search: two strategies for SAT, J. Automated Reason. 24 (1–2)
(2000) 225–275.

[25] J.P.M. Silva, Search algorithms for satis�ability problems in combinational switching circuits, Ph.D.
Dissertation, EECS Department, University of Michigan, May 1995.



328 D.A. Plaisted et al. / Discrete Applied Mathematics 130 (2003) 291–328

[26] G. StHalmarck, M. SXaQund, Modeling and verifying systems and software in propositional logic, in: B.K.
Daniels (Ed.), Safety of Computer Control Systems (SAFECOMP’90), Pergamon Press, Oxford, 1990,
pp. 31–36.

[27] P.R. Stephan, R.K. Brayton, A.L. Sangiovanni-Vincentelli, Combinational test generation using
satis�ability, Technical Report M92/112, Department of Electrical Engineering and Computer Science,
University of California at Berkeley, October 1992.

[28] K. Truemper, ELective Logic Computation, Wiley, New York, 1998.
[29] T.E. Uribe, M. Stickel, Ordered binary decision diagrams and the Davis–Putnam Procedure, in: J.P.

Jouannaud (Ed.), Proceedings of the First International Conference on Constraints in Computational
Logics, Lecture Notes in Computer Science, Vol. 845, Springer, Berlin, 1994.

[30] W.J. Yakowenko, Propositional theorem proving by semantic tree trimming for hardware veri�cation,
Ph.D. Thesis, University of North Carolina at Chapel Hill, July 1999.

[31] H. Zhang, SATO: an eGcient propositional prover, in: International Conference on Automated Deduction
(CADE’97), Lecture Notes in Arti�cial Intelligence, Vol. 1249, Springer, Berlin, 1997, pp. 272–275.


	A satisfiability procedure for quantifiedBoolean formulae
	Introduction
	Terminology
	Boolean quantifiers and operators
	Formulae
	Subformulae
	Simplifications
	Interpretations
	Equivalences
	Duals

	High-level description of QSAT
	simp and sat procedures
	Applications to symbolic model checking
	Complexity bound for QSAT
	Complexity bounds for QSATCNF and BDDs
	QSATCNF implementation
	Methods of reordering variables
	Choosing an ordering for particular examples
	Choosing cuts
	Test results
	Statistics for QSATCNF

	Other methods
	Discussion
	Conclusions
	References


