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Abstract 

We study five problems of finding minimal enclosures comprised of elements of a connected. 
planar graph with a plane embedding. The first three problems consider the identification uf a 
shortest enclosing walk. cycle or trail surrounding a polygonal. simply connected obstacle on 
the plane. We propose polynomial algorithms that improve on existing algorithms. The last two 

problems consider the formation of minimal zones (sets of adjacent regions such that any pail 
of points in a zone can be connected by a non-zero width curve that lies entirely in the zone). 
Specifically. we assume that the regions of the graph have nonnegative weights and seek the 
formation of minimum weight zones containing a set of points or a set of regions. We prove 
that the last two problems are NP-hard and transfonn them to Steiner arboresccnce/fixed-charge 
flow problems. 0 1999 Published by Elsevier Science B.V. All rights reserved. 

1. Introduction 

The purpose of this paper is to develop algorithms for combining regions formed 

by embedded planar graphs. Planar graphs are used to represent many systems. with 

transportation networks (e.g., roads, rivers, rail) being examples. There arc a variety 

of sources, including the US government, for such databases. In these networks, edges 

represent transportation links augmented with additional edges for natural boundaries 

(e.g., rivers), man-made boundaries (e.g., power lines). and political boundaries (e.g.. 

county lines), and vertices are formed from the intersections of these elements. Our 
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Fig. I. A plane graph with shaded obstacle. 

work is motivated by computer applications in the areas of Distribution, 

Geographic Information Systems. 

Logistics and 

We start with some basic definitions. We consider a connected planar graph 

3 = (V, 8) with a plane embedding (or simply a plane graph) and assume that every 

edge e E 6’ is a straight line segment with a positive length (weight) I(e). Let 0 be 

an obstacle on the plane (see Fig. 1). For technical convenience, we assume that 0 is 

simply connected with polygonal boundary; 0 may, however, have “zero-width” sec- 

tions, where a local portion of the obstacle consists of a single edge (as in the edge 

(cl, Q) of the obstacle in Fig. 1). We can also assume that 0 has no edges of 29 in its 

interior, since these edges are irrelevant for the purposes considered in this paper, and 

can be removed. The vertices and edges defining the boundary of 0 may be coincident 

with vertices and edges of $57, although we will consider the edges of 9 independently 

of the obstacle boundary. (In Fig. 1 we take all edges of 0 to be in G.) 

An O-enclosing walk is any closed path in 9, with possibly repeated nodes or edges, 

that “goes completely around” 0, or more technically, cannot be homotopically shrunk 

to a point without crossing 0. An O-enclosing trail is an O-enclosing walk that does 

not repeat an edge, and a O-enclosing cycle is a O-enclosing walk that does not repeat 

an edge or a vertex. In Fig. 1, for example, csdezqjc2ci lgnpqclc2~3 is an O-enclosing 

walk, cgdeuc3jc2khgnpqc~czsc3 is an O-enclosing trail, and cgdefgnpqc,c2scj is an O- 

enclosing cycle. If the edges of the closed path coincide with the obstacle we consider 

the obstacle to lie to the “inside” of the path edge, and in the case of a repeated edge 

coincident with a “zero-width” section of 0, the obstacle is considered to lie “between” 

the two traversals of the edge. 
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Fig. 2. Shaded zone surrounding four regions 

A reyion of 3 is the closure of a face, that is, the union of the face and its boundary. 

We denote the unbounded region that lies outside the graph by r() and the bounded 

regions by ~1, t-2,. . . , Q. Let 3 = {YO,YI.. . , Q}. A region Y, may have a non-negative 

n~right (such as population or perimeter) denoted by w(Y,). A zone is a set of adjacent 

regions such that any pair of points in the set can be connected by a non-zero width 

curve that lies entirely in the zone (i.e., every point on the curve has an c-neighborhood 

that is a subset of the zone). In Fig. 2, the shaded area represents a zone containing 

the four darkened regions. 

In this paper, we consider the following five problems: 

Shortest Enclosing Walk/Cycle/Trail (SEW/SECjSET) Problem 

In.st~ncr: A plane graph 9 = (‘I“, A) with edges P E 8 having weights I(e) >O, and 

polygonal obstacle 0. 

Find: Walk/cycle/trail r enclosing 0 of minimum total length CC+, I(r). 

Minimum Weight Zone Containing a Set of Regions (MWZR) Problem 

Znstunce: A plane graph 3 = (P.,(si) with regions I’, having weights w(T,) >O and a set 

of terminul regions .g* 2 9 in ‘9. 

Fir& A zone _Y that contains all terminal regions and has minimum total weight 

Minimum Weight Zone Containing a Set of Points (MWZP) Problem 

Instance: A plane graph Y= (V,b) with regions r, having weights w(q)>0 and a set 

V ‘* of terminal points on the plane. 

Fir& A zone Y that contains all terminal points and has minimum total weight 

c r,EY w(r,). 
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The SEW, SEC, and SET problems arise when buildings on a street network are 

to be surrounded by a security fence laid on the streets with minimum length [3]. 

The SEC and SET problems have an additional interesting application in constructing 

minimum weight 2-connected networks spanning a given set of points [ 121. The MWZP 

and MWZR problems have applications in political districting where an objective is 

the formation of political districts by combining precincts based on their weights (such 

as population or percentage of minority voters). 

Remark 1. A problem similar to MWZP is the Fixed Embedding Face Cover Prob- 

lem [2]: Given a plane graph 9 = (V, 6) together with a subset of terminal vertices 

~I“*c Y‘, find the minimum weight covering of V’* by regions. Unlike MWZP, how- 

ever, the Fixed Embedding Face Cover Problem does not require that the regions be 

connected. 

Bienstock and Monma [3] gave the first algorithm to solve the SEW problem on a 

plane graph, by solving a flow problem on a nonplanar augmentation of the dual graph. 

Provan [l l] proposed polynomial algorithms for both the SEW and SEC problems on 

general graphs with a given (not necessarily plane) layout. All three algorithms are 

0(1V“l* log 19’1); h owever, the algorithm for SEC given in [ 111 does not always give 

an optimal solution, as discovered by Stutzman in [14]. Bienstock and Monma [2] 

proposed algorithms for the Fixed Embedding Face Cover Problem; these, however, 

do not apply directly to the zone problems. 

In this paper we develop algorithms for, and investigate the complexity of, the 

SEW, SEC, SET, MWZP, and MWZR problems. Section 2 describes an 0( IYj log 1 ?.I) 

algorithm for solving SEW by perturbing the obstacle and solving a max flow in the 

planar dual graph. Section 3 gives a (correct) algorithm for the SEC problem having 

complexity 0( 1 f ‘I), and shows how it can be modified to solve the SET problem. 

Section 4 studies the problems MWZP and MWZR. Both problems are shown to NP- 

hard, but it is shown how they can be reduced to a special case of the directed Steiner 

tree problem. 

2. Shortest enclosing walk 

In this section, we review the literature on the computation of a SEW around an 

obstacle 0 on the plane and propose some improvements on the algorithms of [3, 111. 

A cutwrtex of 0 is a vertex of 0 whose removal will disconnect 0. Let cl,. . . , ck 

be the cutvertices of 0. Fig. 1 depicts a plane graph with shaded obstacle 0 having 

cutvertices cl, cz and ~3. 

We begin by describing Algorithm Perturb which produces the perturbed graph @ 

by duplicating the cutvertices of 0 and moving them “outward” from 0. The per- 

turbed graph will remain plane, and the perturbed obstacle 6 will have no cutver- 

tices, or equivalently, its boundary will be a simple polygon. Moreover, the 



Fig. 3. The perturbed graph ‘; 

corresponding O-enclosing walks in Y and o-enclosing walks in I4 will have the same 

lengths. 

Algorithm Perturb 

I. Let cl,....ck be the cutvertices of 0. Set Y^‘= :!‘. i=6. andi)=0. 

2. For i= I....,k do 

3. Let t.1,. , r,,,! be the vertices of 0 adjacent to c, in the clockwise 

direction. Let iz’,ciri,,, ,i = I.. ,mi be the angles in the plane with 

vertex c, and no edges of 0 incident to c, in their interior. 

4. For ,j = I.. . , m, do 

5. Place a vertex c,, in the interior of L L’,c, cl+! sufficiently near c,. 

6. Replace every edge (c,,u) in the closure of L L’,c,I’~+I by a new edge 

(c~,.u) with length equal to that of (c,.u). 

7. Remove vertex c, from Y’/^‘. 

End for 

End for 

8. Delete the elements of @ inside 6. 

End 

Fig. 3 shows the perturbed graph C4 for the instance given in Fig. 1. It is clear 

that the resulting graph remains plane. Now let <go be the cfuul graph of C?. that 

is, ‘?o has a vertex inside each region of 4 - including vertex ~‘0 corresponding 

to the unbounded region ro and vertex I’* corresponding to the region r* containing 
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b - and every edge e of CC? corresponds to edge en of go connecting the vertices 

corresponding to the two regions of ?? adjacent to e. Give each edge of C!?n the weight 

of the corresponding edge of @. It is a well-known fact that there is a one-to-one 
n 1 

correspondence between (~0, v*)-cuts in Yn and cycles in 9 separating ro from r*. 

Since &enclosing walks in @ must be cycles separating ro from r*, the length of such 

a cycle will be equal to the weight of the corresponding (vg, v*)-cut in go. Hence, the 

minimum weight (~0, v+ )-cut in 8, corresponds to a shortest &-enclosing walk in 4. 

Since the perturbed graph $ and its dual can be formed in 0( [VI) time, and finding 

a minimum (ra,r*)-cut in go takes 0((9’( log 19,1)=O((Vl log 1Vl) time using the 

planar max flow algorithm of Frederickson [7], then the SEW problem can be solved 

in 0( I V log /VI) time, an improvement on the 0( (V2] log I-Y^I) time algorithms given 

in [3, 111. 

Remark 2. An important extension of the SEW problem is that of enclosing a collec- 

tion O* of disconnected obstacles by a shortest closed walk. Bienstock and Monma [3] 

did this in the case where the obstacles are single points; the extension to the general 

case is fairly straightforward (and simplifies the procedure given in [ 111). First contract 

each of the individual obstacles in C* to a single point, and then find a tree of shortest 

paths from an arbitrarily chosen one of these contracted obstacles to each of the other 

contracted obstacles. If we let 0’ be the union of the elements of G* together with the 

edges of the shortest path tree, then any SEW for 0’ will be an SEW surrounding G*. 

The shortest path tree can be found in O(/%/ log I Vi) time by means of Johnson’s al- 

gorithm with a Fibonacci heap [4, p. 5651, and by using the perturbation method given 

above to find the SEW for 0’, we obtain an SEW for C* in 0( IV] log IV/) time. 

Provan [ 1 I] gives an algorithm for the SEW problem for general (nonplane) em- 

beddings of G which has as a subroutine an 0( )VI log lVi> algorithm for finding an 

SEW for obstacle b going through a particular point s. First perturb the obstacle as 

in the previous section, and fix arbitrary point p in the interior of the perturbed ob- 

stacle 6. For every edge e = (u, v) of @‘, we can compute the two angles Q(u, v) and 

tl(v, u) = -0(u, v) of clockwise sweep from p when traversing e from u to v and from 

v to u, respectively. The winding angle of a walk r in 3, say Q(r), is obtained by 

summing the angles Q(u, o) for each edge (u, v) of r traversed in the direction u to 

v. It is well known ([ 1, Section 4.21) that a closed walk encloses 6 if and only if it 

has a nonzero winding angle, which in the plane graph case corresponds to winding 

angle 27~. The algorithm SEW(s) given below finds an SEW for 8 passing through the 

vertex s. 

Algorithm SEW(s) 

1. Find a shortest path tree in 4 rooted at s. For each v E @, let rY,, be the path from 

s to v on the tree, and let r’;’ be the path I”, traversed in the reverse direction. 

Let d(s, v) be the length of CT,. 

2. Find an SEW for b by minimizing d(s, U) + I(u, v) + d(s, v) over the set of edges 

(u,u)E~ such that fl(r,,)+~(~,~)+~(r~~~)=2~. 



Again, the shortest path tree in Step 1 can be found in 0( /“/ ‘1 log 13‘1) and Step 2 

can be performed in O(IE() = O(]Vl) time, for a total complexity of 0( I f ‘1 log / 1 ‘1). 

The SEW problem can then be solved in time 0( 1 Y ‘I2 log I Y ‘1) by repeated application 

of SEW(s). SEW(s) will also be useful in the next section for solving the SEC problem. 

3. Shortest enclosing cycle 

The SEC problem of finding a shortest enclosing cycle differs from SEW in that we 

are not allowed to repeat any vertices. Provan [1 1] describes an algorithm that takes 

as input a shortest enclosing walk and then progressively adds regions until a cycle is 

found. Although his algorithm always finds an enclosing cycle if one exists, this cycle 

is not always the shortest such enclosing cycle (see [14, pp. 499511). In this section, 

we propose an algorithm which correctly finds the SEC. 

First form the perturbed graph $!? with respect to 0 by applying Algorithm Perturb as 

given in Section 2. The boundary of the perturbed region 6 is now a simple polygon, 

denoted by I&I, and the cutvertices of 0 now have multiple corresponding copies 

in ??. Thus in order for an &enclosing walk in I? to correspond to a cycle in ‘3, it 

will be necessary to prevent it from having more than one copy of any cutvertex of 0. 

For any two vertices ut,u2 on J&o, we denote by [ut,~2] the path going clockwise on 

I@, from UI to ~2. 

Next order the cutvertices of 0 as cl , . . . ,ck so that for i <,j < 1 the vertex c, does 

not separate cj from cl in 0. Note that the vertices cl, ~2 and c3 in Fig. 1 are ordered 

according to this criterion; in fact any order not starting with (‘2 will satisfy the criterion. 

Lemma 1. Let the cutvertices qf’ 0 he ordered cl,. .ck us above. Lrt i <,j< I, und 

let c) and c; he copies in 9 of vertices c, and cl, respectively. Then the path [ci, ~$1 

contains either all copies qf c, or no copies of c,. 

Proof. From the requirement on processing order we know that c, cannot be on a 

path from c, to c/ in 0, that is, ci is separated from both c, and cl by a cutvertex 

I’ of 0 (possibly c = c, or v =c/). From the construction of 6, however, it is clear 

that if [ci,~.;] passes through a copy of v into the portion of 0 containing L’,, then it 

cannot again encounter c’ without having circumscribed this entire portion of 0. thereby 

passing through all copies of ci. Since neither ci nor ci is in this portion of 0. then 

[c{.,ci] either contains all copies of c,, or it contains none of them. 0 

Remark 3. Lemma 1 provides a linear-time method for putting the cutvertices in the 

order required. Simply traverse &J clockwise, adding each vertex to the list at the 

point of the traversal at which all of its copies have been visited. In the example in 

Fig. 3, if we began the clockwise traversal at vertex m, we would visit the copies 

of the cutvertices in the order c’1/, cy, cy, ci, ci, L.{. The resulting cutvertex ordering 

would then be ~3, ~2, cl. 



32 C. Alcu~poulos it ul. I Discrete Applied Mathemcrtics 91 (1999) 25-38 

Fig. 4. The graph 8, after processing of vertex (‘1 (edges of C??\G, are dashed) 

The SEC algorithm first processes the cutvertices in the order cl,. . . , ck given above. 

At Stage i of the algorithm, let P, = {cl,. . . , c;} be the set of processed vertices and let 

iI,$ = {ci+t , . . , ck} be the set of unprocessed vertices, with P, and i?, the corresponding 

sets of copies in 5?. Define the graph gi to be the graph obtained from 9 by removing 

the vertices of C?i and their adjacent edges. Fi g. 4 shows the graph $1 obtained by 

removing the set fit = { ci, cy, ci, cy} from 9 in Fig. 3. We will find the SEC solution 

by successively updating information about “partially enclosing paths” in @i. Let et 

and e2 be two edges in $\Gi, so that edge e,i is adjacent to a vertex Uj E o;, ,i = 1,2. 

A fi-clockwise (el, e2)-,rulk is a (~1, U2)-walk r in 9; U {el, e2) satisfying 

(i) er and e2 are the initial and final edges of r; 

(ii) TU [UZ, UI] encloses 6 (equivalently, P has the same winding angle as [uI,uz]); 

(iii) P n [ut, ~21 contains at most one copy of any vertex in P,; 

(iv) P f? [ZQ, ul] contains no copies of any vertex in P,. 

For example, consider the graph dt given in Fig. 4, and let ut = ~4, ~2 =c;, 

er = (~4, k), and e2 =(~i,h). Then an example of a Pr-clockwise (et,el)-walk 

in 4, is the walk c~klzynpqci’rtabd~~~h~~. For computational purposes we will allow 

a PI-clockwise (et,ez)-walk to contain repeated edges, although it will become clear 

that no such walks can contribute to the final shortest enclosing cycle. We denote the 

length of a shortest P-clockwise (et,ez)-walk by S,(et, e2), with 6;(et, e2) = 30 if no 

such path exists. 

We start by showing how to compute do. Let et =(~r,ur ) and e2 =(uz,v~) be edges 

of <?\g~, with uI,112 E fro. Add to 40 the edges er and e2, together with the edges 



in [u?.uI]. Set the weights of the edges in [uz,u,] to 0, and use Algorithm SEW(U,) 

from Section 2 to compute a shortest &enclosing walk ro in this graph going through 

the point II,. Note that such a path must contain e,. ~‘2. and all edges of- [u~.u,]. Set 

r = ~o\[z~J,u~]. Then r immediately satisfies (i) and (ii), and since PO = ti then (iii) 

and (iv) automatically hold. 

We next show how O,+, can be recursively derived from (5,. 

(i,+,(P,,~7)=min({ S ( (, el,e?)} u {d,(e,,,f;) + h,(,fz.e,): ,f;,,fi djucw~t to II c’0p.1’ 

I 
(‘,+I of cl+1 !l‘i?z<j ii1 [ZL,, Lb]}). (*) 

Proof. (2 ) Let f be a P, ,+,-clockwise (el,e2)-walk of length d,+,(rl,cz). If 1’ dots 

not contain the point L’;+, then r must also be a f,-clockwise (e, ,e?)-walk. and hence 

is of length at least 6,(e,. ez). Otherwise, let c:+, be the single copy of cl+, contained in 

I-. and note that condition (iv) implies that c:+ I E [M~,cI~]. Make the edges of I- distinct 

by copying duplicated edges of r and placing them side by side in arbitrary order. 

Now consider the Eulerian plane graph H of edges consisting of r (with duplicated 

edges) together with the edges of [zQ.u,] (which by assumption are distinct from r). 

By property (ii) we know that d lies in an interior face of H, and the boundary of this 

fact consists of a closed walk W having no duplicate edges and containing [LQ, 1/I ] as 

a contiguous set of edges (since these always lie inside any edges of @). Consider the 

path r’ = W\[U,, 2421 i r. By construction r’ u [+. ul] encloses 6. Further, r’ must 

contain all vertices of r on 0. in particular, r’ contains 11,. u,, and c,:_,_ It must 

therefore contain e, and e2 as well, since these are the only edges adjacent to II, and 

~1~ on r. NOW c:,, splits r’ into two edge-disjoint noncrossing paths r, and r,, with 

I’, starting at P, and ending at some edge ,f’, adjacent to & ,, and rz starting at some 

edge ,fi adjacent to ci+, and ending at e2. We show that f, is a P,-clockwise ((Jo. fl )- 

walk. the proof that Tz is a P,-clockwise (,fi, e? )-walk being similar. Since [& I. l/z ] 

lies on the “inside” of W, then Tl can be replaced by [c:_,,u~] in IV and still enclose 

6. This implies that r, u [c(+, ,u,] encloses d, and so (ii) holds. Since (iii) holds for 1. 

and r, c r, then (iii) holds for rl. For (iv), first observe that r, does not cross either 

[u,.<,:, I ] or 11, and so the only vertices of [~:_,,~~2] in T, are also in r>. Further. these 

vertices cannot also be in P,, since I’ satisfies (iii). Second, observe that I‘ satisfcs 

(iv), so that I’, can never contain a vertex of P, in [u~_uI]. These two obsemations 

together imply that rl satisfies (iv) as well. 

We have established that rl is a P,-clockwise (el. ,f\ )-walk, and (similarly) rz is a 

c-clockwise (.fl, e?)-walk. Thus r, has length at least cS,(el.,/\ ) and r, has length at 

least cS,(,fi,e?). It follows that r has length at least that of r’, whose length in turn is 

at least &Jel.,l;) + 6,(,f;,e2). 

( < ) First note that any &clockwise (e, ,el)-walk is also a P,,, -clockwise (e,. cl)- 

walk, since the extra vertex c,+ , included in P,,, has no copies in c?(. Therefore 
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si+l(e,,e;!)d6i(el,e2). Now choose a copy c(+, of ci+l lying in [ui,u2] together with 

adjacent edges fi and f2. Let ri and r2 be Pi-clockwise (er,fi)- and (fz,e2)-walks 

of length 6i(ei,fi) and 8i(‘2,ez), respectively. Then r = ri U r2 is a (~1, ZQ)-walk 

with initial and final edges ei and e2, and so (i) holds. r U [ZQ, ul] encloses 6, since 

its winding angle is the sum of the winding angles of ri and r2, and so (ii) holds. 

Also, r n [u2,ui] cannot contain any elements of Pi+i, since neither ri n [c~+~,u~] nor 

r2 n [UZ, c(+~] does, and so (iv) holds. Finally, Lemma 1 implies that since ~1, ~2, and 

c:+i are all copies of unprocessed vertices, then for any vertex cj E Pi, if a copy of cj 

lies in [ui,c(+,] then no copy of Cj lies in [c:+~, u2]. Since (iv) holds for both r1 and 

r2, it follows that they cannot both contain copies of the same element of P;., and so 

(iii) holds for r. 

We have established that r is a Pi+, -clockwise (ei,ez)-walk, and hence has length 

at least 6i+i(ei,e2). Thus si+l(el,e2)~61(e,,fi) + Si(fz,ez), and the lemma 

follows. I7 

We are now in position to describe the SEC algorithm. 

Algorithm SEC 

1. Find the 2-connected components and cutvertices of 0. Order the cutvertices 

as cl,..., ck so that for i < j< 1 the vertex ci is not on a path in 0 

connecting cj and cl. 

2. Construct the perturbed graph @ = $0, and find the length 8 of an SEW 

for 0. If the SEW is a cycle, set 6” = $ and stop. 

3. Compute &(el,el) for all el =(ui,vi), e2=(n2,U2)Eg\@a with tli,uz~ 
,. 

uo. 
4. For i=O,...,k - 1 do 

For each pair ei,ez E 3\@i, compute the lengths 6i+i(ei, ez), using (*). 

Set 6”,+i = min{&+i(ei,e2):ei,e2 adjacent to the same copy ci+, of c,+I}. 

End for 

5. The length of an SEC for 0 in 99 is 6* = min{&, . . , $k}. 

End 

The actual SEC can be found by keeping track of the SEW for 0 in &o and the 

individual Pi-clockwise (ei , eZ )-walks. 

Theorem 1. Algorithm SEC jinds a shortest enclosing cycle for 6 in 0(lV(4) time. 

Proof. For the correctness of the algorithm, first note that the S,() values are correctly 

computed by Lemma 2 and the preceding discussion. Next, observe that all of the walks 

found in either Step 2 or 4 of the algorithm enclose 0 and contain no duplicate copies 

of a cutvertex of 0. Further, any shortest (and hence edge-minimal) walk satisfying 

these two properties must be a cycle. On the other hand any enclosing cycle for 0 

in 9 either never hits a cutvertex of 0 - in which case it corresponds to an SEW 



for 0 in 90 as found in Step 2 - or else it hits 0 in some cutvertex cI of highest 

index i - in which case it corresponds to a &clockwise (er,ez)-walk as found Steps 

3 or 4. Thus, the shortest of the walks found in Steps 224 is an SEC for 0 in Y. 

The complexity is dominated by Step 4, which requires k = 0( 1 f~.i) stages. Let 

m, be the number of vertices adjacent to cutvertex c,. i = I,. . , k. Then stage i of 

Step 4 requires O((~~ximj)2) evaluations of (*), which in turn has O(mf ) terms. 

Hence, stage i takes 0( mf( C:=, mi)2) time. As a result, the total time complexity of the 

algorithm is 0(x:=, mf(~~=,mi)2)-O(~ Y ‘14) since cF=, rnf(c:=, ml)’ <(Cf=, mf ) 
(cf=, mj)2 and If=, rnf<(xf=, ml)‘-O(~Y‘i’). 0 

Remark 4. We can solve SEC for a set Ii * of polygonal obstacles just as was done 

for SEW: simply solve the SEC problem on obstacle 0’ as constructed in Remark 2. 

Since an SEC must enclose the innermost SEW, then the optimal cycle enclosing (f * 

must also enclose 0’, and so is the SEC for lo*. 

Remark 5. We can also easily modify Algorithm SEC to solve the Shortest Enclos- 

ing Trail problem. First bisect each bridge e of the connected obstacle by adding a 

new vertex t:,. Now apply Algorithm Perturb to the obstacle, but leave the bisecting 

vertices I), unperturbed. The SEC for the resulting obstacle can now repeat vertices 

of the original obstacle, but will repeat no edges, because it cannot repeat any of the 

bisecting vertices. The modification when enclosing a set of obstacles proceeds just as 

in Remarks 2 and 4. 

Remark 6. The SEC and SET problems have the following interesting application. 

Let K be a set of “terminals” lying on (the boundary of) a region of 9. Then the 

minimum weight 2-edge-connected (2-vertex-connected) subgraph of 9 which spans K 

is an SET (SEC) for K. It follows that we can find a minimum weight 2-edge-connected 

(2-vertex-connected) subgraph of 9 spanning K in O(l*f .14) time. See [12] for details. 

4. Minimum weight zone problems 

In this section we study the zone formation problems MWZR and MWZP. These 

problems are closely related to versions of the Steiner trre problem in graphs (for a 

good account of this area, see [ 131). We start by considering the following version of 

the Steiner tree problem. 

Planar Node-Weighted Steiner Tree (PVST) Problem 

Instuncc: Planar graph 9 = (V,6) with vertices L> E Y” having weights c(1>)>0, and 

specified subset X of vertices of 9. 

Find: Tree .Y of edges of 9 that spans all vertices in X and has minimum total 

weight C,.,,, c( 0). 
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PVST was shown to be NP-hard in [8], even when all vertex weights are 1. (The 

problem studied in [8] actually involves finding the tree with minimum e&e cardinality, 

but this number is always exactly 1 less than the vertex cardinality of the tree.) The 

relationship between PVST and MWZR is as follows. 

Lemma 3. Let 3 be a plane graph and X’ a set of’ vertices of’ 9. Let 3~ be the 

dual graph to 9, and let 9? be the set of regions dual to the vertices of’ X. Then 

the solutions to PVST in 3 are dual to the solutions to MWZR in 92’~. 

The proof is straightforward. 0 

Theorem 2. The problems M WZR and MWZP are NP-hard 

Proof. The reduction of PVST to MZWR follows from Lemma 3. To reduce MZWR 

to MZWP, simply place an isolated vertex of d “* in the center of each terminal region. 

Then the zones containing the vertices of -Y-* are precisely those containing the regions 

of 9*. 0 

Lemma 3 also gives the reverse reduction from MWZR to PVST. Steiner tree prob- 

lems have had an extensive amount of research (again, see [ 131) much of which is 

applicable to the problems studied here. In particular, the minimum cardinality version 

of the problem (where all regions have weight 1) can be solved using any of the 

numerous standard Steiner tree solution techniques. The general node-weighted version 

of the problem, moreover, can be reduced to the following version of the Steiner tree 

problem. 

Steiner Arborescence (SA) Problem 

Instance: A directed graph Y = (I”, B) with edges e E Q having weights l(e) > 0, source 

vertex s, and set 9 of demand vertices. 

Find Tree 9 that admits (directed) paths from s to every vertex in 9 and has mini- 

mum weight CeE,T l(e). 

Chapter 11.6.2 of [13] gives the reduction of PVST to SA, by simply replacing each 

undirected edge with two directed edges having weights equal to the vertex weight of 

their heads, choosing any vertex s E X as the source, and setting 8 to be the remaining 

vertices of X’. It follows that MWZR can be solved by solving an SA problem, the 

weights differing by exactly c(s). The MWZP problem can also be reduced to SA 

by creating the weighted directed graph as above, choosing any vertex s E ,Y’* as 

the source, and then adding edges directed from s to the dual vertex of each region 

containing s, and into each vertex v E Y‘*\s from the dual vertex of each region 

containing that vertex. The weight of each edge out of s is assigned the weight of its 

head plus M, for a sufficiently large number M, and the remaining added edges have 



weights 0. Setting .X = 3 ‘*\s, we get that any Steiner arborescence for this problem 

corresponds to a zone containing 7 ‘* of the same weight, plus M. (The large weights 

on edges out of s ensure that only one edge out of s will be used, thereby preventing 

s from being a cutvertex for the zone.) 

Many of the techniques for the Steiner tree problem apply to the SA problem as well. 

This includes some powerful network and linear programming methods involving its 

relationship to the sinylr-source unqmcitutrd ,fis~ddxrr.~~~~ jio11~ ~IY~~LWI. Nemhauscr 

and Wolsey [ 10, pp. 495.-5121 review a variety of algorithms for solving fixed-charge 

network flow problems. A heuristic solution of MWZR,‘MWZP can be obtained in 

polynomial time by linearizing the fixed costs on the edges. As well. there are three 

network-specific techniques that provide polynomial-time algorithms for rcstrictcd ill- 

stances of the Steiner tree problem, and which also apply to the SA problem. In par- 

ticular. the MZWR problem can be solved in polynomial time for any of the following 

restricted classes of instances: 

I. The number of terminal regions is bounded above by some fixed integer [5]. 

2. The number of regions that are not terminal is bounded above by some fixed integer 

[91. 
3. All of the terminal regions contain a common vertex of Y [6]. 

4. There is a fixed number of vertices of Y such that each terminal region contains at 

least one of these vertices [6]. 

The MZWP problem can be solved in polynomial time for any of the following 

restricted classes of instances: 

I. The number of terminal vertices is bounded above by some fixed integer [5]. 

2. All of the vertices are contained in a set of terminal regions containing a common 

vertex of Y [6]. 
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