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Abstract 

The problem of computing performability probabilities in stochastic PERT and flow networks 
is studied when the network is “minimally designed” to withstand any Tao component failures. 
Polynomial-time algorithms to compute performability when the network is planur - the non- 
planar versions being NP-hard - solve related “two-path subset” problems. Given an acyclic 
graph with weights on the arcs, the algorithms compute the total weight of all subsets of arcs 
that are contained in (1) two source-sink paths, or (2) two arc-di:joint source-sink paths. A 

polynomial algorithm is given for (1 ), and for (2) in the case where the graph is a source-sink 
planar kj!u~ graph, that is, edge-minimal with respect to supporting k units of flow. 0 1998 
Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Network systems such as communication networks and activity precedence networks 

are often designed to meet a certain performance criterion with a reasonable reliability. 

This type of design goal is essentially that of structural engineers who design a bridge 

to meet anticipated loads and stresses and then add a margin qf afety. The margin of 

safety allows for unanticipated environmental stresses or materials failures. Although 

a desirable goal would be to make the bridge “completely” safe, cost considerations 

usually prevent attainment of the goal. Thus including a margin of safety usually means 

over-designing the various specifications for the bridge by a relatively small amount. 
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In network systems with a performance criterion, the network designer also wants to 

over-design the network. Its design should allow it to meet the performance criterion, 

and to be capable of withstanding some level of component failure. In adding this 

ability to withstand such failures, the designer is including a margin of reliability. 

As in the case of bridge design, cost considerations usually prevent the designer from 

making this margin large. Steiglitz et al. [8] pursue this aim by defining a survivability 

criterion which reflects the connectivity of the network and provide a heuristic method 

of determining a minimum cost design. Monma and Shallcross [4] pursue a similar 

problem. 

In this paper, we pursue two network reliability problems with survivability crite- 

ria based on a performance-level criterion: a threshold flow reliability problem, and a 

threshold project scheduling problem. We will analyze these problems under the as- 

sumption that the network has been designed with a small margin of reliability. The 

two problems are formally defined as follows. 

THRESHOLD FLOW PROBLEM 

Given: Directed source-sink graph G = (V, E, s, t), with node set I’, arc set E, and 

terminal nodes s and t; probability vector p defined on the arcs of G; flow threshold 

value f 

Stochastic model: Each arc e operates with probability pe and fails with probability 

1 - pe. When an arc operates, it has unit capacity; when it fails, it can carry no flow. 

To find: The probability RF(G,p, f) that the operating arcs of G admit a flow of f 

or more. 

THRESHOLD PROJECT SCHEDULING PROBLEM 

Given: Directed acyclic source-sink graph G = (V, E, s, t) with node set V, arc set 

E, and terminal nodes s and t; vectors a of task times and p of probabilities defined 

on the arcs of G; project completion threshold time d. 

Stochastic model: Each arc e operates with probability pe and fails with probability 

1 - pe. When an arc operates, the associated task takes time a,; when it fails, the 

associated task takes time a, + 1; 

To find: The probability Rp( G, a,p, d) that the realized task times for the operating 

and failing arcs admit a project completion time - or equivalently, the length of the 

longest (s,t) path - of d or less. 

These problems were studied in a previous paper by the current authors [I]. Al- 

though they show that the problems are NP-hard even with strong restrictions on prob- 

lem instances, including planarity of G, they show that polynomial algorithms can be 

constructed in instances where the underlying systems are r-critical, that is, minimally 

over-designed so that they can survive r arc or task completion failures and still main- 

tain the designed capacity or project completion bound. They provide a characterization 

of an r-critical system in terms of properties of the underlying graph G. For the case 

when r = 1, they provide a polynomial-time algorithm for the threshold flow problem, 

which can also be applied to the project scheduling problem when G is planar. 
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In the current paper, we consider 2-critical systems. Provan [7] shows that the 

2-critical flow problem is NP-hard. However, we show that. when the 2-critical graph 

is also (s,r)-planar, both problems can be solved in polynomial time. To do this, we 

reduce these two problems to those of computing a sum of weighted products over the 

following two collections: 

I. all arc-sets which are contained in the union of two (s, t)-paths; 

2. all arc-sets which are contained in the union of two arc-disjoint (s, t)-paths. 

We call these arc-sets typo-puth subsets and t)co-disjoint-path subsets, respectively. 

We then give polynomial-time algorithms for the two-path subset version for acyclic 

graphs, and the two-disjoint-path subset problem when the graph is also (s.t)-planar 

and is edge-minimal with respect to supporting k units of flow. 

In Section 2 we provide necessary background on acyclic directed graphs, and review 

the relationship between the two-path enumeration problems above and the computation 

of threshold reliability. In Section 3, we establish our recursion for the two-path subset 

enumeration problem. In Section 4, we establish our recursion for the two-disjoint-path 

subset enumeration problem. In the last section, we survey the results so far on Y- 

critical networks with performance criteria and discuss important directions for future 

research. 

2. Background material 

2.1. Graph preliminaries 

Basic definitions of graph-theoretic terms may be found in the text by Lawler [3]. 

Throughout this section G = (I’, E,s, t) is assumed to be a directed graph with source 

node s and sink node t. As is usual, each arc e E E is associated with a pair of vertices 

in V. We will speak of the arc e as being directed from its tail vertex t(e) and into its 

head vertex h(e). Paths in G will always be directed, and for nodes (arcs) x and JJ an 

(x,y)-path will be a path whose first node (arc) is x and whose last node (arc) is _v. 

For arcs J’I, fl, el, and e2, we say that paths P and Q join J’i, J’2 to ei,e2 if either 

one is a (ft,el )-path and the other is a (&e2)-path, or one is a (f I,e2)-path and the 

other is a (,f’l,et )-path. As an abbreviation, we will refer to P and Q as disjoint if 

they are arc-disjoint. 

Definition. Let G be a directed graph. G is called source-sink plunur if (1) it has a 

unique node s with indegree 0 and a unique node t with outdegree 0, and (2) G has 

a plane embedding with s and t on the exterior face. 

In the rest of the paper, we will use the shorthand set notation that for arc-set S and 

arc e, S + e = S U {e} and S - e = S \ {e)-. 

It is convenient to think of an acyclic graph G as inducing a partial order on its set 

of arcs, so that e 3 f if there is a directed path in G starting at e and ending at f’. 

Arcs e and ,f’ are comparable if e 5 f or .f 3 e; otherwise, they are incomparable 
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Fig. I. Schematic of a lower set. 

and we write e + f. With respect to this ordering, we define the (strict) lower set (or 

lower ideal) of e to be 

L(e) E {f E E - e 1 f 3 e}. 

The graph G(e) induced by the arcs of L(e) preserves the partial order on the arcs of 

G. We will also use the upper set (or upper ideal) of e, 

U(e)s{f EE-ele5 f}. 

We note that for any e, L(e) n U(e) = 8. We define the boundary of L(e) to be 

Z(e) s {f E E \ L(e) 1 t(f) is a vertex of G(e)}. 

A property of &L(e) that is particularly useful is that for any e belonging to some 

path from s to t, Z(e) forms a uniformly directed (s, t)-cut of G. A uniformly directed 

(s, t)-cut of a directed graph is an (s,t)-cut, in the sense that its removal disconnects s 

from t, with the additional property that all arcs are directed from the s-side of the cut 

to the t-side of the cut (see [5]). Two distinct arcs belonging to a uniformly directed 

cut are incomparable with respect to 3. Furthermore, as long as every arc is on an 

(s, t)-path, a uniformly directed (s, t)-cut is a minimal (s, t)-cut. 

Fig. 1 provides a schematic drawing of a lower set of an arc e and the boundary of 

the lower set. The curves can be considered to delineate the lower set of e, with the 

graph induced by L(e) lying on or below the curves. The arcs belonging to Z(e) will 

be precisely those arcs whose tails lie on the curves and which otherwise are above 

the curves. Thus e and f belong to Z(e). 

Uniformly directed (s, t)-cuts have an interesting role in (s, t)-planar graphs. If G is 

(s, t)-planar, G has an (s, t)-dual graph (see [3, p. 35]), obtained by 

1. adding arc (s, t) to G (which will not violate planarity); 

2. taking the planar dual of G, directing the associated dual arcs by rotating the original 

arc counterclockwise; 

3. removing the arc (s*, t*) associated with (s, t). 

The resulting directed graph GD . IS the (s, t)-dual of G, with dual source and sink 

nodes s* and t*, respectively. It is not difficult to show (and follows immediately from 
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Theorem 8.1 in [3]) that CD is source-sink planar if G is. Furthermore, a uniformly 

directed (s, t)-cut of G corresponds to a directed (s*,t*)-path of CD, and vice versa. 

The (s*, t*)-paths of Go induce a partial ordering 3D on its arcs. This leads to a dual 

ordering in G. 

Given e f ,f in G, the boundary of the graph induced by L(e) U L(f) is also a 

uniformly directed (s, t)-cut. Thus, if e + f in G, their dual counterparts e* and ,f’” 

are comparable in CD since they occur together on an (s*,t*)-path. From this we can 

define e to be to the right of f if e* 3” _f‘*, and e to be to the left of f if f * 5" e'. 
e is both to the right and to the left of itself, when we want to exclude this case, we 

will say that e is strictly to the left of f. For two paths P and Q, we can define P to 

be to the kfi (right) of Q if there is no arc of P \ Q lying strictly to the right (left) 

of an arc of Q. In this case we refer to P and Q as a noncrossing pair. For two nodes 

24 and c a I@nost (rightmost) (u, u)-path is a path which lies to the left (right) of 

every (u, r)-path. 

2.2. Relationship brmeen critical thre.rhold problems and path problems 

The paper [l] identifies the relationship between the threshold probability problems 

presented above and certain path problems. Here we give the highlights of that paper 

as it applies to the problem here. We must define one more concept first. 

We define a directed source-sink capacitated graph G with terminals s and t to be a 

kY@onl gruph if G has a unique maximum flow of k that saturates all arcs of G. When 

capacities are all one, as in our problem, G is a k-flow graph if and only if G has the 

following properties: 

1. G is acyclic; 

2. s has no incoming arcs and exactly k outgoing arcs; 

3. t has no outgoing arcs and exactly k incoming arcs; 

4. every node z’ not equal to s or t has the same number of ingoing as outgoing arcs. 

Propositions 2.3 and 3.2 in [l] characterize threshold flow and project scheduling 

systems that are v-critical. The characterizations (with some additional weak conditions) 

are as follows: 

Threshold flow problem: The system is v-critical if and only if G is a k-flow graph, 

where k = .f‘ + Y. 
Threshold project scheduling problem: The system is r-critical if and only if all 

(s. t)-paths of G have the same length (with respect to the arc task times) of 

u’ ~ I’. 

Notice that the characterization for r-criticality is stated primarily in terms of the 

graph structure, with the value of r determined by the threshold value ,f or d. Thus. we 

can talk about r-critical graphs without having to specify r precisely. We will assume 

henceforth that all instances of the respective problem will be r-critical as indicated 

above. 

Theorems 2.5 and 3.6 in [l] go on to characterize the collection of sets of jililed 

uws that correspond to system operation in an r-critical system. 
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Threshold flow problem: Let G be an r-critical flow graph with respect to threshold 

flow f. Then RF’(G,p, f) is equal to the probability that the set S of failed arcs of G 

is contained in the union of Y disjoint (~,t)-paths. 

Threshold project scheduling problem: Let G be an r-critical project scheduling 

graph with respect to threshold completion time d, with G (s,t)-planar, and let GD be 

the (s, t)-dual of G, with the same failure probabilities p. Then RP(G,a,p,d) is equal 

to the probability that the set S of failed arcs in GD is contained in the union of r 

(not necessarily disjoint) (s*,t*)-paths of G”. 

We will subsequently concentrate on solving these path probability problems. Thus, 

we will be able to solve the threshold project scheduling problem for (s, t)-planar graphs 

if we can solve the r-path problem, and we will be able to solve the threshold flow 

problem if we can solve the r-disjoint-path problem. The paper [l] gives a polynomial 

algorithm that solves the l-path problem (the two versions are identical in this case) on 

any acyclic graph. As a consequence, when G is l-critical, we can solve the threshold 

flow problem in polynomial time. When G is (s, t)-planar, we can also solve the 

threshold project scheduling problem in polynomial time. 

In the current paper, we provide a polynomial algorithm that solves the 2-path prob- 

lem when G is acyclic. We provide a polynomial algorithm for the 2-disjoint-path 

problem when G is also source-sink planar and a k-flow graph for some k 3 2. These 

algorithms are distinctly different for the two types of path problems, but in both cases 

produce a polynomial-time algorithm for solving the respective threshold problem in 

the case where G is 2-critical and source-sink planar. 

2.3. The failure-odds norm 

In the previous section, we cited results showing that for our problems system op- 

erability is nicely characterized in terms of allowable sets of failed arcs. In both the 

current paper and the cited paper, computing the reliability of the system can then be 

done in terms of a measure defined on the collection of all such allowable sets. We 

now define that measure. 

Let E be a set of elements which we will refer to as the base set. Let 9? be a 

collection of subsets of E. Let each element e E E have a weight pe # 0. 

Definition. The Jhilure-odds norm is defined as follows: 

We will use some observations about the properties of this norm. We will define 

v. 9 E {S u TIS E w, T E 9}. 
1. llS/l = 0. 

2. Il{@Ill = 1. 
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3. If % n 9 = 0 then 

4. If S n T = 0 for all 5’ E %, T E 9, then 

/Ig VII = II~II l/a. 

Note that when pe = i for all e E E, then IIV?// is the cardinality of 97. Because of 

this observation, we will define an enumerative expression to be a collection-valued 

expression in U and . satisfying the disjoint collection and disjoint set conditions of 

(3) and (4). In [6], a more general version of this in terms of boolean indicators is 

defined as a p-normal form expression. 

Reliability computations provide a more general application of these properties. If E 

is the set of components of a binary system, so that each component has two states, 

either working or failed, we may define 

the failure of the elements in S does not cause the failure of the system}. 

If all elements fail independently and pe is the probability that element e is working, 

then the reliability of the system can be factored as /(%/I neEE pe. In particular, if 

we let V(G,s, t) be the collection of two-path subsets and g(G,s, t) the collection of 

two-disjoint-path subsets as defined in Section 1, then from Section 2.2 we get 

RF(G>p, f, = II~‘(Gs, t>ll n PC 

PEE 

and 

WGa,p,4 = llW?s*,t*)Il n PC. 

l?EE 

If we can provide an enumerative expression for %7, then the properties of this section 

may be applied to compute II%\/ in terms of the norms of smaller collections. We use 

this approach in the remainder of this paper. 

As an application of these ideas, we review the recursive enumeration scheme for 

r = 1 provided in [I]. 

Let S be a set of failed arcs of the network. If the network is l-critical, as long as 

S is contained in a single path, the system continues to operate. To allow a recursive 

formulation, define 

‘6”(e) = {S C E 1 S is contained in a single path ending at t(e)}. 

If we create an artificial arc et directed out of t, %‘(e’) is the collection of all comple- 

ments of cutsets of the system. Then ~~%‘(e’)ll neEE pr is the reliability of the system. 
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The computation scheme is based on the following recursion. 

Q(e)={@lU U {tf))~@(f> . 
[ f=(e) I 

This enumerative expression for V’(e) is readily translated into a recursion in terms 

of the failure-odds norm. Appropriate ordering of the recursive arguments leads to the 

polynomial algorithm given in [l] for the l-critical problems. 

In the rest of the paper we will use a similar idea. We will be concerned with 

collections of sets which are contained in the union of two paths, We will say that a 

set is covered by two paths if it is contained in their union. 

3. The two-path problem 

In this section we give a polynomial-time algorithm for computing 1J%‘(G,s, t)ll. This 

algorithm requires only that G be acyclic. The results stated at the end of Section 2.2 

indicate that to compute RP(G,a,p,d) it is necessary to assume in addition that G is 

2-critical and source-sink planar. 

3.1. Recursion 

To simplify the presentation of the recursion, we first add additional arcs es, e; 

directed into s, ei, ei directed out of t, each with operating probability 1. Now for 

ei,e2 E E, define 

%‘2(ei,ez)-{ScE\{ ei,e2} 1 S is covered by two paths joining ef,ei to ei, e2}. 

It follows that 

and 

lI~2(ei,ei>ll = I/‘+3G~,~)ll. 

To produce a recursive formula for general llg2( ei , e2 )) 1, we need a more useful char- 

acterization of elements in g2(ei,e2). Let S be a two-path subset. By the definition 

of ei # e2, S can be covered by a single path if and only if there do not exist arcs 

ei, e2 E S such that ei # e2. If there exists a pair of arcs ei, e2 E S such that ei # e2, 

we will say that it is the highest pair of incomparable arcs in S if, for any pair 

fi, f2 E S such that fi # f2, {fi,fz} C:L(el)UL(e2)U{el,ez}. Since S is contained 

in the union of two paths, the pair ei, ep is uniquely defined. 

If ei, e2 is the highest pair of incomparable arcs of S, all arcs of S that are in the 

upper sets of either of their heads are mutually comparable and comparable to both ei 
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and e2. Thus these arcs belong to S n U(er ) n U(e2) and lie on a single path that can 

be extended to a path starting at et and also can be extended to a path starting at 4~2. 

We can compute li+?‘( ’ el,ei)II recursively if we also have the following collection 

of sets. For any four arcs el,ez,ft, f2 such that fr E L(el ), J’z E L(Q), define 

w:‘(el, ~2, .f’, , fz) z {S 5 E 1 S is covered by a single path 

p C (Qel) U Ue2)) n W(~I > n WJ’2))). 

We claim that these two collections can be defined recursively in terms of each 

other, 

Proposition 3.1. The following equation provides un enumerative expression .for 

@he2Jl>f2): 

@(ehe2,fd2) = (8) U U HYH ~~‘hJJlJ2). (1) 
mm wk wwf, wc fz) 

Proof. In an acyclic graph, any subset of arcs contained in a path will have a unique 

highest element. The remaining elements in the path subset will be contained in the 

lower set of that element. {{g}} . %“(g,g, ft,fz) is th e collection of all path subsets 

above ,fr or f2 with g as their highest element. Each of these collections of path 

subsets are disjoint and they, together with the empty set, constitute all path subsets 

contained in %l(el,ez,fl,fz). Cl 

Applying the properties of Section 2.3 yields the following corollary. 

Corollary 3.2. 

The basis of our algorithm for computing I(V(G,s, r)ii is the next proposition. Define 

an index set LLO(e,, e2) as follows: 

LL”(cr,ez) = {(f1,.f2) GE \ {cl,e2} I 

f, # f 2 and there exist paths joining fr, f2 to Ed, el}. 

A pair of arcs {fl, fz} belonging to LL”(el, e2) is illustrated in the schematic in Fig. 2. 

Proposition 3.3. The following equntion provides an enumerative expression jbr 

W’(el, e2). 
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Fig. 2. Schematic of pair of arcs in LL’(el, e2). 

Table 1 
Single-PathAlgorithm 

Given: Acyclic graph G = (V, E, s, t) and arc probability vector p, 

Output: Values of /W’(q,q,fl,.fz)ll f or arcs satisfying Ed # e2, f~ E Uel), f2 E Ue2), ft + f2. 

Procedure: 

Add arcs $,$ directed into s and arcs ei, ei directed out of t. Set 

llW’(e;,~,~,~)ll = 1. 
For pairs of arcs fl f f2 do 

for pairs of arcs el e e2 or el = e2, el E U(fl ),es E U(f’2), in nondecreasing order do 

compute Il~‘(el,ez,fl,.f2)11 using Eq. (2). 
Return the table of IlW’(el,ez, fl,f2)/1. 

Proof. Let S be an element of V2(ei, e2). If the arcs in S are contained in a single path, 

then S is counted in the first term of Eq. (3). If they are not contained in a single path, 

then there must exist a unique highest pair of incomparable arcs fi, f 2 in S, which 

must therefore be in LL”(el,e2). The arcs above either fl or f2 must therefore be 

above both, and hence this set of arcs is in QY’(ei,e2, f 1, f2). The remaining arcs of S 

must fall into one of two paths joining f I,,f2 to er, e2, and therefore lie in %“(f 1, f2). 

Eq. (3) follows. 0 

Corollary 3.4. 

lFf2(e~~e2>ll = Il@(e~,e2,4,e;)II 

1 - Pf, 1 - Pf* 
+ C ll~'(e~,e2,fl,f2)ll~ ___. ~ Il~2(fi~f2)ll (4) 

{fi,f2)tU0(el 82) Pfl Pfz 

3.2. An eficient implementation of the recursive equutions 

In this section Tables 1 and 2 provide algorithms first to compute a look-up table 

containing II%‘I) for the necessary arguments and then to compute 11w2(eI,ei)/l. We 

analyze the computational complexity of these algorithms. 
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We extend the definition of !2* to allow arguments of the form (e,R), where the 

arcs of R + e are mutually incomparable: 

F*(e,R) = U ‘r*(e,f) 

ttR 

We will actually use these definitions when arguments of 8* are either a pair of 

incomparable arcs, or they are a single arc and a subset of the boundary of the arc’s 

lower set. 

We next extend the concept of a lower set in order to consider whether or not 

a pair of arcs can reach another pair via a pair of disjoint paths. Given el + e?, 

define 

Uei.e2) f {{f~,.f‘2) CE \ {el,e} / .f~ +- .f2, 

there exist disjoint paths joining ,f‘t , ,f’z to ei, e?}. 

We extend LL(el,e2) to have as its second argument a set R of arcs, by setting 

LL(e. R) E U LL(e, g). 

qtR 

In the previous section, the recursion was able to move from a pair of incomparable 

arcs to another pair of incomparable arcs. If there were failed arcs below one pair 

and above the other, we could just ensure that such arcs lay on a single path. The 

two-disjoint-path case introduces an added complication. The failed arcs between two 

incomparable pairs must be such that we can maintain two disjoint paths between 

the incomparable pairs. We must change our perspective, and move from a pair of 

incomparable arcs to an arc for which we can maintain a disjoint pair and vice versa. 

Given a singleton failed arc f, we can properly identify candidate failed arcs or pairs 

of arcs in the lower set of f if we properly identify arcs in aL(f) which can “carry” 

a path disjoint from a path containing J‘. 

The following definition is designed to appropriately handle such a singleton arc f’. 

For q # e2, .f’ E L(ei) U L(e2), define the reuching set associated with .f,el,el to be 

w(f’,el,el) = {g E aL(f) 1 there exist disjoint paths 

joining f, g to el,e2 }. 

In the schematic in Fig. 3 , both fl and _f2 belong to JV(f,el,ez). 

We extend the definition of W to have as a third argument a set R of arcs: 

In applying these extensions, the set R is always either a single arc incomparable to e 

or it is a set of arcs belonging to aL(e). A key property of pairs e,R that we consider 
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Fig. 3. Reaching set for recursion 

is that R + e is a set of mutually incomparable arcs. We will use this characterization 

in the proofs that follow. 

The next proposition provides the appropriate recursion for S2. Define an extension 

to L(e) by 

L(e,R) 3 L(e) U 

[ 1 U L(f) . 

fER 

If R c Z(e) L(e, R) = L(e). 

Proposition 4.1. Let e E E, R C E - e be such that R + e is a set of mutually incom- 
parable arcs of G, and for g E R, g2(e,g) # 8. Then the following equation provides 
an enumerative expression for S2(e,R). 

g2(e,R) = (0) U U {{f)). g2(f, Wf,e,W) 
f EL(M 1 

U 

[ 

u Kfl~~~ Uf2)). g2(f l>f2) 1 . (5) 
{fl,fz~ELue4v 

Proof. Arc subsets contained in g2(e,R) are either (i) the null set, (ii) have a 

single highest element or (iii) have a unique highest incomparable pair of elements. 
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Table 2 
Two-Path Algorithm 

Given: Acyclic graph G = (V, E,s, t) and arc probability vector p. 

Output: /I%(G.s.f)/l. 

Procedure: 

Add arcs e; ,ri directed into s and arcs e\,e; directed out of t. Set liX*(~?;,v~)il = I 
For pairs of arcs r, # e2 in nondecreasing order do 

compute Il’L’(el.r~)l~ using Eq. (4). 

Return /J%(G,s.t)~~ = 11S2(e’,,e;)ll. 

Proposition 3.5. The Single-Path Algorithm in Table 1 computes a table of’ wlues 

of 11% 11 in O(lE1’) time. 

Proof. The correctness of the algorithm follows from Corollary 3.2. We note that the 

ordering insures that all quantities on the right-hand side of Eq. (2) are computed by 

the time they are needed. 

The For loop indexed by fl, f 2 is, of course, a nesting of loops where in fact 

arcs ,f’l can be generated by a breadth-first-search as implemented in a precedence 

numbering algorithm, and given fl, the arcs f2 can be generated by a similar breadth- 

first-search in which arcs above fl take priority in the search over other arcs. Thus. 

the doubly-indexed loop requires O(lE12) iterations, 

The for loop indexed by el,e2 can be handled similarly, requiring O(lEl’) iterations 

for each arc pair fl, f2. Thus the compute step is performed O(lEl”) times. The 

summation index arcs for a single application of Eq. (2) can be generated in 0( IEJ) 

time with breadth-first-search, so that the overall computation time requirements are 

O(lEi5). q 

Proposition 3.6. Given the output of the Single-Path Algorithm, the Tbcv-Puth 

Algorithm in Table 2 computes /Ig(G,s, t)li in O((E14) time. 

Proof. As in Proposition 3.5, generating the indices for the For loop in the Two-Path 

Algorithm requires 0(IE12) time. Generating the indices for the summation in Eq. (4) 

can be performed similarly to the way they were generated in the inner for loop of 

the Single-Path Algorithm. Since we can perform the look-up of I/%‘/( as we generate 

our indices, the Two-Path Algorithm requires 0(lE14) time. 0 

We combine the two propositions in the following theorem. 

Theorem 3.7. Applying the Single-Path and Tlvo-Path Algorithms to compute 

~~W(G,s,t)~l requires O(IEI’) time. 

Corollary 3.8. If G is u source-sink planar acyclic graph, then l/%‘(G,s, t)ll cm he 

computed in 0( ( VI’) time. 
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Proof. This is a consequence of /El = 0(/V/) in a planar graph. 0 

A more careful implementation of the same ideas yields a stronger complexity result 

than that of Theorem 3.7 for the nonplanar case. We state this result and sketch its 

proof afterwards. We do not present a formal proof since it would require introduction 

of significant additional notation. 

Theorem 3.9. If G is acyclic, then jI%‘(G,s, t)ll can be computed in 0(IV141EI) time. 

We base the proof on the observation that the value of %Y2(el,e2) depends only on 

the tails of ei and e2 and on the heads off 1 and f 2. Thus, we can redefine %?’ and V2 

to have vertex arguments rather than edge arguments, and all of the auxiliary notation 

can be modified accordingly with no change in the computation time. As a result, a 

factor of IE14 in the complexity can be replaced by IV14. 

4. Two-disjoint-path problem 

In this section we give a polynomial-time algorithm for computing II9( G, s, t) 1). This 

algorithm is more restrictive than the one given in Section 3, since we must assume 

that G is a source-sink planar k-flow graph. It can then be used to compute RF( G,p, d) 
for instances where G is 2-critical and source-sink planar. The planarity condition is 

necessitated by the difficulty here of maintaining the existence of two disjoint paths 

even when a subset of failed arcs can be covered by a single path. This necessity 

requires stronger conditions relating the recursive entities. 

We begin the definitions and write the recursion making no assumptions about the 

graph other than that it is acyclic. The recursive computation will be shown to be 

polynomial with the additional assumption that G is an (s,t)-planar k-flow graph. 

4. I. Recursion 

To simplify the presentation of the recursion, we first add four artificial arcs to G: 

es, es directed into s, and ef,, ei directed out of t, each with operating probability 1. 

Now for ei # e2 define 

92(el,e2) = {SCE\ {el,e2} I 

S is covered by disjoint paths joining $,e; to ei,ez}. 

It follows that 

11~2(4,4)11 = 1 

and 

l/~2(ei,e~>II = l/WG,s,t)ll. 
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Table 3 

Leftmost-Rightmost Path Construction Procedure 

Input: arcs f‘ and e of G with f 5 e. 

Output: leftmost (rightmost) path Pt (P,) whose first arc is f and whose last arc is e 

Procedure: 

1. Mark each vertex of G for which there exists a path joining that vertex to t(e). 

2. Set P/ (P,) to be the single arc f. 

3. Repeat the following until Pt (P,) has r as its last arc: 

(a) Let x be the last vertex of PI (P,). 

(b) If x = f(e) then add e to P/ (Pl). Otherwise, scan through the arcs directed out of x from right 

to left. Add to P/ (PI) the leftmost (rightmost) arc whose head is marked. 

4. Return PI (P,). 

Cases (i))(iii) are, respectively, included in the first, second and third terms in the 

expression. 0 

By applying the properties of Section 2.3, we obtain 

Corollary 4.2. Let e and R be as in Proposition 4.1. Then 

(6) 

4.2. An efficient implementation of the recursive equations 

Corollary 4.2 still does not provide an efficient method for computing 1192(e:, ei)ll, 

since the number of distinct sets R for which we compute Eq. (6) may be exponential in 

the number of arcs of the network. To make this recursion efficient, we need to provide 

more structure for the sets R and W(f,e,R). In this section, therefore, we make the 

additional assumption that G is a source-sink planar k-flow graph. Any set R which is 

needed in Eq. (6) is either a singleton arc or is generated as a set W(f, e, R’) C i3L(f). 

If G is an (s, t)-planar k-flow graph, we will establish that each set W(f,e,R) is 

defined by f and the set’s leftmost and rightmost arcs. This reduces the number of 

possible sets R to a number polynomial in the number of arcs of the network. 

As an initial step in developing both the proofs and the computational procedure, 

we provide a general construction method, called the Rightmost Path Construction 

Procedure, that produces rightmost and leftmost paths, which is given in Table 3. 

Lemma 4.3. (1) The Leftmost-Rightmost Path Construction Procedure in Table 3 

takes 0( I VI) time, and the paths Pt and P, constructed by the algorithm are the 

(unique) leftmost and rightmost paths joining f to e, respectively. 
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(2) Let el and e2, f 1 and f2, be pairs of arcs with el to the left of e2 und f 1 to 

the left of f2. If {f 1, f2) E LL’(el,ez), then the leftmost path Pf from f 1 to el is 

to the left of the rightmost path P, from .f2 to e2. 

(3) Let el and e2, f 1 and f2, be pairs of arcs with el to the left of e2 and f 1 to 

the left of f2. If {fl,f2} E LL( el,e2), then the paths PI and Pr constructed in (2) 

are disjoint. 

Proof. (1) The procedure requires an elementary search from t(e), and another from 

h(f), each of which take O(lEl) = 0(/V/) t’ ime since G is planar). To prove correct- ( 

ness, let P be a path from f to e having an arc strictly to the left of Pf (the other 

case is symmetric). Let g be the first such arc of P. t(g) is a vertex of Pt. But, since 

h(g) can reach t(e), g would have been chosen instead of the next arc of P,- after t(g), 

a contradiction. Thus, PI is the leftmost path from f to e. 

(2) Consider the subgraph of G induced by (L(el) U L(ez))rl(U(f 1) U U(f2)). This 

graph is planar and has t(el ), t(ez), h( f I), h( f 2) on its outer face. We can maintain 

planarity as we do the following: (i) replace el,e2, directing them both into a new 

vertex u, (ii) replace f 1, f2, directing them out of a new vertex w, (iii) add arc f 

with head at w, (iv) add arc e with tail at v. Any paths joining f 1, f2 to el, e2 retain 

their identities. 

Apply the Leftmost-Rightmost Path Construction Procedure to produce leftmost and 

rightmost paths PC and P, from f to e. Then in particular, PC is to the left of P, and 

any pair of paths joining f 1, f 2 to el, e2 must lie between Pf and P,. It follows that P( 

must join f 1 to ei and P, must join f2 to e2. (3) Let rl and r2 be disjoint paths from 

f 1, f2 to el,e2. Pf is to the left of both TI and r2. P, is to the right of both of them. 

Since ri and I$ have no arcs in common, P/ and P, can have no arcs in common. 0 

We note that the Leftmost-Rightmost Path Construction Procedure can also be mod- 

ified to find the following paths: 

l A rightmost(lefimost) path which lies to the left(right) or strictly to the left(right) 

of a given arc e. This can be accommodated by simply removing the arcs to the 

right(left) or strictly to the right(left) of e, and then running the Leftmost-Rightmost 

Path Construction Procedure on the remaining subgraph. 

l A rightmost (leftmost) path starting in a set of mutually incomparable arcs and/or 

ending in a set of mutually incomparable arcs. This can be done by creating an 

adjusted subgraph of G similar to the one constructed in the proof of part (2) of 

Lemma 4.3. The procedure continues to run in linear time. 

We next give a constructive description of W(f, e, R). For two arcs ef and e, in 

aL(e), define the interval between el and e, with respect to L(e) to be 

[e/,e,], E {f E dL(e) ) f is to the right of ef and to the left of e, } 

Note that this set is empty if ef is strictly to the right of e,. When the graph is planar, 

the schematics we have been using can be regarded as truly indicating left-rightness. 

The schematic in Fig. 4 indicates that [ei,esle contains e,ei,el,es; [ei,e& contains 

only ei, e2 from among the arcs shown. 
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Fig. 4. Interval of a planar acyclic graph 

Table 4 

Interval Construction Procedure 

Given: arc e E E, R C E - e such that R + e is a set of mutually incomparable arcs of G, and arc f 5 e. 

Output: leftmost arc ,j’, and rightmost arc .fr of W(f,e,R). 
Construction of ,f/: 

Construct the following paths, using the Leftmost-Rightmost Path Construction Procedure. 

Q: is the rightmost path from f to e; 

P) is the leftmost path from &(f’) to R that is strictly to the left of Qj; 

Q2 is the leftmost path from f to e; 
i. P, 1s the leftmost path from Z(f) to R that is strictly to the right of Q:; 

Q3 is the rightmost path from f to R; 
i P; is the leftmost path from X(f) to e that is strictly to the left of Q:; 

Qy is the leftmost path from f to R; 
Pf is the leftmost path from CL(f) to e that is strictly to the right of Q:. 

For i = 1,2,3,4, if P; and Q; exist then let ,f) be the arc of ?L(f’) in Pi. Set f’,~ to be the leftmost arc 

of cf:.f:>.r:T.r:>. 
Construction of j’r: Same as for f‘f, except that the subscript r replaces / everywhere and the roles of 

“right” and “left” are interchanged. 

In the application of Eq. (6), R is either a subset of aL(e) or R consists of a single 

arc ea. In the latter case, R = [eo, eOleu. We show that if R is of the form I - e for 

some interval I, then IV(f,e, R) = I’ - f for some interval I’ C Z(f). To do this 

we first identify the end arcs f, and ,fr for I’ by finding the leftmost and rightmost 

arcs of aL(f) for which {f/,f} and {fr,f} are in LL(e,R). This is done using the 

procedure given in Table 4. 

Fig. 5 shows this construction for f/. The existence of the pairs of paths depend on 

the relative locations of ef, the leftmost arc of R, and e. Left-bending (right-bending) 

curves indicate leftmost (rightmost) paths, and e; is the unique arc of 2L(e) that is in P: 

or Q; not going through e. The Interval Construction Procedure takes O((El) time, since 

it involves eight applications of the Leftmost-Rightmost Path Construction Procedure. 

Lemma 4.4. Let the triple f ,e,R dtlfined in the Interval Construction Procedure in 

Table 4 satisfy W(f ,e,R) # 8. Then both ff und fr exist, and further, every y E 

W(f,e,R) must lie in [ff, fr],f. 
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Fig. 5. Construction of ff. 

Proof. Let g E W(f, e,R). Let P and Q be disjoint paths joining g, f to h, e for some 

h E R, labeled so that f E Q. We show that f( exists and that g lies to the right of 

fe (the argument for fr being symmetric). By Lemma 4.3 we can assume, without 

loss of generality, that P and Q are noncrossing. 

Case 1: Suppose that e is in Q, and that P is (strictly) to the left of Q. Then by 

construction Qj exists and lies to the right of Q, and P) exists and lies to the left of 

P. Thus f: exists, and therefore fr exists and is to the left of g. 

The other three cases correspond to the existence of paths Pi and Qj for i = 2,3,4, 

and the proof proceeds as above. The lemma follows. 0 

Proposition 4.5. If the set R of Lemma 4.4 satisfies R = I - e for some interval I, 

then JVf,e,R) = [f/,frlf - f. 
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Table 5 

Two-Disjoint-Path Algorithm 

Given: Source-sink planar 2-critical graph G = ( V, E, s, t) and arc probability vector p. 

Output: ll9(G,s,t)ll. 

Procedure: 
Add arcs c;,$ directed into s and arcs e:,e; directed out oft. Set II~“(~;,c;)II = I. 

For arcs e in nondecreasing order, and sets R = {eo} for some eo + e or R = [e,. e,le ~ e for 
e/,e, E 2L(e) do 

compute i192(e,R)ll using Eq. (6). 

Return 1/9(G.s,t)ll = IIC?*(e~,e~)ll. 

Since f $ W(f,e,R), Lemma 4.4 establishes that W(f,e,R) c[f‘/,fr] f - ,f’. 

To establish the reverse containment, it is necessary to show that for every g E 

[f/, Sr1.f - f there exists two disjoint paths connecting g and some f’ E [f 1, fr] f - y 
to e and some e’ E W(f,e,R) - e. These paths can be constructed by the appropriate 

combinations of the leftmost or rightmost path from g to t together with the paths 

P; and Q;, i = 1,. . ,4 found by the Interval Construction Procedure, and using the 

fact that G is a k-flow graph. The proof involves a lengthy and non-enlightening case 

study, and so we omit the proof here. The complete proof is given in a technical report 

by the authors [2]. 

Theorem 4.6. The Two-Disjoint-Path Algorithm in Table 5 computes /J2(G,s,t)ll in 

0( ( V15) time. 

Proof. The correctness of the algorithm follows from Corollary 4.2 and Proposition 4.5, 

noting that the order of computation of the (l9’(e, R)]l ’ s insures that the right-hand-side 

values of Eq. (6) are available at the time of computation. For the complexity, note that 

the For loop is indexed by at most 3 arcs, so that there are lE13 loop iterations. The 

first sum in Eq. (6) requires enumerating L(e,R) and then computing W(,f,e,R). Each 

of these takes 0( ]EI) time. The second sum requires the computation of LL(e, R). This 

can be computed using Lemma 4.3 as follows: For each f 1 E L(e), find the rightmost 

(eS;, fl)-path Pt and the rightmost (f 1, e)-path P2. Now, delete all arcs to the right of 

PI UP2 (this includes the arcs on the paths themselves). Now, find all arcs ,f2 that can 

reach an arc of R. The set of arcs fz found constitute all arcs to the left of f 1 such 

that the pair {f 1, fz} is an element of LL(e,R). By repeating this for the leftmost paths 

through f 1 we obtain all arcs f2 to the right of f 1 having this property. By deleting 

f 1 after performing this, we guarantee no repeated pairs, and the whole process takes 

O(]E(*) time as well. 

Finally, since the terms of the sums are already known the computation of Eq. (6) 

takes 0(]Ii2) time, for a total time of 0(]E15) = O(i Vi5), since G is planar. The 

theorem follows. 0 



44 M. 0. Ball et al. I Discrete Applied Mathematics 8.5 (1998) 25-45 

5. Summary and further challenges 

In this paper, we have provided recursions for enumerating two-path subsets and two- 

disjoint-path subsets of acyclic graphs. These recursions lead to efficient methods of 

analyzing the performability of 2-critical network systems. We review the computational 

results and their applications below. 

5.1. Computational complexity 

The algorithms provided in this paper and in [l] address the general problems of 

r-path subset enumeration. The algorithms are efficient methods for either counting the 

number of these subsets or, more generally, computing a weighted norm such as the 

failure-odds norm for such sets. 

To summarize what is known to date about the path enumeration problems discussed 

in this paper: 

l The r-path problem is polynomial when r = 1 or 2 and G is acyclic. 

l The l-path problem becomes #P-complete when G is not required to be acyclic. 

l When r > 3 is fixed and G is acyclic, the complexity of the r-path problem is open, 

but is likely to be polynomially solvable by an extension of the ideas given in this 

paper. 

l The r-disjoint-path problem is polynomial when r = 1, and when r = 2 and G is a 

source-sink planar k-flow graph. 

l The 2-disjoint-path problem becomes #P-complete in a nonplanar graph G even when 

it is a k-flow graph. 

l When r 23 is fixed and G is a source-sink planar k-flow graph, the r-disjoint-path 

problem is open, but again is likely to be polynomially solvable by an extension of 

the ideas given in this paper. 

The relevant results are found here and in [l, 7, 91. 

5.2. Application to performability analysis 

This paper was motivated by two network performability analysis problems: the 

evaluation of the reliability of a two-terminal flow network with a capacity criterion, and 

the evaluation of the reliability of a project network with a project duration criterion. 

Even with some restrictions we have shown that these problems are NP-hard [I]; 

therefore, we do not expect to find efficient algorithms to handle these evaluations. 

However, we observe that such networks are designed to withstand a certain minimal 

level of failure. For instance, a typical reliability design criterion is that the proposed 

system/network should be able to withstand the failure of any single component. When 

higher reliability is desired this criterion is generalized to require that the system be 

able to withstand the failure of any r components. With this design philosophy in mind, 

one would expect to find many real systems that are l- (or more generally r-) critical 
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or “nearly” l- or r-critical. These arguments led to our study of reliability analysis 

problems defined on r-critical systems in this paper and our previous paper. 

In this paper, we have shown that we can analyze the 2-critical problems of threshold 

flow and threshold scheduling when the underlying network is source-sink planar. We 

are able to do this by formulating the problems in terms of the failure-odds norm. and 

applying the recursive enumerative expressions we have developed. 

The natural broad extension of this work would be to study reliability analysis prob- 

lems on other classes of u-critical systems. We anticipate that the additional structure 

imposed by this characterization may often lead to polynomial algorithms for seem- 

ingly difficult analysis problems. In the network setting, examples that merit attention 

include computing reliability measures for networks with multi-commodity capacity re- 

quirements and other performance criteria. In addition, a similar point of view may 

lead to addressing performability analysis problems for non-network systems. 
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