NH.
i DISCRETE
iy APPLIED

AAATLIFALA ATIO G
VAL MIENALILD

&
of
<

Discrete Applied Mathematics 49 (1994) 77-93

Balancing problems in acyclic networks*

Endre Boros* ™ **, Peter L. Hammer®, Mark E. Hartmann®, Ron Shamir® ***

“DIMACS, Rutgers University, New Brunswick, NJ 08903, USA
PRUTCOR, Rutgers University, New Brunswick, NJ 08903, USA
¢ Department of Operations Research, University of North Carolina, Chapel Hill, NC 27599, USA
4 Department of Computer Science, Sackler Faculty of Exact Sciences, Tel Aviv University,
Tel-Aviv 69978, Israel

Received 15 August 1991; revised 17 March 1992

Abstract

A directed acyclic network with nonnegative integer arc lengths is called balanced if any two
paths with common endpoints have equal Iengths In the buffer assignment problem such
a network 1s given, and the goal is to balance it by increasing arc lengths by integer amounts
(called buffers), so that the sum of the amounts added is minimal. This problem arises in VLSI
design, and was recently shown to be polynomial for rooted networks. Here we give simple
procedures which solve several generalizations of this problem in strongly polynomial time,

using ideas from network flow theory. In particular, we solve a weighted version of the problem,

extend the results to nonrooted networks, and allow upper bounds on buffers. We also give

a strongly polynomial algorithm for solving the min-max buffer assignment problem, based on
a strong proximity result between fractional and integer balanced solutions. Finally, we show
that the problem of balancing a network while minimizing the number of arcs with positive
buffers is NP-hard.

1. Introduction

The hnffer ace
111V Juuli ass

graph with integer costs associated to the arcs, find addmon l integer arc costs so that
the sums of arc costs along any two paths with common endpoints are equal, and the
total sum of the costs added is minimum.

* Research partially supported by AFOSR grant 90-0008, by NSF grants DMS 89-06870 and STC88-
09648, and by ONR grant N00014-92-71375.

** Corresponding author.

*** This work was done while the author was a visitor at RUTCOR.

0166-218X/94/$07.00 © 1994—Elsevier Science B.V. All rights reserved
SSDI 0166-218X(92)00131-V

~J
co

| Discrete Applied Mathematiics 49 (1994) 7793

The problem arises in VLSI design of special-purpose parallel machines, when one
wishes to transform a data flow machine [7] into a systolic machine [9, 15]. In both
architectures a network of processors is set up, and the computational task is
decomposed into smaller tasks to be performed by the individual processors. The
processors’ network is modeled by a graph, where vertices correspond to processors

and arcs indicate the flow of data in the network. The computation time of each

processor is indicated by a length (or cost) attached to all the arcs emanating from its
vertex. If for each vertex all inputs of the same computation arrive simultaneously,
then we say that the network is balanced. Balanced networks have the advantage that
they can process “pipelined” inputs and thus have higher utilization and throughput.
A common way to make a network balanced is to introduce delays (or buffers) along
certain arcs. It is easy to see that such balancing is always achievable in acyclic graphs.
To minimize hardware costs, it is desirable to achieve this goal by using a minimum
number of buffer units. The buffer assignment problem is thus how to convert
a directed acyclic data flow network into a balanced one, by adding a minimum
number of buffer units.

Because of its importance, the buffer assignment problem has been addressed in the
past by several authors (see [5] for a list of references). Chang and Lee described an
integer programming decomposition (nonpolynomial) procedure for this problem [5].
In {4] we have shown that this problem can in fact be solved in strongly polynomial
time, provided that the graph has a root (a vertex such that either there exists
a directed path from every vertex to it, or there exists a path from it to every other
vertex). Using ideas from duality and network flow theory, an O(mnlogn) algorithm
was given in [4] for solving the problem on a rooted network with n vertices and

m arcg
o aius.

In this paper we extend the investigation on buffer assignment problems in several
directions:

o The restriction that the graph is rooted is removed, and it is shown that the buffer
assignment problem is polynomial for any acyclic graph. A solution of the buffer
assignment problem on such graphs in O(mnlogn) operations is given.

e It is shown how to solve in O(mnlogn + n?log? n) operations a weighted version
of the nrnhlpm where buffers on different arcs may have different wmg 1ts and

minimization of the weighted sum is required.

e An equivalence between the weighted buffer assignment problem and the feasible
uncapacitated minimum cost flow (transshipment) problem on acyclic rooted graphs
is proved

e It lb bIlOWﬂ HOW to bOlVC ll'lC LlerelgI_llCU d.I]U lIlC WClgﬂlCU ploblerns Wllll
additional upper bounds on buffer sizes, without an increase in the solution complex-
ity.

e Polynomial and strongly polynomial solutions are given to the min-max version
of the balancing problem, in which the minimization of the maximum buffer size is
required.

e The problem of balancing a network while minimizing the number of arcs with
nogitive hufferc ic chown to hae NP_hard

PUSIuYLY ULuvis 15 Sualvn WU UV aNa Tdal .

The paper is organized as follows: Section 2 addresses the weighted problem under
the assumption that the network is rooted. The analysis is along the lines of [4], with

~3
D

T Bovoc 5t 4l 1 Dierrote Annls
L. DOros € at. | pDiyereie Ap,

appropriate generalizations. The equivalence to transshipment on acyclic rooted
graphs is also proved. Section 3 addresses the problem when the network has no root.
To achieve synchronization in such networks, it is shown that a stronger definition of
balance is necessary. Using the results of Section 2, it is shown how to solve the buffer
assignment problem for nonrooted graphs using the algorithms for the unweighted

case. Section 4 shows how to handle upper bounds on the size of buffers. Section

5 gives two algorithms for the min-max balancing problem, as well as a theorem which
shows a strong proximity between fractional and integer balanced solutions. Section 6
shows that the problem of minimizing the number of buffered arcs is NP-hard. Section
7 contains concluding remarks and open questions.

Let G = (V, E) be a directed acyclic graph with n vertices and m arcs. Associated
with each arc (i, j) are a nonnegative integer length w;; and a nonnegative cost (or
weight) g;;. The length of a directed path in G is the sum of the lengths of the arcs
along that path. Two distinct paths are called parallel paths if they have the same
endpoints. A graph is balanced with respect to w if every two parallel paths have equal
length. Given an unbalanced granh. the Wmnhrod Buffer Assianment Problem is to

OO RAVOIL dall BHDAalLCe ghapil, e 7 el 24y LASSe Hlvie VUL
1=4 i t-

increase the length of each arc (i, j) by a nonnegative integer number x;; so that the
graph is balanced with respect to the length function w + x, and the total cost added
Y6, jyex 4i;Xi; 1S minimum. Because of the origin of the problem is in VLSI design, the
x;; are also called buffers.

A straighiforward inieger programming formuiation of the problem is the
following:

min) gyxi,

(i,j)eE
s.t. Y (wiy+xi)= Y, (wy+x;) V parallel paths P,, P,, 2.1
G)P (. ek

= 0 integer.

A root in G is a vertex t such that either there exists a directed path from every
vertex to t, or there exists a path from ¢ to every vertex. G is called rooted if it contains
such a root. We shall first analyze the weighted buffer assignment problem under the
assumption that the graph is rooted. (In Section 3 we shall show how to remove this
assumption.) We assume without loss of generality that the root ¢ is an output vertex,
i.e., there is a path from every vertex to t.

Since G has an output vertex t, G is balanced if and only if each two parallel paths
ending at t have equal costs. Hence, instead of enumerating in the constraints of (2.1)
all parallel paths, it suffices to consider only paths ending at t. (Note that even so the
number of equations in (2.1) may grow exponentially with the number of vertices.) This
is essentially the formulation proposed by Chang and Lee [5], who subsequently
describe a decomposition method which solves several smaller integer programming
problems instead of the original one.

D Bovcc ot n- AL 19 (19
L. DOros ¢l ul / iscrete A[J[}H(‘f(l 1V1umemuuu ka4

D4 77 02
Y54) /=YD

oo
<=1

A simple yet crucial first step in reformulating the problem in [4] was to introduce
additional vertex variables: For a graph with arc lengths w;;, define a variable d, for
each vertex v, and write the following set of distance equations:

di=d;+ w; forevery(ij)eE. (2.2)

Proposition 2.1 [4]. For a rooted directed acyclic graph G, the system of distance
equations (2.2) is consistent if and only if G is balanced with respect to w.

The proposition is not true if we omit the requirement that the graph is rooted. This
will be discussed further in Section 3. Note that the values of all the d; are determined
up to a common additive constant. If we set d, = 0 then all d, will be integers, and the
value of d, obtained in a solution to the system (2.2) is just the distance along any path
from v to ¢ in the corresponding balanced graph.

By the proposition, the following problem is equivalent to (2.1):

min Y gyXi,
(i, j)eE

s.t. di = d_, + Wij + Xijs (i,j)EE, (21’)
x; 2 0 integer.

Next eliminate the x;; i variables from (2.1") by substituting x;; = d; —d; — w;;. The
jective function becomes

9ijXij = qij(d; — d; — wij)

dvj — Z in\— Z qijWij-

veV \{Jjlw. j)eE} (i (i, v)eE} / (i, j)eE

Define now p,:=3 ;0. j)er dvj = Lii)6,ery div- 1he constant term Y o). p qi;wy;
does not affect the set of optimal solutions, so our problem is equivalent to

min Y pid;,
ieV

st. di—d;=zwy, (,j)eE, 2.3)
d; integer.

(. J)eE
st Y Yi— 2 Ya=p keV, 24
{i |k, i) E} {jili. ek}

yi; = 0 integer.

Rut (A ic a natwark flaw nrablam: Intar
DUl (.55 15 4 NCIWOIK IIOW Proocitiial 1 T

demands) at the vertices, and y;; as the flow along arc (i, j), the constraints in (2.4) are
flow conservation constraints (see, e.g., [22]). Here w;; is the per unit shipping cost

E. Boros et al. | Discrete Applied Mathematics 49 (1994) 77-93 81

along arc (i,j), and the problem is to find a maximum cost flow. (Note that
S ey P, = 0 is satisfied as required.) Since the constraint matrix for that problem is
totally unimodular (see, e.g., [19]), the integrality condition can be relaxed without
changing the solution value, thus we can immediately conclude that the weighted
buffer assignment problem for rooted acyclic graphs is polynomial.

To describe efficient solutions for the problem, we use network flow theory. The
reader is referred to [1, 12, 22] for terminology and algorithms on network flows. The
approach developed in [4] for the unweighted case carries over to the weighted case,
with appropriate changes in the procedures and in the complexity. For the sake of
completion, and for the discussion in later sections, we repeat them briefly here.

To use existing minimum cost flow algorithms, we recast the problem as a minimiz-
ation problem with nonnegative variables: For every vertex v let , be the length of the
longest path from v to the root . Hence, n; > n; + w;;, so w;; = wi; — m; + m; < 0 for
all (i, j) € E. Replacing the arc costs w;; by the reduced costs w;; does not change the set
of optimal flows (cf [12,4]). To replace maximization by minimization, define
¢;j:==—w;; for all (i, j)e E. Hence, the sets of optimal flows for (2.4) and for the
following minimization problem are identical:

min) ¢V
(i,j)eE

s.t. Y Yvi— Y Yu=px keV, 24)
{i |k, i)eE} {J [(J,k)eE)

yi; = 0 integer.

Problem (2.4') is a transshipment (uncapacitated minimum cost flow) problem, with
nonnegative costs, which can be solved directly by well-known algorithms. For
example, the excess scaling algorithm of Edmonds and Karp [8] (see also [20])
requires O(nlog U) flow augmentations on an uncapacitated problem with maximum
absolute excess U. We shall mention other algorithms later.

To obtain an optimal solution to (2.3) from an optimal solution y to (2.4'), in the
residual graph R,, compute the shortest distance J, from each vertex v to ¢, with
respect to the costs ¢;;. Since y is an optimal flow, R, contains no negative cost cycles,
and all distances are well defined. By the properties of the shortest path distances,
8; + ¢i; = 6, for all arcs (i, j) in R,. Setting d, = =, — §,, we get

d_l—d__l=7tl—5l—7fj+5]> _Cij+ni_nj
= W,‘j + x; — ;= Wy, (l,])ERy (25)

Using the fact that y is also optimal for (2.4), and complementary slackness (see, e.g.,
[1]), the feasibility of y together with (2.5) imply that d is optimal for (2.3). The buffers
are now readily given by x;; = d; —d; — w;;.

The following algorithm and theorem summarize the procedure for solving the
weighted buffer assignment problem, and its complexity:

algorithm Buffer Assignment;
begin
1. For each ie V, find =;, the longest distance from i to t.

2. For each (i, j)€E, set ¢;;:= m; — m; — wy;.

E. Boros et ai. / Discrete Appllea Mathematics 49 {1994) -93

o0
N

3. Solve the minimum cost flow problem (2.4') to obtain an optimal flow y for
(2.4') and (2.4).
4. For each ie V, find ¢;, the shortest distance from i to ¢ in R,.
5. For each (i, j)eE, set x;;=7m; —6; —m; + 0; —w
end

Theorem 2.2. The above procedure solves the buffer assignment problem for weighted
rooted graphs in O(nlogn(m + nlogn)) arithmetic operations.

Proof. Validity follows from the arguments above. As to the complexity, steps 2 and
5 take O(m) time. Step 1 requires the solution of a longest path problem on an acyclic
graph, which can be done in O(m) time (see, e.g., [22]). Step 4 can be done, for
avamaela mlag) T1NT Tha lhattlamanls Ancmsaradods e cernluving mealala

CAallpic, 111 U\IN '|' nivwgny L1v]. 11v DULLLIIVCR \/Ulllputdllull lb bUlVlllB })lUUlClll
(2.4"). Orlin’s strongly polynomial algorithm [20] solves the problem in O(nlogn)
augmentations. Each augmenting path can be found in O(m + nlogn) operations by

using Fredman and Tarjan’s shortest path algorithm [10]. O

Note that in case the cost coefficients are small, other weakly polynomial algo-
rithms may provide better complexity.

If thara ara game arce on which adding hiiffare 1g
11 UICIC arC SOMIC arcs Ol willCil 4GaGiNg ouncls 15 10To1aaci, uic pro

infeasible. To check this, assign sufficiently high weights to these arcs and use the
algorithm above to solve the resulting problem. If in the solution buffers are intro-
duced on any of the large weight arcs, then there is no solution which avoids putting
buffers on forbidden arcs, and the original problem is infeasible. An alternative
solution to this probiem will be described in Section 4.

In unweighted buffer assignment problems, ¢;;=1 for all arcs. Hence

0. = out{y) __1n{1»\ The corresnondineg uncanacitated minimum cost flow nroblem

Fv = Uuoey) 200 LUNICSPRLLLLLE wiktapatiiaie Llasiiiiuiiy VOs 0L pProvaliin

(24') has a spe01a1 supply and demand structure, which was utilized in [4] to obtain
more efficient algorithms than are known for the general transshipment problem. The
weighted problem discussed above generates a more general supply and demand
structure. A natural question is whether the weighted problem is as general as the
transshipment problem on rooted graphs. In other words, under what conditions does
a minimum cost flow problem on a rooted graph have an equivalent weighted buffer
assignment formulation? This question is answered by the following theorem.
Theorem 2.3. Every feasible minimum cost flow problem on an acyclic rooted network
has a weighted buffer assignment formulation.

Proof. The input to the minimum cost flow probiem includes an excess value b, for
each node v. By the discussion above, an equivalent weighted buffer assignment
formulation exists only if there are values g;; such that

by= Y 4y—) 4w VEV, g;>0integer, (i,j)€
{jl(v, i)eE} {i|(i,v)eE}

Since these constraints are flow conservation constraints, and are the same as the flow
constraints in the original problem, there exist weights for a corresponding weighted

40 7 ~- A

E. Boros et al. | Discrete Applied Mathematics 49 (1994) 77-93

o0
w

buffer assignment formulation if and only if the flow problem is feasible. By total
unimodularity, there will always be integral weights whenever the flow problem is
feasible.

To obtain the corresponding weighted buffer assignment problem as a minimiz-
ation problem with nonnegative costs, we use again the “trick” of replacing costs by
more convenient reduced costs: Let x, be the longest distance from v to ¢, which is well
defined since the graph is rooted. Replace each cost coefficient ¢;; in the minimum cost
flow problem by the reduced cost c;; —n; + n;. Hence, the resulting problem is
equivalent to the original one. Since its cost coefficients are all nonpositive, reverse the
signs of all coefficients and replace minimization by maximization to get another
equivalent problem which has exactly the form of (2.4), the dual of a buffer assignment
problem. [

3. Nonrooted graphs

Graphs which do not have a root may be balanced even though they cannot b
realized as a synchronous system. The reason is that the definition of a balanced graph
sets conditions only with respect to parallel paths. Consider the graph in Fig. 1. This
graph is trivially balanced, since it contains no parallel paths, even though it does not
correspond toa synchronous network: A signal leaving vertex a at time 0 will reach
¢ and d at time 1. For the synchronous operation, all signals reaching a vertex should
arrive simultaneously. Hence, the signal from b to ¢ should leave b at time 0, but the
same signal from b to d should leave b at time — 1.

This example demonstrates that for a nonrooted network to be synchronous,
a stronger condition is necessary. Namely, one should be able to assign times to the
vertices which will reflect in a consistent way the time points at which any one signal
passes through them. Formally, we define an acyclic graph G with arc lengths w to be

time consictont (with resneact ta w) if there ig an aggsionment of real numhbers ¢ to the
LHe CONSISIENL (witll ITSPLLL LU W) 11 UIVIC 15 Al assigliiliCiit Ul ival QuUlUCls ¢ WU uiv

vertices such that for every path P from v to u, t, —f, = Y j,cpWi;- The buffer
assignment problem for an acyclic (not necessarily rooted) graph is to assign a min-
imum number of buffer units to the arcs so that the resulting graph is time consistent.
Clearly, a rooted graph is balanced if and only if it is time consistent. For the
nonrooted case we have the stronger version of Proposition 2.1.

[¢’]

Propesition 3.1. An acyclic graph G is time consistent if and only if the system of
equations (2.2) is consistent.

1

a?.c
1 5

) —2 @4

Fig. 1. A “balanced” graph which is not time consistent. The number above each arc is its length.

- n PR R] " 4 723 mg .y L i0 /1004 T 2
L. DOoros et dl. | piscrelte Applied vMiainemartics 45 (1¥%4) //—=93

o0
£a

By Proposition 3.1, (2.1) is a valid formulation of the more general buffer assign-
ment problem on acyclic graphs, and the analysis in Section 2 applies to it. In
particular, the polynomiality result extends to nonrooted graphs.

As it turns out, we can solve nonrooted problems by combining the algorithms of
[4] for the rooted case with the tools developed in Section 2 for the weighted case: Add

an artificial ront fontnut) vartey ¢t (G For avary vartay 1 with autdaores 7ara add an
all aliiuvial 1vvL \UULPUL} Ywi LUX LW UL L UL \/V\.«l} V'\dl (AP N v yYiLil uutuv&xuu L1V Al all

artificial arc (v, t) with length w,, = 0. The resulting graph G = (VU {t}, E) is now
rooted, and if G is balanced then G is time consistent. We can thus solve the problem
on G, but we want to preclude from the objective function the cost of the buffers on the
artificial arcs. We can solve this problem as a weighted buffer assignment problem.
Give every original arc (i, j) cost q;; = 1, give every artificial arc (v, t) cost q,, = 0, and
solve the resulting weighted problem. Steps 1 and 2 in the procedure of Section
2 remain unchanged. In sten 3, we need to solve the resulting minimum cost flow

Iolilalil RICAcNELA. 23 SICp 1000 10 S0V OO 0o IIRRARIAIRAIID LT 18

problem, where the supply at the root t, p, = 0 and for each vertex v # ¢, its supply or
demand is

Pv = Z dvj — Z qiv = out(v) - in(u),

(i jIeE} {il.neE}

where in(v) and out(v) are the indegree and outdegree of vertex v in the original graph
G. In other words, in step 3 we can solve the minimum cost flow problem (2.4) for the
unweighted original graph G, disregarding ¢ and the artificial arcs. In particular, this
means that this step can be done in the lower compiexity of the unweighted case
algorithms. Finally, in step 4, we introduce t and the artificial arcs again, and find
a shortest naﬂ'\ from each vertex to ¢t in the residual omnh for the final flow, where the

flow on all artificial arcs is zero. The bottleneck for the modlﬁed procedure is still step
3, so we can draw the following conclusion.

Theorem 3.2. The buffer assignment problem for acyclic (not necessarily rooted) net-
works is solvable in O(mnlogn) arithmetic operations.

Clearly, the same reasoning applies to the weighted, unrooted case, with the
resulting complexity matching that in Theorem 2.2.

4. Upper bounds on buffers

Suppose there are upper bounds on buffer sizes on individual arcs. Denote these
constraints by x;; + w;; < w;; for each arc (i, j)€ E, where w;; < u;; is assumed. For

ij = ij == 1
simplicity, we assumc that the roblem is rooted. By Proposition 2.1, the problem is
equivalent to

min{ Y qiixiycdi = dj + wi; + x5, x;; 2 0 integer, x;; + wy; < ui,}. 4.1)
(i, j)eE

/7 ~7 0

oD x ol] Dy ransnte A [ISR W SEDY RPE SR 7o) 004) 2
L, DOros €t di. [Discreie Appiied MAtnematics 4% (1¥¥4) //—Y3

oo
Lh

As in Section 2, eliminate the x;; variables from (4.1) by substituting x;; =
d; —d; — w;;. The problem becomes

(3
mlni Z Pidi: W,’j < d,' — d_} = l]’ d lnteger}. (42)

ieV

The dual problem to (4.2) is

may v (\Al L., — U
“““““ Ly \VijJrij wij<ijr
(i, j)eE
Y (v —z.)— Y (v —za)=p., ke, 4.3)
o) A\ 1] Ki/ y~ NS R L2 Faf 24 > AN 7
{i|(k,i)eE} il ek}

z;;, ¥i; = 0 integer.

i

Extend the original network by adding for each arc (i, j)e E whose length is
Ao 3 e POy M1 el nedbmamn A nd AL e T/

MTh o s neer
WU a reverse arc L], l} Wllll lCllglll le = u” Lal tn€ €Xienaca s¢i o1 arcs . 111!: HCW

network has no upper bounds. Define f;; = y;;, f;; = z;;. Then (4.3) is equivalent to

min) wyfi,

(i, j)€E’
X = X fu=p keV, (4.3)
{i|(k,)eE"} Liltj,k)eE")

Jii = 0 integer, (i, j)e E'.

In other words, (4.3') is an uncapacitated maximum cost flow problem. Let us
remark that the transformation above implies w;; + w;; < 0 for all arcs (i, j)e E".
Hence, we can restrict the search for an optimal solution to solutions in which no two
antiparallel arcs carry positive flows.

To formulate (4.3') as a minimum cost flow problem, simply reverse the signs of the
costs. The rpcn]hno nrnhlpm can be solved hv nnr‘annm’mff-d minimum cost flow

algorithms. Note that the resulting problem contains a negative cost cycle if and only
if the problem is unbounded, which implies that the original problem is infeasible. The
solution to the primal problem can be obtained from the dual solution using the same
method as in Section 2. In summary, our conclusion is as follows.

in Ofuloo m(m + nloam)) stens. The unweighted
in\i1og nyn RIOg 1)) Sieps. 1 ne unweigniea

in O(mnlogn) steps.

Finally, suppose we only wish to determine if there exists an integer solution subject
to the upper bounds. In that case, setting g = 0, we get that problem (4.1) is feasible if
and only if the corresponding dual (4.3') with p = 0 has a bounded solution. But this is
true if and only if the extended network G (¥, E’) with costs — w contains no negative
cost cycle. Determining if such a cycle exists can be done, for example, using shortest

path algorithms which can handle negative arc costs (cf. [2, Section 5.5]) in O(mn)
steps.

0o
(@2
try
S
)
¢
5
3

Corollary 4.2, Deciding the feasibility of a buffer assignment problem with upper bounds
can be done in O(mn) steps.

5. Minimization of the maximum buffer size

Let us now consider the buffer assignment problem, in which, instead of the sum of
the buffers, the maximum buffer size has to be minimized. In fact, we shall address
a more general question. Let F < E be any subset of the arcs. The problem requires
balancing G by nonnegative integer buffers, such that the maximum buffer size on the

arce in F mnet ha ag emall ae naccihle Ry Pranncitinn 2 1 a ctraichtfarward intao,
arcs m & must 0€ as smaii as possivie. BY rroposiiion L.i, a straigntiorwara integ

programming formulation of this problem is the following:

st. di= d; + wi; + x;; for (i, j)€E,
for (i,j)eF,

_—
n
pt

~—

X;

N

ij

<
;; = 0 integer.

The problem can be solved using the results of Section 4, by applying binary search
to the size of the upper bound on the buffer size, as follows. Define

X()={xeR"|IdeR" st. d; —d; = w;; + x;j, x;; < o, (i, j)€ F,
x;; 2 0 integer}.

Clearly, X () # @ if and only if there is a balancing buffer assignment in which the
maximum buffer size does not exceed «. We assume that X (0) = §, since otherwise the
initial network is balanced without adding any buffers. Let U be the length of the

lanoest nath in the netwark Clearly YINY £ 0 e TT is anh unner]‘\I\III’\A on the
1002051 Paud 1 il NCIWOTIK., Lifany, A\w) =y, 1.5 15 aii upper oounda on ac

min-max solution. Define k = [log, U]. The procedure is as follows:

algorithm Bin Search Minmax;
begin
Step 1. u« 251« 0.
Step 2. if u —! =1 then output u and stop.
Step 3. Set o« (u + 1)/2; check whether X («) is empty.
Step 4. if X () = 0 then [— & else u «— o endif.

go to Step 2.

Proposition 5.1. The above algorithm solves the min-max buffer assignment problem in

O(mnlog U) steps.

Proof. Since 2* and 0 are upper and lower bounds, respectively, on the solution vaiue,
validity follows by standard binary search arguments. The number of iterations is
clearly k = rlnoﬂ U_l where each iteration requires determining the feasibility of

1Al 1052 U 1NCYC CACIHH Leiallon TCQLITCS COLCTINIIANE HAAG QEasiDIll

a buffer ass1gnment problem with upper bounds. Hence, the complexity follows from
Proposition 4.2. [J

oo
~J

Since U < nmax, ;,.xzwi;, the algorithm is polynomial but not strongly poly-
nomial. We now describe a different, strongly polynomial algorithm for the problem.
In the process, we shall prove a strong proximity result between fractional and integer
solutions of the min-max balancing probiem.

Omitting integrality, (5.1) becomes a linear programming problem, which can be

colved in nn]vnnmiﬂ time. However, the ontimal solution of this linear nrosram mav

SVIVOG A0 pLIYLIOIIAL A0, 120 Yoi, AL Upiiiiaal SUI-LIVL O WS LS ar piOgiaill 1a ¥

be nonintegral. We now show how to get an optimal integral solution to (5.1) from the
fractional one. In fact, we show that, whenever a fractional balanced solution exists,
there is also an integer balanced solution in which every integer buffer differs by less
than one unit from the corrcsponding fractional buffer. The proof uses an argument

a7

similar to the one used in Ll

Tomma &3 If v and d ave vertors csatisfvinag the sauntions
LOMMA J.4. i) X ana a are veciors satisjying Ine equalions
di=d;+w;+x; (,j)eE
i j ij ijs (7.]) s (2 M
(J.4f
xi]> 09 (la.])EE’
viohore ave inteaers then the inteaer sectors 4 =047 icV and v — A7 A’
wriere ulC wueyers, tnern Lne titegyer veotors iy — | U |, tov,ulid A — Uy — u) W‘),
(i,j)eE satzsf the same equations.

Proof. Rewrite (5.2) as d; —d; > w;;, (i, j)€ E. Since for every real r,s,[r]—[s]

>|r—s [, we get from the integrality of w;;,

Together with xj; = d; —dj —wy; 2 0, (i, j) € E, this gives a feasible integer solution to
(5.2 O

Note that the proof also implies that the integer buffers satisfy | x;; | < xi; <[x; J‘]
for all (i, j) e E. Note also that in the proof we have not used the fact that the graph is

acyclic or the fact that w > 0 and x > 0, so the theorem holds under those more
general conditions.

Corollary 5.3. If x, d, z* are an optimal solution to the linear relaxation of (5.1), then
=[d],ieV,xij=d;—dj—wy;, (i,j)€E, and z = [z*"] form an optimal integer
solution to (5.1).

Proof. Clearly d, = 0 can be assumed, since all d; are determined up to an additive
constant. By Lemma 5.2, x’ and d’ are a feasible solution to the subsystem (5.2) and
therefore also x; < [x;;7] <[z*7] for every (i, j)e F. Since [z*7] is a lower bound on
the optimal solution value, the result follows. [

The linear program relaxation of (5.1) can also be solved in strongly polynomial

tima nging recant aloarithmea foar tha mimimm ~not tineo watina nroblopm Tn that
LIl uoxus 1V vlaL alsulltlllllo 1vL llll/ freprserrinafres LUOL LU LETTsC T ULIU yl vicrri. 211 Liiat

problem a directed graph D = (¥, H) is given, and associated with each arc e are an
arbitrary cost ¢, and a nonnegative integer transit time t,. The goal is to find a cycle

E. Boros et al. [Discrete Applied Mathematics 49 (1994) 77-93

o
o0

C minimizing the cost to time ratio A(C) =Y _.c¢./Y..ct.. Let A be the vertex-arc

Lueel eel

incidence matrix of D. A linear programming formulation of the problem (see [6]) is

min 3}, c.X,,
ecH
s.t Y otex, =1
J—JH e e
e€
(5.3)
Ax =0,
x=0,
whose dual is
max A,
o 54
s.t. it(i,j) ; +TC Ca, iy (lsJ)GH'
Going back to the linear programming relaxation of (5.1}, by substituting 4 = — z,
the problem can be reformulated as
max 4,
s.t. —di+d;< —w; for(i,j)eE, (5.1)

i+ di—d;<wy; for(i,j)eF.

Define a graph G = (V, Ev F) by adding to the graph G of the min—-max balancing
problem additional arcs F = {(j,)|(i, j)e F }, with costs c,, = —w; for (i, j)€ E and

= w.. for(i e p and trangit timegs t. = O forec F and ¢ 1 for ec '-7 The dual of

¢ij = wj for (i, jye F, and transit times t, = O forec Eand £, = 1 for ee F. The dual of
the minimum cost to time ratio for this problem is exactly the problem (5.1'). The
optimal value A* and the quantities d, for v e V' can be obtained from the algorithm of
Young, Orlin and Tarjan [23] in O(mn + n?logn) steps. Since G is an acyclic graph
the faster algorithm of Hartmann and Orlin [13] can be used with a total complexity
of O(mn) steps. (The aigorithm of [13] can aiso be modified to take advantage of the
fact that it suffices to compute [z*] and a vector 4 which satisfies the constraints of
(§ 1} for f_7*_| to allow for earlier termination \ Tnoefher with (‘nrn]lm‘v 5.3 we can

therefore conclude as follows.

Theorem 5.4. The min—-max buffer assignment problem can be solved in O(mn)
steps.

For networks with smaller arc lengths, the binary search algorithm may be faster in
practice. Similar transformations to that used to obtain (5.1) from (5. 1) are mven hv

Orhn and Rothblum [21] in the context of matrix scahng.

We complete this section with a comment on the problem of minimizing the
weighted maximum buffer: determine min max{q;;x;;}, subject to the balancing con-
straints, where q,, = 0. The problem can be formulated in a similar fashion to (5.1),

shara individs grner ho Tl o lann tha i fe e T NAT hond - i the qat of
WiCIC unuvxuucu uppc1 UUullUb (1” Z lCPldL«C e unuIinn uppcx o0ouna z in lll(a oLl Wi

inequalities for F. Hence, the binary search algorithm can be used (with the upper
bound U = nmaxy, ;.xw;;maxy jxq;;) and the problem is polynomial. For

E. Boros et al. | Discreie Applied Mathematics 49 (1994) 77-93

=]
O

a strongly polynomial algorithm, the algorithm of Megiddo [17] solves the fractional
version of (5.1) — with z replaced by g;; 'z — in O(mn?logn). However, the rounded
solution provided by Lemma 5.2 is not necessarily optimal. Obtaining a strongly
polynomial algorithm for the weighted min-max problem is thus an open problem.

6. Minimizing the number of buffered arcs

In this section we discuss the balancing problem in which the number of arcs with
positive buffers is to be minimized. We shall show that the decision version of this
problem is NP-complete. The decision problem can be stated as follows.

MINIMUM ARC-COST BALANCING.
Instance: An acyclic digraph G = (V, E), weights w;; = Ofor (i, j)€ E, and a positive
teger R < | K|

integer B< |E|.

Questzon. Is there a time-consistent weighting w > w of G with at most B positive
buffers (arcs e with w, > w,)?

We have said that a weighting w = 0 of an acyclic digraph G = (V, E) is time
consistent if there is an assignment of real numbers ¢ to the vertices such that for every
directed path P from v to u, t, —t, = Y ; ;)ep Wi;- After defining some new notation,

n oltosa ndliora nwea oy

W€ glvc ail anernaiive ummcterlzatmu

Forasubset U < V,let 6" (U) = {(u,v): ue U, v¢ U} denote the set of arcs leaving
the set U, and analogously, let 6 (U) = {(u,v): u¢ U, veU} denote the set of
arcs entering U. The set 6% (U) is called a directed cutset if 6 (U)= 0. A non-
negative vector x =(x,|le€E) is a circulation for a digraph G = (V,E) if
Yeesr) Xe = Yees-) Xe fOr all subsets U < V, or equivalently, if x can be expressed
as a nonnegative linear combination of incidence vectors of directed cycles (see, e.g.,
I Theorem 3151

2, Theorem 3.5]).

If G = (V, E) is a planar digraph, then a planar dual G* = (V'*, E*) of G is a planar
digraph formed by associating vertices of G* with faces of a planar embedding of G.
For each arc e E, there is a dual arc e* € E* which intuitively is obtained by rotating
e counterclockwise until it is incident to the two vertices of G* corresponding to the
faces of G which were previously separated by e. We will make use of the fact that
directed cutsets and directed cycles are exchanged under this geometric planar duality
(see, e.g. [16, Theorem 2.8.17).

Wel, 1Hcolrcin

Lemma. A weighting w = 0 of an acyclic digraph G = (V, E) is time consistent if and
only if it can be expressed as a nonnegative linear combination of incidence vectors of
directed cutsets.

Proof Flrst suppose that w > 0 is a time-consistent weighting for G and that
ty =t = - =t, are the certifying vertex numbers. Let dy =1, — 4, for

k=1,..,n —1 and Uy = {1,2,...,k} for keS = {k:dy, > 0}. If (i, j)e€d~(Uy), then
t; > t; = wy; + t;, contradicting the fact that w;; > 0. Thus 6 *(U,) is a directed cutset

90 E. Boros et al. | Discrete Applied Mathematics 49 (1994) 77-93

for every keS. Since an arc (i, j) belongs to 6 *(U,) if and only if i < k < j and

ji—1
W=t—t;= 3 d=) d,
k=i keS,isk<j
the vector w is the linear combination of the incidence vectors of 6 * (Uy) for ke S with
corresponding multipliers d, > 0.

Conversely, suppose that w > 0 is a nonnegative linear combination of incidence
vectors of directed cutsets 6" (V;) for ke T, and let y, > 0 be the corresponding
multiphiers. For jeV, let T;={keT:jeV,}. Since 6*(V;) is a directed cutset,
0~ (Vi) = @ for ke T, which implies that 7; < T; for every (i, j)€ E. Let t; = Yker, Mk
Then, since

Wi = Z U = z Hi

keT, (i, j)ed* (Vi) keT,ieVi,j¢ Vi
= Z Mk=2ﬂk_2#k=ti—fj,
keTAT; KeT; KeT;

w is a time-consistent weighting for G. O

Note that we have not used the fact that G is acyclic in the proof, so the
characterization holds for arbitrary digraphs. However, when w > 0 this is the only
interesting case.

Corollary. Let G = (V, E) be a planar digraph and let G* be a planar dual of G. For
a weighting w = 0 of G define edge weights w* on G* by wk = w, for the dual arc e* of
each ec E. Then w is time consistent for G if and only iff w* is a circulation for G*.

We will use this to show that minimizing the number of positive buffers is NP-hard.

Theorem. MINIMUM ARC-COST BALANCING is NP-complete, even when re-
stricted to planar digraphs.

Proof. Given certifying vertex numbers t for w, we can easily verify that ¢, —t, = Wy,
for all (v, u) e E, so MINIMUM ARC-COST BALANCING is in NP. To show that it
is NP-hard, we give a reduction from STEINER TREE IN GRAPHS, which is known
to be NP-hard for planar graphs [11]. Given an undirected graph G = (V, E), a subset
R < V and a positive integer K < | V| — 1, is there a subtree of G that includes all the
vertices of R and contains no more than K edges? Since this problem concerns
undirected graphs, we first transform it to the equivalent problem of finding a min-
imum cardinality feasible circulation in a related digraph.

Given an instance of STEINER TREE IN GRAPHS for which G =(V, E) is
planar, construct a planar digraph D = (V, A) by replacing each edge {u,v}€E by
a pair of arcs (4, v) and (v, u) in A. Note that this ensures that there are no subsets
W < Vwith 6~ (W) = @in D. Let s be any vertex in R, and find a feasible solution x to
the transshipment problem in D with demands b, = —1 for ve R\ {s}, b, = |R] —1
and b, = O for v¢ R. If X is a circulation for D satisfying X > x, then x — x is a feasible

E. Boros et al. | Discrete Applied Mathematics 49 (1994) 77-93 91

solution to the transshipment problem in D with demands b, = +1 for ve R\{s},
bs=—(]R|—1) and b, =0 for v¢R and so identifies a directed tree rooted at
s containing each ve R. Intuitively, finding a Steiner tree reduces to finding a circula-
tion X in D satisfying X > x for which the number of arcs ae A with X, > x, is as small
as possible.

Now let D* = (V'*, A*) be a planar dual of D. Since directed cycles and directed
cutsets are exchanged under planar duality, D* will be acyclic. Define w,- = x, for the
dual arc a* which corresponds to each arc ae 4. Let w = w be a time-consistent
weighting for D* with B positive buffers. By the corollary, X = x, defined by x, = W«
for the arc a corresponding to each dual arc a* € A*, is a circulation in D. Clearly the
set of arcs a with X, > x, contains a subtree of G that includes all the vertices of R and
has no more than B edges.

Conversely, let T be a subtree of G which includes all the vertices of R and contains
B edges. By assigning directions to the edges of T, we can find a directed tree in
D rooted at s with B arcs and a corresponding feasible solution y > 0 to the
transshipment problem in D with demands b, = 1 for ve R\{s}, b, = — (JR| — 1), and
b, = Ofor v ¢ R. It follows that X = x + y s a circulation and thus by the corollary the
corresponding weighting w = w for D* is time consistent and has B positive buffers.

Since a planar dual of a directed planar graph can be found in polynomial time, the
above reduction from STEINER TREE IN GRAPHS is a polynomial time reduction,
proving thus the theorem. [

7. Concluding remarks

We have given efficient solution procedures for several balancing problems. Three
of them were generalizations of the min-sum buffer assignment problem: weighted
problems, unrooted problems and capacitated problems. The fourth one was the
min-max buffer assignment problem. We have shown an equivalence between the
weighted min-sum problem and the transshipment problem on acyclic graphs. We
have also presented a tight proximity result for the distance between a fractional and
an integer solution for balancing problems. On the other hand, we have shown that
the problem of balancing a network while minimizing the number of arcs containing
positive buffers is NP-hard.

Interestingly, similar balancing problems arise in the area of project management,
better known as PERT/CPM: The Critical Path Method (CPM) has been used since
the early sixties as a tool for planning and scheduling projects (see, e.g., [14, 181). In
CPM, a graph models the project where vertices correspond to events and arcs
correspond to activities. The graph is acyclic with both an origin and an output vertex.
An activity cannot start before all the preceding events have been completed. There
are lower and upper bounds on the possible duration of each activity, and a non-
decreasing linear utility function is assigned to the duration of each activity. The goal
is to find durations for the activities and consistent times for the events so that the
total utility is maximized.

Once an assignment of durations to activities has been determined, there is still
flexibility in terms of timing the events. More precisely, the starting (or ending) time of

O
[\

E. Boros et ai. | Discrete Applied Mathematics 49 (1994) 77-93

any activity which is not on one of the longest paths from the origin to the outm
vertex is not uniquely determined. The extra time available from the time pomt an
activity is complete to the succeeding event is called the float on that activity. Hence,
the “floats” in PERT are exactly the “buffers” in the language we use here, and
minimizing the sum of buffer lengths corresponds to minimizing the total amount of
idle times in a project. The weighted buffer assignment and the min—max problem also
have obvious interpretations in the context of project management. Minimizing the
sum of the buffers corresponds to making the schedule of the project as tight as
possible, to save idle time costs. In other situations it may be desirable to maximize the
total idle time (without increasing the total project length), in order to account for
unforeseeable delays and to increase flexibility during the operation. This problem can
also be dealt with by the techniques described in Sectlon 2. In fact, its dual is

immediatelv a minimization nrablem <g the tranefo
HINCUIally a NI Zauaon plovitlis, 5U uiv transio

the algorithm of Section 2 is unnecessary.

One question about balancing which is still open is whether one can solve the
weighted version of the min-max problem in strongly polynomial time. Another
possible research direction is generalizing the study of balancing problems to other
aigebraic structures, €.g., by replacing the sum and max operations by more abstract
and more general algebraic operations (cf. [24])).

=

Acknowledgement

We thank Bruno Simeone for raising the question of handling capacities, at the

- D na
Viewpoint on Optimization meeting in Grimentz in September 1990, and Rainer

Burkard for the idea of algebraic generalizations. We thank Maurice Queyranne for
pointing out to us a connection between the buffer assignment problem and the
PERT/CPM model.

References

[1] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network flows, in: G.L. Nemhauser, A.H.G. Rinnooy Kan
and M.S. Todd, eds., Handbooks in Operations Research and Management Science, Vol. I (Elsevier,

mctardams 10Q0Y 211220
r‘uuhtclualu 1707} £11—207.

[2] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows: Theory, Algorithms and Applications
(Prentice Hall, Englewood Cliffs, NJ, 1992).

{3] J.J. Barthoidi, J.B. Oriin and H.D. Ratiiff, Cyciic scheduling via integer programs with circuiar ones,
Oper. Res. 28 (1980) 1073-1085.

[4] E. Boros, P.L. Hammer and R. Shamir, A polynomial algorithm for balancing acyclic data flow
graphs, IEEE Trans. Comput. 41 (1992) 1380-1385.

[5] P.R. Chang and C.8.G. Lee, A decomposition approach for balancing large-scale acyclic data flow
graphs, IEEE Trans. Comput. 39 (1990) 34-46.

[6] G.B. Dantzig, W. Blattner and M.R. Rao, Finding and cycle in a graph with minimum cost to time
ratio with application to a ship routing problem, in: P. Rosensthiehl, ed., Theory of Graphs (Dunod,
Paris and Gordon and Breach, New York, 1967) 77--84.

[7]1 J.B. Dennis, Data flow supercomputers, IEEE Comput. (Nov. 1980) 48-56.

[8] J. Edmonds and R.M. Karp, Theoretical improvements in algorithmic efficiency for network flow
problems, J. ACM 19 (1972) 248-264.

O
[

E. Boros et al. | Discrete Applied Mathematics 49 (1994) 77-93

[91 A L. Fisher and S.Y. Kung, Special-purpose VLSI architectures: general description and a case study

S I-p \
in: Kung, Whitehouse and Kailath, eds., VLSI and Modern Signal Processing (Prentice Hall,

Englewood Cliffs, NJ, 1985) 153-169.
[10] M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses in improved network optimization
LiV] J 1Y P P

algorithms, J. ACM 34 (1987) 596-615.

[11] M.R. Garey and D.S. Johnson, The rectilinear Steiner tree problem is NP-complete, SIAM J. Appl.
Math. 32 (1977) 826-834.

[12] A.V. Goldberg, F. Tardos and R.E. Tarjan, Network flow algorithms, in: B. Korte, L. Lovasz, H.J.
Promel and A. Schrijver, eds., Paths, Flows and VLSI-Layout (Springer, Berlin, 1990) 101-164.

[13] M. Hartmann and J.B. Orlin, Finding minimum cost to time ratio cycles with small integral transit
times, Tech. Rept. No. UNC/TR/91-19, University of North Carolina at Chapel Hill (1991).

[14] J.E. Kelley Jr, Critical-path planning and scheduling: mathematical basis, Oper. Res. 9 (1961)
296-320.

[15] S.Y. Kung, Why systolic architectures?, IEEE Comput. (Jan. 1982) 37-46.

[16] E. Lawler, Combinatorial Optimization: Networks and Matroids (Holt, Rinehart and Winston, New
York, 1976).

[17] N. Megiddo, Combinatorial optimization with rational objective functions, Math. Oper. Res. 3 (1979)
313-323.

[18] J.J. Moder, C.R. Phillips and E.-W. Davis, Project Management with CPM, PERT and Precedence
Diagrams, (Van Nostrand Reinhold, New York, 3rd ed., 1983).

G.I. Nemhauserand L. A. Wolsey, Inteeer and Combinatorial Optimization (Wi

* ol
&
Z
)
<
>
=3
o
o
&

1 { \
[19] G.L.Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization ().
[20] J.B. Orlin, A faster strongly polynomial minimum cost flow algorithm, in: Proceedmgs 20th ACM
Symposium on Theory of Computing (1988) 377-387; revised version: Sloan W.P. No. 3060-89-MS,
Sioan School of Management, M.1.T. (1989).

[21] J.B. Orlin and U.G. Rothblum, Computing optimal scaling by parametric network algorithms, Math.
Programming 32 (1985) 1-10.

[22] R.E. Tarjan, Data Structures and Network Algorithms (Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, 1983).

[23] N.E. Young, R.E. Tarjan and J.B. Orlin, Faster parametric shortest path and minimum balance
algorithms, Networks 21 (1991) 205-221.

[24] U. Zimmermann, Linear and Combinatorial Optimization in Ordered Algebraic Structures, Annals

of Discrete Mathematics 10 (North-Holland, Amsterdam, 1981).

