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2Abstract. Capillary pressure-saturation-relative permeability relations describedusing the van Genuchten and Mualem models for non-uniform porous media leadto numerical convergence di�culties when used with Richards' equation for certainauxiliary conditions. These di�culties arise because of discontinuities in the derivativeof speci�c moisture capacity and relative permeability as a function of capillarypressure. Convergence di�culties are illustrated using standard numerical approaches tosimulate such problems. Constitutive relations, interblock permeability, and nonlinearalgebraic system approximation methods, and two time integration approaches areinvestigated. An integral permeability approach approximated by Hermite polynomialsis recommended and shown to be robust and economical for a set of test problems,which correspond to a sand, a loam, and a clay loam media.



31. IntroductionFluid ow in unsaturated porous media is often modeled using Richards' equation(RE) [Richards, 1931] and closed by constitutive relations to describe the relationshipamong uid pressures, saturations, and relative permeabilities [Brooks and Corey,1966; van Genuchten, 1980]. Because of the nonlinearities involved, RE is often solvedusing low-order numerical approximation methods, such as �nite di�erence or �niteelement methods. These types of solution methods are used in many of the existingunsaturated ow codes. The application of these codes to a wide variety of problems isconsidered commonplace [van der Heidje, 1996]. The standard use of such simulationmethods notwithstanding, problems exist with both the robustness and e�ciencyof numerical solutions to RE; advancements in the solution of these problems is animportant and active topic of research in the water resources community.A common set of constitutive relations used to close RE is the van Genuchtenrelation to describe the interdependence of uid pressures and saturations and theMualem relation to describe the interdependence between uid saturation and relativepermeability. The exponent, or nv, in the van Genuchten relation is a measure ofpore-size uniformity. For many natural porous media, typical values of nv range between1.0 to 2.0, when determined using standard laboratory approaches and �tted usingstandard inverse techniques [Kool et al., 1985; van Genuchten et al., 1991].Using the van Genuchten and Mualem (VGM) constitutive relations in existing REcodes, we experienced signi�cant problems in attaining a convergent solution for cases inwhich nv < 2 for certain sets of auxiliary conditions. An example of such a case was forin�ltration from a ponded surface boundary condition into a system originally drainedto equilibrium.These experiences motivated this work, which had several objectives: (1) todocument a common class of variably-saturated ow problems that lack robustness whensolved using standard solution approaches; (2) to determine the reason why traditional



4approaches lack robustness for this class of problems; (3) to investigate a variety ofalternative approaches; and (4) to compare a set of alternative approaches for a rangeof media conditions to test robustness and e�ciency.2. BackgroundFour aspects of the literature on unsaturated ow warrant at least a briefconsideration: (1) constitutive relations used to describe pressure-saturation-conductivity relations and typical parameter values for natural, unconsolidated media;(2) approaches typically used to approximate RE; (3) methods for approximatingrelative permeabilities in a discrete approximation of RE; and (4) strategies used toestimate the relatively complex constitutive relations that are a part of the formulationsof concern. We discuss each of these aspects in turn.2.1. Pressure-Saturation-Conductivity RelationsA well-posed formulation of RE requires that constitutive relations be speci�edto describe the interdependence among uid pressures, saturations, and relativepermeabilities, which will be referred to as p-s-k relations. Several approacheshave been advanced to describe p-s-k relations [Brooks and Corey, 1966; Mualem,1976; van Genuchten, 1980], but determining the most appropriate constitutive relationformulation is still an open issue. We use the van Genuchten relation to describe therelationship between uid pressures and saturations [van Genuchten, 1980] and theMualem relation for that between uid saturations and relative permeabilities [Mualem,1976]. Several codes documented in the literature use these relations to close RE(e.g., [Yeh, 1987; Simunek and van Genuchten, 1994]). We will refer to these relationscollectively as the van Genuchten/Mualem (VGM) relations.Because of the widespread use of the van Genuchten relation, many experimentaldata sets have been described using this approach, and many sets of parameter values



5are available in the literature [van Genuchten et al., 1991]. In addition, a parameterestimation code is available and has been widely used to determine these parametervalues from experimental data [van Genuchten et al., 1991]. These parameter valuesare related to the mean pores size (�v) and the uniformity of the pore-size distribution(nv).The standard range of values of nv is of particular interest; it can vary from near1.0 [van Genuchten et al., 1991] to near or even greater than 10.0 [Kool and Parker,1987; Mayer and Miller, 1992], with the pore size distribution being increasinglyuniform as nv increases. Most natural media tested to date do not have a highlyuniform pore-size distribution, so nv < 2:0 for many natural unconsolidated media [vanGenuchten et al., 1991]. For such media, the VGM relations are not smooth, which canlead to di�culties in achieving convergence for the common numerical approximationapproaches to RE that rely upon these relations [Vogel and Cislerova, 1988].To alleviate this problem, a portion of the functions near the zero pressurehead point is often linearized; e.g., a linear function is used to describe the relativepermeability for  >  t, for some  t < 0:0. This approach acts to smooth the highlynonlinear functions that are problematic for the nonlinear solver. This approach is usedin the popular �nite element variably saturated ow code Chain 2D [Simunek andvan Genuchten, 1994]. Others have used essentially the same approach; for example,the primary variable switching technique [Forsyth et al., 1995] makes use of a similarsmoothing technique. This approach may permit more robust convergence of thenonlinear solver in some cases, but robustness problems and solution accuracy issuesstill remain [Vogel and Cislerova, 1988; Vogel et al., 1991].2.2. Numerical Solutions for Richards' EquationThe nonlinearity of RE, the complex nature of the p-s-k relations, includinghysteresis [Scott et al., 1984; Kool and Parker, 1987; Lenhard et al., 1989], and the



6heterogeneous nature of subsurface systems [Christakos, 1992; Gelhar, 1993] combineto make numerical approximation approaches the most common way of solving RE.Many reports of approximate numerical solutions to RE have appeared in the literature,with low-order �nite-di�erence [Hanks and Bowers, 1962; Rubin, 1968; Hornberger andRemson, 1969; Cooley, 1971; Freeze, 1971; Vauclin et al., 1979; Celia et al., 1990] and�nite-element [Cooley, 1983; Huyakorn et al., 1984; Allen and Murphy, 1986; Celiaet al., 1990] the most common methods. Such solutions to RE are used routinely forapplications involving agricultural, geochemical, and nuclear waste-disposal applications[van der Heidje, 1996], among others. The robust solution of these applications isdesirable, but is not currently possible for certain common sets of constitutive relations,parameter values, and auxiliary conditions.2.3. Relative Permeability ApproximationEstimating interblock relative permeabilities for grid blocks in the vicinity ofsaturation is another problem in the numerical simulation of unsaturated/saturated owin media with nv < 2. In this region, relative permeabilities can vary greatly for a smallchange in capillary pressure, and convergence of the nonlinear solver is very sensitive tothe method used to estimate the interblock relative permeabilities.In many existing numerical procedures, interblock relative permeability isestimated as the arithmetic average of the two neighboring cells' relative permeabilities[Haverkamp and Vauclin, 1979;Warrick, 1991; Zaidel and Russo, 1992]. This procedure,however, results in an overestimation of interblock permeability and in a signi�cantsmearing of the steep wetting front [Zaidel and Russo, 1992].Alternative approaches have been proposed, including geometric mean [Haverkampand Vauclin, 1979; Zaidel and Russo, 1992], harmonic mean [Haverkamp and Vauclin,1979], one- and two-point upstream weighting [Haverkamp and Vauclin, 1979], aKircho� integral method [Zaidel and Russo, 1992], and a weighted averaging scheme



7based upon matching Darcy uxes [Warrick, 1991]. Some comparisons among methodshave been completed [Zaidel and Russo, 1992], but general guidance is not yet available.2.4. Constitutive Relation EstimationThe VGM relations involve complicated power functions that are computationallyexpensive to evaluate during the course of a simulation [Ross, 1992]. To reduce thecomputational cost, function values are often tabulated and intermediate values requiredduring the simulation are interpolated either by linear or higher-order interpolation.This approach can signi�cantly reduce the overall cost and runtime of an unsaturatedow simulation [Simunek and van Genuchten, 1994; Ross, 1992].Cubic spline interpolation is an e�ective higher-order interpolation approach inwhich a C2 continuous interpolation polynomial is constructed so that at each of thespline knots, the value of the polynomial equals the actual function value [Ross, 1992]This approach works well for most porous media conditions, yet it is di�cult to maintainaccuracy using cubic spline interpolation for the VGM relations when nv < 2. Underthis condition, the permeability and speci�c moisture capacity functions become lesssmooth than when nv � 2. When using cubic spline interpolation, second derivativesof the interpolation polynomial at each of the spline knots are computed by solving asystem of linear equations whose dimension is equal to the number of spline knots. Forthis class of problems, signi�cant oscillations can occur in the solution of this systemof equations near the non-smooth region of the relation, which in this case occurs nearthe saturated/unsaturated transition region. These oscillations cause accuracy loss ininterpolating intermediate function values and lead ultimately to convergence di�cultiesfor the nonlinear solver.



83. Approach3.1. FormulationRE may be formulated several ways [Huyakorn and Pinder, 1983; Milly,1985; deMarsily, 1986; Celia et al., 1990]. In this work, we examine two temporaldiscretization methods, each of which uses a di�erent form of RE. The central issues inthis work are dependent on neither the form of RE used nor the spatial dimensionalityof the problem. For this reason, our formulation and analysis are restricted to onespatial dimension.A mass-conserving mixed-form of RE is routinely used in research and productioncodes [Yeh, 1987; Celia et al., 1990; Simunek and van Genuchten, 1994]. For the casein which uid compressibility is included for a one-spatial-dimension vertical system,the common mixed-form equation isSsSa( )@ @t + @�a@t = @@z "Kz( ) @ @z + 1!# (1)where Ss is the speci�c storage coe�cient, which accounts for uid compressibility;Sa is the saturation of the aqueous phase;  is the pressure head; t is time; �a is thevolumetric water content of the aqueous phase; z is the vertical spatial dimension; andKz is the hydraulic permeability.We also use the compressible, pressure-head-based form of RE, which in one spatialdimension may be written as[c( ) + SsSa( )]@ @t = @@z "Kz( ) @ @z + 1!# (2)where c is the speci�c moisture capacity. While mass conservation problems usingtraditional low-order methods with this form of RE are well known [Celia et al.,1990; Rathfelder and Abriola, 1994], recent work using higher-order methods in time hasshown that solutions of the pressure-head form of the equation can be accurate, robust,and economical [Tocci et al., 1997].



9We consider problems with auxiliary conditions of the form (z; t = 0) =  0(z) (3) (z = 0; t > 0) =  1 (4) (z = Z; t > 0) =  2 (5)where Z is the length of the domain,  0 may be a function of space, and  1 and  2 areconstants. We consider these auxiliary conditions because they lead to the developmentof a sharp in�ltration front and saturated conditions over a portion of the domain,which is a di�cult class of test problem.3.2. Constitutive RelationsSolving RE requires constitutive relations to describe the interdependence amonguid pressures, saturations, and relative permeability. The focus of this work is on theoften-used van Genuchten (VG) pressure-saturation relationship [van Genuchten, 1980],which is given by Se ( ) = �a ( )� �r�s � �r = 8<: (1 + j�v jnv)�mv ;  < 01;  � 0 (6)where mv = 1� 1=nv, Se is the e�ective saturation, �r is the residual volumetric watercontent, �s is the saturated volumetric water content, �v is a parameter related tothe mean pore size, and nv is a parameter related to the uniformity of the pore-sizedistribution.Clearly Se is continuously di�erentiable at  = 0 if 1 � nv. However, if 1 < nv < 2,then Se is not Lipschitz continuously di�erentiable and the second derivative of Se isin�nite at  = 0.The speci�c moisture capacity, c, is de�ned as d�a=d . Using (6) we see that, for < 0, c( ) = d�a=d = (�s � �r)S 0e( )



10= (�s � �r)mv(1 + j�v jnv)�mv�1nv�vj�v jnv�1: (7)If 1 < nv < 2, then c is not di�erentiable at  = 0, and this lack of smoothness willa�ect the performance of any nonlinear solver.The saturation-permeability relation is described using Mualem's model for therelative permeability of the aqueous phase [Mualem, 1976]Kz (Se) = KsS1=2e h1� �1� S1=mve �mvi2 (8)where Ks is the water-saturated hydraulic permeability, and Se = Se( ) from (6).As with c, Kz will lose smoothness for small nv. In fact, for  < 0,Kz( ) = 1 +O(j jmvnv) = 1 +O(j jnv�1) (9)as  ! 0. At  = 0, K 0z is discontinuous if nv = 2 and in�nite if 1 < nv < 2.3.3. Spatial DiscretizationWe use a standard �nite-di�erence approximation to discretize RE with respect tothe spatial dimension [Celia et al., 1990], z, where z 2 [0; Z]. We consider a uniformspatial discretization comprised of nn � 1 intervals f[zi; zi+1]gnn�1i=1 , of length �z, with�z = Z=(nn � 1), and zi = (i� 1)�z for 1 � i � nn. The spatial operatorOsd( ) = @@z "Kz( ) @ @z + 1!# (10)is approximated at z = zi for 1 < i < nn byOsdi( ) = �z�1  Ki+1=2( i+1 �  i)�Ki�1=2( i �  i�1)�z +Ki+1=2 �Ki�1=2! (11)where nn is the number of spatial nodes in the solution, and  i is the approximation to (zi).



113.4. Temporal DiscretizationWe investigated two time-integration methods in this work: a standard �rst-orderbackward-di�erence approximation of the mixed-form of RE [Celia et al., 1990], whichis given by (1); and a higher-order di�erential algebraic equation/method of lines(DAE/MOL) approach applied to the  -based form of RE [Tocci et al., 1997], which isgiven by (2).The mixed-form equation is written in discrete form asSsiSl+1ai  l+1i �  li�t + �l+1ai � �lai�t = Osdi( )l+1 (12)where l is a time step index representing a known time level, and l + 1 is an indexrepresenting an unknown time level.For the DAE/MOL approach, the semi-discrete form of the pressure equation iswritten as A( )id idt = Osdi( ) (13)where A( )i = [c( ) + SsSa( )]i. The system of ordinary di�erential equationsrepresented by (13) was integrated in time using DASPK [Brown et al., 1994], which isa popular di�erential algebraic equation integrator based on a �xed-leading-coe�cientbackward-di�erence approximation method of variable step size and variable order upto �fth. We have detailed this solution approach and compared e�ciency with a varietyof standard approaches in recent work [Tocci et al., 1997]. We include this approachfor completeness and because the issues of concern in this work apply to both of thetemporal discretization methods outlined above.3.5. Permeability ApproximationsAn important aspect of this work is the approach used to estimate permeabilitiesthat vary in space as a function of  within the spatial discretization scheme. Thevalues of concern appear as Ki�1=2 in (11). Several approaches have been suggested in



12the literature [Haverkamp and Vauclin, 1979; Warrick, 1991; Zaidel and Russo, 1992],but a detailed comparison of these approaches in a context similar to this work has notyet appeared. After initial screening of several approaches, we focused on three for adetailed investigation: arithmetic average permeability, integral permeability, and thepermeability based upon an arithmetic average of saturation.A common approach for estimating Ki�1=2 is the arithmetic mean technique (KAM)[Haverkamp and Vauclin, 1979; Warrick, 1991; Zaidel and Russo, 1992]:Ki�1=2 = (Ki +Ki�1) =2 (14)which is simple and inexpensive to compute.Because K varies in space as a function of  , an integral representation of meaninterblock values (KINT) can be computed asKi�1=2 = 8<: 1j i� i�1j Rmaxf i; i�1gminf i; i�1g K d ; if  i 6=  i�1;K( i); if  i =  i�1. (15)This approach has appeared in the literature [Zaidel and Russo, 1992; Warrick, 1991],but has not been routinely used|likely because of the apparent computational expense.The third method considered for estimating Ki�1=2 is termed the arithmetic meansaturation (KAMS) and is computed byKi�1=2 = K h�Sei + Sei�1� =2i (16)The KAMS approach is easy to compute and has appeared in the literature [Zaidel andRusso, 1992].3.6. Constitutive Relation EstimationComputing VGM constitutive relations can comprise a signi�cant portion of thecomputational e�ort required for simulating RE, primarily because of the numberof exponential functions that require evaluation and the relative expense of these



13operations. Computational time can be signi�cantly reduced by using cubic splineinterpolation of tables computed using direct function evaluations and stored prior totime stepping [Ross, 1992; Tocci et al., 1997]. The method used to compute theserelations a�ects the robustness issues that are considered in this work. We considerthree approaches for evaluation of these constitutive relations: (1) direct functionevaluation; (2) cubic spline interpolation; and (3) Hermite spline interpolation. Forthe direct evaluation approach, the necessary relations are evaluated as needed duringthe simulation from the de�nition of the VGM relations, which is the usual procedure.Cubic spline approximations are computed using the standard approach [Atkinson,1989], yielding exact values at the knots and a C2 continuous representation of therelations.The Hermite interpolation method di�ers from the cubic spline method in thatthe interpolating function is C1 continuous, the derivatives at the knots correspond tothe actual derivatives of the function, and support for the interpolation expression islocal. Local support implies that the interpolated value depends only upon values ofthe function and its derivative at knots that bound the interval within which it lies. Inorder to use Hermite interpolation, derivatives of the function must be available, as isthe case here. For a given function f(x), the Hermite interpolation may be stated asf̂(x) = N01f1 +N02f2 +N11df1dx +N12df2dx (17)and the derivative of the function assumes the formdf̂(x)dx = dN01dx f1 + dN02dx f2 + dN11dx df1dx + dN12dx df2dx (18)where the polynomials Nij are de�ned such thatdnNijdxn = 8>>><>>>: 1; x = xj; n = i;0; x = xk; n 6= i;0; x = xk; k 6= j. (19)where xk is the location of knot k.



14Based upon the properties described in (19), the polynomial expressions Nij arede�ned as N01(x) = 12l3x [2 (x� �x)� lx]2 [(x� �x) + lx] (20)N02(x) = � 12l3x [2 (x� �x) + lx]2 [(x� �x)� lx] (21)N11(x) = 18l2x [2 (x� �x)� lx]2 [2 (x� �x) + lx] (22)N12(x) = 18l2x [2 (x� �x) + lx]2 [2 (x� �x)� lx] (23)dN01(x)dx = 32l3x [2 (x� �x) + lx] [2 (x� �x)� lx] (24)dN02(x)dx = � 32l3x [2 (x� �x) + lx] [2 (x� �x)� lx] (25)dN11(x)dx = 14l2x [6 (x� �x) + lx] [2 (x� �x)� lx] (26)dN12(x)dx = 14l2x [6 (x� �x)� lx] [2 (x� �x) + lx] (27)where x1 and x2 are the spline knots adjacent to x, �x = (x1 + x2)=2, and lx = x2 � x1.The advantage of Hermite interpolation for this application is that the error islocal, meaing that if xj � x � xj+1, thenjf̂(x)� f(x)j � xj+1 � xj384 maxxj���xj+1 jf (4)(�)j: (28)This error should be compared with that of the standard cubic spline interpolationjf̂(x)� f(x)j � 5max(xj+1 � xj)384 maxx0���xN jf (4)(�)j: (29)where x0 and xN correspond to the end points of the entire interval being splined.The upper bound of the Hermite interpolation error has an advantage of a factorof 5 in the constant. More signi�cantly, the maximum of the fourth derivative is takenonly over the interval of knots containing x. For the problems considered here, thisisolates the nonsmooth e�ects.



153.7. Algebraic Equation SolutionThe backward Euler time integration method applied to (1) was solved using astandard modi�ed Picard iteration method to resolve the nonlinearities, which is detailedin the literature [Celia et al., 1990]. The DAE/MOL approach for approximating (2)of DASPK uses a chord iteration method to resolve the nonlinearities, which is alsodetailed elsewhere [Tocci et al., 1997].Both approaches result in a tridiagonal system of linear equations that requiresolution at each iteration. A lower-upper decomposition approach was used to solve thissystem of equations, with refactoring of the Jacobian matrix, [J ], in the DAE/MOLapproach only done when [J ] was reformed. In previous work, we found that cyclicreduction was a much more e�cient method of solving such systems of equations on ahigh-performance vector machine [Tocci et al., 1997]. The central issues of concern inthis work are not a�ected by the choice of a linear solver.4. Results and Discussion4.1. Test ConditionsTo meet our objectives, we performed a set of numerical experiments for two timeintegration methods, three interblock permeability approaches, and three constitutiverelation computation methods, detailed above. We applied these method combinationsto a set of three test problems representative of widely di�erent natural media, as shownin Table 1. Table 1We chose media parameters that correspond to the average values for the loam andclay loam soil textural groups according to the USDA classi�cation [van Genuchten etal., 1991], as well as the sand problem used in our previous work [Tocci et al., 1997].The loam and clay loam problems are typically di�cult to simulate numerically usingconventional methods, due to the non-smooth behavior of the resulting permeability



16and speci�c moisture capacity functions. The sand media has a nv = 4:264, so its VGMrelations are smooth compared to the loam and clay loam materials. This sand wasincluded to provide a wide range of material properties for the method comparisons sothat robustness was evaluated thoroughly.The material properties and spatial and temporal domain information for the setof test problems listed in Table 1 were used to perform a set of dense-grid simulations,which were used to judge the accuracy of the set of methods considered. The solutionsfrom these dense-grid simulations are shown in Figure 1 and illustrate a sharp in�ltration Figure 1front between an unsaturated and a saturated zone, which is the hallmark of each of thetest problems.4.2. Spline ApproximationsThe accuracy of the cubic and Hermite spline approximations to the analyticalVGM relations was examined for the c and K functions in each medium by varying thenumber of knots in the approximation between 101 and 10,101 and computing the L1norm of the solution error at a set of 40,401 points, which included both knot points andpoints that fell in an interval between knots. In each case, knots were equally spacedbetween  = �10:0 and  = 0:1. Table 2 shows the slope of log error versus log np, Table 2where np is the number of knots, and the L1 norm of interpolation error at a referencepoint of 5051 spline knots. The slope of log error versus log np represents the orderof the approximation for each of the respective interpolants. For the sand problem,nv = 4:264, the error is of approximately order four, which is the expected result for athird-order polynomial interpolant of a smooth function. However, for the loam and clayloam media, the loss of smoothness is manifested by a much lower order of accuracy inthe interpolant. The accuracy decreases as nv decreases, as is evident in the decreasedorder of approximation for the clay loam relative to the loam and sand materials.Figures 2{5 compare the actual function and either a cubic or Hermite spline Figures 2{5



17approximation for speci�c moisture capacity and permeability as a function of thenumber of knots for the clay loam. These �gures illustrate the discontinuity in thederivative of these relations and the nature of the spline errors. The cubic splines areshown to be smooth but oscillatory, which is expected to lead to convergence problemsfor a nonlinear solver that depends upon derivative information. The Hermite splines arenon-oscillatory and smooth, matching exactly the constitutive relation values and thederivative of these constitutive relations at each knot. The Hermite spline approximationhas a smoothness and order of continuity that exceeds the constitutive relation beingapproximated. For an equivalent number of knots and non-smooth relations, Hermitespline interpolation typically has a smaller error than cubic spline interpolation. Forthe sand media, the constitutive relations are smooth, and both spline approximationsprovide a very accurate representation of the true solution.4.3. Work MeasuresFor methods based upon the MPI approach, the work primarily concerns formingthe coe�cient matrix and right hand side vector, and solving the linear systems ofequations. This observation allows for a simple, straightforward measure of work thatrequires relative weights for the two procedures and integer counts for each of theprocedures, such as Wp = wcnc + wlnl (30)where Wp is a work measure for MPI methods, wc is a weighting factor for formation ofthe coe�cient matrix and right hand side vector, which are typically done at the sametime, wl is a weighting factor for solution of the linear system of equations, nc is thenumber of coe�cient matrix formation calls, and nl is the number of linear solutionsperformed [Tocci et al., 1997].For traditional low-order DAE methods and DAE/MOL approaches that relyupon Newton iteration methods to resolve nonlinearities, the majority of the work is



18associated with Jacobian evaluations, function evaluations, and the solution of the linearsystem of equations. A work measure of the formWn = wjnj + wfnf + wlnl (31)is produced, where Wn is a work measure for Newton iteration DAE methods, wj isa weighting factor for formation of the Jacobian matrix, wf is a weighting factor forevaluation of the function, nj is the number of Jacobian evaluations, and nf is thenumber of function evaluations [Tocci et al., 1997].The weighting factors will depend on the function evaluation and interblockpermeability estimation methods used. Table 3 shows the weighting factors for each Table 3of the nine combinations of function evaluation and interblock permeability estimationmethods. These weights are based upon a detailed set of pro�ling results. It is clearfrom this table that KINT is the most expensive to compute when using direct functionevaluation (DFE), but is competitive with KAM when using cubic spline interpolation(CSI) or Hermite spline interpolation (HSI). The KAMS method is less costly thanKINT when using DFE but is not as e�cient when using a spline interpolation method.This added expense for KAMS when used with a spline interpolation is due to the factthat additional work is required in converting the calculated average saturation to  inorder to interpolate the constitutive functions which are expressed in terms of  .4.4. Simulation ResultsSimulations of in�ltration into initially dry, non-uniform (nv < 2) media showthat the cubic spline interpolation method does not maintain a high enough degree ofaccuracy to give robust and accurate results. For reasons described above, Hermitepolynomial splines are tested in place of cubic splines for constitutive functionevaluations. Results also show that the KAM permeability estimation technique is notrobust and often fails for problems involving non-uniform media. The KINT and KAMS



19techniques were tested as possible robust alternatives to the KAM method.Tables 4{9 show the work and dense grid errors over a wide range of time step sizes, Tables 4{9using both MPI and DASPK solvers for the three test problems. Results are shown forboth the direct function evaluation as well as the Hermite spline interpolation methodsusing three di�erent interblock permeability estimation techniques: KAM, KINT, andKAMS.4.5. Solution E�ciencyFrom the simulation results, it is clear that the KINT and KAMS permeabilityestimation techniques are more robust than KAM, with KINT giving more accurateresults in most cases. Moreover, the variable step size, Newton-type iteration of DASPKperforms better than the �xed time step MPI nonlinear solver. For all of the resultsshown, the Jacobians in DASPK are computed numerically by �nite di�erences.If one replaces the Picard iteration with a Newton iteration, the robustness of theiteration is enhanced. However, the nonsmoothness means that the Jacobian may notexist. Even if the discretization does not require di�erentiation at  = 0, the nonsmoothnonlinearities will reduce the radius of the ball of attraction of the Newton iteration[Kelley, 1995]. Hence, a �xed-step method for temporal integration, which does notadjust the time step to account for errors in the integration or slow convergence ofthe nonlinear solver, could fail even if Newton's method were used as a solver unlessa globalization method, such as a line search, [Dennis and Schnabel, 1996; Kelley,1995; Ortega and Rheinboldt, 1970] were used.These problems with nonsmoothness also a�ect the accuracy of approximationsto the constitutive laws that are made in the interest of e�ciency. The nonlinearitiesin RE are extremely costly to evaluate, and adding Jacobian evaluations to that costcould well make the computation impractical. Replacing the nonlinearities by splineapproximations will signi�cantly improve performance [Tocci et al., 1997], but the



20accuracy of these spline approximations is degraded as the nonlinearities become lesssmooth, which is exactly what happens as nv is decreased.As our results verify, the problems caused by small nv can be solved by acombination of averaging more accurately the permeabilities used in the discreteequations, and approximating Jacobian information in such a way that the Jacobian ismore directly related to the smooth problem, rather than approximating the Jacobianfor the original, nonsmooth problem. This solution strategy deserves some theoreticalconsideration. The Newton iterative approach and approximation of the nonlinearityare examined in further detail in the following sections.4.6. Newton IterationIf we discretize (2) in space, we obtain a �nite dimensional system of ordinarydi�erential equations of the formG( ; d =dt) = A( )d =dt+B( ) = 0 (32)where B( ) is the discretization of the spatial derivative term� @@z "Kz( ) @ @z + 1!# (33)Numerical approximation of B with �nite di�erences or �nite elements would not requireevaluation of the derivative of Kz. Hence the smoothness of the discretized problem isthe same as that of the continuous one.Following [Tocci et al., 1997] and [Kelley et al., 1996], we approach (32) as adi�erential algebraic equation [Brenan et al., 1996] and do not divide by A. If oneintegrates implicitly in time, one must solve a nonlinear equation at each time step ofthe form [Brenan et al., 1996] F (u) = G(u; �u+ �) = 0 (34)where u will be the approximate solution at the current time step and � and � dependon the parameters of the problem and the history of the integration.



21F will be no smoother than A or B. Because of the presence of S 0e in A, thesmoothness of F will be no better than that of S 0e. The standard convergence theory forNewton's method [Dennis and Schnabel, 1996; Kelley, 1995; Ortega and Rheinboldt,1970], requires that F 0, the Jacobian of F , be Lipschitz continuous, and hence thatnv � 3. If 2 < nv < 3, F 0 is H�older continuous, and Newton's method will stillconverge [Keller, 1970] with only the ultimate convergence rate being slower. However,if 1 < nv � 2, c (and hence A) is not di�erentiable, and one would expect problems withNewton's method.4.7. Approximation of the NonlinearityOne approach to the smoothness issue is simply to approximate the nonlinearitiesby splines and apply Newton's method to the resulting problem. Two subtle pointsmust be considered:� the accuracy of the spline approximation will be degraded because of thenonsmoothness; and� the derivative of spline approximation is not the same as the spline approximationof the derivative.As we have seen, A( ) and B( ) are smooth except when  is near zero. At  = 0,both have algebraic behavior like j jnv�1. Hence, if we de�ne a spline approximation toF by FS(u) = AS(u)(�u+ �) +BS(u) (35)where AS and BS are spline approximations to A and B, we can use the estimateskAS � Ak1; kBS � Bk1 = O(�nv�1 ) (36)



22where � is the mesh spacing for the spline approximations to A and B, to show that, ifF (u�) = 0, where u� is the exact solution, thenkFS(u�)k1 = O(�nv�1 ) (37)which can be made as small as spatial/temporal truncation error if � is su�cientlysmall.We make the conditioning assumption that there is C1 > 0 such thatkF (u)k = kF (u)� F (u�)k � C1ku� u�k (38)for u su�ciently near u�. Equation (38) simply means that small residuals imply smallerrors.So if FS(w) = 0 thenkw � u�k � C�11 kF (w)� F (u�)k = C�11 kF (w)� FS(w)k = O(�nv�1 ): (39)Hence, the solution to the splined equations approximates the solution only insofar asthe spline is accurate.At this point we can conclude that if (38) holds and the nonlinear approximateequation is solved to su�cient accuracy, then the errors in the solutions will be of thesame order as the errors in the approximate nonlinearity.As for convergence of the Newton iteration. The standard error estimate says thereis C2 such that ke+k � C2kF 0S(u�)�1kkeck2 (40)where e+ is the error in the Newton step, and ec is the error in the previous Newtonstep. In (40),  is the Lipschitz constant of the Jacobian of the spline approximation,which will be large in this case. A large  may have several consequences.� A line search may be needed for most of the nonlinear iterations unless theperformance of the nonlinear iteration plays a role in the step size control of thetemporal integration.



23� The Lipschitz constant of the spline-of-derivative will be far larger that that of F 0S.Hence it is necessary to compute Jacobian information using the derivative of thespline. Computing Jacobians by di�erences will automatically do this. However,if one wishes to use analytic Jacobians, the potential for nonsmoothness must beconsidered.� A low-order spline may provide more accuracy than a high-order spline which usesthe same knots.An important bene�t of using the KINT/Hermite spline interpolation approach isthat it eliminates the need to evaluate dKz=d , even when using analytic Jacobians.In the KINT approach, only the values R Kzd and Kz need be tabulated at each ofthe spline knots. From these tabulated values, interblock permeabilities as well asderivatives of interblock permeabilities can be evaluated. This is important when usinga Newton iterative nonlinear solver, where derivatives of the interblock permeabilitiesmay be required.5. ConclusionsIn this work, we have introduced a computational approach that more e�ectivelyaddresses the di�culties involved in solving RE for non-uniform porous media. By usinga combination of non-standard techniques, we were able to construct a more robust andaccurate solver for variably saturated ow problems. Several key observations from ournumerical experiments and analysis guided the development of the improved simulator:� Due to the non-smooth behavior of the constitutive relations for non-uniformporous media, more accurate interpolation of the constitutive functions isnecessary. We found that a Hermite spline interpolation method is more accuratethan the standard linear interpolation or cubic spline interpolation methods for



24such problems, and thus plays a key role in the development of a robust ande�cient variably saturated ow simulator.� Standard arithmetic averaging of interblock permeabilities is not robust enough forproblems involving non-uniform porous media and, as a result, alternate methodswere tested. An integral approach as well as an arithmetic average of nodalsaturations approach were both found to be e�ective, with the integral approachbeing more e�cient and accurate.� The lack of smoothness in non-uniform porous media ow problems often resultsin failure of the standard Picard iteration methods, yet the robustness of theiterations is enhanced with a Newton iteration. A �xed time step method fortemporal integration, which does not adjust the time step to account for errorsin the integration or slow convergence of the nonlinear solver, could fail even ifNewton's method were used as a solver. But variable time step Newton's methodsolvers, such as DASPK, give robust, e�cient, and accurate results for the type ofnon-smooth problems examined in this work.In developing a robust variably saturated ow simulator, we would recommend theuse of the methods listed above. The KINT/Hermite interpolation approach combinedwith a MOL formulation and variable time step DAE solution method can provide thenecessary computational accuracy, e�ciency and robustness. This approach is fairlysimple to implement and allows a wider range of problems to be solved, includinga speci�c class of problems which conventional simulators are not able to addresse�ectively. Unlike conventional methods used in many simulators, this approach resultsin robust convergence of the nonlinear solver for the type of non-uniform porous mediafound in many �eld soils.
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31Figure 1. Dense-grid solutions.Figure 2. Cubic spline interpolation of speci�c moisture capacity function for clay loamtest problem.Figure 3. Hermite spline interpolation of speci�c moisture capacity function for clayloam test problem.Figure 4. Cubic spline interpolation of permeability function for clay loam test problem.Figure 5. Hermite spline interpolation of permeability function for clay loam test prob-lem.



32Table 1. Test Problem ParametersVariable Sand Loam Clay Loam�r (|) 0.093 0.078 0.095�s (|) 0.301 0.430 0.410�v (1/m) 5.470 3.600 1.900nv (|) 4.264 1.560 1.310Ks (m/day) 5.040 0.250 0.062Ss (1/m) 1.0e-6 1.0e-6 1.0e-6z (m) [0,10.0] [0,5.0] [0,2.0]t (days) [0,0.18] [0,2.25] [0,1.0] 0 (m) �z �z �z 1 (m) 0.00 0.00 0.00 2 (m) 0.10 0.10 0.10�z (m) 1.25e-2 1.25e-2 6.25e-3nn (|) 801 401 321



33Table 2. Spline Approximation MeasuresConstitutive SplineFunction Method Measure Sand Loam Clay Loamc( ) Cubic Order 4.024 1.566 1.318Error 3.94e-5 1.061 1.130Hermite Order 3.996 1.568 1.322Error 3.67e-5 0.673 0.761K( ) Cubic Order 4.069 1.554 1.285Error 7.94e-5 0.739 0.771Hermite Order 3.994 1.563 1.294Error 7.22e-5 0.469 0.521



34Table 3. Work Measure Weighting FactorsFunction InterblockEvaluation Permeability wj wf wc wlDFE KAM 1.010 0.497 1.161 0.181KINT 1.879 0.924 2.395 0.181KAMS 1.188 0.584 1.354 0.181CSI KAM 0.549 0.270 0.465 0.181KINT 0.578 0.284 0.512 0.181KAMS 0.787 0.387 0.782 0.181HPI KAM 0.552 0.271 0.484 0.181KINT 0.596 0.293 0.530 0.181KAMS 0.814 0.401 0.820 0.181



35Table 4. Sand Test Problem { Direct Function EvaluationNonlinear InterblockSolver Permeability �t Work kEk1 kEk2 kEk1MPI KAM 5.0e-4 17092 12.8907 7.4169 4.70645.0e-5 45526 8.7814 6.1551 4.64362.5e-5 69317 8.6890 6.1101 4.63811.5e-5 99849 8.6653 6.0960 4.63681.0e-5 131611 8.6562 6.0901 4.6365KINT 5.0e-4 28254 8.8430 6.1756 4.66805.0e-5 88591 4.2435 4.1939 4.19392.5e-5 137667 4.1411 4.0993 4.09931.5e-5 198244 4.0992 4.0542 4.05421.0e-5 267914 4.0767 4.0298 4.0298KAMS 5.0e-4 18027 8.9319 6.1762 4.64685.0e-5 53880 4.0885 4.0275 4.02732.5e-5 79849 3.7410 3.6231 3.62201.5e-5 119654 3.5391 3.3897 3.38791.0e-5 154332 3.4118 3.2447 3.2424



36Table 4. (continued)Nonlinear InterblockSolver Permeability �t Work kEk1 kEk2 kEk1DASPK KAM 1.0e-2 23228 83.1108 19.9251 5.09325.0e-3 26145 10.2828 6.3711 4.74631.0e-3 23472 8.3922 5.9377 4.61075.0e-4 24651 7.9797 5.6779 4.56811.0e-4 31260 8.4803 5.9889 4.6196KINT 1.0e-2 49676 113.4329 23.4999 5.17935.0e-3 55828 9.3970 6.1553 4.74631.0e-3 46607 2.4794 2.3366 2.33415.0e-4 49134 2.3163 2.1594 2.15611.0e-4 59182 3.6816 3.6294 3.6293KAMS 1.0e-2 26984 118.7739 24.0513 5.19335.0e-3 30538 35.0706 12.6405 4.94671.0e-3 29673 2.1775 1.8648 1.85105.0e-4 30577 1.0749 0.6771 0.58761.0e-4 39143 2.6761 2.4154 2.4082



37Table 5. Loam Test Problem { Direct Function EvaluationNonlinear InterblockSolver Permeability �t Work kEk1 kEk2 kEk1MPI KAM 3.0e-3 DNC � � � � � � � � �1.0e-3 DNC � � � � � � � � �5.0e-4 DNC � � � � � � � � �1.0e-4 DNC � � � � � � � � �5.0e-5 DNC � � � � � � � � �KINT 3.0e-3 45036 0.6427 0.4651 0.44591.0e-3 73975 0.5052 0.3451 0.30535.0e-4 118949 0.4749 0.3204 0.27131.0e-4 455630 0.4524 0.3033 0.24485.0e-5 767328 0.4497 0.3014 0.2415KAMS 3.0e-3 23667 1.9572 1.4237 1.37751.0e-3 37578 2.8970 1.9828 1.83695.0e-4 57449 3.1927 2.1246 1.90271.0e-4 177339 3.4562 2.2459 1.93665.0e-5 302232 3.4911 2.2620 1.9399



38Table 5. (continued)Nonlinear InterblockSolver Permeability �t Work kEk1 kEk2 kEk1DASPK KAM 1.0e-2 4619 9.4291 4.1820 2.37695.0e-3 4346 8.2950 3.8612 2.34491.0e-3 4539 2.7161 1.9053 1.80545.0e-4 5675 2.5033 1.8161 1.74611.0e-4 8531 2.3713 1.7593 1.7045KINT 1.0e-2 8999 4.2056 2.5194 2.21155.0e-3 9634 4.2789 2.5554 2.20771.0e-3 9700 0.5785 0.4895 0.48855.0e-4 10432 0.5318 0.3520 0.31161.0e-4 14972 0.4374 0.3016 0.2566KAMS 1.0e-2 6008 6.2092 3.2547 2.32965.0e-3 6009 4.4514 2.6061 2.23111.0e-3 6489 3.1126 2.0976 1.89825.0e-4 8155 3.6870 2.3495 1.95211.0e-4 12247 3.6393 2.3286 1.9495



39Table 6. Clay Loam Test Problem { Direct Function EvaluationNonlinear InterblockSolver Permeability �t Work kEk1 kEk2 kEk1MPI KAM 5.0e-3 DNC � � � � � � � � �2.0e-3 DNC � � � � � � � � �1.0e-3 DNC � � � � � � � � �5.0e-4 DNC � � � � � � � � �1.0e-4 DNC � � � � � � � � �KINT 5.0e-3 17540 0.3271 0.0792 0.03402.0e-3 29086 0.1622 0.0383 0.01461.0e-3 DNC � � � � � � � � �5.0e-4 DNC � � � � � � � � �1.0e-4 DNC � � � � � � � � �KAMS 5.0e-3 DNC � � � � � � � � �2.0e-3 11166 1.3230 0.3830 0.17581.0e-3 15705 1.4091 0.4092 0.18965.0e-4 23591 1.4697 0.4284 0.19941.0e-4 78491 1.5455 0.4530 0.2155



40Table 6. (continued)Nonlinear InterblockSolver Permeability �t Work kEk1 kEk2 kEk1DASPK KAM 1.0e-2 DNC � � � � � � � � �5.0e-3 1065 0.7014 0.1902 0.08711.0e-3 661546 0.2222 0.0676 0.03395.0e-4 320562 0.3729 0.1050 0.05021.0e-4 195167 0.2694 0.0768 0.0370KINT 1.0e-2 1440 0.4413 0.1371 0.07435.0e-3 1682 0.2846 0.0679 0.02651.0e-3 2703 0.0525 0.0127 0.00675.0e-4 3089 0.0740 0.0191 0.01051.0e-4 5139 0.0889 0.0234 0.0120KAMS 1.0e-2 1264 2.1833 0.6096 0.26715.0e-3 1705 1.7322 0.5104 0.23841.0e-3 2624 1.8202 0.5281 0.24285.0e-4 3106 1.6998 0.4932 0.22651.0e-4 6146 1.6613 0.4883 0.2267



41Table 7. Sand Test Problem { Hermite Spline InterpolationNonlinear InterblockSolver Permeability �t Work kEk1 kEk2 kEk1MPI KAM 5.0e-4 8469 12.8907 7.4169 4.70645.0e-5 22559 8.7814 6.1551 4.64362.5e-5 34348 8.6890 6.1101 4.63811.5e-5 49477 8.6653 6.0960 4.63681.0e-5 65217 8.6562 6.0901 4.6365KINT 5.0e-4 7798 8.8430 6.1756 4.66805.0e-5 24452 4.2435 4.1939 4.19392.5e-5 37998 4.1411 4.0993 4.09931.5e-5 54717 4.0992 4.0542 4.05421.0e-5 73947 4.0767 4.0298 4.0298KAMS 5.0e-4 11756 8.9319 6.1762 4.64685.0e-5 35136 4.0885 4.0275 4.02732.5e-5 52071 3.7410 3.6231 3.62201.5e-5 78029 3.5391 3.3897 3.38971.0e-5 100643 3.4118 3.2447 3.2424



42Table 7. (continued)Nonlinear InterblockSolver Permeability �t Work kEk1 kEk2 kEk1DASPK KAM 1.0e-2 13085 89.2186 20.6225 5.12295.0e-3 15758 6.3996 4.8201 4.73351.0e-3 14011 7.9438 5.6551 4.56395.0e-4 14707 7.9596 5.6653 4.56641.0e-4 18581 8.4843 5.9911 4.6200KINT 1.0e-2 18032 116.1722 23.7168 5.19335.0e-3 18806 10.0713 6.5421 4.74631.0e-3 16637 2.2181 2.0551 2.05145.0e-4 17472 2.2511 2.0884 2.08481.0e-4 20892 3.7039 3.6520 3.6518KAMS 1.0e-2 18999 125.2336 24.7315 5.21865.0e-3 22694 7.2105 5.0786 4.74631.0e-3 21003 1.3033 0.9120 0.85825.0e-4 22149 1.1793 0.7797 0.70991.0e-4 27906 2.5880 2.3169 2.3087



43Table 8. Loam Test Problem { Hermite Spline InterpolationNonlinear InterblockSolver Permeability �t Work kEk1 kEk2 kEk1MPI KAM 3.0e-3 DNC � � � � � � � � �1.0e-3 DNC � � � � � � � � �5.0e-4 DNC � � � � � � � � �1.0e-4 DNC � � � � � � � � �5.0e-5 DNC � � � � � � � � �KINT 3.0e-3 12409 0.6439 0.4653 0.44631.0e-3 20411 0.5035 0.3452 0.30565.0e-4 33167 0.4732 0.3205 0.27161.0e-4 127186 0.4507 0.3033 0.24505.0e-5 213841 0.4480 0.3014 0.2417KAMS 3.0e-3 15442 1.9319 1.4076 1.36281.0e-3 24456 2.8686 1.9709 1.83065.0e-4 37499 3.1834 2.1131 1.89911.0e-4 115686 3.4540 2.2334 1.93435.0e-5 197343 3.4896 2.2495 1.9377



44Table 8. (continued)Nonlinear InterblockSolver Permeability �t Work kEk1 kEk2 kEk1DASPK KAM 1.0e-2 2699 6.3299 3.2464 2.25295.0e-3 2769 6.8402 3.4371 2.28841.0e-3 2789 3.0170 2.0291 1.87235.0e-4 3276 2.3804 1.7706 1.71331.0e-4 4674 2.4029 1.7790 1.7191KINT 1.0e-2 3199 5.5212 3.0514 2.29545.0e-3 3291 5.1922 2.9363 2.28111.0e-3 3438 0.4386 0.3452 0.33595.0e-4 3662 0.5492 0.3656 0.32891.0e-4 5326 0.4380 0.3008 0.2523KAMS 1.0e-2 4305 10.1117 4.4256 2.42525.0e-3 4389 7.7081 3.7520 2.38261.0e-3 4693 3.4169 2.2202 1.93005.0e-4 5137 3.7832 2.3782 1.95511.0e-4 8513 3.5271 2.2665 1.9411



45Table 9. Clay Loam Test Problem { Hermite Spline InterpolationNonlinear InterblockSolver Permeability �t Work kEk1 kEk2 kEk1MPI KAM 5.0e-3 DNC � � � � � � � � �2.0e-3 DNC � � � � � � � � �1.0e-3 DNC � � � � � � � � �5.0e-4 DNC � � � � � � � � �1.0e-4 DNC � � � � � � � � �KINT 5.0e-3 4839 0.3270 0.0792 0.03412.0e-3 8044 0.1622 0.0383 0.01461.0e-3 DNC � � � � � � � � �5.0e-4 DNC � � � � � � � � �1.0e-4 DNC � � � � � � � � �KAMS 5.0e-3 5114 1.0725 0.3086 0.13652.0e-3 7301 1.3171 0.3811 0.17491.0e-3 10720 1.4018 0.4068 0.18855.0e-4 15445 1.4635 0.4264 0.19841.0e-4 51460 1.5382 0.4507 0.2104



46Table 9. (continued)Nonlinear InterblockSolver Permeability �t Work kEk1 kEk2 kEk1DASPK KAM 1.0e-2 1042 0.3528 0.0917 0.04005.0e-3 693 0.4130 0.1112 0.04871.0e-3 2419 0.2830 0.0779 0.03465.0e-4 2013 0.1610 0.0543 0.02831.0e-4 4085 0.3381 0.0938 0.0444KINT 1.0e-2 511 0.4367 0.1348 0.07325.0e-3 577 0.1975 0.0483 0.01851.0e-3 956 0.0489 0.0095 0.00505.0e-4 1110 0.0670 0.0172 0.00961.0e-4 1765 0.0891 0.0231 0.0119KAMS 1.0e-2 912 7.6039 1.9141 0.72555.0e-3 1212 1.5417 0.4528 0.21811.0e-3 1964 2.0917 0.6104 0.27465.0e-4 2515 1.7810 0.5149 0.23741.0e-4 5162 1.6957 0.4988 0.2322
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