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Abstract. Capillary pressure-saturation-relative permeability relations described
using the van Genuchten and Mualem models for non-uniform porous media lead
to numerical convergence difficulties when used with Richards’ equation for certain
auxiliary conditions. These difficulties arise because of discontinuities in the derivative
of specific moisture capacity and relative permeability as a function of capillary
pressure. Convergence difficulties are illustrated using standard numerical approaches to
simulate such problems. Constitutive relations, interblock permeability, and nonlinear
algebraic system approximation methods, and two time integration approaches are
investigated. An integral permeability approach approximated by Hermite polynomials
is recommended and shown to be robust and economical for a set of test problems,

which correspond to a sand, a loam, and a clay loam media.



1. Introduction

Fluid flow in unsaturated porous media is often modeled using Richards’ equation
(RE) [Richards, 1931] and closed by constitutive relations to describe the relationship
among fluid pressures, saturations, and relative permeabilities [Brooks and Corey,
1966; van Genuchten, 1980]. Because of the nonlinearities involved, RE is often solved
using low-order numerical approximation methods, such as finite difference or finite
element methods. These types of solution methods are used in many of the existing
unsaturated flow codes. The application of these codes to a wide variety of problems is
considered commonplace [van der Heidje, 1996]. The standard use of such simulation
methods notwithstanding, problems exist with both the robustness and efficiency
of numerical solutions to RE; advancements in the solution of these problems is an
important and active topic of research in the water resources community.

A common set of constitutive relations used to close RE is the van Genuchten
relation to describe the interdependence of fluid pressures and saturations and the
Mualem relation to describe the interdependence between fluid saturation and relative
permeability. The exponent, or n,, in the van Genuchten relation is a measure of
pore-size uniformity. For many natural porous media, typical values of n, range between
1.0 to 2.0, when determined using standard laboratory approaches and fitted using
standard inverse techniques [Kool et al., 1985; van Genuchten et al., 1991].

Using the van Genuchten and Mualem (VGM) constitutive relations in existing RE
codes, we experienced significant problems in attaining a convergent solution for cases in
which n, < 2 for certain sets of auxiliary conditions. An example of such a case was for
infiltration from a ponded surface boundary condition into a system originally drained
to equilibrium.

These experiences motivated this work, which had several objectives: (1) to
document a common class of variably-saturated flow problems that lack robustness when

solved using standard solution approaches; (2) to determine the reason why traditional



approaches lack robustness for this class of problems; (3) to investigate a variety of
alternative approaches; and (4) to compare a set of alternative approaches for a range

of media conditions to test robustness and efficiency.

2. Background

Four aspects of the literature on unsaturated flow warrant at least a brief
consideration: (1) constitutive relations used to describe pressure-saturation-
conductivity relations and typical parameter values for natural, unconsolidated media;
(2) approaches typically used to approximate RE; (3) methods for approximating
relative permeabilities in a discrete approximation of RE; and (4) strategies used to
estimate the relatively complex constitutive relations that are a part of the formulations

of concern. We discuss each of these aspects in turn.

2.1. Pressure-Saturation-Conductivity Relations

A well-posed formulation of RE requires that constitutive relations be specified
to describe the interdependence among fluid pressures, saturations, and relative
permeabilities, which will be referred to as p-s-k relations. Several approaches
have been advanced to describe p-s-k relations [Brooks and Corey, 1966; Mualem,
1976; van Genuchten, 1980], but determining the most appropriate constitutive relation
formulation is still an open issue. We use the van Genuchten relation to describe the
relationship between fluid pressures and saturations [van Genuchten, 1980] and the
Mualem relation for that between fluid saturations and relative permeabilities |[Mualem,
1976]. Several codes documented in the literature use these relations to close RE
(e.g., [Yeh, 1987; Simunek and van Genuchten, 1994]). We will refer to these relations
collectively as the van Genuchten/Mualem (VGM) relations.

Because of the widespread use of the van Genuchten relation, many experimental

data sets have been described using this approach, and many sets of parameter values



are available in the literature [van Genuchten et al., 1991]. In addition, a parameter
estimation code is available and has been widely used to determine these parameter
values from experimental data [van Genuchten et al., 1991]. These parameter values
are related to the mean pores size («,) and the uniformity of the pore-size distribution
(nv)-

The standard range of values of n, is of particular interest; it can vary from near
1.0 [van Genuchten et al., 1991] to near or even greater than 10.0 [Kool and Parker,
1987; Mayer and Miller, 1992], with the pore size distribution being increasingly
uniform as n, increases. Most natural media tested to date do not have a highly
uniform pore-size distribution, so n, < 2.0 for many natural unconsolidated media [van
Genuchten et al., 1991]. For such media, the VGM relations are not smooth, which can
lead to difficulties in achieving convergence for the common numerical approximation
approaches to RE that rely upon these relations [Vogel and Cislerova, 1988|.

To alleviate this problem, a portion of the functions near the zero pressure
head point is often linearized; e.g., a linear function is used to describe the relative
permeability for ¢ > 1, for some vy < 0.0. This approach acts to smooth the highly
nonlinear functions that are problematic for the nonlinear solver. This approach is used
in the popular finite element variably saturated flow code Chain 2D [Simunek and
van Genuchten, 1994]. Others have used essentially the same approach; for example,
the primary variable switching technique [Forsyth et al., 1995] makes use of a similar
smoothing technique. This approach may permit more robust convergence of the
nonlinear solver in some cases, but robustness problems and solution accuracy issues

still remain | Vogel and Cislerova, 1988; Vogel et al., 1991].

2.2. Numerical Solutions for Richards’ Equation

The nonlinearity of RE, the complex nature of the p-s-k relations, including

hysteresis [Scott et al., 1984; Kool and Parker, 1987; Lenhard et al., 1989], and the



heterogeneous nature of subsurface systems |[Christakos, 1992; Gelhar, 1993 combine
to make numerical approximation approaches the most common way of solving RE.
Many reports of approximate numerical solutions to RE have appeared in the literature,
with low-order finite-difference [Hanks and Bowers, 1962; Rubin, 1968; Hornberger and
Remson, 1969; Cooley, 1971; Freeze, 1971; Vauclin et al., 1979; Celia et al., 1990] and
finite-element [Cooley, 1983; Huyakorn et al., 1984; Allen and Murphy, 1986; Celia
et al., 1990] the most common methods. Such solutions to RE are used routinely for
applications involving agricultural, geochemical, and nuclear waste-disposal applications
[van der Heidje, 1996], among others. The robust solution of these applications is
desirable, but is not currently possible for certain common sets of constitutive relations,

parameter values, and auxiliary conditions.

2.3. Relative Permeability Approximation

Estimating interblock relative permeabilities for grid blocks in the vicinity of
saturation is another problem in the numerical simulation of unsaturated/saturated flow
in media with n, < 2. In this region, relative permeabilities can vary greatly for a small
change in capillary pressure, and convergence of the nonlinear solver is very sensitive to
the method used to estimate the interblock relative permeabilities.

In many existing numerical procedures, interblock relative permeability is
estimated as the arithmetic average of the two neighboring cells’ relative permeabilities
[Haverkamp and Vauclin, 1979; Warrick, 1991; Zaidel and Russo, 1992]. This procedure,
however, results in an overestimation of interblock permeability and in a significant
smearing of the steep wetting front [Zaidel and Russo, 1992].

Alternative approaches have been proposed, including geometric mean [Haverkamp
and Vauclin, 1979; Zaidel and Russo, 1992], harmonic mean [Haverkamp and Vauclin,
1979], one- and two-point upstream weighting [Haverkamp and Vauclin, 1979], a

Kirchoff integral method [Zaidel and Russo, 1992], and a weighted averaging scheme



based upon matching Darcy fluxes [Warrick, 1991]. Some comparisons among methods

have been completed [Zaidel and Russo, 1992], but general guidance is not yet available.

2.4. Constitutive Relation Estimation

The VGM relations involve complicated power functions that are computationally
expensive to evaluate during the course of a simulation [Ross, 1992]. To reduce the
computational cost, function values are often tabulated and intermediate values required
during the simulation are interpolated either by linear or higher-order interpolation.
This approach can significantly reduce the overall cost and runtime of an unsaturated
flow simulation [Simunek and van Genuchten, 1994; Ross, 1992].

Cubic spline interpolation is an effective higher-order interpolation approach in
which a C? continuous interpolation polynomial is constructed so that at each of the
spline knots, the value of the polynomial equals the actual function value [Ross, 1992]
This approach works well for most porous media conditions, yet it is difficult to maintain
accuracy using cubic spline interpolation for the VGM relations when n, < 2. Under
this condition, the permeability and specific moisture capacity functions become less
smooth than when n, > 2. When using cubic spline interpolation, second derivatives
of the interpolation polynomial at each of the spline knots are computed by solving a
system of linear equations whose dimension is equal to the number of spline knots. For
this class of problems, significant oscillations can occur in the solution of this system
of equations near the non-smooth region of the relation, which in this case occurs near
the saturated /unsaturated transition region. These oscillations cause accuracy loss in
interpolating intermediate function values and lead ultimately to convergence difficulties

for the nonlinear solver.



3. Approach
3.1. Formulation

RE may be formulated several ways [Huyakorn and Pinder, 1983; Milly,
1985; deMarsily, 1986; Celia et al., 1990]. In this work, we examine two temporal
discretization methods, each of which uses a different form of RE. The central issues in
this work are dependent on neither the form of RE used nor the spatial dimensionality
of the problem. For this reason, our formulation and analysis are restricted to one
spatial dimension.

A mass-conserving mixed-form of RE is routinely used in research and production
codes [Yeh, 1987; Celia et al., 1990; Simunek and van Genuchten, 1994]. For the case
in which fluid compressibility is included for a one-spatial-dimension vertical system,

the common mixed-form equation is

55,05 + e = 5 | (52 +1)] )

where S, is the specific storage coefficient, which accounts for fluid compressibility;
S, is the saturation of the aqueous phase; v is the pressure head; t is time; 6, is the
volumetric water content of the aqueous phase; z is the vertical spatial dimension; and
K, is the hydraulic permeability.

We also use the compressible, pressure-head-based form of RE, which in one spatial

dimension may be written as

o)+ 55,0015 = 5 |K0) (52 +1)] 2)

where ¢ is the specific moisture capacity. While mass conservation problems using
traditional low-order methods with this form of RE are well known [Celia et al.,
1990; Rathfelder and Abriola, 1994], recent work using higher-order methods in time has
shown that solutions of the pressure-head form of the equation can be accurate, robust,

and economical [Tocci et al., 1997].



We consider problems with auxiliary conditions of the form

Pzt =0) = to(2) (3)
P(z=0,t>0) = 1y (4)
w(ZZZ=t>O) = o (5)

where Z is the length of the domain, )y may be a function of space, and ; and ), are
constants. We consider these auxiliary conditions because they lead to the development
of a sharp infiltration front and saturated conditions over a portion of the domain,

which is a difficult class of test problem.

3.2. Constitutive Relations

Solving RE requires constitutive relations to describe the interdependence among
fluid pressures, saturations, and relative permeability. The focus of this work is on the
often-used van Genuchten (VG) pressure-saturation relationship [van Genuchten, 1980],

which is given by

S(‘Z (w) -

_ 1+ |a,p|m) ™, 0
0, (1) Hr:{( + Jonp|™) b < 6

0, — 0, 1, >0

where m, =1 —1/n,, S, is the effective saturation, 6, is the residual volumetric water
content, #, is the saturated volumetric water content, «, is a parameter related to
the mean pore size, and n, is a parameter related to the uniformity of the pore-size
distribution.

Clearly S, is continuously differentiable at ¢» = 0 if 1 < n,. However, if 1 < n, < 2,
then S, is not Lipschitz continuously differentiable and the second derivative of S, is
infinite at ¢ = 0.

The specific moisture capacity, ¢, is defined as df,/di. Using (6) we see that, for
¥ <0,

C(w) = d@a/di/) = (95 - gr)Sé(z/))
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= (95 - GT')m’U(]‘ + |O{’U77/}|nv)7mviln’uav|O{’U77/}|nvil' (7)

If 1 <n, < 2, then ¢ is not differentiable at ¢y = 0, and this lack of smoothness will
affect the performance of any nonlinear solver.
The saturation-permeability relation is described using Mualem’s model for the

relative permeability of the aqueous phase [Mualem, 1976]
My 2
K. (S.) = K.S} 1= (1= 8/m)™] (8)

where K is the water-saturated hydraulic permeability, and S, = S.(¢) from (6).

As with ¢, K, will lose smoothness for small n,. In fact, for ¢» < 0,

K.(¢) =1+ 0(jg|™™) = 1+ O(j¢"") (9)

as p — 0. At ¢ = 0, K is discontinuous if n, = 2 and infinite if 1 < n, < 2.

3.3. Spatial Discretization

We use a standard finite-difference approximation to discretize RE with respect to
the spatial dimension [Celia et al., 1990], z, where z € [0, Z]. We consider a uniform
spatial discretization comprised of n,, — 1 intervals {[z;, zip1]}?, ', of length Az, with

Az=7/(n, —1),and z; = (i — 1)Az for 1 <i < n,. The spatial operator

Oute) = 57 |10 (52 +1)) (10

is approximated at z = z; for 1 <7 < n, by

+ Kip12 — Ki1/2> (11)

oot [(Kivp (i — ) — Kicap (¥ — i)
Osdz(z/)) - AZ ( Az

where n,, is the number of spatial nodes in the solution, and ; is the approximation to

P (2i)-
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3.4. Temporal Discretization

We investigated two time-integration methods in this work: a standard first-order
backward-difference approximation of the mixed-form of RE [Celia et al., 1990], which
is given by (1); and a higher-order differential algebraic equation/method of lines
(DAE/MOL) approach applied to the ¢)-based form of RE [Tocci et al., 1997], which is
given by (2).

The mixed-form equation is written in discrete form as

it =W 0 — O,
SsiS(lI_Z!_l At + — At - = Osdi(w)H_l (12)

where [ is a time step index representing a known time level, and [ 4+ 1 is an index
representing an unknown time level.

For the DAE/MOL approach, the semi-discrete form of the pressure equation is
written as

AW)i—= = Osai(¥) (13)

dt
where A(Y); = [c(¥) + SsS.(¥)];. The system of ordinary differential equations
represented by (13) was integrated in time using DASPK [Brown et al., 1994], which is
a popular differential algebraic equation integrator based on a fixed-leading-coefficient
backward-difference approximation method of variable step size and variable order up
to fifth. We have detailed this solution approach and compared efficiency with a variety
of standard approaches in recent work [Tocci et al., 1997]. We include this approach

for completeness and because the issues of concern in this work apply to both of the

temporal discretization methods outlined above.

3.5. Permeability Approximations

An important aspect of this work is the approach used to estimate permeabilities
that vary in space as a function of ¢ within the spatial discretization scheme. The

values of concern appear as K412 in (11). Several approaches have been suggested in
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the literature [Haverkamp and Vauclin, 1979; Warrick, 1991; Zaidel and Russo, 1992],
but a detailed comparison of these approaches in a context similar to this work has not
yet appeared. After initial screening of several approaches, we focused on three for a
detailed investigation: arithmetic average permeability, integral permeability, and the
permeability based upon an arithmetic average of saturation.

A common approach for estimating K/, is the arithmetic mean technique (KAM)

[Haverkamp and Vauclin, 1979; Warrick, 1991; Zaidel and Russo, 1992]:
Kivi)s = (K + Kit1) /2 (14)

which is simple and inexpensive to compute.
Because K varies in space as a function of 1), an integral representation of mean

interblock values (KINT) can be computed as

oL e} je i, i oy A s
Kii1/2 _ { [Yi—iz1] Jmin{e;,pit1} ’ =1 (15)

K (i), if i = Yig1.
This approach has appeared in the literature [Zaidel and Russo, 1992; Warrick, 1991],
but has not been routinely used—Ilikely because of the apparent computational expense.
The third method considered for estimating K1,/ is termed the arithmetic mean

saturation (KAMS) and is computed by
Kisip = K [(Se, + Se.s,) /2] (16)

The KAMS approach is easy to compute and has appeared in the literature [Zaidel and
Russo, 1992].

3.6. Constitutive Relation Estimation

Computing VGM constitutive relations can comprise a significant portion of the
computational effort required for simulating RE, primarily because of the number

of exponential functions that require evaluation and the relative expense of these
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operations. Computational time can be significantly reduced by using cubic spline
interpolation of tables computed using direct function evaluations and stored prior to
time stepping [Ross, 1992; Tocci et al., 1997]. The method used to compute these
relations affects the robustness issues that are considered in this work. We consider
three approaches for evaluation of these constitutive relations: (1) direct function
evaluation; (2) cubic spline interpolation; and (3) Hermite spline interpolation. For
the direct evaluation approach, the necessary relations are evaluated as needed during
the simulation from the definition of the VGM relations, which is the usual procedure.
Cubic spline approximations are computed using the standard approach [Atkinson,
1989], yielding exact values at the knots and a C? continuous representation of the
relations.

The Hermite interpolation method differs from the cubic spline method in that
the interpolating function is C' continuous, the derivatives at the knots correspond to
the actual derivatives of the function, and support for the interpolation expression is
local. Local support implies that the interpolated value depends only upon values of
the function and its derivative at knots that bound the interval within which it lies. In
order to use Hermite interpolation, derivatives of the function must be available, as is

the case here. For a given function f(x), the Hermite interpolation may be stated as

dfy df

f(x) = N, N, Ny =L 4+ Npp—2 17
f(x) or.f1 + Noafo + Ny o + N2 I (17)
and the derivative of the function assumes the form
df(ff) d Ny d Ny dNyy dfy dN o dfs
- = - - 18
dz dx hit dz fat dv dx dv dx (18)
where the polynomials V;; are defined such that
I, z=uxz5,n=u
d" Njj )
A , & Lk, TV % 1 ( )

01 I':’I)k,k)#]

where x; is the location of knot k.
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Based upon the properties described in (19), the polynomial expressions N;; are

defined as

Noalw) = 5pl2—2) - L (- 2) + L] (20)
Nioa) == g 2w =) + 1 (2 — 2) ~ 1] 1)
Nu(z) = # 22— 7) — LE[2 (¢ — 7) + L] (22)
Np(z) = # 2(z —2) + L) [2(x — Z) — 1] (23)

dNoi(z) 3 - -
o - @ 2z —2) + 1] 2 —2) — 1] (24)

dNps(z) 3 i i
T = ﬁ[Q(x—:r)—i—lx] 2(x —z) — 1] (25)

ANy (x) B 1 _ _
7 = @ 6(x—2)+1][2(@x—1)— 1] (26)
Tl Elle a0 L (27)

where z; and x5 are the spline knots adjacent to z, * = (27 + x2)/2, and [, = x5 — 2.
The advantage of Hermite interpolation for this application is that the error is
local, meaing that if 2; <2 < z;,4, then

7o) = fo)] < Foer™ max (O] (28)

This error should be compared with that of the standard cubic spline interpolation

5 Smax(z;41 — ;)

)~ o) < TR (pi0g)) (29)

where xy and xx correspond to the end points of the entire interval being splined.

The upper bound of the Hermite interpolation error has an advantage of a factor
of 5 in the constant. More significantly, the maximum of the fourth derivative is taken
only over the interval of knots containing x. For the problems considered here, this

isolates the nonsmooth effects.
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3.7. Algebraic Equation Solution

The backward Euler time integration method applied to (1) was solved using a
standard modified Picard iteration method to resolve the nonlinearities, which is detailed
in the literature [Celia et al., 1990]. The DAE/MOL approach for approximating (2)
of DASPK uses a chord iteration method to resolve the nonlinearities, which is also
detailed elsewhere [Tocci et al., 1997].

Both approaches result in a tridiagonal system of linear equations that require
solution at each iteration. A lower-upper decomposition approach was used to solve this
system of equations, with refactoring of the Jacobian matrix, [J], in the DAE/MOL
approach only done when [.J] was reformed. In previous work, we found that cyclic
reduction was a much more efficient method of solving such systems of equations on a
high-performance vector machine [Tocci et al., 1997]. The central issues of concern in

this work are not affected by the choice of a linear solver.

4. Results and Discussion
4.1. Test Conditions

To meet our objectives, we performed a set of numerical experiments for two time

integration methods, three interblock permeability approaches, and three constitutive

relation computation methods, detailed above. We applied these method combinations

to a set of three test problems representative of widely different natural media, as shown

in Table 1.
We chose media parameters that correspond to the average values for the loam and

clay loam soil textural groups according to the USDA classification [van Genuchten et

al., 1991], as well as the sand problem used in our previous work [Tocci et al., 1997].

The loam and clay loam problems are typically difficult to simulate numerically using

conventional methods, due to the non-smooth behavior of the resulting permeability
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and specific moisture capacity functions. The sand media has a n, = 4.264, so its VGM
relations are smooth compared to the loam and clay loam materials. This sand was
included to provide a wide range of material properties for the method comparisons so
that robustness was evaluated thoroughly.

The material properties and spatial and temporal domain information for the set
of test problems listed in Table 1 were used to perform a set of dense-grid simulations,

which were used to judge the accuracy of the set of methods considered. The solutions

from these dense-grid simulations are shown in Figure 1 and illustrate a sharp infiltration |Figure 1

front between an unsaturated and a saturated zone, which is the hallmark of each of the

test problems.

4.2. Spline Approximations

The accuracy of the cubic and Hermite spline approximations to the analytical
VGM relations was examined for the ¢ and K functions in each medium by varying the
number of knots in the approximation between 101 and 10,101 and computing the L;
norm of the solution error at a set of 40,401 points, which included both knot points and
points that fell in an interval between knots. In each case, knots were equally spaced
between 1» = —10.0 and ¢ = 0.1. Table 2 shows the slope of log error versus log np,
where np is the number of knots, and the L; norm of interpolation error at a reference
point of 5051 spline knots. The slope of log error versus log np represents the order
of the approximation for each of the respective interpolants. For the sand problem,
n, = 4.264, the error is of approximately order four, which is the expected result for a
third-order polynomial interpolant of a smooth function. However, for the loam and clay
loam media, the loss of smoothness is manifested by a much lower order of accuracy in
the interpolant. The accuracy decreases as n, decreases, as is evident in the decreased

order of approximation for the clay loam relative to the loam and sand materials.

Figures 2 5 compare the actual function and either a cubic or Hermite spline Figures 2-5
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approximation for specific moisture capacity and permeability as a function of the
number of knots for the clay loam. These figures illustrate the discontinuity in the
derivative of these relations and the nature of the spline errors. The cubic splines are
shown to be smooth but oscillatory, which is expected to lead to convergence problems
for a nonlinear solver that depends upon derivative information. The Hermite splines are
non-oscillatory and smooth, matching exactly the constitutive relation values and the
derivative of these constitutive relations at each knot. The Hermite spline approximation
has a smoothness and order of continuity that exceeds the constitutive relation being
approximated. For an equivalent number of knots and non-smooth relations, Hermite
spline interpolation typically has a smaller error than cubic spline interpolation. For
the sand media, the constitutive relations are smooth, and both spline approximations

provide a very accurate representation of the true solution.

4.3. Work Measures

For methods based upon the MPI approach, the work primarily concerns forming
the coefficient matrix and right hand side vector, and solving the linear systems of
equations. This observation allows for a simple, straightforward measure of work that
requires relative weights for the two procedures and integer counts for each of the
procedures, such as

W, = wene + winy (30)

where W, is a work measure for MPI methods, w, is a weighting factor for formation of
the coefficient matrix and right hand side vector, which are typically done at the same
time, w; is a weighting factor for solution of the linear system of equations, n. is the
number of coefficient matrix formation calls, and n; is the number of linear solutions
performed |[Tocci et al., 1997].

For traditional low-order DAE methods and DAE/MOL approaches that rely

upon Newton iteration methods to resolve nonlinearities, the majority of the work is
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associated with Jacobian evaluations, function evaluations, and the solution of the linear

system of equations. A work measure of the form
Wn = w;ny + Wrhy -+ winy (31)

is produced, where W, is a work measure for Newton iteration DAE methods, w; is
a weighting factor for formation of the Jacobian matrix, wy is a weighting factor for
evaluation of the function, n; is the number of Jacobian evaluations, and ny is the

number of function evaluations [Tocci et al., 1997].

The weighting factors will depend on the function evaluation and interblock
permeability estimation methods used. Table 3 shows the weighting factors for each
of the nine combinations of function evaluation and interblock permeability estimation
methods. These weights are based upon a detailed set of profiling results. It is clear
from this table that KINT is the most expensive to compute when using direct function
evaluation (DFE), but is competitive with KAM when using cubic spline interpolation
(CSI) or Hermite spline interpolation (HSI). The KAMS method is less costly than
KINT when using DFE but is not as efficient when using a spline interpolation method.
This added expense for KAMS when used with a spline interpolation is due to the fact
that additional work is required in converting the calculated average saturation to ) in

order to interpolate the constitutive functions which are expressed in terms of .

4.4. Simulation Results

Simulations of infiltration into initially dry, non-uniform (n, < 2) media show
that the cubic spline interpolation method does not maintain a high enough degree of
accuracy to give robust and accurate results. For reasons described above, Hermite
polynomial splines are tested in place of cubic splines for constitutive function
evaluations. Results also show that the KAM permeability estimation technique is not

robust and often fails for problems involving non-uniform media. The KINT and KAMS
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techniques were tested as possible robust alternatives to the KAM method.

Tables 4 9 show the work and dense grid errors over a wide range of time step sizes, ‘Tables 4*9‘

using both MPI and DASPK solvers for the three test problems. Results are shown for
both the direct function evaluation as well as the Hermite spline interpolation methods
using three different interblock permeability estimation techniques: KAM, KINT, and
KAMS.

4.5. Solution Efficiency

From the simulation results, it is clear that the KINT and KAMS permeability
estimation techniques are more robust than KAM, with KINT giving more accurate
results in most cases. Moreover, the variable step size, Newton-type iteration of DASPK
performs better than the fixed time step MPI nonlinear solver. For all of the results
shown, the Jacobians in DASPK are computed numerically by finite differences.

If one replaces the Picard iteration with a Newton iteration, the robustness of the
iteration is enhanced. However, the nonsmoothness means that the Jacobian may not
exist. Even if the discretization does not require differentiation at b = 0, the nonsmooth
nonlinearities will reduce the radius of the ball of attraction of the Newton iteration
[Kelley, 1995]. Hence, a fixed-step method for temporal integration, which does not
adjust the time step to account for errors in the integration or slow convergence of
the nonlinear solver, could fail even if Newton’s method were used as a solver unless
a globalization method, such as a line search, [Dennis and Schnabel, 1996; Kelley,
1995; Ortega and Rheinboldt, 1970] were used.

These problems with nonsmoothness also affect the accuracy of approximations
to the constitutive laws that are made in the interest of efficiency. The nonlinearities
in RE are extremely costly to evaluate, and adding Jacobian evaluations to that cost
could well make the computation impractical. Replacing the nonlinearities by spline

approximations will significantly improve performance [Tocci et al., 1997], but the
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accuracy of these spline approximations is degraded as the nonlinearities become less
smooth, which is exactly what happens as n, is decreased.

As our results verify, the problems caused by small n, can be solved by a
combination of averaging more accurately the permeabilities used in the discrete
equations, and approximating Jacobian information in such a way that the Jacobian is
more directly related to the smooth problem, rather than approximating the Jacobian
for the original, nonsmooth problem. This solution strategy deserves some theoretical
consideration. The Newton iterative approach and approximation of the nonlinearity

are examined in further detail in the following sections.

4.6. Newton Iteration

If we discretize (2) in space, we obtain a finite dimensional system of ordinary

differential equations of the form

Gy, dip/dt) = A(P)dip/dt + B(y) = 0 (32)

where B(1)) is the discretization of the spatial derivative term

7 [k (3 +1)] 33

Numerical approximation of B with finite differences or finite elements would not require
evaluation of the derivative of K,. Hence the smoothness of the discretized problem is
the same as that of the continuous one.

Following [Tocci et al., 1997] and [Kelley et al., 1996, we approach (32) as a
differential algebraic equation [Brenan et al., 1996] and do not divide by A. If one
integrates implicitly in time, one must solve a nonlinear equation at each time step of

the form [Brenan et al., 1996]
F(u) = G(u,au+ ) =0 (34)

where u will be the approximate solution at the current time step and « and 3 depend

on the parameters of the problem and the history of the integration.
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F will be no smoother than A or B. Because of the presence of S! in A, the
smoothness of F' will be no better than that of S!. The standard convergence theory for
Newton’s method [Dennis and Schnabel, 1996; Kelley, 1995; Ortega and Rheinboldt,
1970], requires that F’, the Jacobian of F, be Lipschitz continuous, and hence that
n, > 3. If 2 < n, < 3, F' is Holder continuous, and Newton’s method will still
converge |[Keller, 1970] with only the ultimate convergence rate being slower. However,
if 1 < mn, <2, ¢ (and hence A) is not differentiable, and one would expect problems with

Newton’s method.

4.7. Approximation of the Nonlinearity

One approach to the smoothness issue is simply to approximate the nonlinearities
by splines and apply Newton’s method to the resulting problem. Two subtle points

must be considered:

e the accuracy of the spline approximation will be degraded because of the

nonsmoothness; and

e the derivative of spline approximation is not the same as the spline approximation

of the derivative.

As we have seen, A(1)) and B(v) are smooth except when 1 is near zero. At ¢) =0,

Ny—

both have algebraic behavior like |1)|™~'. Hence, if we define a spline approximation to

F by
Fs(u) = Ag(u)(au + B8) + Bs(u) (35)

where Ag and Bg are spline approximations to A and B, we can use the estimates

|45 = Alloo, [ Bs = Blloo = 06" ") (36)
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where 0, is the mesh spacing for the spline approximations to A and B, to show that, if

F(u*) = 0, where u* is the exact solution, then
1Fs(u)lloo = OO0 ) (37)

which can be made as small as spatial/temporal truncation error if §, is sufficiently
small.

We make the conditioning assumption that there is C; > 0 such that
[E(u)]| = [[F(u) = F(u)]| = Cillu — 7] (38)

for u sufficiently near u*. Equation (38) simply means that small residuals imply small

errors.

So if Fs(w) = 0 then
lw — || < CTH|F(w) = F(u")|| = C7H F(w) = Fs(w)|| = 0@ ). (39)

Hence, the solution to the splined equations approximates the solution only insofar as
the spline is accurate.

At this point we can conclude that if (38) holds and the nonlinear approximate
equation is solved to sufficient accuracy, then the errors in the solutions will be of the
same order as the errors in the approximate nonlinearity.

As for convergence of the Newton iteration. The standard error estimate says there
is Cy such that

le+ ]l < CorllFg(w) " ecl? (40)

where e is the error in the Newton step, and e, is the error in the previous Newton
step. In (40), v is the Lipschitz constant of the Jacobian of the spline approximation,

which will be large in this case. A large v may have several consequences.

e A line search may be needed for most of the nonlinear iterations unless the
performance of the nonlinear iteration plays a role in the step size control of the

temporal integration.
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e The Lipschitz constant of the spline-of-derivative will be far larger that that of F{.
Hence it is necessary to compute Jacobian information using the derivative of the
spline. Computing Jacobians by differences will automatically do this. However,
if one wishes to use analytic Jacobians, the potential for nonsmoothness must be

considered.

e A low-order spline may provide more accuracy than a high-order spline which uses

the same knots.

An important benefit of using the KINT/Hermite spline interpolation approach is
that it eliminates the need to evaluate dK,/di), even when using analytic Jacobians.
In the KINT approach, only the values | K,dy and K, need be tabulated at each of
the spline knots. From these tabulated values, interblock permeabilities as well as
derivatives of interblock permeabilities can be evaluated. This is important when using
a Newton iterative nonlinear solver, where derivatives of the interblock permeabilities

may be required.

5. Conclusions

In this work, we have introduced a computational approach that more effectively
addresses the difficulties involved in solving RE for non-uniform porous media. By using
a combination of non-standard techniques, we were able to construct a more robust and
accurate solver for variably saturated flow problems. Several key observations from our

numerical experiments and analysis guided the development of the improved simulator:

e Due to the non-smooth behavior of the constitutive relations for non-uniform
porous media, more accurate interpolation of the constitutive functions is
necessary. We found that a Hermite spline interpolation method is more accurate

than the standard linear interpolation or cubic spline interpolation methods for
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such problems, and thus plays a key role in the development of a robust and

efficient variably saturated flow simulator.

e Standard arithmetic averaging of interblock permeabilities is not robust enough for
problems involving non-uniform porous media and, as a result, alternate methods
were tested. An integral approach as well as an arithmetic average of nodal
saturations approach were both found to be effective, with the integral approach

being more efficient and accurate.

e The lack of smoothness in non-uniform porous media flow problems often results
in failure of the standard Picard iteration methods, yet the robustness of the
iterations is enhanced with a Newton iteration. A fixed time step method for
temporal integration, which does not adjust the time step to account for errors
in the integration or slow convergence of the nonlinear solver, could fail even if
Newton’s method were used as a solver. But variable time step Newton’s method
solvers, such as DASPK, give robust, efficient, and accurate results for the type of

non-smooth problems examined in this work.

In developing a robust variably saturated flow simulator, we would recommend the
use of the methods listed above. The KINT /Hermite interpolation approach combined
with a MOL formulation and variable time step DAE solution method can provide the
necessary computational accuracy, efficiency and robustness. This approach is fairly
simple to implement and allows a wider range of problems to be solved, including
a specific class of problems which conventional simulators are not able to address
effectively. Unlike conventional methods used in many simulators, this approach results
in robust convergence of the nonlinear solver for the type of non-uniform porous media

found in many field soils.
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Figure 1. Dense-grid solutions.

Figure 2. Cubic spline interpolation of specific moisture capacity function for clay loam

test problem.

Figure 3. Hermite spline interpolation of specific moisture capacity function for clay

loam test problem.

Figure 4. Cubic spline interpolation of permeability function for clay loam test problem.

Figure 5. Hermite spline interpolation of permeability function for clay loam test prob-

lem.



Table 1. Test Problem Parameters
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Variable Sand Loam Clay Loam
0, () 0.093 0.078 0.095
0, () 0.301 0.430 0.410
a, (1/m) 5.470 3.600 1.900
ny () 4.264 1.560 1.310
K, (m/day) 5.040 0.250 0.062
Ss (1/m) 1.0e-6 1.0e-6 1.0e-6
2 (m) [0,10.0] [0,5.0] [0,2.0]
t (days) [0,0.18] [0,2.25] [0,1.0]
Yy (m) —2 —2 —2
¥ (m) 0.00 0.00 0.00
¥y (m) 0.10 0.10 0.10
Az (m) 1.25e-2 1.25e-2 6.25e-3
M (—) 801 401 321




Table 2. Spline Approximation Measures

Constitutive Spline

Function Method Measure Sand Loam Clay Loam

c() Cubic Order 4.024 1.566 1.318

Error 3.94e-5 1.061 1.130

Hermite Order 3.996 1.568 1.322

Error 3.67e-5 0.673 0.761

K(y) Cubic Order 4.069 1.554 1.285

Error 7.94e-5 0.739 0.771

Hermite Order 3.994 1.563 1.294

Error 7.22e-5 0.469 0.521




Table 3. Work Measure Weighting Factors

Function Interblock
Evaluation Permeability wj wy W, w;
DFE KAM 1.010 0.497 1.161 0.181
KINT 1.879 0.924 2.395 0.181
KAMS 1.188 0.584 1.354 0.181
CSI KAM 0.549 0.270 0.465 0.181
KINT 0.578 0.284 0.512 0.181
KAMS 0.787 0.387 0.782 0.181
HPI KAM 0.552 0.271 0.484 0.181
KINT 0.596 0.293 0.530 0.181

KAMS 0.814 0.401 0.820 0.181




Table 4. Sand Test Problem

Direct Function Evaluation

Nonlinear Interblock
Solver Permeability At Work I1E IIE]|2 I1E| o
MPI KAM 5.0e-4 17092 12.8907 7.4169 4.7064
5.0e-5 45526 8.7814 6.1551 4.6436
2.5e-5 69317 8.6890 6.1101 4.6381
1.5e-5 99849 8.6653 6.0960 4.6368
1.0e-5 131611 8.6562 6.0901 4.6365
KINT 5.0e-4 28254 8.8430 6.1756 4.6680
5.0e-5 88591 4.2435 4.1939 4.1939
2.5e-5 137667 4.1411 4.0993 4.0993
1.5e-5 198244 4.0992 4.0542 4.0542
1.0e-5 267914 4.0767 4.0298 4.0298
KAMS 5.0e-4 18027 8.9319 6.1762 4.6468
5.0e-5 53880 4.0885 4.0275 4.0273
2.5e-5 79849 3.7410 3.6231 3.6220
1.5e-5 119654 3.9391 3.3897 3.3879
1.0e-5 154332 3.4118 3.2447 3.2424




Table 4. (continued)

Nonlinear Interblock
Solver Permeability At Work | E||1 I E||2 1 E|| oo
DASPK KAM 1.0e-2 23228 83.1108 19.9251 5.0932
5.0e-3 26145 10.2828 6.3711 4.7463
1.0e-3 23472 8.3922 5.9377 4.6107
5.0e-4 24651 7.9797 5.6779 4.5681
1.0e-4 31260 8.4803 5.9889 4.6196
KINT 1.0e-2 49676 113.4329 23.4999 5.1793
5.0e-3 55828 9.3970 6.1553 4.7463
1.0e-3 46607 2.4794 2.3366 2.3341
5.0e-4 49134 2.3163 2.1594 2.1561
1.0e-4 59182 3.6816 3.6294 3.6293
KAMS 1.0e-2 26984 118.7739 24.0513 5.1933
5.0e-3 30538 35.0706 12.6405 4.9467
1.0e-3 29673 2.1775 1.8648 1.8510
5.0e-4 30577 1.0749 0.6771 0.5876
1.0e-4 39143 2.6761 2.4154 2.4082




Table 5. Loam Test Problem

Direct Function Evaluation
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Nonlinear Interblock
Solver Permeability At Work | E|1 I E||2 1 E|| oo
MPI KAM 3.0e-3 DNC
1.0e-3 DNC
5.0e-4 DNC
1.0e-4 DNC
5.0e-5 DNC
KINT 3.0e-3 45036 0.6427 0.4651 0.4459
1.0e-3 73975 0.5052 0.3451 0.3053
5.0e-4 118949 0.4749 0.3204 0.2713
1.0e-4 455630 0.4524 0.3033 0.2448
5.0e-5 767328 0.4497 0.3014 0.2415
KAMS 3.0e-3 23667 1.9572 1.4237 1.3775
1.0e-3 37578 2.8970 1.9828 1.8369
5.0e-4 57449 3.1927 2.1246 1.9027
1.0e-4 177339 3.4562 2.2459 1.9366
5.0e-5 302232 3.4911 2.2620 1.9399




Table 5. (continued)
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Nonlinear Interblock
Solver Permeability At Work |1 E|x | E|]2 1 E|| oo
DASPK KAM 1.0e-2 4619 9.4291 4.1820 2.3769
9.0e-3 4346 8.2950 3.8612 2.3449
1.0e-3 4539 2.7161 1.9053 1.8054
5.0e-4 5675 2.5033 1.8161 1.7461
1.0e-4 8531 2.3713 1.7593 1.7045
KINT 1.0e-2 8999 4.2056 2.5194 2.2115
5.0e-3 9634 4.2789 2.5554 2.2077
1.0e-3 9700 0.5785 0.4895 0.4885
5.0e-4 10432 0.5318 0.3520 0.3116
1.0e-4 14972 0.4374 0.3016 0.2566
KAMS 1.0e-2 6008 6.2092 3.2547 2.3296
9.0e-3 6009 4.4514 2.6061 2.2311
1.0e-3 6489 3.1126 2.0976 1.8982
5.0e-4 8155 3.6870 2.3495 1.9521
1.0e-4 12247 3.6393 2.3286 1.9495




Table 6. Clay Loam Test Problem Direct Function Evaluation
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Nonlinear Interblock
Solver Permeability At Work |1 E|x I E||2 1 E|| oo
MPI KAM 9.0e-3 DNC
2.0e-3 DNC
1.0e-3 DNC
5.0e-4 DNC
1.0e-4 DNC
KINT 5.0e-3 17540 0.3271 0.0792 0.0340
2.0e-3 29086 0.1622 0.0383 0.0146
1.0e-3 DNC
5.0e-4 DNC
1.0e-4 DNC
KAMS 9.0e-3 DNC
2.0e-3 11166 1.3230 0.3830 0.1758
1.0e-3 15705 1.4091 0.4092 0.1896
5.0e-4 23591 1.4697 0.4284 0.1994
1.0e-4 78491 1.5455 0.4530 0.2155




Table 6. (continued)
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Nonlinear Interblock
Solver Permeability At Work I E|x | E|]2 1 E|| oo
DASPK KAM 1.0e-2 DNC
9.0e-3 1065 0.7014 0.1902 0.0871
1.0e-3 661546 0.2222 0.0676 0.0339
5.0e-4 320562 0.3729 0.1050 0.0502
1.0e-4 195167 0.2694 0.0768 0.0370
KINT 1.0e-2 1440 0.4413 0.1371 0.0743
5.0e-3 1682 0.2846 0.0679 0.0265
1.0e-3 2703 0.0525 0.0127 0.0067
5.0e-4 3089 0.0740 0.0191 0.0105
1.0e-4 5139 0.0889 0.0234 0.0120
KAMS 1.0e-2 1264 2.1833 0.6096 0.2671
9.0e-3 1705 1.7322 0.5104 0.2384
1.0e-3 2624 1.8202 0.5281 0.2428
5.0e-4 3106 1.6998 0.4932 0.2265
1.0e-4 6146 1.6613 0.4883 0.2267




Table 7. Sand Test Problem

Hermite Spline Interpolation

Nonlinear Interblock

Solver Permeability At Work I E||x | E|]2 1 E|| oo
MPI KAM 5.0e-4 8469 12.8907 7.4169 4.7064
5.0e-5 22559 8.7814 6.1551 4.6436

2.5e-5 34348 8.6890 6.1101 4.6381

1.5e-5 49477 8.6653 6.0960 4.6368

1.0e-5 65217 8.6562 6.0901 4.6365

KINT 5.0e-4 7798 8.8430 6.1756 4.6680

5.0e-5 24452 4.2435 4.1939 4.1939

2.5e-5 37998 4.1411 4.0993 4.0993

1.5e-5 04717 4.0992 4.0542 4.0542

1.0e-5 73947 4.0767 4.0298 4.0298

KAMS 5.0e-4 11756 8.9319 6.1762 4.6468

5.0e-5 35136 4.0885 4.0275 4.0273

2.5e-5 52071 3.7410 3.6231 3.6220

1.5e-5 78029 3.9391 3.3897 3.3897

1.0e-5 100643 3.4118 3.2447 3.2424




Table 7. (continued)

Nonlinear Interblock
Solver Permeability At Work | E||1 I E||2 1 E|| oo
DASPK KAM 1.0e-2 13085 89.2186 20.6225 0.1229
5.0e-3 15758 6.3996 4.8201 4.7335
1.0e-3 14011 7.9438 5.6551 4.5639
5.0e-4 14707 7.9596 5.6653 4.5664
1.0e-4 18581 8.4843 5.9911 4.6200
KINT 1.0e-2 18032 116.1722 23.7168 5.1933
5.0e-3 18806 10.0713 6.5421 4.7463
1.0e-3 16637 2.2181 2.0551 2.0514
5.0e-4 17472 2.2511 2.0884 2.0848
1.0e-4 20892 3.7039 3.6520 3.6518
KAMS 1.0e-2 18999 125.2336 24.7315 0.2186
5.0e-3 22694 7.2105 5.0786 4.7463
1.0e-3 21003 1.3033 0.9120 0.8582
5.0e-4 22149 1.1793 0.7797 0.7099
1.0e-4 27906 2.5880 2.3169 2.3087




Table 8. Loam Test Problem

Hermite Spline Interpolation

Nonlinear Interblock
Solver Permeability At Work | E||1 | E |2 | E || oo
MPI KAM 3.0e-3 DNC
1.0e-3 DNC
5.0e-4 DNC
1.0e-4 DNC
5.0e-5 DNC
KINT 3.0e-3 12409 0.6439 0.4653 0.4463
1.0e-3 20411 0.5035 0.3452 0.3056
5.0e-4 33167 0.4732 0.3205 0.2716
1.0e-4 127186 0.4507 0.3033 0.2450
5.0e-5 213841 0.4480 0.3014 0.2417
KAMS 3.0e-3 15442 1.9319 1.4076 1.3628
1.0e-3 24456 2.8686 1.9709 1.8306
5.0e-4 37499 3.1834 2.1131 1.8991
1.0e-4 115686 3.4540 2.2334 1.9343
5.0e-5 197343 3.4896 2.2495 1.9377




Table 8. (continued)
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Nonlinear Interblock
Solver Permeability At Work | E||1 | E||2 1 E|| oo
DASPK KAM 1.0e-2 2699 6.3299 3.2464 2.2529
5.0e-3 2769 6.8402 3.4371 2.2884
1.0e-3 2789 3.0170 2.0291 1.8723
5.0e-4 3276 2.3804 1.7706 1.7133
1.0e-4 4674 2.4029 1.7790 1.7191
KINT 1.0e-2 3199 0.0212 3.0514 2.2954
9.0e-3 3291 0.1922 2.9363 2.2811
1.0e-3 3438 0.4386 0.3452 0.3359
5.0e-4 3662 0.5492 0.3656 0.3289
1.0e-4 5326 0.4380 0.3008 0.2523
KAMS 1.0e-2 4305 10.1117 4.4256 2.4252
5.0e-3 4389 7.7081 3.7520 2.3826
1.0e-3 4693 3.4169 2.2202 1.9300
5.0e-4 5137 3.7832 2.3782 1.9551
1.0e-4 8513 3.5271 2.2665 1.9411




Table 9. Clay Loam Test Problem Hermite Spline Interpolation
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Nonlinear Interblock
Solver Permeability At Work |1 E|x I E||2 1 E|| oo
MPI KAM 9.0e-3 DNC
2.0e-3 DNC
1.0e-3 DNC
5.0e-4 DNC
1.0e-4 DNC
KINT 5.0e-3 4839 0.3270 0.0792 0.0341
2.0e-3 8044 0.1622 0.0383 0.0146
1.0e-3 DNC
0.0e-4 DNC
1.0e-4 DNC
KAMS 9.0e-3 5114 1.0725 0.3086 0.1365
2.0e-3 7301 1.3171 0.3811 0.1749
1.0e-3 10720 1.4018 0.4068 0.1885
5.0e-4 15445 1.4635 0.4264 0.1984
1.0e-4 51460 1.5382 0.4507 0.2104




Table 9. (continued)

46

Nonlinear Interblock
Solver Permeability At Work | E||1 | E||2 1 E|| oo
DASPK KAM 1.0e-2 1042 0.3528 0.0917 0.0400
9.0e-3 693 0.4130 0.1112 0.0487
1.0e-3 2419 0.2830 0.0779 0.0346
5.0e-4 2013 0.1610 0.0543 0.0283
1.0e-4 4085 0.3381 0.0938 0.0444
KINT 1.0e-2 511 0.4367 0.1348 0.0732
5.0e-3 577 0.1975 0.0483 0.0185
1.0e-3 956 0.0489 0.0095 0.0050
5.0e-4 1110 0.0670 0.0172 0.0096
1.0e-4 1765 0.0891 0.0231 0.0119
KAMS 1.0e-2 912 7.6039 1.9141 0.7255
9.0e-3 1212 1.5417 0.4528 0.2181
1.0e-3 1964 2.0917 0.6104 0.2746
5.0e-4 2515 1.7810 0.5149 0.2374
1.0e-4 0162 1.6957 0.4988 0.2322
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