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Abstract

Chaotic orientational dynamics of sheared nematic polymers is documented in laboratory

experiments on model systems [1]; a question arises as to how robust the phenomenon is with

respect to composition and flow properties. The Doi-Hess kinetic theory for infinitely thin

rods predicts chaotic monodomain dynamics [2, 3, 4] over a range of concentrations (c) at

which the quiescent phase is ordered, and within a window of shear rates (γ̇) for each concen-

tration. Thus, a bounded region of (c, γ̇) has chaotic attractors [5]. Our goal here is to relax

two idealizations of these numerical studies, and to address the issue of robustness. Pure

shear is modified by a planar straining flow of arbitrary strength, and the macromolecules

are endowed with arbitrary aspect ratio. We then predict the deformation of the chaotic

parameter region in [5] due to these 2 physical effects, applying a correspondence principle

developed in [6] together with the numerical bifurcation software AUTO. A typical question

addressed is: how strong of an extensional flow component is necessary to arrest chaotic be-

havior in pure shear of a nematic liquid? In answering this question, an intriguing prediction

emerges: a finite-strength straining component can induce chaotic orientational dynamics.

Indeed, all known sheared oscillatory attractors (tumbling, wagging, and kayaking) exist at

shear rates below the onset of chaos and may be driven through transitions to chaos by

adding a straining flow component of prescribed extension rate.



Nematic polymers may exhibit chaotic phenomena in shear-dominated flows in the lab-

oratory (see, e.g., [1]) and in models [2, 3, 4]. Using the kinetic theory of Doi and Hess, for

infinitely thin rods or platelets in pure shear, the authors have produced a phase diagram in

[5] of all stable states and phase transitions in different regions of the dimensionless param-

eter space (N, Pe). Here N denotes the intensity of the nematic excluded-volume potential

(a dimensionless polymer concentration c), and the Peclet number Pe = γ̇/Dr is the shear

rate (γ̇) normalized by molecular rotational relaxation rate (Dr). For the Maier-Saupe po-

tential and a constant rotational diffusion rate, the chaotic region lies within the rectangle

4.7 < N < 5.4, 1 < Pe < 4.5. If we model orientation-dependent rotational diffusion, the

chaotic regime persists, with slightly modified bounds, but without qualitative changes in

the phase diagram [5]. Our goal here is to track the boundaries of the chaotic region due to

two related and unavoidable physical effects: finite molecule aspect ratio and the addition

of straining flow in the plane of shear. These boundaries inform the robustness of shear-

induced rheochaos of nematic polymers: how anisotropic must the molecules be, and what

extensional flow strength is required for the chaotic response to persist or be arrested?

We now briefly review the kinetic theory. Let f(m, t) be the orientational probability dis-

tribution function (PDF) for rod-like, rigid, extremely high-aspect-ratio spheroidal molecules

with axis of symmetry m on the unit sphere S2. The Smoluchowski equation for f(m, t) in

a flow field v is given by Doi [7], Hess [8]. We assume constant rotational diffusivity (Dr

is constant) in this study. The Smoluchowski equation, made dimensionless through this

rotational diffusivity constant, takes the form

∂f

∂t
= R · (Rf + 1

kT
fRV ) −R · [m × ṁf ],

ṁ = Ω · m + a [D · m − D : mmm],
(1)

where, R = m × ∂/∂m is the rotational gradient operator, and V is the Maier-Saupe

potential

V = −3

2
N kT mm : 〈mm〉 . (2)
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The dimensionless flow field for pure shear is

v = Pe(y, 0, 0). (3)

D and Ω in (1) are the corresponding rate-of-strain and vorticity tensors, which are the

symmetric and anti-symmetric part of ∇v, respectively. So v = (Ω + D) · x, where x =

(x, y, z) are Cartesian coordinates with x the flow direction, y the flow-gradient direction,

and z the vorticity axis; kT in equation (1) is the Boltzmann factor. The aspect ratio

parameter a is defined by

a =
r2 − 1

r2 + 1
, (4)

where r is the ratio of the rod length to the diameter. Figure 1 shows the relationship

between r and a. For very long rods, r → ∞, a → 1; for very thin disks, r → 0, a → −1.

In [9], the bifurcation diagram is given for |a| = 1, i.e., r = ∞ or 0. The chaotic parameter

region is blown up in Figure 2. We first characterize the persistence of the chaotic region for

physical aspect ratio parameters, |a| < 1. Intuitively, we expect the chaotic region to shrink

as the aspect ratio drops. Indeed, lowering |a| is equivalent to adding a straining component

to the flow and maintaining the aspect ratio r = ∞, a “trade-off” that has been noted

by several authors, and precisely formulated in terms of the solution space of kinetic and

mesoscopic models in [6, 10]. Later, we will use this fact to characterize the extensional flow

perturbation strength necessary to tame the chaotic regime (and surprisingly, to possibly

grow the chaotic regime when pure shear rates are not strong enough).

We amplify two vertical slices in Figure 2 corresponding to fixed nematic concentrations,

N = 5 and N = 5.2, and explore variability with respect to |a(r)| < 1. We first write

the PDF as a high-order truncated spherical harmonic expansion, and derive a system of

ordinary differential equations for each harmonic amplitude [10, 11, 12]. Then we employ

the continuation software AUTO [13] to identify stable attractors and bifurcation diagrams.

Finally we use a 4th order spectral-deferred-correction time-integration method to investigate
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properties of attracting limit cycles and chaotic orbits. These results determine the attractor

taxonomy listed in the caption of Figure 2; see [4, 5, 9] for details.

For N = 5.2, the bifurcation diagram versus Pe that underlies the phase diagram of

Figure 2 is detailed in Figure 3a. From these stable and unstable branches and bifurcations,

we employ numerical continuation versus a for fixed N = 5.2. The set of all stable states

in the parameter rectangle 0.8 < a < 1.13, 1 < Pe < 6 is extracted from this 2-parameter

study, then compiled in Figure 3b. There are 9 separate stability regions; in each region all

stable state(s) are given. The boundaries of each region are phase transitions of the flowing

nematic liquid, characterized from AUTO in terms of bifurcations. The chaotic region is

confined within the rectangle 0.98 < a < 1.12, 1.6 < Pe < 4.2. We note that the boundary

of the chaotic region is associated with a periodic doubling cascade [2, 4, 5].

From Figure 3b, for physical aspect ratio parameters 1 < r < ∞ (0 < a < 1), the shear

rate interval of Pe with chaotic attractors contracts as r decreases. For pure shear flow

and N = 5.2, the critical value at which chaotic response terminates is |a∗| ≈ 0.98, which

corresponds to platelets of aspect ratio r ≈ 10−1, and rods of aspect ratio r ≈ 10. For

nematic polymers of less extreme aspect ratios, 1/10 < r < 10, the chaotic range of Pe has

vanished at this concentration. The corresponding results of Figure 3b for the N = 5 slice of

Figure 2 is given in Figure 4. Note that we have scaled the axes a and Pe, yet only slightly,

and the N = 5, 5.2 phase diagrams are remarkably similar.

We emphasize that our methods equally characterize the boundaries in parameter space

of other attractors, both steady (FA, OS) and unsteady (T, W, K1, K2), and also map out

regions of unique versus bi- and tri-stability. Note further that we have allowed a to wander

outside the apparently physical bounds |a| < 1, which now will be physically connected in

terms of a straining flow perturbation of shear.

The next physical effect to explore is the admission of an arbitrary extensional flow

component in the previously pure shear velocity field. That is, the dimensionless gradient is
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now allowed the following form

∇v =







p1 Pe 0
0 −p1 0
0 0 0





 , (5)

where the non-dimensional parameter p1 = ε̇/Dr is the extensional flow rate (ε̇) normalized

by rotational diffusion rate (Dr). Note the flow parameter ratio

χ =
p1

Pe
=

ε̇

γ̇
(6)

is the ratio of extension rate to shear rate.

In [6], we formulated a correspondence principle between nematic polymers in general

planar linear flow and pure shear flow. From that principle, the monodomain response of

nematic polymers with aspect ratio parameter a in the flow field (5) is identical to the

monodomain response of another nematic polymer liquid with aspect ratio parameter ā in

pure shear flow with shear rate Pe, where the molecular aspect ratios are related by

ā = a ·
√

1 + 4
(

p1

Pe

)

2

. (7)

As amplified in [6], ā need not correspond to a physical molecular aspect ratio; that is,

|ā| > 1 is allowable in pure shear and simply corresponds to an extensional flow component

of a “real liquid” (|a| < 1) in addition to the shear component Pe.

We now revisit Figure 3b in this light, and observe that the phase diagram for a ≥ 1

is equivalent to fixing a = 1, renaming the axis ā in Figure 3b, and admitting a flow field

continuation from p1 = 0 to p1 = Pe
2

√
ā2 − 1 (an equivalent statement of (7) with a = 1) .

These arguments allow us to transform Figure 3b for a ≥ 1 into another phase diagram

with direct physical relevance. For fixed concentration N = 5.2 and extreme aspect ratio

(a = 1), Figure 5a gives the phase diagram of attractors and phase transitions versus shear

rate Pe and the relative strength (χ) of extension rate to shear rate

χ =
p1

Pe
=

1

2

√

(

ā

a

)

2

− 1 . (8)
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(In fact, for any physical aspect ratio, |a| < 1, we can give a similar phase diagram using the

formula (8).) Note the horizontal axis of Figure 5a coincides with the a = 1 vertical slice of

Figure 3b and the bifurcation diagram Figure 3a.

Observe from Figure 2 and Figure 3, and the horizontal axis of Figure 5a, for pure shear

flow χ = 0, the Pe window of chaos is 2.69 < Pe < 4.1. As we amplify a small extensional

flow component, χ > 0, the chaotic window of Pe grows! The right boundary increases until

χ ≈ 0.1, then sharply drops as χ approaches 0.25 to hit the left boundary. The left boundary

also shows that, when the extension rate (ε̇) approaches a critical value, chaotic dynamics is

created from the otherwise periodic monodomain dynamics in pure shear. From the phase

diagrams of Figure 5 for either concentration, one can consider a sequence of vertical slices,

e.g., Pe = 2.0, 2.4, 2.6 of Figure 5a. These slices correspond to the transition sequence of

attractors versus χ = ε̇/γ̇, starting from pure shear, χ = 0. We find that, T, W, K1, and K2

attractors all exist for sufficiently weak extension rates, then undergo a transition to chaos as

χ increases! Furthermore, the chaotic attractors persist for a finite interval of χ that varies

with Pe and N , as detailed in Figure 5a, 5b.

The phase diagram for N = 5.2 (Figure 5a) also shows that with |a| = 1, for sufficiently

strong extension rate, χ > 0.25, chaotic response has been completely arrested, independent

of shear rate (Pe). The top boundary of the chaotic region (CH) in Figure 5a,5b conveys

the answer to the question posed in the abstract for two concentrations of extreme aspect

ratio nematic liquids. The left boundary of the chaotic region in shear rate versus extension

rate (Pe, χ), because the boundary has negative slope, conveys the intriguing prediction that

a regular periodic regime of sheared nematic polymers can be driven chaotic by introducing

a pure extensional flow perturbation!

Finally we superimpose the chaotic regions for N = 5 and N = 5.2 on the same (Pe, χ)

scales in Figure 6. This comparison shows how the chaotic flow domain shifts versus con-

centration, yet remains qualitatively similar. Clearly, one can use these tools to calculate

similar phase diagrams for any concentration N and aspect ratio parameter a.
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Conclusion: The parameter regime of chaotic orientational dynamics of shear-dominated

flowing nematic polymers has been explored with a combination of numerical continuation

software and a correspondence principle of the Doi-Hess kinetic theory. The dynamics and

phase transitions have been characterized versus molecular composition (concentration and

aspect ratio), flow type and flow rate for a linear combination of planar shear and extension.

The chaotic boundaries are mapped out for selected 2-dimensional parameter regimes. The

chaotic orbits identified previously for infinite aspect ratio rods [2, 5] are shown to persist to

finite aspect ratios on the order of 10. An intriguing prediction emerges from our numerical

phase diagram: the addition of an extensional flow component at sub-critical shear rates can

resonate chaotic flow response in an otherwise periodic attractor, including tumbling, wag-

ging, and out-of-plane kayaking limit cycles. On the other hand, any given chaotic response

for a fixed parameter set can be driven into a regular, flow-aligned orientational distribution

by addition of a finite straining component to the flow. Taken together, these results indicate

a degree of robustness as well as intrigue in phase flows of nematic polymers.
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Figure 1: The shape parameter a versus molecule aspect ratio r.
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Figure 2: (Reproduced with permission of the publishers from [5].) Bifurcation diagram of

all stable states of the Doi-Hess kinetic theory for the parameter domain 4.7 < N < 5.4,

1 < Pe < 4.5 with constant rotational diffusivity constant and infinite aspect ratio r = ∞.

Notation: FA denotes flow-aligned steady states; OS denotes out-of-plane steady states

which always occur in symmetric pairs; K1 is the Larson-Ottinger kayaking limit circle in

which the peak orientation of the PDF rotates about the vorticity axis; K2 is a kayaking

state in which the peak orientation rotates about a tilted direction (these states also occur in

symmetric pairs); LR is the logrolling steady state with peak orientation along the vorticity

axis; T is the tumbling limit circle in which the peak orientation continues to rotate in

the deformation plane; W is the wagging state in which the peak orientation is also in

the deformation plane but oscillates around the flow direction; and CH denotes chaotic

dynamics. The Pe dependent bifurcation diagram for fixed concentration N = 5.2 (a vertical

slice of this figure) is given in Figure 3a.

9



0 1 2 3 4 5 6 7
Peclet number Pe

-0.2

-0.1

0

0.1

0.2

R
e

Ha 21L
HaL

K1

TW

K2

K2

FA

OS

0.85 0.9 0.95 1 1.05 1.1
a

2

3

4

5

6

P
e

CH

K2
FA

OS

TW �K1

K1

TW

K2�K1

CH�K1

HbL

Figure 3: The top figure is the bifurcation diagram for the N = 5.2 slice of Figure 2,

corresponding to aspect ratio parameter a = 1, i.e., infinitely thin rods. The lower figure is

a virtual phase diagram of all stable states of the Doi-Hess kinetic theory for fixed nematic

concentration N = 5.2, variable shear rate Pe and variable molecular aspect ratio parameter

a. The a = 1 slice of the lower figure thus corresponds to the top figure, which establishes

parameter contact with Figure 2 in our numerical continuation framework.
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Figure 4: Phase diagram of all sheared monodomain attractors of the Doi-Hess kinetic theory

for fixed nematic concentration N = 5. The vertical axis is the normalized shear rate Pe;

the horizontal axis is the molecular aspect ratio parameter a.
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Figure 5: Phase diagrams for monodomain attractors of Doi-Hess kinetic theory for infinitely

thin rods (a = 1) at two distinct nematic concentrations, N = 5.2 (top) and N = 5 (bottom).

The horizontal axis is normalized shear rate (Pe), and the vertical axis χ is the ratio of

extension rate (ε̇) to shear rate (γ̇), see formula (6).
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Figure 6: Comparison of chaotic regions in the parameter space of normalized shear rate
(Pe) and extension rate (χ), for fixed nematic concentrations, N = 5 (solid curves) and
N = 5.2 (dashed curves), and extremely thin rods (a = 1).
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