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Abstract

A matrix-valued counting process is presented that allows the mod­
elling of multivariate failure-time data. The inclusion of covariates in
a Cox-type model is considered and asymptotic properties for the es­
timates of the parameters involved in the model are studied.

Key words: matrix-valued counting process, multivariate failure-time, mar­
tingale, predictable process, Cox-type model.

1 Introduction

The modern theory of counting process and martingales as developed by, e.g.,
Bremaud (1981) has provided the necessary theoretical background for the
development of rigorous and general theory of the regression models adapted
to censored data. The seed of such approach seems to reside in the work
of Aalen (1975). Much has been done since then and more recently two
books have been published in the subject [Fleming and Harrington (1991)
and Andersen, Borgan, Gill and Keiding (1993)], that take into account a
very broad spectrum of application for the methodology. In this work we
propose a model to handle multivariate failure-time data. Our main goal is
to consider situations where one is interested in the effect of covariates in
more than one event of interest, and, hence, the ultimate objective of the
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model is the estimation and hypothesis testing of the parameters involved in
the model.

In the next section we introduce the matrix-valued model in the bivari­
ate setup. The development is based on the heuristic interpretation given
to the multiplicative intensity model presented by Aalen. Then, we consider
such model in some parametric models where the corresponding intensity
models result in nice interpretable expressions. Following that, we consider
the inclusion of covariates in the model and derive some asymptotic results
for the parameters involved. Finally, although the results are true in a gen­
eral setting, we discuss the case of two-sample data with time-independent
covariate.

2 The matrix-valued counting process model

In order to develop the model and asymptotic properties we will consider a
bivariate model. The extension of the results to the k-variate situation is
discussed later. Let (Tt, T2 ) be non-negative random vector defined in a
probability space (O,~, 1P). In principle we assume that the elements of such
vector are not independent, having joint survival function given by §12(t l ,t2)'
The marginal survival functions are represented by §l(tl ) and §2(t2). We also
assume the presence of censoring, represented by the non-negative random
vector (Gl , G2 ) independent of (Tl ; T2 ), defined in the same probability
space of (Tl , T2 ). Typically in real data one does not observe necessarily
Th or Gh but the minimum between them, represented by Zh = Th /\ Gh

and 8h = I{Zh = Th}, where I{A} represents the indicator or characteristic
function. Looking more closely to this problem one may note that what is
actually being observed are random events occurring in time and, hence, the
use of stochastic process to study the situation becomes natural. Therefore,
we define the counting processes .

·..

..

(2.1) t > 0, h = 1,2,

representing a right-continuous function that assumes value zero, jumping to
one when the particular event associated to Th occurs. Since the quantities in
(2.1) are defined on dependent random variables, it makes sense to consider
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also the random-vector

(2.2)

In order to better define the quantities above, we consider a sequence of
sub-u-fields defined by {'Nf, t ~ O} (i.e., a filtration), that is the self-exciting
or natural filtration u{N#(s), 0 < s ~ t}, defined by the the vector-valued
counting process N#(t) with elements Nt(t) = Il{Zh ~ t}. Such filtration
can also be made complete in order to satisfy the so-called les conditions
habituelles 1. Note that 'Nf also contains information on the processes Nh(t)
as well as on their dependence.

In order to characterize the counting processes above, let us define the
'Nf-predictable processes

(2.3) t > 0, h = 1,2,

that corresponds to the information whether or not the component h is still
at risk (i.e., uncensored and alive or working.) Such process is assumed
to have its value at instant t known just before t, and this property plays
a fundamental role in the martingale property, as we will see later. If we
pretend for a moment that the components of N are independent, then the
multiplicative intensity model of Aalen (1978) would apply, i.e., the associate
intensity process of Nh would be given by

(2.4) h = 1,2.

where Q'h(t) is the marginal hazard function, defined by

(2.5) ( ) 1
. IP{Th E (t, t + .6.t] ITh > t}

Q'h t = 1m A
~t-+O ut

If we collect the intensity processes defined in (2.4) in a vector ~, then
we could write (under the assumption of independence)

(2.6) ~(t) = ( Al(t) ) = ( Q'1(t) 0 ) ( }}(t) ) = o(t)Y(t)
A2(t) 0 Q'2(t) l'2(t)

~

lSpecifically, a complete, increasing and right continuous sequence of sub-o--fields
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This intensity fully specify the counting process defined in (2.2) when the
independence is true. It is our goal now to modify (2.6) in order to get a
model for a more general situation where the independence is not feasible.
In such case it is expected that the interpretation for the unknown determin­
istic functions (Xh should change and, also, the off-diagonal elements should
be different than zero. Let us approach this situation considering a general­
ization in the heuristic argumentation given for (2.4) [see, e.g., Andersen et
al. (1993)) for the univariate case.] In this case one may write

(2.7)

i.e., the average of jumps for component h ~iven the information available just
before t. We may note that in this case 'N't- contains information whether or
not one (or both) component(s) have failed just before t. Since the processes
Yh are predictable, this means we know the value of Yh at the instant t. If
the component h have failed before t, then expression (2.7) equals zero. In
other words, we need to consider the situations (i) no component has failed
at instant t, i.e., Yi(t) = Y2(t) = Ij (ii) the first component has failed before
t but the second has not, i.e., Yi(t) = 0 and Y2(t) = Ij (iii) only second
component has failed before t, that is, Yi(t) = 1 and Y2(t) = OJ and (iv) both
components failed before t, in which case Yi(t) = Y;(t) = O. If we want to
consider the intensity process for the first component, then we only consider
cases where Yi(t) = 1. This together with expression (2.7) allow us to write

AI(t) = 1E{ dN1(t) I'N'~}
(2.8) = pP)(t)Yi(t)[l- Y;(t)] +p~I)(t)Yi(t)Y;(t)

where pP)(t) lim~t-+o(~ttllP{TI E (t, t + ~t] I T1 > tj T2 :::; t} and
p~l)(t) = lim~t-+o(~t)-IIP{TI E (t, t + ~t] I T1 > tj T2 > t} may be inter­
preted as conditional hazard functions, given what happened with the other
component. Similarly, for component 2,

(2.9)

A2(t) = 1E{ dN2(t) I~}

= p~2)(t)Y;(t)[1 - Yi(t)] +pi2)(t)Yi (t)Y;(t)

for p~2)(t) = lim~t-+o(~ttllP{T2 E (t, t + ~t] I T1 ~ tj T2 > t} and pi2)(t) =
lim~t-+o(~t)-IIP{T2 E (t, t +~t] IT1 > tj T2> t}.
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Based on (2.8) and (2.9) we can represent the intensity process by the
product of matrices

~(t) = ( Al(t) ) = ( Yi(t) 0 ) (all(t) aI2(t)) ( Yi(t) )
A2(t) 0 Y2(t) a21(t) a22(t) Y2(t)

(2.10) = Diag(Y(t))a(t)Y(t)

where the elements of a are given by

all(t) = pP)(t)

aI2(t) = p~I)(t) - pP)(t)

a21(t) = p~2)(t) - P2(2)(t)

a22(t) = p~2)(t)

The matrix-valued counting process model is defined in the following way.
Suppose that Nt, ... ,Nn are n copies of the process N defined on (2.2).
Then the matrix-valued counting process is given by

t (2.11)

with an associated intensity process given by (2.10). Note that the columns
of N are independent and each column, in this case, is constituted by 2
dependent elements.

In order to illustrate the bivariate model, let us consider a parametric
model in the following example.

EXAMPLE 1 Sarkar (1987) considers an absolutely continuous bivariate ex­
ponential distribution where the joint survival function for the vector (T1 , T2 )

is given by

P{T1 ~ t1 ; T2 ~ t2 }

__ { e-(.62+P12)t2 {I - A(,81t2)} -"Y A(,81tl)I+"Y,
(2.12)

e-(Pl +P12)tl {I - A(,82tl)} -"Y A(,82t2)1+"Y,

where ,81 > 0, ,82 > 0, ,812 > 0, , = ,812/(,81 + ,82) and A(z) = 1 - e-z
, z >

O. The model is based on modifications in the characterization property of
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) (
Yi(t) ) .
Y;(t)

bivariate exponential distributions that states the following three results are
true: (i) T1 and T2 are marginally exponential, (ii) min(T1 , T2 ) is exponential
and (iii) min(T1 , T2 ) and T1 - T2 are independent. Note that by (2.12) if
/312 = 0 the joint distribution factorizes in two exponential distribution and
then T1 and T2 are independent.

Assuming that the survival times are given by (2.12) when no censoring is
present, define the bivariate counting process with elements N1(t) = 1I{T1 <
t}, N2(t) = 1I{T2 ::; t} and the predictable processes Yi (t) = 1I{T1 > t}
and Y;(t) = 1I{T2 > t2 }. Then, after some long algebraic manipulations we
obtain, with /3 = /31 + /32 + /312,

(1)(t) = /31/3A(/32t )+ /32/312
PI (/31 + /32)A(/32t ) ,

(1)(t) = /31/3
P2 /31 + /32'

(2)(t) = /32/3A(/31t ) + /31/312
PI (/31 + /32)A(/31t ) ,

(2)(t) = /32/3
P2 /31 + /32

Therefore, the elements of the matrix a(t) may be obtained by taking linear
combinations of the quantities p~h) as shown after expression (2.10) and,
hence, the intensity process can be expressed as

(

131I3A(132t)+Jh612 fhl3t20) (131+I32)A(132 t ) (131+132)A(132t)

Y;(t) _ 1311312 132{jA(l3lt)+,B,I312
(131 +132)A(131 t) (131 +132 )A(l32t)

This particular model can also be rewritten in a more interpretable way
that takes into account, explicitly, the dependence parameter 'Y. After few
manipulations we obtain

6
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In this expression it is clear the dependence structure in the sense that if
1 = 0 then the resulting expression for the intensity process vector will be
the same one would obtain when working with two independent exponential
random variables, with parameters /31 and /32. 0

The matrix-valued model can be thought of when there exists more than 2
components in the model. In this case the intensity process is somewhat more
complicate since higher order of combinations of the predictable processes
must be taken into account. To illustrate this point, let us consider the case of
three components. Therefore, consider the nonnegative random vector T =
(TIl T2 , T3 )', where each element represents the time up to the occurrence
of events of interest. Similarly to the bivariate case, define the matrix-valued
counting process (2.11) where each column now is given by a 3 x 1 vector
of counting processes N i = (N1i , N2i' N3i )', based on n copies Ti of T.
Also, the predictable vector is given by Y i = (Yli, Y2i, 13i)', where Yhi(t) =
I{Zhi ~ t}.

In order to compute the intensity processes we need to consider the 23 = 8
possibilities represented by the combinations of O's and 1's of the elements
of the vector Yi(t). Since only makes sense to consider the intensity for a
component which has not failed yet, only four combinations are considered
when computing the intensity for each component (those for which the cor­
responding predictable process is not zero at time t). For example, let us
consider the first component. We consider only the cases where Yli(t) = 1
because when this is not true, the component has already failed and the con­
ditional hazard function will be zero. Therefore, the first element of Y will
be fixed and there are 22 = 4 possibilities to be considered, represented by
the failure or not of the other two components. The following notations are
then defined for the conditional hazard functions (dropping out the subscript
i to simplify the notation)

• When Yl(t) = Y2(t) = 13(t) = 1 no component has failed at time t and
the conditional hazard is given by

(1) (t) = lim P{T1E (t, t + 6.t] IT1> t, T2> t, T3 > t}.
P123 At....O 6.t '

• when Yl(t) = Y2(t) = 1 and 13(t)~= 0, components 1 and 2 have not
failed and component 3 failed before t, so that the conditional hazard
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(I>(t) = lim IP{TI E (t, t +Llt] ITI > t, T2> t, T3 ~ t} .
PI2 ~t_O Llt '

• when Y1(t) = Y;(t) = 1 and Y2(t) = 0, only component 2 has failed
before t and so,

(I>(t) = lim IP{TI E (t, t +Llt] ITI > t, T2~ t, T3 > tl.
PI3 ~t_O· Llt '

• when Y1(t) = 1 and Y2(t) = Y;(t) = 0, only component 1 has not failed
and in this situation the conditional hazard function will be denoted
by

(I>(t) = lim IP{TI E (t, t +Llt] ITI > t, T2~ t, T3~ t}
PI ~t_O Llt '

so that the intensity process will be given by one of the four expressions
above, that, depending on the value of Y, can be written as,

(2.13)
Al (t) =pP>(t)Y1(t)[l - Y2(t)][l - Y;(t)]

+pg> (t)Y1 (t)Y2(t)[l - Y;(t)]

+ p~~(t)Y1(t)[l - Y2(t)][l - Y;(t)]

+ Pg>3(t)Y1 (t)Y2(t)Y;(t)

=pp>(t)Y1 (t) + (pW - PP»Y1 (t)Y;(t) + (pg>(t) - pP>(t))Y1(t)Y2(t)

+ (p~;~(t) - pg>(t) - p~~(t) + pP>(t))Y1(t)Y2(t)Y;(t)

=ap>(t)Y1(t) +aW(t)Y1(t)Y;(t) +aW(t)Y1(t)Y2(t)

+ a~;~(t)Y1(t)Y2(t)Y;(t).

The same scheme applies for the second and third components, with only
changes in notation, such that, for the second component,

(2.14)
A2(t) =p~2>(t)Y2(t) + (p~~ - p~2»Y2(t)Y;(t) + (p~;>(t) - p~2>(t))Y1(t)Y2(t)

+ (p~;~(t) - p~~(t) - p~~(t) +p~2>(t))Y1(t)Y2(t)Y;(t)

=a~2>(t)Y2(t) +a~~(t)Y2(t)Y;(t)~+ ag)(t)Y1(t)Y2(t)

+ ag~(t)Y1(t)Y2(t)Y;(t),
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and for the third component the intensity process will be given by

(2.15)
A3(t) =p~3)(t)Y3(t) + (p~~ - p~3»)Y2(t)Y3(t) + (p~~(t) - p~3)(t))Yi(t)Y3(t)

+ (P~~3(t) - p~~(t) - p~~(t) + p~3)(t))Yi(t)Y2(t)Y3(t)

=(X~3)(t)Y3(t) + (X~~(t)Y2(t)Y3(t) + (X~~(t)Yi(t)Y3(t)

+ (X~~3(t)Y1(t)Y2(t)Y3(t).

Based on expressions (2.13)-(2.15) we may note that each expression has
a term involving the predictable process for the corresponding component,
(;) terms involving the product of two predictable processes and one term
involving the product of the three processes Yh , h = 1,2,3. This structure
can resemble the models used in analysis of variance or categorical data,
where usually one considers models involving the main effects and first or
higher order interactions. When collecting all three quantities defined above
in a vector of intensity process, one may write the model trying to emphasize
this,

(2.16)

(

(1) ( ))(X123 t
+ (Xg~(t) Yi(t)Y2(t)Y3(t)

(3) ( )(X123 t

where the first three terms in the r.h.s. of expression (2.16) represent the
main effects, the following three terms the first order interaction and the last
term the second order interaction.

An alternative way of expressing the model is to write (2.16) as a product
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of matrix similarly the one in (2.10), given by

(
ll (t) 0 0) (0'11 (t)

~(t) = 0 Y;(t) 0 a21(t)
o 0 13(t ) 0'31 (t)

(2.17) + (:lw'~:~) ll(t)Y;(t)13(t),
aW3(t)

where the elements aij are defined by the equality

-.

Assuming that the second order interaction is negligible, expression (2.14)
turns out to be •

(2.18) ~(t) = Diag(Y(t))o:(t)Y(t),
..

that is similar to (2.10).
The same reasoning can be considered for higher dimension problems,

with the additional complication that one lias to deal with higher order in­
teractions. For example, for a K component problem, the intensity process
will involve up to the (K - 1)th order interaction. .In fact, in this situation,
each component will have intensity process that can be written as

K K
Aj(t) = fij(t)}j(t)(l +L: fjl(t)Yz(t) +L: bjll'(t)Yz(t)}'/t(t) +' .. )

1=1 1=1
l::Fj I::FI'

l::Fj

h Q (j) (j)1 (j) dj) (j) I (j) d d th d't' Iwere fJj = ajj , fjl = ajl ajj' 0jll' = ajll' ajj epen on e con IlOna
hazard functions as in the case K = 3. In this representation the first term
inside parenthesis is related to the independent situation, the second term
with the first order interaction, and so on, If it is reasonable to assume that
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:
the second and higher order interactions are null, then, this model can be
rewritten as in (2.10) and (2.18), i.e., in general,

•

We finish this section with a brief remark about the assumption that the
second or higher order interactions are null. It may be noted that the model
represented by expression (2.19) has K2 infinite-dimensional parameters rep­
resented by the functions ai" As we will see later, additional assumptions are
imposed on such model in order to reduce the dimensionality of the param­
eter space and allow us to estimate as well as develop asymptotic properties
for the corresponding estimators. If the higher order interactions are allowed
in the model, then the problem becomes much more complex in the sense
that additional assumptions will have to be made. Assuming that interac­
tions are null is a common practice in some fields of Statistics and we will
also consider this approach since we believe the simplifications are consider­
able; however, further investigation on the implications of such assumption
is needed. A more careful examination shows that this assumption implies
in assuming that the failure times are conditionally independent, e.g., when
K = 3, assuming that there is no second order interaction is equivalent to
say that, given one of the failure times, the other two are independent. Fi­
nally we note that in the case where K = 2 no assumption is needed since
the model will involve only first order interactions that are being taken into
account in model (2.19).

3 The bivariate model with covariates

In this section we consider the bivariate model specified by (2.10) and assume
a Cox-type of model in order to include covariates. Throughout this section
we will assume that t E [0, r), r > 0 and, in addition to the quantities defined
earlier, we also have a set of time-dependent covariates X 1(t), ... ,Xq(t). The
covariates are assumed to be observed for all individuals. In order to simplify
the notation we consider the case q = 1 and in some expressions we will omit t
from the notation for the processes involved. Also, we consider the censoring
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variables are the same for all components, i.e., C1 = C2 = C such that the
observable variable is given by Zi = Ti A C, i = 1, 2.

If n represents the number of individuals, let N 1, ... ,Nn be copies of N
defined in (2.2) with corresponding intensity processes given by ~1l' •• ,~n,

where

".

(3.1)

Since for each individual i one observes the covariate Xi, i = 1, ... ,n,
we assume that each element of a can be expressed through a multiplicative
form such that

p~~)(t) = /11 (t)e{JI Xi

p~~)(t) = /12(t)e{JIX,
=>

p~~)(t) = /21 (t)e{J2Xi

p~~)(t) = /22(t)e{J2X,

ail = /11 (t)e{JI Xi = a~l(t)e{JIX,

ai2 = (,12(t) - /11 (t))e{JI X, = a~2(t)e{JIX,

a~l = (,21(t) - /22(t»e.B2X, = a~l(t)e.B2X,

a~2 = /22(t)e{J2Xi = a~2(t)e{J2X,

In addition, we simplify further the model with the (strong) assumption
that a~l(t) = Olla~2(t) and ag2(t) = O;lag1(t), for Oh > -1, h = 1,2. Then,
the intensity process vector can be written as

(3.2)

Based on that, the problem at hand consists in finding estimates for {3j
and OJ, j = 1,2. Since both failure times (for the two components) are
assumed to be observed at the exact instant they occur, we have that no
two components can jump at the same instant t for the same subject and,
hence, when estimating {3 we will consider a likelihood whose contribution
of individual i at time t, if any, will be restricted to A1i(t)/ 2:7=1 A1j(t) when
N1i jumps or A2i(t)/ 2:7=1 A2j(t) when N 2i jumps.

The likelihood can then be written as the product of the two ratios above
and considering the proportionality assumption for the off-diagonal terms
in a(t) we are able to cancel the unknown baseline functions a?j(t). Let

12
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..

•

C = (Cll C2), with Ck = (13k, fh) and suppose the true parameter value is
represented by Co. Then, the likelihood can be expressed as

Expression (3.3) is in fact a partial likelihood and it can be thought of as
a multinomial type of likelihood where at a given time t there a certain
probability that one of the components will fail. Another justification for
this expression can be given using the concept of profile likelihood along
the same lines as presented by Andersen et al. (1993), pages 481-482. The
log-likelihood is given by

r n 2
log L(c) = Jo L: L: f3h Xi(t) + log {Yhi(t) + (hYii(t)Y2i(t)}

o i=O h=1
n

-log {L: e13hXj (t)(Y'hj (t) + lhYij(t)l';j(t))} dNhi(t)
j=1

Computation of the score vector takes place for a pair of parameter for
each component. Therefore it is convenient to consider a partitioned vector
where the first element is a 2 x 1 vector containing the derivatives of the
log-likelihood with respect to the parameters related to the first component
and the same quantities for the second element with information related to
the second component. It should be noted that the score vector is also a
stochastic process in [0, T]. For t = 'i, we write

13



(3.5)

where the first element of U(h) = (U}h) , UJh))', h = 1,2 is given by

U(h)( . 6) = 8 log L(6)
1 T, 8{3h

(3.4) = faT t (Xi - E'];1 Xj~j(6h)) dNhi ,° i=1 E3=1 w3 (6h)

where Wj(6h) = e.BhXi (Yhj +lhYijY2j). Note that (3.4) is similar to the expres­
sion one obtains when considering the univariate case. The basic difference
relies on the weights Wj that are taking into account the predictable processes
associated with both components. The second element for the score vector
is given by

U(h)( . 6) = 8IogL(6)
2 T, 8fh

=1T ~ ( YiiY2i _ E:7=~e.BhXiYijY2j)
L..J ) dNhi .° i=1 Yhi + IhYiiY2i Ej =1 Wj(6h

Maximum partial likelihood estimators (MPLE) can be obtained by solv­
ing the equations

.•

(3.6) U(T;6) = 0,

which need to be computed iteratively since no analytical expression for the
estimators can be derived. Let us denote the PMLE by h. Asymptotic
properties for such estimator are studied using the standard martingale the­
ory, that implies in computing the information matrix, derive the martingale
property for some of the quantities involved and making use of Taylor's ex­
pansions. Hence, we first note that expressions (3.4) and (3.5) can be written
as martingales when 6 = 6°. This is done in a similar manner as in the uni­
variate case, developed in Andersen and Gill (1982). First we note that
dNhi(t) = Nhi(t) - Nhi(t-) = dMhi(t) - Ahi(t) dt, where Mhi(t) is a local
square integrable martingale. Plugging this quantity into expressions (3.4)
and (3.5) we obtain a difference of two integrals, one involving the martingale
Mhi and the other involving the intensity process. It turns out that the latter
is given by

1
T ~ (x. _E:7=1 Xje.B~Xi(Yhj + O~YijY2j)) .(CO) ° dt = 0
L..J' n .BOx· ° w, Uh CXhh .° i=1 E j =l e h J(Yhj+OhYijY2j)

14



(3.7)

..

"

.'

Therefore, it follows that the first element of the score function can be written
as

ut)(T; 6°) = loT t (Xi - Li=;'l Xi~i(~~)) dMhi,
° i=l Li=l w3 (6h )

that is a linear combination of integrals depending on predictable processes
and in the square integrable martingales, and, hence, (3.7) is also a square
integrable martingale. A similar result follows for the second element of the
score vectors, such that

also a square integrable martingale. Therefore, the vector-valued score func­
tion can be thought of a square integrable martingale. This fact is used
to derive the asymptotic distribution for the score function, based on the
Rebolledo's central limit theorem for martingales. Such theorem assumes
that the predictable variation processes satisfy certain conditions. In order
to compute such processes denoted by (. , .), the following processes are
defined (extending those quantities usually considered in the literature), .

n

S~i)(6, x) =(I/n) L xl(x )(Yhi(X) + fhYii(X )Y2i(X))el3hXi(~), j = 0,1,2,
i=l

n

S~3)(6, x) =(I/n) L el3hXi(~)Yii(X )Y2i(X),
i=l

S~4)(6,x) =(I/n) t Yii(X)Y2i(X) el3hXi(~),
i=l Yhi(X) + fhYii(X)Y2i(X)

n

S~5)(6,x) =(I/n) LXi(X)Yii(X)Y2i(x)el3hXi(~).
i=l

Defining also UJh,n) = n-1/ 2Ujh), j = 1,2 and using well-known properties of

the predictable processes involved, the predictable process of ut,n) will be
given by

(3.9)

15



Similarly, the predictable variation processes for UJh,n) and predictable co­
variation processes between u1h,n) and U~h,n) are given by

".

(3.10)

and

Given the processes above, we state now a list of conditions that will be
used in the proofs for the theorems concerning the asymptotic properties of
quantities of interest. Such conditions are based on those assumed in the
univariate case.

CONDITIONS:

C.l. J; C¥hh(S) ds < (x),

C.2. For a neighborhood 1) around the true value for the parameter vector,

sUP{tE[O,T];oEl'} IIs~j)(6', t) - s~)(6', t)1I ~ 0, with s~O) bounded away

from zero on 1) x [0,7] and s~) continuous functions of 6' on 1), j =
1 ... ,5,

C.3. for all "f > 0, n-1
/

2 sUP{l$i=:;n; tE[O,T]} IXiIYhJ{,BgXi > -"fIXil} ~ 0,
and

CA. The matrix E is positive definite.

Now we state the following theorem, describing the asymptotic distribu­
tion for the score function.

THEOREM 1 For a bivariate counting process with intensity process defined
by (3.2) assume that conditions C.1-C.3 are true. Then, the stochastic pro­
cess n-1/ 2U, with U defined in (3.4)-(3.5) converges in distribution to a
continuous Gaussian martingale W with covariance junction given by

E(t) = ( E10(t) 0 )
E2(t)

16
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where Eh(t) is a matrix with elements

t ( (1)(£0 »2)(2) 0 sh v, S 0
(Eh(t»n =1 Sh (6 ,s) - (0) 0 Qhh(S) ds

o Sh (6,s)

t ( (3)(£0 »2)(4) 0 Sh v, S 0
(Eh(t»22=1 Sh (6,s)- (0) 0 Qhh(s)ds

o Sh (6 ,s)

t ( (1)(60
) (3)(60 »)

(~ (t» -1 (5)(£0)_ Sh ,S Sh ,S 0 ()d£Jh 12 - Sh v, S (0) 0 Qhh S S
o Sh (6 ,s)

Remark: Since W is a continuous Gaussian martingale, the cross-covariance
function E{W(s)[W(t»)'} is given by E(s /\ t).

Proof: The proof is based on the paper by Andersen and Gill (1982) with
some modifications to include our more general setup. It is based on the
Rebolledo's central limit theorem and basically we have to show that (i) the
predictable processes in (3.9)-(3.11) converge to deterministic functions and
(ii) the predictable variation processes converge to continuous functions as
n -+ 00 .

First we note that since it is assumed that no two components can fail at
the same time,

h =j;j, h,j = 1,2.

Then, based on assumptions (C.1) and (C.2) one may interchange the limits
and integrals of the quantities involved and, hence,

and

17



taking care of (i).
With respect to (ii), we write for the predictable processes in the elements

of the score vector,

and

s13
)(6°, t)

sl°)(6°, t)'

Then, let H~~)(t,h) = n-I / 2Hki (t,h), k = 1,2, and let the martingales con­
taining the jumps of (3.7) and (3.8) be defined by

(3.12)

and

So, to prove that the predictable variation processes converge to continuous
functions is equivalent to prove that (fU~h,n),fU~h,n») ~ 0, as n -+ 00. For
the scores related to the parameters 13h we have the inequality

".

f } Wi(6~)"~h ds.

As a consequence of assumptions (C.1) and (C.2), the second term in the

r.h.s. of (3.14) converges to zero in probability, since sl°)~ s~O), sII
) ~

18



i

..

•

S~I), and s~O) is bounded away from zero, what implies that the indicator
function in the integral will converge to zero as n --+ 00.

For the first term in the r.h.s. of (3.14), we have, for all "y > 0,

n 1"f:. j ;;X;][{n-1/2IXi l > €}wi(c5~)a~h ds

= tj .!.X;][{n-1/2IXi l > €; f3~Xi ~ -"YIXil}e.e~Xi(Yhi + O~Y1iY2i)a~h ds
i=1 n

+t. j ~X;][{n-l/2IXil > €; f3~Xi > -"YIXil}e.e~Xi(Yhi + O~Y1iY2i)a~h ds

=11 +12•

The term II is bounded from above by

and since Yhi + O~Y1iY2i ~ Yhi + IO~IY1iY2i < 1 + IO~I, such a quantity is
bounded by

n 1
(1 + IO~1) "f:. j ;;X;][{n-1/2IXil > €}e-"YIXila~h ds

~ (1 + IO~I)1] j a~h ds

where the last inequality is a consequence from the fact that, since "Y > 0,
lim~_oo x2e-"Y~ = 0, and, hence, for all 1] > °there exists x sufficiently large
such that x2e-"Y~ < 1]. Therefore, taking 1] arbitrarily small, we may conclude
that II converges to zero in probability.

In virtue of assumption (C.3), the same conclusion is true for expression
12 • In order to make this clear, note that such expression is smaller or equal
than

4tj .!.X;][{f3~Xi> -"YIXil}e.e~XiYhia~h ds
i=1 n

+410~1tj .!.X;][{f3~Xi> -"YIXil}e.e~XiY1iY2ia~h ds
i=1 n

~4(1 + IO~1)t j .!.XlI{f3~Xi > -"YIXil}e.e~XiYhia~h ds
i=1 n

19



and, hence, the last exeession converges to zero in probability.
For the process E:UJ ,n) we have that,

(E:UJh,n), E:UJh,n»)(t)

= t J[H~:)(s, h)]2][{IH~:)(s, h)/ > f} dAhi(s)
i=1

> <} s1°) (6")a~h ds

By the same reasons as pointed out earlier, we have, by assumptions (C.1)
and (C.2) that expression 14 converges to zero in probability. For expression
13 , we make use of the fact that since lJ~ > -1,

and, hence,

-1/21 YiS2i I> ::::} 1/21 1 I>
n Yhi + lJ~YiiY2i f n 1 + lJ~ f

{ I 1/2 } {YiiY2i 1/2 }::::}][ 1 lJo > n f ~][ Yi. lJ0y, .y;. > n f .+ h h, + h h 2,

20
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•

Therefore,

Since og is a fixed value, it is always possible to get n sufficiently large such
that the expression above is zero.

In conclusion, the conditions of the Rebolledo's central limit theorem are
satisfied and, hence, n-1

/
2U converges to a Gaussian process, with covariance

matrix given by the limit of the predictable (co)variation processes. 0

Theorem 1 will be considered when proving the asymptotic distribution
for the MPLE below. Also, we will need to estimate the covariance matrix E.
In this case, it will be of interest to work with the observed information matrix
with elements given by (minus) the second derivatives of the log-likelihood,
i.e., we define

(3.15)

•

··

where each symmetric matrix I h as elements in the main diagonal given by

21



and the remaining elements are given by

8ulh) 8UJh)
- 8fh = - 8f3h

= _ iTt (L:j X je.BhXi YijY2j _ L:i XjWj(6 h) L:j e.BhXiYijY2j) dNhi

° i=l L:i Wj(6h ) (L:j wj(6h ))2

The asymptotic distribution of the maximum partiallikelihood is given by
he following theorem. The approach used for the proof is based on the proof
for the maximum likelihood estimator presented in Sen and Singer (1993),
due to LeCam (1956)

THEOREM 2 Let "6 be a value that maximizes the partial likelihood (3.3) and
suppose that conditions C.1-CA hold. Then, if 6° is the true value for the
parameter 6,

Proof: For lIuli ::; K, 0 < K < 00 and remembering that 6° represents the
true value for the vector of parameters, define

An(U) =logL(6° + n-1
/

2u) -logL(6°)
n

(3.16) = :L{logLi (6° + n-1
/

2u) -logLi(6°)}
i=l

•

(3.17)

for 6* in the line segment formed by 6° and 6° + n-1/ 2u. Hence,

(3.18)
log Li (6° +n-1

/
2u) -logLi (6°)

-1/2 [810g Li(6
0
)]' 1 ,82 log L i (6*)

=n 86 u+ 2nu 8686' u.

22
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Considering

(3.13)
1 1 1

=-[U(6°)]'u - -u'I(6°)u + -u'Znu .
~ 2n 2

If IIZn(u)1I converges in probability to zero, uniformly in u, then, maxi­
mizing (3.13) with respect to u corresponds closely to obtaining a MPLE for
60

, and using the asymptotic distribution for the score function, we will be
able to find the asymptotic distribution of the MPLE. In order to proceed, let
us consider the following representation for the elements of I (remembering
that such matrix may be expressed as a partitioned matrix), for h = 1,2,

(I(h»)n = t r {(S1:)(6,X))2 _ S1:)(6,X)} dNhi(x)
i=1 Jo s1 )(6,x) s1 )(6,x)

n r (h)
=~ Jo l-i1 (6,x) dNhi(x),

i=1 0

(I(h)h2 = t r {(S1:)(6,X)) 2_( YtS'2i )2} dNhi(x).
i=1 Jo s1 )(6, x) Yhi +lhYtiY2i

Also, define functions v~~) (.) and v~~)(.) similarly to ~~h), but with s1i
)

replaced by st), as defined earlier. Then, ~in order to examine the convergence

23



(in probability) of IIZ~h)lI, let us study each particular element.

I(Z~h)(U))l1l =I~~ loT VR~)(h"x) - ~~)(hO,x) dNhi(x)/

</ sup .!.t r(~\h)(hO + l,x) - ~\h)(hO,x)) dNhi(x)1
{I: Ill<lIull/vnl n i=1 Jo

:::;/ sup r(~\h)(hO+ l,x) _ v~~)(hO + l,x)) dNh.(x)/
{I: 1/1<lIull/vnl Jo n

+ I sup r(~\h)(hO,x) - v~~)(hO,x)) dNho(x) I
{/: Ill<lIu lllvn} Jo n

+I sup r(v~~)(hO+ l,x) - v~~)(hO,x)) dNh.(x) I
{I: Ill<lIull/vnl Jo n

=ls +h + Jr.

Now we note that, by the Lenglart's inequality, for all p, "I

IP { Nh:
T

) > "I} :::;~ + IP {~/oT Ah.(t) dt ~ p}

=e + IP {.!. /oT t(Yhi + f)~YiiY2i)e.B~Xia~h(t) dt > p}
"I n ° j=1

=~ + IP {loT 81°) (hO, t)a~h(t) dt > p}.

Taking p > Ie; s~O)(hO)a~h· dt and considering assumption (C.2) then, as
n i 00 it follows that IP{£ 81°)(hO)a~h dt > p} -+ 0 and, hence,

lim lim IP[Nh.(T) > "I] = O.
'7-+00 n-+oo n

By assumption (C.2) expression Is converges to zero. If in addition we con­
sider nsufficiently large such that hO +1E V, then it follows that expression
16 also converges in probability to zero, as n -+ 00. The continuity on sCi)
in condition (C.2) guarantees that, as n -+ 00, expression 17 goes to zero in
probability, and, hence,
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Similar argumentation lead us to conclude that

uniformly in u.

."

..

To deal with (Z~h)h2' define Mh(6,x) = s13
)(6, x)/sl°)(6, x). Then one

may write

and, hence,

The first term in the r.h.s. of (3.20) is bounded from above by

1 n faT
sup - L (Mh(6° + l,x))2 - (mh(6° + l,x)? dNhi

{I: Ill:5l1ull/vn} n i=1 °
+ I sup .!.t r(Mh(6°,x))2 - (mh(6°,x)? dNhil

{I: 111:5l1ull/Vn"} n i=1 Jo

+I sup .!.t r(mh(6° + l,x))2 - (mh(6°,x))2 dNhil
{I: Ill:5l1ull/Vn"} n i=1 Jo

=ls +19 +110 ,

where mh = 813)/81°). By assumption (C.2) and the boundedness conditions
imposed on the quantities involved, Is and 19 converge to zero in probability.
Also, if we consider that mh(6, x) is a continuous function in a neighborhood
of the true value 6°, 110 converges to zero as n -+ 00 •
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Remains to show that the second term in the r.h.s. of (3.20) converges
to zero. To do so, we note that such expression is not larger than

1 1 r dNh.
{I: I/I~~~I/Vn} (1 + (}~ + 1)2 - (1 + (}~)2 Jo -n-'

that converges to zero as n -+ 00. Hence it follows that expression (3.20)
converge in probability to zero.

Hence, we have shown that

•

(3.21 ) sup IZn(u)1 L 0,
{llu lle[-K,K)}

i.e., Zn converges in probability to zero, uniformly in u.
Also, it is a direct consequence of the results presented earlier that

(3.22)

for ~ defined in theorem 1.
Using (3.21) we may rewrite expression (3.16) as

An(U) = In[U(6°)]'U - 2~u'I(6°)u +op(l)

1 1 1 1
= vrn[U(6°)]'u - 2u'~u + 2u'(~ - ;;I(6°»u +op(l)

that, in virtue of (3.22), may be written, uniformly in the set {u: lIuli ~ K},

-.

(3.23)

Maximization of (3.23) with respect to u (ignoring the negligible part for a
moment) will give

or more precisely,
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Noting that a aximum on An corresponds to a maximum on the (log) partial
likelihood, if 6 is a point of maximum in (3.3), it follows that

= 6° +n-1!2ii = 6° +n-1 E-1U(6°) +op(l),

such that

Therefore, by ~ heorem 1, n-1!2U computed at t = T converges to a multi­
variate n01:mal distribution with covariance matrix given by E, and, hence,
applying the 81 tsky's theorem and assumption (C.4),

concluding the proof. 0

Based on th orem 2 one needs an estimate for the covariance matrix such
that one may ompute confidence intervals and perform hypotheses tests
for the parame ers of interest. Then, to complete this section we state the
following coroll ries for the theorem.

COROLLARY 3 The estimator 6 is a consistent estimator for 6°.

This corollary is a direct consequence of the theorem, i.e., one can immedi­
ately verify tha 116 - 6°11 = op(l)

COROLLARY 4 The covariance matrix E can be consistently estimated by
n-1I(6).

Corollary 4 folll ws from the assumptions made in theorem 2 and from corol­
lary 3. In fact, since 6 is a consistent estimator, there exists a value no
such that, for a I n > no it will be in the neighborhood V, such that condi­
tion (B.4) will 1e true, and, hence, each element of the matrix n-1I(6) will
converge to the respective element of E.
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4 Application to the two-sample problem

In this section we briefly illustrate the results discussed in the previous sec­
. tions considering the two-sample problem.

Consider that in a clinical trial one is interested in studying the occurrence
of two events, possibly censored. Also, each one of the patients is random­
ized in one of two groups, placebo and treatment and the interest resides in
studying the efficacy of treatment with respect to prolonging the time for
the occurrence of one (or both) events. Here, K = 2 and we define a time­
independent covariate Xi assuming values zero or one, depending whether a
particular individual i is assigned to the placebo or treatment groups. Nki(t)
will represent the counting process as defined earlier, indicating if the kth
event has occurred for individual i at time t.

In this particular setting some of the quantities can be rewritten in a more
interpretable way. To do so, we define the sets of indexes Tr = {i: Xi = 1}
and PI = {i: Xi = O} containing the indexes for the individuals in the
treatment and placebo groups, respectively. The log-likelihood can be written
as

log L(6)

= t 13h E r dNhi +t t foT log (Yhi + fhYiil'2i) dNhi
h=l ieTr Jo h=l i=l 0

-t t iT log {E (Yhj + (hYijl'2j) + e(3h E(Yhj + OhYi jl'2j )} dNhi.
h=l i=l 0 jePl jeTr

Based on such log-likelihood one obtains iteratively the MPLE h for the
parameter 6. Asymptotic properties for such estimator are given by theo­
rems 1 and 2 and we now analyse the assumptions described there. Initially,
note that for fixed t, each one of the slj)(·, t) may be thought of as an aver­
age of independent and identically distributed random variables. Therefore,
one may apply the Khintchine law of large numbers and show the point-wise
(for each t) convergence (in probability) to a deterministic function. If this
function is monotone, then considering lemma 3.1 presented in Heiller and
Willers (1988) we will have that the point-wise convergence is equivalent to
the uniform convergence in assumption C.2.
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Thus, for sl°) (15, t) = (lin) Ei=1 wi(hh, t) we note that

E{Wi (hh' t)} =E [(Yhi + IhYiiY2i)e.8"Xi]

=E [E ((Yhi + fhYiiY2i)e.8"Xi IXi)]

=E [e.8"Xi(Sh(t) + fhSI2(t))]

(4.1) =(71"0 +7I"le.8,,) (Sh(t) +OhS12(t))

where 71"0 = 1-71"1 = IP(Xi = 0) is the probability that a particular individual
will be assigned to placebo, Sh(t) = IP(Thi > t) is the marginal survival
function and SI2(t) = IP(Tli ~ t; T2i ~ t) is the joint survival function. Since
Sh and S12 are non-increasing functions, the uniform convergence C.2 follows.

Similarly, for j = 1,2,

E[Xl (Yhi + OhYiiY2i)e.8"Xi] =E[Xl e.8"X, (Sh(t) + OhS12(t))]
(4.2) =7I"Ie.8"(Sh(t) + IhSI2(t))

that takes care of s11
) and sI2

).

For s13
) we have

(4.3) E[YiiY2ie.8"Xi] = (71"0 + 7I"le.8")SI2(t)

that is also a monotone function, and, hence, the uniform convergence is
true.

For s14
) we also have the same result since

(4.4) E [ YiiY2i e.8"Xi] = (71"0 + 7I"l e.8,,) SI2(t)
Yhi +OhYiiY2i 1 +Oh

that, as a function of t is also a monotone function.
For S(5)h ,

(4.5) E[XiYiiY2ie.8"X,] = 7I"le.8"SI2(t)

a monotone function. It follows then, for j = 1, ... ,5 the uniform condition
C.2 is true, and, as n -+ 00,

(h) (h) lP 71"071"1 e.8" fat(VI ,n ,VI ,n )(t) ----+ .8 (Sh(S) - fhS12(S))a~h(S) ds,
71"0 +7I"le" 0

(VJh,n) ,VJh,n»)(t) ~ 71"0 + 7I"l e.8" [t Sh(S) - SI2(S) a~h(S) ds,
1 +Oh Jo Sh(s) +OhSI2(s)

(Vlh,n) , VJh,n»)(t) ~ o.
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Since in this case the continuity in condition C.2 and condition C.3 are
trivial, then the asymptotic convergence of n-1/ 2(h - 60 ) is given by a normal
distribution with mean zero and covariance matrix I; whose elements can be
estimated by

(
~ ~ )2~ T (yh:r + lhy;'~)ePh

( h)n = 10 (Y[.l + ehY;.~~) + (yh:r + ~Y;.~)et1h
Tr ~ Trt1

_ ~(Yh' + lhy;'2.)e : ~ dfh.
( y'Pl + ()hY,Pl) + (y'Tr + ()hY,Tr)ePhh· 12· h· 12·

(~) _ (~) _ faT (Y;.~~ + Y;.~et1h )(yh:r + ehy;'~)et1h
~h 12 - ~h 21 - ~ ~ ~

o [(Y[.l + (hY;.~~) + (yh:r + ()hY;.~)ePh]2

Y;.~e(J,. -
- ~ ~ ~ dNh.

(Y[.l + ()hY;.~~) + (Yh:r + ()hy;'~)ePh

where yh
Tr and y[l represent the number of individuals with component h

at risk, at time t, for treatment and placebo groups respectively, Y;.~ and
Y;.~~ represent the number of individuals with both components at risk, at
time t, for treatment and placebo groups, and Nl.1 represents the number of
failures, at time t, divided by n, for those individuals with no failure in any
component.
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