
A PRACTICAL ALGORITHM FOR GENERAL LARGE SCALENONLINEAR OPTIMIZATION PROBLEMSPAUL T. BOGGS �, ANTHONY J. KEARSLEY y AND JON W. TOLLE zAbstract. We provide an e�ective and e�cient implementation of a sequential quadratic pro-gramming (SQP) algorithm for the general large scale nonlinear programming problem. In thisalgorithm the quadratic programming subproblems are solved by an interior point method that canbe prematurely halted by a trust region constraint. Numerous computational enhancements to im-prove the numerical performance are presented. These include a dynamic procedure for adjustingthe merit function parameter and procedures for adjusting the trust region radius. Numerical resultsand comparisons are presented.Key words: nonlinear programming, interior point, SQP, merit function, trust region, large scale1. Introduction. In a series of recent papers, [3], [6], and [8], the authors havedeveloped a new algorithmic approach for solving large, nonlinear, constrained op-timization problems. This proposed procedure is, in essence, a sequential quadraticprogramming (SQP) method that uses an interior point algorithm for solving thequadratic subproblems and achieves global convergence through the application of aspecial merit function and a trust region strategy. Over the past several years thetheory supporting this approach has been analyzed and strengthened. This theory ispresented in a companion paper [4]. In addition, implementations of the algorithmhave been extensively tested on a variety of large problems, including standard testproblems and problems of engineering and scienti�c origin, ranging in size from sev-eral hundred to several thousand variables with up to several thousand constraints.Speci�c strategies have been developed for handling the parameters utilized by thealgorithm and for dealing with nontrivial pathologies (e. g. , linearly dependent activeconstraint gradients or inconsistent linearized constraints in the quadratic subprob-lem) that often occur in large scale problems. In this paper we present the results ofthese e�orts.Based on its theoretical foundation and on our numerical experience we are con-�dent that this algorithm provides an e�cient means for attacking a large, sparse,nonlinear program with equality and/or inequality constraints. Rigorous comparisonsof algorithms for large nonlinear problems is notoriously di�cult, especially given theextensive set of options typically available in codes for such problems. Nevertheless,our algorithm, with the (conservative) default parameter settings, has been successfulon problems that have caused di�culties for other algorithms and, consequently, weare encouraged to believe that it is competitive at the current stage in the developmentof methods for solving these large problems.Below we give an outline of our basic procedure and in the succeeding sections weprovide more speci�c detail on the component parts of the implemented algorithm,including the strategies and safeguards that we have used. We also exhibit and com-ment on the results of some of our numerical tests. This paper relies heavily on theresults from the paper on the theory for motivation of the basic ideas.� Applied and Computational Mathematics Division, National Institute of Standards and Tech-nology, Gaithersburg, MD 20899y Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213-3890z Mathematics Department, University of North Carolina, Chapel Hill, NC 27599

We assume the general nonlinear programming problem to be of the formminx f(x)subject to: g(x) � 0 (NLP)where f : Rn ! R1, and g : Rn ! Rm are smooth functions. Nonlinear equalityconstraints are not included in our description here in order to avoid distractingtechnicalities. The modi�cations necessary for their insertion can be inferred from [6].Nonlinear equality constraints are included in our code and in some of the problemswe tested. The sequential quadratic programming method is the backbone of ouralgorithm. (See [7] for a review of these techniques.) At the kth step we have aniterate, xk, denoting the current approximation to the solution of (NLP). In additionto the x-iterate we also maintain a non-negative iterate, zk 2 Rm, which measuresthe infeasibility at xk. At this stage (NLP) is modeled by a quadratic program ofthe form min� rf(xk)T� + 12�TBk�subject to: rg(xk)T� + g(xk) � 0: (QP)Here Bk is taken to be an appropriate approximation to the Hessian of the Lagrangianfor (NLP), i.e., Bk � Hxx`(xk; �k);where `(x; �) = f(x) + g(x)T�and Hxx represents the Hessian with respect x of the function to which it is applied.(See Section 4.5 for a discussion of the choice of Bk used in our numerical experiments.)In this form (QP) generates a step that provides a search direction for improving thecurrent iterate.There are two signi�cant points to be made concerning this phase of our algorithm.First, we apply an interior point quadratic program solver to (QP); more speci�cally,we use the method found in [1] where solutions are calculated by solving a sequence oflow dimensional quadratic programs. Pertinent details of this solver and its propertiesrelative to its use in our SQP method can be found in Section 2. Second, we do nottry to solve (QP) with complete accuracy at each iteration; rather, we often terminatethe interior point method prematurely. In particular, we halt the quadratic programsolver when the steplength exceeds a \trust region radius" that is modi�ed at eachiteration according to how well the improvement in our merit function is predicted.Thus our algorithm can be said to be a \truncated Newton method" in the senseof [18] (see also [15]). This particular merit function and a more useful \workingversion" are discussed in Section 3 and our strategy for updating the trust regionradius is given in Section 4.2.The output of the (QP) solver is a vector that determines the direction of thestep in the x-variable, which in turn yields a step direction for the \slack" variablez as explained in Section 3. The combined step direction of these two variables is adescent direction for the working version of the merit function and also for constraintinfeasibility; thus we can choose the steplength in this direction to decrease the meritfunction and/or the infeasibility of the iterate. The choice of steplength determinesthe new iterate xk+1 and also the new value zk+1. The strategy for choosing thesteplength and other algorithmic details, including the modi�cations and safeguardsnecessary to make an implementation robust, are given in Section 4.2

The results of our numerical tests are contained in Section 5. These resultsdemonstrate the overall e�ectiveness of the procedure and highlight the bene�ciale�ect of our trust region strategy and other procedures. Finally, in Section 6 webriey consider weaknesses in the current version of the algorithm and suggest possibleavenues of research to improve its e�ciency.For a discussion of the theoretical and practical questions related to large scalenonlinear programming see the recent surveys [12], [14] and [21].2. An Interior Point QP Solver. Interior point methods for linear program-ming have been demonstrated to be very successful, especially on large problems,and recent research has lead to their extension to quadratic programs. A particularmethod, the method of optimizing over low-dimensional subspaces, has performed wellon linear programs and has been extended to the quadratic programming case (see[1], and [2] and the references contained therein). This method, for which good nu-merical results for quadratic programs have been reported, has properties that makeit particularly compatible with the SQP algorithm we are describing in this paper. Abrief description of the essential features of this method and their importance for ourpurposes follow. The many details of the actual algorithm that are not reported heremay be found in the above references.The quadratic program that we solve, (QP), has the formmins cTs+ 12sTQssubject to: ATs+ b � 0(2.1)where c; s 2 Rn, Q 2 Rn�n, A 2 Rn�m, and b 2 Rm. The assumptions on (2.1) thatare necessary to apply the interior point algorithm are that the problem be bounded,that A have full column rank, and that there exist feasible points (i.e., that theconstraints be consistent). Note that Q can be inde�nite and that no assumption ofa full-dimensional interior is required. If equality constraints are present, they arehandled by writing them as two inequalities.An important prerequisite for solving (2.1) by an interior point method is a fea-sible initial point. Our algorithm uses a \Big M" method to construct the Phase Iproblem mins;� cTs+ 12sTQs+M�subject to: ATs+ b� e� � 0(2.2)where e is a vector of ones and � is the \arti�cial" variable. Clearly for �� largeenough the point (s; �) = (0; ��) is feasible for (2.2) and if M is su�ciently large thealgorithm applied to (2.2) will reduce � until the arti�cial variable is nonpositive, atwhich point the current value of s is feasible and the M� and e� terms are dropped.If no such value of the arti�cial variable can be found, then (2.2) is not consistent andthe algorithm stops. As discussed below, we make use of the step obtained from (2.2)even if it is not feasible for (QP). Note that when equality constraints are present,the entire solution procedure takes place in Phase I and � will always be present.The de�ning characteristic of the algorithm is that it proceeds by solving a se-quence of low-dimensional subspace approximations to (2.1). In our application wefollow the reported results in which the dimension of the subspace is taken as three.The following is an outline of the O3D (for Optimizing over 3-Dimensional subspaces)version of the algorithm. As the variable � is treated essentially the same as thecomponents of s in the O3D algorithm (see, however, Step 6 below) the dependenceon � is incorporated into the formulation given in (2.1).3

O3D Algorithm for Quadratic Programming1. Given a feasible point, s0; set j := 0:2. Generate 3 independent search directions pi; i = 1; 2; 3 and let P j be thematrix whose columns are pi.3. Form and solve the restricted quadratic programmin� cT~s+ 12 ~sTQ~ssubject to: AT~s+ b � 0where ~s = sj + P j� and � 2 R3. Call the solution ��.4. Set sj+1 := sj + �P j�� for an appropriate value of the steplength � 2 (0; 1):5. If stopping criteria are met, exit.6. Go to 2. (At this step, if the component of the vector s corresponding tothe arti�cial variable � has become nonpositive, it is eliminated from theproblem.)The search directions in Step 2 are solutions to�AD2AT +Q=�� pi = ti; i = 1; 2; 3;(2.3)where � is a scalar depending on the current iterate,D = diag f1=rk; k = 1; : : : ;mgwith rk = �(As+ b)k, and the ti are particular values chosen such that one of thesedirections is always a descent direction with respect to the objective function. Thesteplength � is set to the lesser of 99% of the distance to the boundary and the distanceto the minimum of the objective function.The form of the matrix in (2.3) allows for e�cient exploitation of the sparsity.Note that if Q is positive semi-de�nite, then the matrix in (2.3) is positive de�nite forall interior points; otherwise, it may not be. In the latter case, a modi�cation similarto that in [20] is used. In our application of this algorithm, using this procedureobviates the need for the matrix Bk to be positive de�nite, which in turn allows usto use the Hessian of the Lagrangian or a �nite di�erence approximation thereof.The standard stopping criterion for the algorithm is that at least one of the fol-lowing holds: (a) the relative change in two successive values of the objective functionis small; (b) the relative di�erence between the primal and the dual objective functionvalues is small; or (c) the di�erence between two successive iterates is small. For usein our SQP algorithm we have added: (d) the length of the solution vector exceedsa speci�ed value. This additional condition has been implemented to allow for trustregion strategies; in particular, this criterion will cause the algorithm to halt if (QP)is unbounded. In any case, the terminal vector will be a useful direction in the contextof our purposes; this point will be discussed in the next section.The most recent version of O3D described in [1] contains an option to performa special \recentering step" after each subspace optimizing step (Step 4) that hasgenerally improved the e�ciency. This option is not used in the results reported here.(See Section 6 for a further comment.)3. Updating the Iterates: the Merit Functions. In this section we reviewthe de�nitions and properties of our merit functions and provide formulas for updatingthe iterates. The reader is referred to the companion paper for proofs and motivationsof these concepts. 4

As stated in Section 1, at each iteration our algorithm yields a pair (xk; zk) wherexk is an approximation to the solution of (NLP) and zk is the corresponding approxi-mate slack vector. The step directions for the updated values of these approximationsare based on the (approximate) solution, (�k; �k), to the quadratic programmin�;� rf(xk)T� + 12�TBk� +M�subject to: rg(xk)T� + g(xk)� e � � 0:(3.1)obtained as described in the preceding section. The vector �k gives the step directionfor xk and we determine the step direction, qk, for the slack vector zk by the formulaqk = � �rg(xk)T�k + g(xk) + zk � e �k� :(3.2)Note that if �k is feasible for (QP) then �k = 0 and henceqk = � �rg(xk)T�k + g(xk) + zk� :In this case zk + qk is the slack vector for (QP) corresponding to �k and thus is theslack variable for the linear approximation of g(xk+1). Given the step direction wethen update the iterate by means of the formulasxk+1 = xk + ��kzk+1 = zk + �qkfor some value of the steplength parameter �: Observe that if zk � 0 then the factthat (�k ; �k) is feasible for (3.1) means that zk+1 will be non-negative if � 2 [0; 1]. Inour algorithm the non-negativity of the slack vector iterates is preserved and, in fact,it sometimes turns out to be useful to maintain the zk at a positive level (see Section4.8).It is important to emphasize that the �k are determined by (QP), the quadraticapproximation to (NLP), and are not dependent on the choice of zk. The zk aregenerated solely for use with the merit function described below. That is, we do notsolve the slack variable problem. A comment on the notation is also in order at thispoint: We denote the iterate by (xk ; zk) and the step by (�k; qk), whereas conventionalnotation would be to use �xkzk � and � �kqk� :It should be clear from the context what is meant.In optimization algorithms the value of a steplength parameter is generally chosenso as to reduce the value of a suitably chosen merit function. Typically, a merit func-tion for (NLP) is a scalar-valued function that has an unconstrained minimum at x�,a solution to (NLP). Because a reduction in this function implies that progress is be-ing made towards the solution, it can be used to determine an appropriate steplengthin a given search direction.In [5] and [6] a merit function for equality-constrained problems was derived thathas important properties vis-a-vis the steps generated by the SQP algorithm. Usinga slack-variable formulation of (NLP) a merit function for the inequality constrainedproblem can be constructed having the form d(x; z) = f(x) + ��(x; z)T�c(x; z) + 1d�c(x; z)T �A(x; z)�1�c(x; z)(3.3) 5

where z is nonnegative, d is a scalar,�c(x; z) = g(x) + z;�A(x; z) = rg(x)Trg(x) + Z;��(x; z) = � �A(x; z)�1rg(x)Trf(x);and Z = diag fz1; : : : ; zmg :We use this merit function (and its approximations de�ned below) for choosing thevalue of the steplength parameter �. As noted above, the approximate slack vectorsgenerated by our algorithm, zk, always remain non-negative; thus the non-negativityconstraint on the z for d imposes no theoretical di�culty.The function �c(x; z) de�ned above plays an important role in our algorithm as itis used to measure the feasibility of the pair (x; z). That is, if we de�ne the functionr(x; z) = k�c(x; z)k2 ;(3.4)where k�k denotes the standard Euclidean norm and setC� = f(x; z) : r(x; z) � � and z � 0g;(3.5)then C0 corresponds to the feasible set of (NLP) and hence (xk ; zk) is close to feasibleif it is in C� for small �.For d su�ciently small the merit function d has the desirable property that asolution of (NLP) corresponds to a (constrained) minimum of d. In addition, if d issmall and �k is the exact solution to (QP) (which implies that �k = 0) then the step(�k; qk) is a descent direction for d when (xk ; zk) is su�ciently close to feasibility.Despite these useful properties, d has two de�ciencies that limit its use in an e�cientalgorithm. First, (�k; qk) is a descent direction of d only near feasibility, and, second,the evaluation of rf and rg and additional nontrivial computational algebra arerequired to assess a prospective point. In order to overcome these di�culties, theapproximate merit function kd(x; z) = f(x) + �c(x; z)T��k + 1d�c(x; z)T(�Ak)�1�c(x; z)where �Ak = rg(xk)Trg(xk) + Zk��k = �(�Ak)�1rg(xk)Trf(xk)is developed as a \working" version of d at (xk ; zk). As the values of ��k and �Akare �xed, kd can be more easily evaluated than d in a line search algorithm forchoosing an appropriate value of �. This approximate merit function, kd , not onlyhas essentially the same properties as d with respect to the step (�k; qk) but ithas the stronger property that the step is a descent direction for kd everywhere.Moreover, for � su�ciently small and (xk ; zk) outside of a ball around the solutiona \su�cient" reduction in kd implies a \su�cient" reduction in d. (We mean by\su�cient" reduction that a Wolfe condition is satis�ed.) Thus we are able to use kdas a surrogate for d for testing the progress of our iterates towards a minimum.6

A further important property of the step �k, under the assumption that it is theexact solution to (QP), is that it is a descent direction for the function r de�ned by(3.4). Thus a basic algorithm for the case where the (QP) can be solved exactly is asfollows: Given an initial value of � use the steps (�k; qk) to reduce r until the iteratesare in C�. Once the iterates are contained in C� if a su�cient reduction in kd doesnot yield a su�cient reduction in d then reduce �. If, in the course of the algorithm,� remains bounded away from zero, then convergence follows from the fact that theWolfe condition is satis�ed for d. If � goes to zero, then convergence follows fromthe observation that the radius of the ball in which the Wolfe condition is not satis�edalso goes to zero. This is essentially the algorithm for which global convergence isproved in the paper on the theory.In this paper we are primarily interested in enhancements that convert the theo-retical algorithm into one that is practical and e�cient. This requires that we makeprovisions for situations when the assumptions under which we performed the con-vergence analysis are not valid and that we adopt numerical procedures to reduce thecomputational e�ort. As we note below, not all of these modi�cations have been (oreven can be) theoretically justi�ed, but we believe that the �rm foundation of theunderlying algorithm and the evidence accumulated in extensive numerical testingvalidate their use.In the implementation of our algorithm a trust region constraint is used thatpossibly truncates the quadratic programming algorithm before an exact solutionis achieved. In this case the theory described above does not apply for the step(�k; qk) obtained from the approximate solution, (�k; �k), to (3.1). Although a generalconvergence theory based on this step is not yet available, it is shown in the theorypaper that if the approximate solution is obtained from the O3D algorithm and if �kis not too large then the resulting step has the appropriate descent properties for thefunctions r, d, and kd at (xk; zk). In particular, convergence can be achieved if �kgoes to zero in a suitable manner. These properties justify our use of the truncationprocedure to speed up the algorithm. It is important to note that this approximationprocedure also allows us to handle the di�culty that arises in sequential quadraticprogramming methods when the quadratic subproblem is inconsistent.4. The Truncated SQP Algorithm. In this section we give a somewhat de-tailed description of our algorithm. Initially we assume that the Hessian approxima-tions, Bk, are positive de�nite, the matrices �Ak, are nonsingular, and the linearizedconstraints in (QP) are consistent. In real-world applications these assumptions arenot always valid so we have tried to make our algorithm exible enough to performwell in situations where these assumptions fail to hold. We describe some of theseadaptations at the end of this section.The implementation of the algorithm depends upon four important parametersthat need to be either computed or modi�ed throughout the course of the algorithm.The globalization parameter, �, was introduced in (3.5). It is a measure of the sizeof the domain about the feasible region in which the direction (�k; qk) is a descentdirection for the true merit function d. A current estimate of � is maintained in thealgorithm. The trust region parameter, � , is an upper bound on the (weighted) normof our approximate solution to (QP),kD�k � �;where D is a positive de�nite diagonal matrix. The trust region radius � is updatedat every iteration. The parameter, �, is the steplength parameter. It determines7

the length of the step in the variables (x; z) in the direction (�k; qk). It is chosento guarantee progress towards the solution in decreasing either the merit functionor infeasibility. Finally, d, the merit function parameter, must be small enough toguarantee that the theoretical properties described in the preceding section are valid.Although the theory allows arbitrarily small values of d, the algorithm becomes veryslow if d is too small, thus it is monitored throughout the algorithm and either in-creased or decreased as appropriate.The outline of the algorithm is followed by speci�c comments on the proceduresand their justi�cations. This version contains some of the practical modi�cationsdescribed above. To simplify the notation we de�ne(x�; z�) = (xk + ��k ; zk + �qk):Recall that r is given by (3.4).Basic Truncated SQP Algorithm1. Initialization: Given x0, B0, � , �, and da. Initialize the slack variable z0 � 0;b. Set k := 0:2. Calculation of the basic trust region step:a. While k�k < � , iterate (using O3D) onmin� rf(xk)T� + 12�TBk� +M�subject to: rg(xk)T� + g(xk)� e� � 0to obtain �k and �k .b. Set qk = 8<:� �rg(xk)T�k + g(xk) + zk � e�k� if �k > 0� �rg(xk)T�k + g(xk) + zk� otherwise :c. Decrease d if necessary.3. Computation of the steplength parameter:a. Choose � 2 (0; 1] such that kd is su�ciently reduced.b. If (xk; zk) =2 C� then reduce � if necessary until r is su�ciently reduced.c. If (xk; zk) 2 C� then reduce � if necessary so that (x�; z�) 2 C�.4. Update of the estimate of the globalization parameter:a. If d(x�; z�) > d(xk ; zk);set � = 12r(xk ; zk).5. Update of the variables and check for termination:a. Set xk+1 := xk + ��kzk+1 := zk + �qk :b. If convergence criteria are met, quit.c. Update Bk to Bk+1.6. Adjustment of the merit function and trust region parameters:a. Update d if necessary.b. Adjust the trust region radius � .8

7. Return:a. Set k := k + 1.b. Go to Step 2.4.1. The Globalization Parameter. The globalization step is based on workin [6] and [4]. In Step 3 we require that the approximate merit function be reducedand, in addition, if the current iterate lies outside the set C� we require that theconstraint infeasibilities also be reduced. This is possible as a result of the descentproperties described in Section 3. If we have a good estimate of � and (xk; zk) 2 C�then the true merit function can also be reduced; if this is not the case, then ourestimate of � is too large and we reduce its value in Step 4. This procedure willeventually lead to a su�ciently small value of �. Note that this arrangement allowssteps that may increase the merit function, but only in a controlled way. It also allowssteps that may increase the constraint infeasibilities, but only when inside of C�.4.2. Updating � . Our procedure for updating � , the trust region radius, inStep 6b is similar to the standard strategy used in trust region algorithms (see [17] or[31]) in that we base the decision on how to change � on a comparison of a predictedrelative reduction, predk; and an actual relative reduction, aredk, in a function usedto measure the progress toward the solution. (Various formulas for the predicted rela-tive reduction, predk, have been suggested for di�erent merit functions, especially forequality constrained programming problems; see, for example, [19]). What is distinc-tive about our procedure is that we use di�erent functions for computing predk andaredk depending on the current status of the algorithm. When the linearized con-straints are satis�ed we use the approximate merit function to compute the predictedand actual reductions. When the trust region constraint causes O3D to terminate inPhase I, i.e., when the linearized constraints are not satis�ed, predicted and actualreductions in infeasibility are used.In the case when a feasible solution to (QP) is obtained then kd is used tocompute the predicted and actual reductions. Our method for de�ning predk di�ersfrom the standard methods used in unconstrained optimization because the step-�nding subproblem is not based solely on the merit function and, moreover, thetrust region constraint does not appear explicitly in the subproblem. Neverthelessin updating � we want to assess how well an approximation to kd agrees with kd inthe direction (�k ; qk). Since (QP) uses a quadratic approximation of the Lagrangianfor the objective function with linearized constraints, we form our approximation to kd based on a quadratic approximation to the function k1 given by k1 (x; z) = f(x) + �c(x; z)T��kand a linear approximation to k2 (x; z) = �c(x; z)T(�Ak)�1�c(x; z):Note that kd(x; z) = k1 (x; z)+ (1=d) k2 (x; z). Based on these considerations and theresults of [16] we de�ne the predicted relative reduction bypredk = ���kr k1 (xk ; zk)T(�k; qk)� (�k)22 (�k; qk)Tr2 k1 (xk; zk)(�k ; qk)� �kd r k2 (xk ; zk)T(�k; qk)� = kd(xk ; zk)(4.1) 9

where the derivatives are with respect to x and z and the steplength parameter �k isthe size of the most recently accepted step. The value of the actual relative reduction,aredk, is taken to be the di�erence in the values of kd at the points (xk+1; zk+1)and (xk; zk) divided by the value of kd(xk ; zk). A valid criticism of the formula forpredk is its dependence on higher order derivatives. Therefore we use the availableapproximation of the Hessian of the Lagrangian for r2 k1 . For example, cell-centered�nite di�erence approximations to the Hessian of the Lagrangian function were usedin the numerical results presented here, unless analytic second derivative formulaswere readily available.The above choice for predk is not used when the step returned by O3D is notfeasible. In these situations the resulting step is dominated by a feasibility improvingcomponent and it makes little sense for the adjustment to � to be determined by kd ;rather, a comparison of the predicted and actual improvement in constraint infeasi-bility seems more appropriate. Therefore, in this case the function r(x; z) is used forcomparison purposes. The values of predk and aredk are given as follows for the casewhen the O3D algorithm terminates in Phase I:predk = nr(xk ; zk)� �krg(xk)T�k + g(xk) + zk+12o =r(xk ; zk)and aredk = �r(xk ; zk)� r(xk+1 ; zk+1)	 =r(xk ; zk):These heuristics for choosing predk and aredk appear to work well. Speci�cally,they allow the trust region radius, � , to be increased even in the event that the stepreturned by O3D does not satisfy linearized constraints or it results in an increase inthe true merit function. In our experience, the alternative formulas based solely onconstraint violations never are employed close to the solution. Indeed, the iteratespreceding convergence have always been observed to be well inside C� where satisfyingthe linearized constraints and decreasing the merit functions usually pose no problem.4.3. The steplength �. The steplength � is determined in Step 3 of the al-gorithm. The \su�cient decrease" referred to in 3a and 3b requires that the Wolfecondition be satis�ed. For a given function � and potential step w from point v thiscondition requires that � satisfy�(v + �w) � �(v) + � �r�(v)Twfor some �xed � 2 (0; 1). In the numerical experiments reported in Section 5 we em-ployed a simple backtracking procedure (with factor one-half) to �nd � to satisfy thiscondition for both kd and for r. We have also experimented with more sophisticatedline search methods motivated by unconstrained optimization techniques as in [18],but the observations to date suggest that the more complicated line searches result invery little improvement of our algorithm, except when the iterates are quite far fromthe solution.4.4. Adjusting d. Choosing an e�ective value for the merit function parameterd is essential in our algorithm. While it is clear that (in a compact set) a su�cientlysmall value of d will assure that the results given in [4] are valid, there are threevery important practical reasons why the parameter must be adjusted rather than�xed. First, if the angle between the direction generated by O3D and the gradient ofthe approximate merit function becomes nearly orthogonal the steps might becometoo small. We adjust d to avoid this possibility. Second, the approximate merit10

function, kd , is changing at each iteration and it is possible a previous iterate mightbe acceptable to the current kd , i.e., cycling might occur. This worry can also bealleviated by adjusting d. A third reason for changing d is to allow for larger steps.It is seen from the theory and has been veri�ed by numerical experience that if dis too small then the form of the merit function forces the path of the iterates tofollow the \nearly active" constraints closely. This causes the algorithm to take verysmall steps and, in particular, to be slow in moving away from a nonoptimal activeset. By making it possible to increase d we can signi�cantly improve the algorithm'sperformance.In the implementation of our algorithm there are two opportunities to adjust d:in Step 2, after solving the quadratic subproblem, and in Step 6, after the step hasbeen taken. In the �rst of these adjustments d can only be decreased; in the second,the parameter may be increased or decreased.In Step 2, the angle between the gradient of the approximate merit functionr kd and the step direction (�k; qk) is computed. If these two vectors become nearlyorthogonal, we conclude that d is not small enough to ensure a good decrease in kd ,and we decrease the parameter. To be more speci�c, we computew(d) = (r kd(xk ; zk))T(�k; qk)r kd(xk; zk) � k(�k; qk)k :If w(d) � �:1 we calculate a value d̂ so that w(d̂) � �:5:We safeguard the procedureby not allowing more than a certain percentage decrease in d. In the current versionwe use 50%.If d was not decreased in Step 2 we consider modifying it after a step has beentaken (Step 6). Here the primary concern is to avoid cycling. To do so we computean interval for the penalty parameter as follows. For a �xed integer � we seek a valueof the parameter, �d, such that k�d(xk ; zk) < k�d(xk�i; zk�i); i = 1; : : : ; �:(4.2)Inequality (4.2) implies that none of the past � iterates will be acceptable to theapproximate merit function with the new value of �d. (Thus if � = k no cycling wouldbe possible). To accomplish this, we use the decomposition kd = k1 + 1d k2(4.3)where k1 and k2 are de�ned in Section 4.2. We then compute the values of k1 (xk�i; zk�i)and k2 (xk�i; zk�i); i = 1; : : : ; �, and consider the inequalities k1 (xk; zk) + 1d k2 (xk ; zk) < k1 (xk�i; zk�i) + 1d k2 (xk�i; zk�i):(4.4)We de�ne dui and dli to be the upper and lower values of d that ensure that inequality(4.4) is satis�ed. Then lettingdu = minfdui : i = 1; : : : ; �g(4.5)and dl = maxfdli : i = 1; : : : ; �g(4.6) 11

we obtain an interval (dl; du). Assuming that this interval exists it is the case thatif the value of d for the next step is chosen in this interval, the next iterate willnot return to one of the previous � iterates. In practice a value of � � 5 is usuallymore than su�cient to prevent cycling. If the interval doesn't exist, then we make nochange.Given that we can choose d to avoid cycling, our second objective at this junctureis to increase d to allow bigger steps. If the du is larger than the current d then wecan safely increase d without worrying about possible cycling. However, we safeguardthis increase in two ways. First, we require that the predicted reduction based on theapproximate merit function must be greater than the predicted reduction of infeasi-bility in the linearized constraints. This restriction prevents d from being increasedprematurely due primarily to a large decrease in constraint infeasibilities. Speci�cally,writing the predicted reduction in kd (see (4.1)) asPQ + 1dPL;we insist that for a new value of dPQ + 1dPL > PL:(4.7)Second, we use a maximum allowable change (currently a factor of 2) to limit thegrowth of d. Computationally, these simple procedures for updating d appear to bee�ective, especially in the presence of highly nonlinear constraints and poorly scaledproblems.4.5. The Hessian Approximation. In the numerical experimentation reportedhere, we have used a �nite di�erence approximation to the Hessian of the Lagrangianas Bk. Although the Hessian of the Lagrangian at a strong solution is positive de�niteon the appropriate subspace, it may be inde�nite in general. Even if it is positivede�nite the �nite di�erence approximation may not be. We experimented with twoapproaches for handling this possibility. First, we simply modi�ed the approximateHessian matrix by adding non-negative elements to the diagonal ensuring that theCholesky factorization of the matrix had positive elements along its diagonal (see[20]). This modi�cation was easy to implement, but it was observed to slow conver-gence on some problems. While this modi�cation guarantees that a positive de�nitematrix will be delivered to the (QP) solver, if it takes place when the iterates getclose to the solution, it generally precludes local q-superlinear convergence.An alternative to modifying the approximate Hessian of the Lagrangian is simplyto allow O3D to iterate on the inde�nite QP subproblem, halting the iterations whenthe solution exceeds the trust region radius. We implemented this approach andit seemed to yield superior results to those obtained by making the approximateHessian positive de�nite (especially when the iterates were close to a solution) eventhough, theoretically, we can only prove that we obtain a descent direction when theapproximate Hessian is positive de�nite.4.6. Convergence Criteria. The convergence criteria used are standard, andsimilar to those in [3]. We �rst insist that the constraints be satis�ed to a closetolerance; speci�cally we requiremax(g(xk); 0)1 � 10�6:(4.8) 12

We also require that either krf(xk) +rg(xk)�kkjf(xk)j � 10�7(4.9)or xk � xk�11 � 10�8(1 + xk):(4.10)The criterion (4.9) is a stronger indication that a KKT point has been reached. Theweaker criterion (4.10) suggests that progress slowed drastically and that iterates mayor may not have drawn close to a solution. For this reason criterion (4.9) is usuallypreferable to criterion (4.10). The Lagrange multipliers returned by the quadraticprogram are used in (4.9) unless the trust region constraint determines the approxi-mate solution of the (QP). In that case, we use the least squares approximation tothe multipliers, replacing all negative multipliers with machine zeros. In all of theproblems solved to date, the trust region never comes into play when the iterates getclose to the solution; therefore the (QP) multipliers are used for the convergence testat the solution.4.7. Inconsistent Quadratic Subproblems. One di�culty that can occurwhen making linear approximations to nonlinear constraints is that (QP) may beinconsistent. In this case O3D will, even if it runs to completion, not exit PhaseI and will return a positive value of the arti�cial variable. (Note that this alwaysoccurs if equality constraints are present.) For small � the resulting direction is adescent direction for kd and for r. As a result, the step taken in this directionwill generally decrease infeasibility, making it less likely that an inconsistent set oflinearized constraints will be encountered during subsequent iterations.More recent versions of our algorithm include a constraint relaxation procedurethat appears to yield an acceptable step, �k, even in the event that inconsistentlinearizations of constraints are encountered. Because this situation did not surfaceduring the numerical experiments presented in this paper, we do not include a descrip-tion of our perturbation procedure. We do note, however, that we have encounteredimportant application problems where this procedure was crucial to the performanceof our algorithm (see for example [24]).4.8. Updating slack variables. One di�culty in our algorithm is the updatingof slacks in the event that the SQP step does not satisfy the linearized constraintswell enough, i.e., �k is not small enough. This can occur when (QP) is inconsistentor when a trust region bound is encountered during the solution of (QP). In this caseour slack variable updating scheme would ensure that non-negative slacks remain non-negative, but the direction may not be one of descent. We resolve this dilemma byopting for descent, i.e., computing qk with �k = 0 and replacing any negative slacksusing the following rule:If zk+1i < 0 then setzk+1i = � �Mach gi(xk+1) � 0�gi(xk+1) gi(xk+1) < 0where �Mach is machine epsilon. This is sometimes referred to as `closing' the con-straints (see for example [33]). 13

4.9. Linearly Dependent Constraint Gradients. Linearly dependent con-straint gradients cause many theoretical and computational di�culties in constrainedoptimization. In our theoretical algorithm we obtain convergence even when there arelinearly dependent constraint gradients provided the approximate multipliers do notbecome unbounded. In practice, even though O3D has no di�culty in dealing withthis problem, evaluating the merit function and computing the least squares approxi-mation to the Lagrange multipliers become problematical. Computational experienceshows we solve many problems with degeneracy in the constraints. Simply maintain-ing slacks to to be positive as described above allows us to factor the crucial matricesand continue with the algorithm. However, the algorithm failed to solve some prob-lems that had a large amount of degeneracy in the linearized constraint matrix. Thiswas, of course, problem dependent but it was observed that the current implementa-tion can usually solve problems where up to 25 percent of the constraint gradients arelinearly dependent. This degeneracy causes the performance of the merit functionsto deteriorate. In particular, the least squares approximation to Lagrange multipliersseems to be especially poor, resulting in only very small steps being allowed, evenclose to the solution.5. Numerical Results. The modi�ed algorithm was coded in Fortran and isinstalled on a SPARCstation 10 using IEEE oating point arithmetic (64 bit). Thecurrent implementation is being used to solve a wide variety of medium to largescale problems. In this section we report the results of a set of performance testsdesigned speci�cally to answer questions about the trust region strategy and theprocedure to update the penalty parameter, d. We conclude the section with theresults of our algorithm applied to some test problems that are publicly available. Weemphasize that all of the problems were solved with the same default settings of theparameters, (see Table 1), i.e., no attempt was made to pick parameter settings tooptimize performance on individual problems.Although in many of the applications some analytic derivatives were available,no use of analytic derivative information was used in these numerical experiments.When possible, �rst and second derivatives were computed using forward and central�nite di�erences respectively. A costly one-time calculation provided a zero/non-zerostencil of the Hessian of the Lagrangian and the Jacobian matrix of the constraintfunction. These stencils were then used for the duration of the solution process.For some problems, these �nite di�erence approximations are not convenient to use.This can be the case with control problems governed by partial di�erential equations(see [29] or [30]). If the partial di�erential equation is solved using a �nite elementmethod, with piecewise linear elements, then evaluating the derivative of the objectiveParameter ValueM 10minf107; krf(x0)k1minf103; krf(x0)k1gg�� 2kg(x0)k1�0 (kg(x0)k1 + kx0k2)�0 (1 + kc(x0; z0)k1)2z0 �Mach +max(�g(x0); �Mach)� 10�4 Table 1Numerical values of default parameters14

function with respect to the control variables can be quite cumbersome. In suchcases, which occurred in the control problems in our test suite, one can approximatethe �rst derivatives of the objective function by solving an adjoint problem witha computational cost comparable to one function evaluation. (For examples, see[22].) The objective function portion of the Hessian of the Lagrangian can then beapproximated with forward �nite di�erences.A set of eight problems was chosen as the �rst test suite. These problems rangedin size from 500{1000 variables and from 1000{2000 constraints. The �rst four arerelatively straightforward nonlinear programming test examples, while the last fourare from actual applications: two discretized control problems, a density estimationproblem from statistics, and a \molecular distance" problem. A more complete de-scription of these problems is found in the Appendix. The problems all have nonlinearinequality constraints and exploitable sparsity. Problem 4 (NLP4) was designed tohave a controllable percentage of linear dependency in the constraint gradients todemonstrate any weaknesses in the algorithm associated with this di�culty. We ranthree versions of our algorithm on each problem; using a positive de�nite modi�cationof the Hessian matrix, as discussed in Section 4, with and without the trust regionstrategy and using the unmodi�ed Hessian with the trust region. (Using the unmod-i�ed Hessian results in failure in most cases if no trust region strategy is employed.)In addition, each problem was run from two starting points; one, labeled \c", whichwas close to the solution in the sense that each of the variables was of the same orderof magnitude as in the solution and a distant start, labeled \f".The results of the numerical tests on these problems are summarized in Tables1{3. The �rst two columns of each table gives the number of SQP iterations (\nl-i")and the total number of O3D iterations (\qp-i"). The next two columns contain thestopping criterion that was met and the value of the gradient of the Lagrangian at thesolution. Unless the algorithm failed, (which is denoted by \Failure" in the tables)feasibility condition (4.8) was satis�ed for all solutions. The stopping criterion isdenoted by either a \1" or a \2" depending on whether (4.9) or (4.10) was satis�ed.If both were conditions were satis�ed, a \3" appears in the column. The remainingcolumns give information about the values of the parameter d for each run; columns�ve through eight giving the initial, maximum, minimum, and �nal values of thisparameter and the �nal column giving the last iteration at which d was changed.The results of the tests illustrate that using the unmodi�ed Hessian with the trustregion was most e�ective in reducing the number of O3D iterations and the numberof SQP iterations. The trust region strategy prevented long, unpro�table steps frombeing generated when far from the solution and the use of the unmodi�ed Hessianallowed the trust region to become inactive near the solution thus allowing rapidlocal convergence. Requiring the Hessian to be positive de�nite often precluded rapidlocal (q-superlinear) convergence and, when used in conjunction with the trust regionstrategy, resulted in the trust region's being active close to the solution.The results also show that the value of the parameter d varied over several ordersof magnitude. The procedures discussed in Section 4 that allowed the value of d toincrease or decrease greatly enhanced the algorithm; earlier tests using either a �xedvalue of d or only allowing a reduction in d yielded inferior results.Another modi�cation in our algorithm, not reected in the table or included inthe description in the preceding section, was made to force the O3D algorithm to takea minimum number of steps. We found that when the trust region radius � becamesmall the algorithm would sometimes exit O3D after only one iteration, resulting in15

a poor step direction. This poor step would result in a further decrease in � , andeventually the algorithm would fail. When we required a minimum number of stepsto be taken in O3D (our choice was 7) this problem disappeared.Recently a collection of test problems has become available for the testing andcomparing of optimization algorithms, (see [13]). TheConstrained andUnconstrainedTesting Enviroment (CUTE), are quickly becoming standards with which researcherscan establish the viability and e�ectiveness of their numerical algorithms. These prob-lems are replacing the smaller and well scaled test problems of Hock and Schittkowski[25] and Schittkowski [32] which were not intended to be used to test large scale al-gorithms. Our results on the CUTE test problems are summarized in Tables 6, 7and 8. These problems were solved to the same stopping conditions as the problemsabove. Likewise, the same table format was used to present these numerical results.For detailed description of these problems, structure, motivation, and sources see [9].While it appears that the CUTE test problem set is rich in both large and smallscale unconstrained and equality constrained test problems, at present there are notmany large scale problems that include inequality constraints (and particularly non-linear inequality constraints). We chose problems that reected the class of problemsour algorithm was designed to solve. At least one inequality constraint was presentin each problem. The number of variables and/or constraints was large enough sothat the exploitation of special sparsity structure was important. The problems weselected from CUTE to report on were \CORKSCREW, MANNE, SVANBERG" and\ZIGZAG". The associated problem sizes are recorded in Table 5.It is worth commenting that much of the machinery developed in this paper dealswith e�ectively handling nonlinear inequality constraints. The performance of ouralgorithm on the CUTE test problem set is, therefore, slightly deceiving since manyof the constraints in these problems are simple bounds on the primal variables orpurely linear. (For instance, approximately 83% of the constraints in CORKSCREW,50% of the constraints in MANNE, and 66% of the constraints in ZIGZAG were linearand many of them were equality constraints). Although these caused no problem forour algorithm, the structure of these constraints was not completely exploited andthe extra machinery of our code resulted in an overhead with no performance bene�t.Clearly an algorithm designed speci�cally to deal with linear equality constraintsshould outperform our algorithm on these problems. The problem on which ouralgorithm appeared to perform best was SVANBERG, a problem with only inequalityconstraints (and a substantial number of them are nonlinear).We succeeded in solving all four problems with a reasonable number of inner andouter iterations. However, many of our algorithmic enhancements contributed littleto the solution process. The measure of distance to feasibility (the �{tube strategy),the nonmonotone updating of penalty parameter d, and the trust region strategy wereessentially dormant during the solution process regardless of the iterates' proximityto the solution or to feasibility. In fact, the only evidence of our enhancements on thesmall number of CUTE test problems that we solved occurred when d was decreasedslightly while solving the problem MANNE employing modi�ed Hessians with a trustregion strategy (see the third and fourth rows of Table 7). It is noteworthy that theiterates that resulted from solving this problem with the penalty parameter arti�ciallyheld �xed at d = 1 were identical to iterates that resulted for the adjusted d solution.This appears to illustrate that in this case the adjustment of d was purely super�cial.16

Problem nl-i qp-i conv krxlk1 d0 maxd mind �nal d last d-chaNLP1 - c 37 1435 2 1.2e-7 1.00e00 2.08e00 4.45e-2 9.35e-1 34NLP1 - f 49 1656 1 7.3e-8 1.00e00 1.07e00 5.89e-2 9.20e-1 46NLP2- c 66 2211 1 1.2e-7 1.00e00 2.83e00 6.89e-2 1.72e00 61NLP2- f 71 2369 1 3.1e-8 6.98e-1 3.00e00 8.31e-2 1.51e00 64NLP3-c 29 983 1 6.7e-8 1.00e00 1.12e00 8.13e-1 1.03e00 22NLP3-f 39 1314 1 4.2e-8 1.00e00 1.05e00 9.84e-1 1.03e00 31NLP4- c { 6 Failure 1.00e00 - - - failureNLP4 -f { 6 Failure 1.00e00 - - - failureTruss - c 103 3561 1 4.4e-8 9.87e-1 1.01e00 9.57e-2 9.57e-1 100Truss - f 110 3799 2 1.9e-7 1.00e00 1.08e00 8.93e-2 8.93e-1 106Stat - c 135 4561 3 1.1e-8 1.00e00 2.33e00 8.25e-2 9.70e-1 129Stat - f 144 4805 1 3.3e-8 1.00e00 2.16e00 7.77e-2 8.49e-1 140BCHeat-c 257 5398 1 7.8e-8 9.18e-1 1.98e00 5.23e-2 1.24e00 254BCHeat-f 289 5971 1 1.9e-7 1.00e00 4.21e00 4.92e-2 1.37e00 281Molec-c 37 1376 1 9.8e-9 9.88e-1 1.21e1 1.17e-2 9.81e-1 34Molec-f 41 1437 2 6.5e-6 1.00e00 2.38e0 1.49e-1 5.52e-1 39Table 2Modi�ed Hessians with no trust region

17

Problem nl-i qp-i conv krxlk1 d0 maxd mind �nal d last d-chaNLP1- c 94 1412 2 3.2e-7 1.00e00 8.58e00 3.13e-3 6.55e-2 88NLP1- f 108 2947 2 6.8e-8 1.00e00 7.50e00 1.23e-3 2.60e-2 99NLP2 - c 213 2744 1 1.6e-7 1.00e00 3.85e00 1.28e-3 6.48e-1 209NLP2-f 231 2963 1 5.4e-8 6.98e-1 1.10e01 5.67e-3 8.57e-1 221NLP3-c 42 932 1 3.7e-8 1.00e00 1.64e00 4.27e-1 9.83e-1 39NLP3-f 44 946 1 9.1e-8 1.00e00 1.53e00 2.71e-1 9.22e-1 38NLP4- c 199 2582 2 9.2e-6 1.00e00 1.41e00 8.92e-1 1.18e00 49NLP4-f 201 2599 2 5.2e-7 1.00e00 2.01e00 9.94e-1 1.21e00 55Truss - c 195 3528 1 6.1e-8 9.87e-1 1.13e00 9.87e-1 1.11e00 189Truss - f 195 3544 2 2.9e-7 1.00e00 1.47e00 1.00e00 1.47e00 188Stat - c 144 4519 3 2.3e-8 1.00e00 2.39e00 1.00e00 1.53e00 140Stat-f 150 4581 1 4.2e-8 1.00e00 2.48e00 1.00e00 1.89e00 144BCHeat -c 257 2898 1 8.1e-8 9.18e-1 4.15e00 1.38e-1 4.10e00 249BCHeat -f 289 3071 1 9.9e-8 1.00e00 3.74e00 2.44e-1 3.89e00 281Molec-c 39 546 1 1.3e-7 9.88e-1 1.71e01 3.74e-2 2.22e00 36Molec-f 44 621 1 6.6e-8 1.00e00 1.48e00 7.39e-2 9.52e-2 38Table 3Modi�ed Hessians with trust region

18

Problem nl-i qp-i conv krxlk1 d0 maxd mind �nal d last d-chaNLP1-c 43 820 2 2.1e-7 1.00e00 3.69e00 5.13e-2 7.13e-1 38NLP1-f 46 913 3 1.7e-8 1.00e00 6.58e00 6.27e-2 6.14e-1 39NLP2-c 51 1330 1 9.8e-8 1.00e00 4.11e00 9.65e-2 5.95e-1 44NLP2-f 53 1351 1 1.1e-7 6.98e-1 2.94e00 1.20e-1 2.47e-1 48NLP3-c 35 832 1 4.5e-8 1.00e00 1.89e00 2.46e-2 3.79e-1 29NLP3-f 39 867 1 7.3e-8 1.00e00 1.57e00 2.22e-2 4.52e-1 28NLP4-c { { Failure - - - - failureNLP4-f { { Failure - - - - failureTruss-c 94 2242 1 3.9e-8 9.87e-1 1.03e00 1.26e-1 9.11e-1 87Truss-f 96 2261 1 6.6e-8 1.00e00 1.33e00 5.67e-2 7.84e-1 85Stat-c 121 1577 3 1.1e-8 1.00e00 2.58e00 1.57e-1 9.34e00 114Stat-f 121 1585 1 4.7e-8 1.00e00 2.19e00 1.65e-1 7.03e00 111BCHeat-c 231 2498 1 1.2e-7 9.18e-1 3.24e00 6.04e-2 8.83e-1 226BCHeat-f 239 2871 3 2.4e-8 1.00e00 1.61e01 3.89e-2 4.98e-1 222Molec-c 39 550 1 8.76e-8 9.88e-1 1.02e00 4.34e-2 6.04e-1 36Molec-f 45 658 2 2.3e-7 1.00e00 8.78e00 1.35e-2 6.53e-1 42Table 4Un-modi�ed Hessians with trust regionProblem Variables ConstraintsCORKSCREW 96 159MANNE 300 600SVANBERG 500 1500ZIGZAG 304 1206Table 5Minimization parameters

19

Problem nl-i qp-i conv krxlk1 d0 maxd mind �nal d last d-chaCORKSCREW - c 4 73 1 2.6e-8 1.d0 1.d0 1.d0 1.d0 0CORKSCREW - f 5 90 1 3.3e-8 1.d0 1.d0 1.d0 1.d0 0MANNE - c 8 144 1 1.9e-8 1.d0 1.d0 1.d0 1.d0 0MANNE - f 8 146 2 1.3e-7 1.d0 1.d0 1.d0 1.d0 0SVANBERG - c 6 111 1 1.9e-8 1.d0 1.d0 1.d0 1.d0 0SVANBERG - f 6 111 1 3.9e-8 1.d0 1.d0 1.d0 1.d0 0ZIGZAG - c 5 93 1 1.8e-8 1.d0 1.d0 1.d0 1.d0 0ZIGZAG - f 6 99 1 9.9e-9 1.d0 1.d0 1.d0 1.d0 0Table 6Modi�ed Hessians with no trust region
Problem nl-i qp-i conv krxlk1 d0 maxd mind �nal d last d-chaCORKSCREW - c 4 71 1 4.1e-8 1.d0 1.d0 1.d0 1.d0 0CORKSCREW - f 5 87 1 5.2e-8 1.d0 1.d0 1.d0 1.d0 0MANNE - c 8 141 1 2.8e-8 1.d0 1.d0 8.51d-1 8.51d-1 2MANNE - f 8 142 1 5.4e-8 1.d0 1.d0 8.13d-1 8.13d-1 3SVANBERG - c 5 91 1 2.5e-8 1.d0 1.d0 1.d0 1.d0 0SVANBERG - f 6 100 1 1.3e-8 1.d0 1.d0 1.d0 1.d0 0ZIGZAG - c 5 89 1 1.8e-8 1.d0 1.d0 1.d0 1.d0 0ZIGZAG - f 5 91 1 1.6e-8 1.d0 1.d0 1.d0 1.d0 0Table 7Modi�ed Hessians with trust region
Problem nl-i qp-i conv krxlk1 d0 maxd mind �nal d last d-chaCORKSCREW - c 3 39 1 1.1e-8 1.d0 1.d0 1.d0 1.d0 0CORKSCREW - f 4 43 1 1.9e-8 1.d0 1.d0 1.d0 1.d0 0MANNE - c 5 64 1 2.4e-8 1.d0 1.d0 1.d0 1.d0 0MANNE - f 6 75 1 1.2e-8 1.d0 1.d0 1.d0 1.d0 0SVANBERG - c 3 30 3 1.0e-8 1.d0 1.d0 1.d0 1.d0 0SVANBERG - f 3 38 3 9.5e-9 1.d0 1.d0 1.d0 1.d0 0ZIGZAG - c 3 38 1 9.3e-9 1.d0 1.d0 1.d0 1.d0 0ZIGZAG - f 4 41 1 4.8e-8 1.d0 1.d0 1.d0 1.d0 0Table 8Un-modi�ed Hessians with trust region20

6. Future Directions. In this paper we have discussed in some detail an SQPalgorithm for solving large scale nonlinear problems. The numerical results withdefault parameter settings indicate that the procedures that we have implementedare robust, e�ective, and e�cient; the convergence theory in [4] provides a soundtheoretical basis for the procedure. Nevertheless, there are several areas in which thetechniques used here can be improved to allow the solution of larger and more di�cultproblems.Algorithmically, we observe that the current implementation requires the factor-ization of both (rgTrg+Z) and (rgrgT), the latter in O3D. While the sparse matrixpackage makes this reasonable for the problems that we have currently considered, itis clearly expensive to maintain both.The results reported here use analytic or �nite di�erence Hessian approximations.An examination of the details of O3D reveals that a limited memory BFGS or lim-ited memory SR1 could be readily incorporated into the code. We have done someexperimentation with such techniques; the results will be reported elsewhere [26].Many of the problems that we have seen have been degenerate and this signif-icantly slows the convergence of the method. The primary culprit is the extremelypoor multiplier estimates provided by the least squares procedure. Improvements inthis area are certainly required.In some problems (not reported here) that have nonlinear equality constraints,we have occasionally observed signi�cant di�culty in trying to satisfy the linearizedequality constraints, i.e., in completing Phase I. In these cases we have had some suc-cess in relaxing the constraints [26]. In the context of O3D, this can be accomplishedby simply �xing the arti�cial variable at some positive value and continuing the O3Diterations. In this approach, we often �nd that O3D converges and the \recentering"procedure mentioned in Section 2 has led to further improvements. The theory in [4]supports these ideas. The details will, again, be reported elsewhere.REFERENCES[1] P. T. Boggs, P. D. Domich, and J. E. Rogers, An interior-point method for general largescale quadratic programming problems, Annals of Operations Research, 62 (1996), pp. 419{437.[2] P. T. Boggs, P. D. Domich, J. E. Rogers, and C. Witzgall, An interior point method forlinear and quadratic programming problems, Mathematical Programming Society Commit-tee on Algorithms Newsletter, 19 (1991), pp. 32{40.[3] P. T. Boggs, A. J. Kearsley, and J. W. Tolle, A merit function for inequality constrainednonlinear programming problems, Internal Report 4702, National Institute of Standardsand Technology, 1991.[4] , A global convergence analysis of an algorithm for large scale nonlinear programmingproblems, SIAM Journal on Optimization, (to appear).[5] P. T. Boggs and J. W. Tolle, A family of descent functions for constrained optimization,SIAM Journal on Numerical Analysis, 21 (1984), pp. 1146{1161.[6] , A strategy for global convergence in a sequential quadratic programming algorithm,SIAM Journal on Numerical Analysis, 26 (1989), pp. 600{623.[7] , Sequential quadratic programming, Acta Numerica, 1995 (1995), pp. 1{52.[8] P. T. Boggs, J. W. Tolle, and A. J. Kearsley, A truncated SQP algorithm for large scalenonlinear programming problems, in Advances in Optimization and Numerical Analysis:Proceedings of the Sixth Conference on Numerical Analysis and Optimization, S. Gomezand J.-P. Hennart, eds., Dordrecht, 1994, Kluwer Academic Publishers, pp. 69{78.[9] I. Bongartz, A. R. Conn, N. I. M. Gould, and P. T. Toint, Cute: Constrained and uncon-strained testing environment, ACM Trans. Math. Software, 21 (1995), pp. 123{160.21

[10] J. Burger and M. Pogu, Functional and numerical solution of a control problem originatingfrom heat transfer, Journal of Optimization Theory and Applications, 68 (1991), pp. 49{73.[11] C. Carthel, R. Glowinski, and J. L. Lions, On exact and approximate boundary controlla-bilities for the heat equation. a numerical approach, Jounal of Optimization Theory andApplications, 82 (1994), pp. 429{484.[12] T. F. Coleman, Large scale numerical optimization: Introduction and overview, in Encyclo-pedia of Computer Science and Technology, Marcel Dekker (to appear), New York, 1992.[13] A. R. Conn, N. I. M. Gould, and P. T. Toint, Lancelot: A Fortran Package for Large-ScaleNonlinear Optimization, vol. 17 of Series in Computational Mathematics, Springer-Verlag,Heidelberg and New York, 1992.[14] , Large-scale nonlinear constrained optimization, in Proceedings of the Second Interna-tional Conference on Industrial and Applied Mathematics, Philadelphia, PA, 1992, Societyfor Industrial adn Applied Mathematics, pp. 51{70.[15] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM Journal onNumerical Analysis, 19 (1982), pp. 400{408.[16] J. Dennis, Jr., M. M. El-Alem, and M. C. Maciel, A global convergence theory for gen-eral trust-region-based algorithms for equality constrained optimization, SIAM Journal onOptimization, 7 (1997), pp. 177{207.[17] J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimizationand Nonlinear Equations, Prentice-Hall, Englewood Cli�s, New Jersey, 1983.[18] S. C. Eisenstat and H. Walker, Globally convergent inexact Newton methods, SIAM Journalon Optimization, 4 (1994), pp. 393{422.[19] M. M. El-Alem, A robust trust region algorithm with nonmonotonic penalty parameter schemefor constrained optimization, SIAM Journal on Optimization, 5 (1995), pp. 348{378.[20] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, NewYork, 1981.[21] P. E. Gill, M. A. Saunders, W. Murray, and M. H. Wright, Constrained nonlinear pro-gramming, in Optimization, G. L. Nemhauser, A. H. G. R. Kan, and M. J. Todd, eds.,Amsterdam, 1989, North{Holland, pp. 171{210.[22] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag,Berlin, 1984.[23] W. Glunt, T. L. Hayden, and M. Raydan,Molecular conformations from distance matrices,Journal of Computational Chemistry, 14 (1993), pp. 114{120.[24] M. Gockenbach and A. J. Kearsley, Optimal signal sets for non-gaussian detectors, SIAMJournal on Optimization, (to appear) (1997).[25] W. Hock and K. Schittkowski, Test Examples for Nonlinear Programming Codes, LectureNotes in Economics and Mathematical Systems 187, Springer-Verlag, Berlin, 1981.[26] A. J. Kearsley, The Use of Optimization Techniques in the Solution of Partial Di�erentialEquations from Science and Engineering, PhD thesis, Rice University, 1996.[27] A. J. Kearsley, R. A. Tapia, and M. Trosset, The solution of the metric stress and sstressproblems in multidimensional scaling using Newtons method, Computational Statistics, 13(1998), pp. 369{396.[28] F.-S. Kupfer and E. W. Sachs, Numerical solution of a nonlinear parabolic control problem bya reduced SQP method, Computational Optimization and Applications, 1 (1992), pp. 113{135.[29] J. L. Lions, Optimal Control of Systems Governed by Partial Di�erential Equations, Springer-Verlag, Berlin, 1971.[30] , Exact controllability, stabilization and perturbations for distributed systems, SIAM Re-view, 30 (1988), pp. 1{68.[31] J. Mor�e and D. C. Sorensen, Computing a trust region step, SIAM Journal of Scienti�c andStatistical Computing, 4 (1983), pp. 553{572.[32] K. Schittkowski, More Test Examples for Nonlinear Programming Codes, Lecture Notes inEconomics and Mathematical Systems 282, Springer-Verlag, Berlin, 1987.[33] R. A. Tapia, On the role of slack variables in quasi-Newton methods for constrained optimiza-tion, in Numerical Optimization of Dynamical Systems, L. C. W. Dixon and G. P. Szeg�o,eds., Amsterdam, 1980, North-Holland, pp. 235{246.[34] R. A. Tapia and J. R. Thompson, Nonparametric Probability Density Estimation, JohnsHopkins, Baltimore, 1978.[35] J. R. Thompson and R. A. Tapia, Nonparametric Function Estimation, Modeling, and Sim-ulation, SIAM, Philadelphia, 1990.A. Problem Descriptions. 22

Nonlinear Program # 1 (NLP1)min f(x) = 12((x1 � x100)x2 + x101)2subject to:x1xi+1 + (1 + 2i)xix100 + x101 � 0; i = 1; : : : ; 99(sin(xj))2 � 12 � 0; j = 1; : : : ; 100sin((xj)2) � 0; j = 1; : : : ; 100xj � j; j = 1; : : : ; 100�xj � 1; j = 1; : : : ; 100(x1 + x100)2 = 1Explanation: This problem with 101 variables and 500 constraints is taken from[13] where it was used to illustrate separability in nonlinear programming.Nonlinear Program # 2 (NLP2)min f(x) = 100024 nXi=1 x3i!2 � nXi=1 x2i! nXi=1 x4i!35subject to:x1 � 0 and xn � 1xi � xi+1 � 0; i = 1; : : : ; (n� 1)x2i � xix2i+1 � 0; i = 1; : : : ; (n� 1)Explanation: There are many local extrema for this problem; we made no speciale�ort to locate global minima. The objective function is highly nonlinear and has adense Hessian, but the constraints have sparse banded �rst derivatives. Our exampleuses n = 250. Nonlinear Program # 3 (NLP3)min f(x) = nXi=1 �100(xi+1 � x2i)2 + (1� xi)2�subject to:x1 � 0 and xn � 0xi � xi+1 � 0; i = 1; 3 : : : ; (n� 1)4xi+1 � x2i � 4 � 0 i = 1; 3 : : : ; (n� 1)2xi+1 + xi � 1 � 0 i = 1; 3 : : : ; (n� 1)Explanation: The objective function here is Rosenbrock's function. The objectivefunction is nonlinear and has a tridiagonal Hessian. The constraints have sparsebanded �rst derivatives. We solved the problem with n = 250.Nonlinear Program # 4 (NLP4)23

min f(x) = xTL2xsubject to:i� (x2i + x22i) � 0; i = 1; : : : ; (n=2)p2i� (xi + x2i) � 0; i = 1; : : : ; (n=2)log(xi + xi+1 + xi+2)� xi + xi+1 + xi+2 � 0i = 1; : : : ; n� 2Explanation: The matrix L is the discretized tridiagonal Laplacian operator sothe objective function is convex and quadratic. The constraints are nonlinear andthe gradients of the active constraints at the solution are linearly dependent. Theproblem on which we reported results has n = 1000.Truss Problem (Truss)minx �(cTx)subject to:S(x)�1F � b � 0X(x)GS(x)�1F � �x � 0Explanation: This problem chooses the state variables x 2 Rn to minimize theweight of an optimal n-bar truss design, subject to constraints on the deection andstress of the truss. The function � is the density of the material and in our problemwas a non-convex polynomial, �(�) = �4� �2 +1. c is a vector containing the lengthsof the bars in the truss. The matrix S is the positive de�nite sti�ness matrix, G isa matrix that represents the geometry of the truss and design and F is the vector ofapplied forces. The vector b and scalar � form bounds on the maximum allowabledeections in the state variables, and the maximum allowable stress in the truss. Wesolved a problem with n = 500 and 1500 constraints.Maximum Penalized Likelihood Estimate (Stat)minx f(x(t)) = � nYi=1x(t)e��(x(t))subject to:x 2 H2(�1;1)Z 1�1 x(t)2dt = 1�x(t) � 0 for all tExplanation: This particular maximum penalized likelihood estimator is some-times referred to as `the second estimate of Gaskins and Good' (see, e.g., [34] or [35]).We discretize this problem by taking a �nite random sample of ti's say, ti 2 [�; �].�(x) is de�ned by �(x) = � Z 1�1 x0(t)2dt+ � Z 1�1 x00(t)2dt(A.1)and given � > 0 the regularized function ��(x) is de�ned by��(x) = �(x)� Z 1�1 x(t)2dt:(A.2) 24

The discrete approximate of x(t) was taken to be a cubic spline. The resulting problemhad 500 variables and 1000 constraints.Boundary Control of Heat Equation (BCHeat)min f(x; y) = Z T0 �(x(1; t)� xd(t))2 + ay(t)� dtsubject to:C(x(z; t))xt(z; t)�r(�(x(z; t))rx(z; t)) = f(z; t) on
� [0; T]�(x(z; t))rx(z; t) = b(z; t) on @
� [0; T]x(z; 0) = x0 on
x 2 L2(0; T ;H1(
))y 2 L2(0; T)Explanation: The desired pro�le is denoted by xd(t) and
 is a square in R2.The inequality constraints are quadratic and linear, and arise from enforcing thespace conditions x 2 L2(0; T)�H1(
)) and y 2 L2(0; T). Our discretization resultsin 500 variables and 1200 constraints. Similar problems have been solved by Newton'smethod (see [10]), conjugate gradient methods (see [11]) and by reduced methods (see[28]). Molecule Distance Problem (Molec)minx2R3d k��D(X)kFsubject to:aij � Dij � bijExplanation: Here �; D(X); a; b 2 Rm�m and X 2 Rn�3 where n is the numberof atoms and m is the number of interatomic distances (2m = n2 � n). � is a setof observed data, X is a con�guration of atoms (their locations in R3, and D is atransformation into the space of \distance matrices". The bound matrices a; b areupper and lower bounds based on estimating errors in measurements. This problemarises in the processing of NMR data for visualization of large proteins and organicmolecules (see, e.g., [23] and [27]). The results in the tables correspond to a problemwe solved with 100 variables and 5000 constraints.

25

