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Abstract

The paper is concerned with approximations to nonlinear filtering
problems that are of interest over a very long time interval. Since the
optimal filter can rarely be constructed, one needs to compute with numer-
ically feasible approximations. The signal model can be a jump–diffusion,
reflected or not. The observations can be taken either in discrete or con-
tinuous time. The cost of interest is the pathwise error per unit time over
a long time interval. In a previous paper of the authors [2], it was shown,
under quite reasonable conditions on the approximating filter and on the
signal and noise processes that (as time, bandwidth, process and filter
approximation, etc.) go to their limit in any way at all, the limit of the
pathwise average costs per unit time is just what one would get if the ap-
proximating processes were replaced by their ideal values and the optimal
filter were used. When suitable approximating filters cannot be readily
constructed due to excessive computational requirements or to problems
associated with a high signal dimension, approximations based on random
sampling methods (or, perhaps, combinations of sampling and analytical
methods) become attractive, and are the subject of a great deal of atten-
tion. This is somewhat analogous to the use of monte carlo methods for
high dimensional integration problems. Owing to the sampling errors as
well as to the other (computational and modeling) approximations that
are made, in the filter and signal processes, it is conceivable that the long
term pathwise average errors per unit time will be large, even with ap-
proximations that would perform well over some bounded time interval.
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The work of the previous paper is extended to a wide class of such al-
gorithms. Under quite broad conditions, covering virtually all the cases
considered to date, it is shown that the pathwise average errors converge
to the same limit that would be obtained if the optimal filter were used,
as time goes to infinity and the approximation parameter goes to its limit
in any way at all. All the extensions (e.g., wide bandwidth observation or
system driving noise) in [2] hold for our random sampling algorithms as
well.

Key words: Nonlinear filters, numerical approximations to nonlinear filters,
robustness of filters, infinite time filtering, occupation measures, pathwise aver-
age errors, random sampling algorithms
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1 Introduction

This paper is an extension of the work in [2], which was concerned with the
performance of a wide variety of approximations to optimal nonlinear filters
over very long time intervals, where pathwise average errors are of interest.
Let us first briefly review the motivation for that paper. Suppose that the
underlying signal model is a diffusion or jump-diffusion X(·) (reflected or not),
or a discrete time Markov chain, with white noise corrupted observations, and
the dynamics and/or the observation function are nonlinear. Then, except for
some few examples, one cannot construct “finite” or computable optimal filters,
and some type of approximation must be used.

A very common approximation method starts by approximating the process
X(·) by a simpler process X̃h(·) for which the optimal nonlinear filter can be
constructed, and then uses that filter but with the observations being those on
the actual physical process X(·). For example, X̃h(·) might be a discretized (in
state and/or in time) form of X(·). It is such that, as h → 0, X̃h(·) converges
weakly to X(·). Let Πh(·) denote the actual approximating filter. For each h, it
is a measure valued process and Πh(·) converges weakly to the true conditional
distribution process as h→ 0. I.e., the computed expectations of any bounded
and continuous function converges to the true conditional expectation [24, 22].
However, if the filter is to be used over a very long large interval [0, T ], the
most appropriate errors are often the pathwise average (rather than the math-
ematical expectation) errors per unit time, for whatever definition of “error” is
appropriate. This is the case since we work with only one long path, and the
mathematical expectation over all paths might not be a useful indicator of the
quality of the approximation. For specificity in this introduction, let us define
the average pathwise cost or error on [0, T ] to be

Gh,T (φ) =
1
T

∫ T

0

f
(
φ(X(t))− 〈Πh(t), φ〉

)
dt, (1.1)
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where φ(·) and f(·) are arbitrary bounded and continuous functions. Our results
cover much more general forms of the cost or error function.

Now there are two parameters, h and T . The convergence of the filter
process Πh(·) over any fixed finite interval says nothing about the behavior of
the pathwise average errors as h→ 0 and T →∞ arbitrarily. Under reasonable
conditions, it was shown in [2], that the pathwise errors converge in probability
to an optimal deterministic limit, and this limit is exactly what one would
get for the limit of the mathematical expectation EGh,T (φ) if the true optimal
filter were used instead of Πh(t). This is an ideal result. The convergence is
independent of how h → 0 or T → ∞. For applications, it is important that h
and T be allowed to go to their limits in an arbitrary way.

The reference [2] actually dealt with a much more general setup. The signal
process was allowed to be not necessarily a diffusion but a process (possibly
driven by wide bandwidth noise), which converges weakly to a diffusion as some
parameter converges to its limit (e.g. the noise bandwidth goes to infinity).
Wide bandwidth observation noise was also allowed. The case where the obser-
vations are taken in discrete time was also covered.

The filtering problem with observations in continuous time is often justified
as being the limit, as ∆ → 0, of the problem where the observations are taken
at the discrete times n∆, n = 1, 2, . . . . As ∆ → 0, the problem of correlation
in the observation noise can become serious. The wide bandwidth observation
noise, combined with all of the other approximations, can conceivably lead to
serious errors when T is large. Let the observations be in discrete time with
a small interval between them, the observation noise ξ∆n be wide bandwidth
(but whose suitably scaled sums converge weakly to a Wiener process), let
the signal be only approximated by a sampled diffusion, and let the pathwise
average errors over a long time interval T be of interest. Then under broad
conditions which fill in the above description, the desired limit result continues
to hold, as all the parameters go to their limits simultaneously (inter-observation
interval, observation noise bandwidth, h, the parameter denoting the signal
approximation, T ). The desired result is that the limit of the pathwise errors
are what one would get for the optimal filter with the limit (i.e., the ideal) signal
and observational model used.

We also note the reference [24], where the pathwise average error was re-
placed by the expectation of the pathwise average error. In [17], the asymptotics
of the filter alone were dealt with, and it was presumed that the filter was the
true optimal filter, not an approximation.

We now turn to the description of this paper. In [2], the approximate filter
was that for an approximating process X̃h(·) but with the actual physical obser-
vations on X(·) used. One common and convenient example is the Markov chain
approximation method, where the approximating process X̃h(·) is a continuous
time interpolation of a Markov chain [23, 22]. When the dimension is larger than
three or four, such methods can have excessively high computational require-
ments. Alternatives, based on random sampling or Monte Carlo then become
attractive, analogous to the case of classical multidimensional integration. The
topic is of considerable current interest; e.g., [3, 4, 5, 11, 12, 14, 15, 26, 27, 28].
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Such methods are also of interest when the transition probabilities are very
hard to compute; for example, in discrete time problems, where the signal is
the output of a system with very complex dynamics, but which can be conve-
niently simulated. All of the issues in [2] (which were mentioned above) arise
here as well, in addition to the potentially serious errors due to the random
sampling and the very large time intervals. This paper extends the results in
[2] to such sampling based algorithms. To distinguish the algorithms in [2] from
those of this paper, we refer to the former as integration algorithms, since the
conditional distributions are computed using integrations or summations over
the distributions of the approximating processes. One must keep in mind that
random sampling based filters usually require a large number of samples if they
are to work well.

Appropriate analogs of the occupation measure methods in [2] are employed
for the proofs. Section 2 provides the standard background for the filtering
problem in continuous time. Section 3 discussed the formulation of the limit
problem for the continuous time case in terms of occupation measures, and states
a main result from [2] which will be used. Section 4 repeats this for the discrete
time problem. In order to effectively exploit the past results, the problem is
set up in such a way that the proofs are close to those for the “integration”
algorithms of [2]. Thus only the differences in the proofs will be presented. In
preparation for this, the structure of the proof in [2] is briefly outlined, and the
points where there will be a difference noted. A fundamental assumption in
[2] is the consistency assumption which quantifies the weak convergence of the
computational approximating process X̃h(·) to X(·) as h → 0. This is (A4.1)
here. It will be weakened in several ways, depending on the form of the random
sampling algorithm.

Section 5 concerns a variety of forms of the sampling algorithms in discrete
time. The simplest form is based on a pure random sampling of an approx-
imating process X̃h(·). The part of the convergence proof that differs from
that in [2] is given. The basic scheme can be generalized in many ways. The
standard variance reduction methods such as antithetic variables and stratified
sampling can be used. Combinations of integration and sampling methods are
often of great use, since it might be most convenient to simulate some parts of
the problem, but to use “integrations” with respect to approximating variables
in others. See Examples 4 and 5 in Section 5. We rephrase the consistency
condition so that it covers quite general algorithms. Section 6 concerns the
use of importance sampling methods for the discrete time problem [3, 9, 28].
The standard form is discussed. But, the most interesting form is where the
measure change depends on the next observation, which is thus used to guide
the simulation on the current time interval. Some such algorithms were used in
[3, 28], as well as by the authors. The proofs for all of these cases differ only
slightly from that given for the basic example in Section 5 and the differences
are only discussed. Finally in Section 7 we study the continuous time analogs
of the various random sampling and combined random sampling-integration al-
gorithms studied in Sections 5 and 6. We will begin by indicating the form of
the approximating filter for the case where the random samples are mutually
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independent and identically distributed. We will then consider a general form
of the approximating filter which would cover not only the case of such i.i.d.
samples but also various variance reduction schemes and importance sampling
algorithms of the type studied for discrete time problems in Sections 5 and 6.

2 Background: The Optimal Filter and Numer-
ical Approximations: Continuous Time

The optimal filter in continuous time. For simplicity and specificity and
until further notice, suppose that the signal process is the IRr valued diffusion

dX = p(X)dt+ σ(X)dW, (2.1)

where W (·) is a standard vector–valued Wiener process and p(·) and σ(·) are
continuous. We suppose that the solution is unique in the weak sense for each
initial condition. Furthermore, suppose throughout that there is a compact set
G such that X(t) ∈ G for all t, if X(0) ∈ G, and we always let X(0) ∈ G.
All probability measures (random or not) on IRr considered hereafter will be
assumed to have their support contained in G. The observation process is

Y (t) =
∫ t

0

g(X(s))ds+B(t), (2.2)

where g(·) is a continuous vector–valued function and B(·) is a standard vector-
valued Wiener process, independent of W (·) and X(0).

As pointed out in [2], the approximation and limit results proved there con-
tinue to hold, with minor changes in the proofs, for the case where the signal
process is a jump diffusion or is a reflecting diffusion with appropriate condi-
tions on the reflection direction. Indeed, consider the problem where the path
is constrained to lie in G by boundary reflection. Let G have piecewise smooth
boundaries, and for appropriate conditions on the reflection direction, replace
(2.1) by the solution to the Skorohod problem:

dX = p(X)dt+ σ(X)dW + dZ,

where Z is the reflection term. Under suitable conditions, the solution is weak
sense unique and is a strong Markov process [6]. With minimal alterations, all
of the results of this paper carry over to this model, and to the extension where
a jump driving process is added. However, for the sake of simplicity, we confine
our work to the model (2.1).

Let X̃(·) be a process satisfying (2.1), and which (loosely speaking) is con-
ditionally independent of (X(·),W (·), B(·)) given its initial condition: We for-
malize this as follows. X̃(·) is a process satisfying (2.1) such that there exists a
(possibly random) probability measure Π∗ on IRr with the properties that con-
ditioned on Π∗, X̃(·) is independent of (X(·),W (·), B(·)) and the conditional
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distribution of X̃(0) given Π∗ is Π∗. We will call Π∗ the “random initial distri-
bution” of X̃(·) (i.e., the distribution of X̃(0)). It will vary depending on the
need, and will be specified when needed.

For any process U(·), let Ua,b, a ≤ b, denote the set {U(s), a ≤ s ≤ b}.
Let EZf denote the expectation of a function f given the data (or σ−algebra)
Z. Until further notice, let Π(0) denote the distribution of X(0), and Π(t) the
distribution of X(t) given the data Y0,t and Π(0). Define

R(X̃0,t, Y0,t) = exp
[∫ t

0

g′(X̃(s))dY (s)− 1
2

∫ t

0

∣∣∣g(X̃(s))
∣∣∣2 ds] . (2.3)

Using the representation of the optimal filter Π(·) as it was originally de-
veloped in [19], for each bounded and measurable real–valued function φ(·), we
can define the evolution of the optimal filter by

∫
φ(x)Π(t)(dx) ≡ 〈Π(t), φ〉 =

E{Π(0),Y0,t}

[
φ(X̃(t))R(X̃0,t, Y0,t)

]
E{Π(0),Y0,t}R(X̃0,t, Y0,t)

. (2.4)

The notation E{Π(0),Y0,t} denotes the expectation conditioned on the data Y0,t

and on Π(0) being the initial distribution of X̃(·) (i.e., Π(0) is the current value
of what we generically called Π∗ above). This representation is convenient for
our purposes, and is equivalent to the forms used subsequently which were based
on measure transformations, as in [7, 13, 25].

The Markov property of X(·) implies that the filter defined by (2.4) satisfies
the semigroup relation:

〈Π(t), φ〉 =
E{Π(t−s),Yt−s,t}

[
φ(X̃(s))R(X̃0,s, Yt−s,t)

]
E{Π(t−s),Yt−s,t}R(X̃0,s, Yt−s,t)

, 0 < s ≤ t. (2.5)

In (2.5), Π(t − s) is the random initial distribution of X̃(·). Throughout the
paper, we use the notation E{Π(a),Ya,b}F (X̃0,s, Ya,b) for the conditional expecta-
tion, given the data {Ya,b,Π(a)} and where the random initial distribution for
X̃(·) is Π(a). The analogous notation will be used when approximations to X̃(·)
are used.

An approximating filter. Except for some special cases, Π(t) is very hard to
compute for nonlinear problems. A fundamental difficulty in realizing (2.4) (in
either discrete or continuous time), is that one needs to compute the evolution of
a random measure on the range space of the signal process, and these measures
are rarely defined by a finite dimensional parameter (of reasonable size). Thus,
in applications to nonlinear problems one must use some type of approximation.
Sometimes, one can effectively linearize. Otherwise, perhaps the most common
method of approximation is to approximate the signal process by a simpler form
for which a convenient filter can be constructed. Then the approximate filter
is obtained by constructing the filter for that approximating signal process,
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but using the actual physical observations. For example, the approximating
filter might be that for a time and space discretization of the process (2.1).
The key mathematical ideas behind such approximations and their convergence
properties (over finite time intervals) are in [23], in connection with the Markov
chain approximation method, a canonical form of this idea.

Let us formalize the above canonical approximation. Let X̃h(·) denote the
approximating process, which is used to construct the approximating filter. I.e.,
the approximating filter is constructed as though the true process was X̃h(·),
but in this filter, we use the actual physical observations defined by (2.2).

Let Πh(0) be an approximation to the true initial distribution of X(0). The
X̃h(·) might be a Markov process, for example a continuous time Markov chain
on a finite state space. More commonly, it is an interpolation of a discrete
parameter process: I.e, there is δh > 0 and which goes to zero as h → 0 such
that X̃h(·) is constant on the intervals [nδh, nδh + δh) and X̃h(nδh), n = 0, . . . ,
is Markov. When the signal process is defined in continuous time, we always
assume that X̃h(·) is of one of these two forms. Furthermore, we always suppose
(without loss of generality) that X̃h(t) takes values in G.

Define

R(X̃h
0,t, Y0,t) = exp

[∫ t

0

g′(X̃h(s))dY (s)− 1
2

∫ t

0

∣∣∣g(X̃h(s))
∣∣∣2 ds] . (2.6)

For Markov X̃h(·), the approximating filter Πh(·) is defined by

〈Πh(t), φ〉 =
E{Πh(0),Y0,t}

[
φ(X̃h(t))R(X̃h

0,t, Y0,t)
]

E{Πh(0),Y0,t}R(X̃h
0,t, Y0,t)

, (2.7)

and Πh(·) satisfies the semigroup equation

〈Πh(t+ s), φ〉 =
E{Πh(t),Yt,t+s}

[
φ(X̃h(s))R(X̃h

0,s, Yt,t+s)
]

E{Πh(t),Yt,t+s}R(X̃h
0,s, Yt,t+s)

, s > 0, t ≥ 0. (2.8)

According to our standard notation, the initial distribution of X̃h(·) in (2.6) is
Πh(0) and it is Πh(t) in (2.8).

When X̃h(·) is piecewise constant with X̃h(nδ) being Markov, then the ap-
proximating filter is defined by (2.7) and (2.8), but where t and s are integral
multiples of δ, and Πh(·) is constant on the intervals [nδ, nδ + δ). Thus, the
evolution of Πh(·) can be written in recursive form in general. We see that,
by Bayes’ rule, (2.7) and (2.8) are filters for the X̃h(·) process, but with the
actual observations Ynδ,nδ+δ used at step n. The conditions for convergence of
this Markov chain approximation method are in [20, 23]. The following is the
essential condition.

A2.1. A consistency assumption. We assume that for any sequence {Πh} of
probability measures converging weakly to some probability measure Π, X̃h(·)
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with the initial distribution Πh converges weakly to X̃(·) with the initial distri-
bution Π.

By the fact that X(·) is a Feller process, (A2.1) is equivalent to the follow-
ing: For any sequence Πh and any q(·) which is a bounded, continuous and
real–valued function on the Skorohod space D[G; 0,∞) (the space of G-valued
functions which are right continuous and have left hand limits and with the
Skorohod topology),

EΠhq(X̃h(·))− EΠhq(X̃(·)) → 0, (2.9)

as h→ 0. The proof that (2.9) holds under (A2.1) uses an argument by contra-
diction. Suppose that it were false. Then, there is a sequence Πh and a ρ > 0
such that the absolute value of the left side of (2.9) is greater than ρ. By taking
a subsequence, we can suppose, without loss of generality, that there is Π such
that Πh ⇒ Π. Then, rewrite the left side of (2.9) as[

EΠhq(X̃h(·))− EΠq(X̃(·))
]

+
[
EΠq(X̃(·))− EΠhq(X̃(·))

]
.

The first term goes to zero by (A2.1) and the second by the Feller property
of X(·), thus leading to a contradiction. The converse is proved in a similar
manner.

3 Occupation Measures: Continuous Time

We now provide the definitions which are needed for the formulation of the
limit and robustness results. The methods are based on occupation measure
arguments.

Assumptions and definitions. The measure valued process Π(·) is well de-
fined by (2.4) no matter what the initial condition Π(0) is, even if it is not the
distribution of X(0), or if it is random but independent of (W (·), B(·)). For
example, we might build a filter with an incorrect initial value Π(0). This more
general interpretation will be important for the sequel. Thus, we can speak
of the pair (X(·),Π(·)) as having an arbitrary initial condition. We say that
the process (X(·),Π(·)) is stationary if the distribution of (X(t+ ·),Π(t+ ·))
does not depend on t. From the Feller–Markov property of X(·) and the semi-
group relation (2.5) it is easy to show that (X(·),Π(·)) is a Feller–Markov
process. Since it takes values in a compact state space there exists at least
one stationary process. Let Q̄(·) denote the measure of the joint process Ψ(·)
= (X(·),Π(·), Y (·), B(·),W (·)), where (X(·),Π(·)) is stationary. Let Q̄f (·) de-
note the measure of the stationary joint process (X(·),Π(·)).

We make the following key assumption throughout.

A3.1. A uniqueness assumption. The process (X(·),Π(·)) has a unique
stationary measure.
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The importance of the uniqueness of the stationary joint process was shown
in [24]. Some discussion of the uniqueness of Q̄f (·) is in [2, Section 7], where
there is also a discussion of the filtering interpretation of the stationary process.
For each t ≥ 0, define the shifted process Ψh

f (t, ·) = (
(
X(t+ ·),Πh(t+ ·)

)
and

the centered and/or shifted processes

Ψh(t, ·) =
(
Ψh

f (t, ·), Y (t+ ·)− Y (t), B(t+ ·)−B(t),W (t+ ·)−W (t)
)
.

The path spaces. The vector-valued processes such as X(·), Y (·), B(·), X̃(·),
and so forth, will take values in the path space D[IRk; 0,∞); i.e., in the space
of IRk-valued functions which are right continuous and have left hand limits
(CADLAG), with the Skorohod topology [1, 8] for the appropriate value of k.

Let M(G) denote the space of measures on G, with the weak topology. Let
mn(·) and m(·) be in M(G). Recall that mn(·) converges weakly to m(·) if for
each bounded and continuous function φ(·) on G, 〈mn, φ〉 → 〈m,φ〉. Let {φi(·)}
be a set of continuous functions which are dense (in the topology of uniform
convergence) in the set of bounded and continuous functions on G. Then weak
convergence is equivalent to the metric convergence

d(mn,m) =
∑

i

2−i|〈mn −m,φi〉| → 0.

The optimal filter Π(t) and its approximations Πh(t) at each time t take values
in M(G). The process Π(·) and its approximations will take values in the space
D[M(G); 0,∞), also with the Skorohod topology used.

For a random variable Z and set A, let IA(Z) denote the indicator function
of the event that Z ∈ A. Let C be a measurable set in the product path space
of Ψh(t, ·). Define the occupation measure Qh,T (·) by

Qh,T (C) =
1
T

∫ T

0

IC(Ψh(t, ·))dt. (3.1)

In the sequel, lower case letters x(·), π(·), etc., are used for the canonical sample
paths. Letters such as x, y, . . . , are used to denote vectors such as x(t), y(t), etc.
Define ψf (·) = (x(·), π(·)),Ψf (·) = (X(·),Π(·)) and ψ(·) = (x(·), π(·), y(·), b(·), w(·)).

The random measures Qh,T (·) defined by (3.1) take values in the space of
measures on the product path space

M
(
D[IRk; 0,∞)×D[M(G); 0,∞)

)
for the appropriate value of k (which is the sum of the dimensions of x, y, b, w).

An error or cost function. Let F (·) be a real–valued function onD[G; 0,∞)×
D[M(G); 0,∞) which is measurable and continuous (w.p.1 with respect to the
measure Q̄f (·)). Owing to the compactness of G, we can suppose that F (·) is
bounded. As in [2], we are concerned with the asymptotic (pathwise) behavior
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of the sample averages
∫ T

0
F (Ψh

f (t, ·))dt/T as h → 0 and T → ∞. Let Qh,T
f (·)

denote the (X(·),Πh(·))−marginal of Qh,T (·), i.e. for arbitrary measurable set
C ′ in the product path space of Ψh

f (t, ·)

Qh,T
f (C ′) =

1
T

∫ T

0

IC′(Ψh
f (t, ·))dt.

By the definition of the occupation measure, we can write

1
T

∫ T

0

F (Ψh
f (t, ·))dt =

∫
F (ψf (·))Qh,T

f (dψf (·)). (3.2)

The representation (3.2) shows that the asymptotic values of the left hand side
can be obtained from the limits of the set of occupation measures Qh,T

f , as h→ 0
and T →∞.

It was shown in [2] that for a broad class of approximate filters

1
T

∫ T

0

F (Ψh
f (t, ·))dt→

∫
F (ψf (·))Q̄f (dψf (·)) (3.3)

in probability. It was also shown that

1
T

∫ T

0

F (X(t+ ·),Π(t+ ·)))dt→
∫
F (ψf (·))Q̄f (dψf (·)) (3.3′)

where Π(·) in (3.3’) is the true optimal filter. Note that via an application
of dominated convergence theorem we can replace the expressions on the left
sides of (3.3) and (3.3′) by their expected values. These results say that sample
pathwise average errors of many types will converge to the same stationary value
that one would get if the true optimal filter were used, and the pathwise average
error were replaced by its expectation. This desired result is formalized in the
theorem below.

The convergence is in the sense of probability, and holds as T → ∞ and
h → 0 in any way at all. The arbitrariness of the way that T → ∞ and h → 0
is crucial in applications. It is important that the approximation is good for all
small h, not depending on T , if T is large enough.

Let φ(·) be a bounded, continuous and real–valued function. A special case
of (3.3) is the convergence of the mean square error

Gh,T (φ) ≡ 1
T

∫ T

0

[
〈Πh(t), φ〉 − φ(X(t))

]2
dt

→
∫

[〈π(0), φ〉 − φ(x(0))]2 Q̄f (dψf (·))
(3.4)

in the sense of probability as h → 0 and T → ∞ in any way at all. The right
side of (3.4) is what one would also get as the limit if the true optimal filter
were used (and even with an expectation of the pathwise average used) [2]. In
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this sense there is pathwise asymptotic optimality of the approximating filter
over the infinite time interval.

The following is the main background theorem from [2].

Theorem 3.1.[2, Theorem 3.2.] Let the filtering model be as in Section 2.
Assume the uniqueness condition (A3.1). Define the approximate filter Πh(·)
via (2.7) where X̃h(·) satisfies the consistency condition (A2.1). Then, for ev-
ery sequence {hk, Tk}k≥1 such that hk → 0 and Tk →∞ as k →∞, the family
{Qhk,Tk(·); k ≥ 1} is tight. Extract a weakly convergent subsequence with weak
sense limit denoted by Q(·), a measure–valued random variable. Let Qω(·) de-
note the sample values of Q(·). Qω(·) induces a process, denoted by

Ψω(·) = {Xω(·),Πω(·), Y ω(·), Bω(·),Wω(·)} .

Here, the ω indexes the process, not the sample paths of the process. For almost
all ω the following hold. The processes (Bω(·),Wω(·)) are independent standard
Wiener, with respect to which {Xω(·),Πω(·), Y ω(·)} are non anticipative.

dY ω = g(Xω)dt+ dBω, (3.5)

dXω = p(Xω)dt+ σ(Xω)dWω. (3.6)

For each bounded and measurable real–valued function φ(·)

〈Πω(t), φ〉 =
E{Πω(0),Y ω

0,t}

[
φ(X̃(t))R(X̃0,t, Y

ω
0,t)

]
E{Πω(0),Y ω

0,t}R(X̃0,t, Y ω
0,t)

. (3.7)

Equivalently, for all t, s:

〈Πω(t+ s), φ〉 =
E{Πω(t),Y ω

t,t+s
}

[
φ(X̃(t+ s))R(X̃0,s, Y

ω
t,t+s)

]
E{Πω(t),Y ω

t,t+s
}R(X̃0,s, Y ω

t,t+s)
. (3.8)

(Xω(·),Πω(·)) is the unique stationary process and hence its distribution does
not depend on ω or on the chosen convergent subsequence. Finally, (3.3) holds
in probability as h → 0 and T → ∞ in any way at all, for any bounded and
measurable real–valued function F (·) which is continuous almost everywhere with
respect to Q̄f (·).

4 The Discrete Time Problem

Now, we review the discrete time form of the results in the previous section. Let
all processes be defined in discrete time. The signal process X(·) = {X(n), n <
∞} is assumed to be Feller–Markov and takes values in the compact set G. The
observations are defined by Y (0) = 0 and

δYn ≡ Y (n)− Y (n− 1) = g(X(n)) + ξ(n), n = 1, . . . , (4.1)
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where {ξ(n)} are mutually independent (0, I)−Gaussian random variables which
are independent of X(·), and g(·) is continuous.

The Bayes’ rule formula for the true conditional distribution of X(n) given
Y0,n can be represented in terms of an auxiliary process X̃(·) as for the contin-
uous time case in Section 2, where X̃(·) has the same evolution law as that of
X(·) but (conditioned on its possibly random initial distribution) is independent
of all the other processes. Define

R(X̃0,n, Y0,n) = exp

[
n∑

i=1

g′(X̃(i))δYi −
1
2

n∑
i=1

∣∣∣g(X̃(i))
∣∣∣2] .

Then the optimal filter Π(·) can be defined by its moments:

〈Π(n), φ〉 =
E{Π(0),Y0,n}

[
φ(X̃(n))R(X̃0,n, Y0,n)

]
E{Π(0),Y0,n}R(X̃0,n, Y0,n)

,

where Π(0) is the distribution of X(0) and X̃(0). Alternatively,

〈Π(n), φ〉 =
E{Π(n−1),δYn}

[
φ(X̃(1))R(X̃(1), δYn)

]
E{Π(n−1),δYn}R(X̃(1), δYn)

. (4.2)

Analogously to the continuous time observation case, except in some special
cases one cannot evaluate (4.2), and it is generally necessary to approximate it
in some way. The approximation problems and methods are similar to those in
Section 3. For example, the sequence X(·) might be samples of a diffusion pro-
cess taken at discrete instants 0,∆, 2∆, . . ., and to evaluate (4.2) the transition
function must then be computed, at least approximately. We could approxi-
mate the solution to the Fokker–Planck equation on [0,∆] by the Markov chain
approximation method, or by other numerical means. Even if X(·) is actu-
ally originally defined as a discrete time process, it might be too hard to do
the necessary integrations in (4.2) with the true transition function, and an
appropriate approximation might be needed. In such cases, one often uses an
approach which is analogous to what was done in the continuous time case.
Namely, build a filter for a simpler Markov process X̃h(·) (in discrete time here)
which has values in the compact set G, and which approximates X(·), but use
the actual physical observations.

This procedure is formalized as follows. For n = 1, . . . , define

R(X̃h
0,n, Y0,n) = exp

[
n∑

i=1

g′(X̃h(i))δYi −
1
2

n∑
i=1

∣∣∣g(X̃h(i))
∣∣∣2] .

Then, define the approximating filter Πh(·) by its moments:

〈Πh(n), φ〉 =
E{Πh(0),Y0,n}

[
φ(X̃h(n))R(X̃h

0,n, Y0,n)
]

E{Πh(0),Y0,n}R(X̃h
0,n, Y0,n)

. (4.3)
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With an abuse of notation, define

R(x, y) = exp
[
g(x)′y − |g(x)|2 /2

]
.

Then, one has the following recursive representation for Πh(·).

〈Πh(n), φ〉 =
E{Πh(n−1),δYn}

[
φ(X̃h(1))R(X̃h(1), δYn)

]
E{Πh(n−1),δYn}R(X̃h(1), δYn)

. (4.4)

Equations (4.3) and (4.4) correspond to the filter which models the signal process
via X̃h(·) but uses the actual observations δYn = Y (n)− Y (n− 1)

The process X̃h(·) in (4.4) is assumed to be independent of the other pro-
cesses, given its initial distribution. We also use the analog of the basic consis-
tency assumption (A2.1), which is the sense of approximation of X(·) by X̃h(·):

A4.1. A consistency assumption. For any sequence {Πh} of probability
measures converging weakly to some probability measure Π, X̃h(·) with the
initial distribution Πh converges weakly to X̃(·) with the initial distribution Π.

It is easy to see that if Πh(0) converges weakly to the distribution of X(0),
then (Xh(·),Πh(·)) converges weakly to the true (signal, filter) pair (X(·),Π(·).
Analogous to the remark below (A2.1), (A4.1) is equivalent to the following
condition: Let q(·) be a bounded and continuous function on the path space.
Then, for any sequence Πh as h→ 0

EΠhq(X̃h(·))− EΠhq(X̃(·)) → 0. (4.5)

The above assumption implies that if X̃h(0) converges weakly (for any
subsequence of values of h) with limit distribution Π(0), then the sequence
{X̃h(n);n ≥ 1} converges weakly to {X(n);n ≥ 1} with initial distribution
Π(0). In fact, in view of the semigroup property of the filter , we need only deal
with {X̃h(0), X̃h(1)}.

Analogously to the situation in Section 3, (4.2) is well defined even if Π(0) is
not the initial distribution of X(·). Allowing the initial condition (X(0),Π(0))
to be arbitrary, the discrete time process Ψf (·) = (X(·),Π(·)) is Feller–Markov.
We now write the discrete time analog of the key uniqueness assumption:

A4.2. A uniqueness assumption. There is a unique stationary process
Ψf (·) = (X(·),Π(·)). Denote its measure by Q̄f (·).

The occupation measure. For each n, define B(n) =
∑n

i=1 ξ
i and define the

analog of Ψh(t, ·), namely:

Ψh(n, ·) =
{
X(n+ ·),Πh(n+ ·), , Y (n+ ·)− Y (n), B(n+ ·)−B(n)

}
,

Ψh
f (n, ·) = {X(n+ ·),Πh(n+ ·)}.
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Define the canonical elements of the path spaces ψ(·) and ψf (·) analogously, as
done in Section 3.

The Skorohod topology is replaced by a “sequence” topology, as follows.
The Πh(n) still take values in M(G), and the weak topology is still used on this
space. Let dπ(·) and dk(·) denote the metrics on M(G) (induced by the weak
topology) and on IRk, resp., where k is the sum of the dimensions of X(n), B(n)
and Y (n). Let d0(·) denote the product metric. Let a(·) = {(a(1), . . .} and
b(·) = {(b(1), . . .} be sequences with the a(n) and b(n) taking values in the
product space M(G) × IRk. Then the metric on the product path (sequence)
space is

d(a(·), b(·)) =
∞∑

n=0

2−n [d0(a(n), b(n)) ∧ 1] .

Define the occupation measure Qh,N (·) by: for a Borel set C in the product
sequence space,

Qh,N (C) =
1
N

N∑
n=1

IC(Ψh(n, ·)). (4.6)

Analogously to the definitions in Section 3, define Ψ(·) = (X(·),Π(·), Y (·), B(·)).
Let F (·) be a real–valued bounded and continuous (with probability one with
respect to Q̄f (·)) function of ψf (·). Then, the following discrete time analog of
Theorem 3.1 is proved in [2].

Theorem 4.1. Let the filtering model be as above. Assume that (A4.2) holds.
Define the approximate filter via (4.3), where we assume that the auxiliary pro-
cess X̃h(·) satisfies (A4.1). Then {Qh,N (·);h > 0, N ≥ 0} is tight. Let Q(·)
denote a weak sense limit, always as h→ 0 and N →∞. Let ω be the canonical
variable on the probability space on which Q(·) is defined, and denote the sam-
ple values by Qω(·). Then, for each ω, Qω(·) is a measure on the product path
(sequence) space. It induces a process

Ψω(·) = (Xω(·),Πω(·), Y ω(·), Bω(·)) . (4.7)

For almost all ω the following hold. (Xω(·),Πω(·)) is stationary. Bω(·) is
the sum of mutually independent N(0, I) random variables {ξω(n)} which are
independent of Xω(·). Also

δY ω
n ≡ Y ω(n)− Y ω(n− 1) = g(Xω(n)) + ξω(n), (4.8)

and Xω(·) has the transition function of X(·). For each integer n and each
bounded and measurable real–valued function φ(·)

〈Πω(n), φ〉 =
E{Πω(0),Y ω

0,n}

[
φ(X̃(n))R(X̃0,n, Y

ω
0,n)

]
E{Πω(0),Y ω

0,n}R(X̃0,n, Y ω
0,n)

. (4.9)
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Finally,

1
N

N∑
n=1

F (Ψh
f (n+ ·)) =

∫
F (ψf (·))Q̄h,N

f (dψf (·)) →
∫
F (ψf (·))Q̄f (dψf (·))

(4.10)
in probability, where h→ 0 and N →∞ in any way at all.

Discussion of the proof. In the problems of this paper, the approximating
filter will be constructed using random sampling methods or combinations of
random sampling and integration methods. Since many arguments in the proofs
are similar to those used in [2], in the sequel we will try to use as much of
the proof in [2] as possible, and to concentrate on the differences. In view
of that we now highlight the chief features of the proof in [2]. We comment
on the discrete parameter case, but analogous remarks hold for the continuous
parameter model. Further details are in the reference. In [2] (see (4.6)), the
measure valued random variable Qh,N (·) was obtained as an occupation measure
connected with the processes X(·),Πh(·), B(·), Y (·), and the same definition will
be used in what follows, but with the new definitions of Πh(·) of this paper used.

The first step in the proof of Theorem 4.1 is to show that the sequence
{Qh,N (·);h,N} of measure valued random variables is tight. For that it suffices
to show that sequence of its expectations is tight [21, Chapter 1.6]. In order
to show that, it is enough to show that the families {X(n + ·);n ≥ 0},{B(n +
·) − B(n);n ≥ 0}, {Y (n + ·) − Y (n);n ≥ 0}, {Πh(n + ·);h > 0, n ≥ 0} are
tight. However, showing that is trivial in view of the compactness of the state
space. We note that in the continuous time case the proof of tightness of these
processes involves a little more work.

By the first equality in (4.10), the limit is determined by the weak sense limits
of the occupation measures, as N → ∞, h → 0. Thus, we need to determine
the sample values Qω(·) of any weak sense limit Q(·). Equivalently, we need to
characterize the set of processes induced by Qω(·). The proof of the stationarity
of the (Xω(·),Πω(·)) in [2] will work without any change for the problems of
this paper. Furthermore the proofs of the representation (4.8) and that Xω(·)
has the law of evolution of X(·) for almost all ω will be no different than the
analogous arguments in [2], and similarly for the continuous parameter case.
Thus, establishing the representation (4.9) becomes the only step in the proof
that will be different from that in [2]. Once this step is established, (4.10)
follows readily from the uniqueness assumption on the invariant measure of the
joint signal and filter process.

The proof of the representation for the Πω(·) will differ slightly, depending
on the choice of Πh(·). The following comments concerning a key detail in the
proof of the representation (4.9) in [2] will be useful in providing a guide to the
proofs for the cases of this paper.

For arbitrary ψ(·) = (x(·), π(·), y(·), b(·)), and integer m define the function
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A(·) by

A(ψ(m)) = 〈π(m), φ〉 −
E{π(m−1),y(m)}

[
φ(X̃(1))R(X̃(1), y(m))

]
E{π(m−1),y(m)}R(X̃(1), y(m))

. (4.11)

The aim of the proof in [2] was to show that, for almost all ω and all m,

A(Ψω(m)) = 0, with probability 1, (4.12)

which implies (4.9). This was done by showing that

0 = E

∫
Qω(dψ) [A(ψ(m))]21 , (4.13)

where we define
[A]21 = min{|A|2, 1}. (4.14)

The prelimit form of the right side of (4.13) is

E

∫
Qh,N (dψ) [A(ψ(m))]21 , (4.15)

which, by the definition of Qh,N (·), equals

1
N
E

N∑
n=1

[
A(Ψh(m+ n))

]2
1
, (4.16)

where

A(Ψh(n)) = 〈Πh(n), φ〉 −
E{Πh(n−1),δYn}

[
φ(X̃(1))R(X̃(1), δYn)

]
E{Πh(n−1),δYn}R(X̃(1), δYn)

. (4.17)

In order to show (4.13) it suffices to show

E[A(Ψh(n))]21 → 0,

uniformly in n as h → 0. Finally to show the above it suffices, in view of
tightness of the families {Πh(n);h > 0, n > 0}, {δYn;n > 0} and the consistency
assumption (A4.1), to show that

E

〈Πh(n), φ〉 −
E{Πh(n−1),δYn}

[
φ(X̃h(1))R(X̃h(1), δYn)

]
E{Πh(n−1),δYn}R(X̃h(1), δYn)

2

1

(4.18)

converges to 0, uniformly in n as h→ 0.
However in view of the definition of Πh(n) via (4.4) the above expression is

identically zero, which implies that (4.13) holds for any weak sense limit. An
analog of this argument will be used in the next section.
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5 Some Approximating Filters of Interest: Dis-
crete Time

In [2], the approximate filter Πh(·) was defined by the analytical formula (4.4)
for the discrete time problem, and by (2.7) for the continuous time problem.
One example is the Markov chain approximation method, where the auxiliary
process X̃h(·) is a Markov chain approximation to X̃(·). When the dimension
is high, such methods can have excessively high computational requirements.
Alternatives, based on random sampling or Monte Carlo then become attractive,
analogous to the case of classical multidimensional integration [3, 4, 5, 11, 12, 14,
15, 26, 27, 28]. In this section, several forms of this approach will be discussed.
We start with the simplest form, which uses unsophisticated random sampling
to evaluate the right hand side of (4.4). The problem is set up so that much of
the proof of [2, Theorem 5.1] (this is Theorem 4.1 above) can be used. After
treating this simple (but canonical) case, we then move on to more general
approximations, pointing out at each instance the crucial condition required for
the analog of Theorem 4.1 to hold.

Example 1. The basic “sampling” filter. Let vh be a sequence of inte-
gers which goes to infinity as h → 0. Let Πh(n − 1) denote the estimate of
the conditional distribution of X(n − 1), given Y0,n−1. Given Πh(n − 1), we
now construct Πh(n) based on “random sampling.” Let {X̃h,l,n(·), l ≤ vh} be
i.i.d samples (which are independent of δYn, conditioned on Πh(n − 1)) from
X̃h(·), where X̃h(·) satisfies the consistency condition (A4.1) and has the initial
distribution Πh(n− 1). One need only simulate samples of X̃h(0), X̃h(1).

The filter Πh(n) is defined by the sample average:

〈Πh(n), φ〉 =
∑vh

l=1 φ(X̃h,l,n(1))R(X̃h,l,n(1), δYn)/vh∑vh

l=1R(X̃h,l,n(1), δYn)/vh
, (5.1)

which yields our estimate Πh(n) of the conditional distribution of X(n), given
Y0,n.

Theorem 5.1. Under (A4.1) and (A4.2) and the above construction of Πh(·),
the conclusions of Theorem 4.1 hold.

Proof. The basic steps in the proof of Theorem 4.1 were outlined after the
statement of that theorem. The proof of the current theorem is similar, and we
will only concern ourselves with the differences.

The set {Qh,N (·);h > 0, T <∞} is obviously tight since each of the families
{X(n+ ·);n ≥ 0},{B(n+ ·)−B(n);n ≥ 0}, {Y (n+ ·)− Y (n);n ≥ 0}, {Πh(n+
·);h > 0, n ≥ 0} is tight. Let Q(·) = {Q(n), n = 0, 1, ..} denote the limit of a
weakly convergent subsequence, and denote the samples by Qω(·). Then Qω(·)
induces a process Ψω(·) as in (4.7), and we need to identify the components.
The stationarity of (Xω(·),Πω(·)) is proved as in [2], with no change. Similarly,
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the characterization (4.8), the properties of Bω(·) and the fact that Xω(·) has
the transition function of X(·) is done exactly as in [2].

The main difference is in the proof of (4.9). Proceeding as illustrated for
Theorem 4.1, to identify Πω(·) we need only to show (4.13). Analogously to the
procedure in Section 4, this is done by showing that the expression in (4.18)
converges to 0, uniformly in n as h→ 0. By using the definition of Πh(n), (4.18)
can be rewritten as

E

[∑vh

l=1 φ(X̃h,l,n(1))R(X̃h,l,n(1), δYn)/vh∑vh

l=1R(X̃h,l,n(1), δYn)/vh

−
E{Πh(n−1),δYn}

[
φ(X̃h(1))R(X̃h(1), δYn)

]
E{Πh(n−1),δYn}R(X̃h(1), δYn)

2

1

.

(5.2)

Owing to the properties of the | · |21 metric defined by (4.14), we can work
with the numerators and denominators separately, and it is only necessary to
show that, for arbitrary bounded and continuous φ(·),

E

[
1
vh

vh∑
l=1

φ(X̃h,l,n(1))R(X̃h,l,n(1), δYn)

−E{Πh(n−1),δYn}φ(X̃h(1))R(X̃h(1), δYn)
]2

1

(5.4)

goes to zero, uniformly in n, as h → 0. But, this clearly holds since for each
h and n, {X̃h,l,n(·), l} are mutually independent, identically distributed and
independent of δYn (conditioned on Πh(n − 1)), and the mean square value
(conditional on {Πh(n− 1), δYn}) of the functional

φ(X̃h,l,n(1))R(X̃h,l,n(1), δYn)− E{Πh(n−1),δYn}φ(X̃h,l,n(1))R(X̃h,l,n(1), δYn)

has uniformly (in h, l, n) bounded expectation.

We remark that in the above proof we found it convenient to work with
the expression in (5.4), however in view of the consistency condition (A4.1) on
X̃h(·), showing that the expression in (5.4) goes to zero, uniformly in n, as
h→ 0 is equivalent to showing the same for the expression in (5.4′) below.

E

[
1
vh

vh∑
l=1

φ(X̃h,l,n(1))R(X̃h,l,n(1), δYn)

−E{Πh(n−1),δYn}φ(X̃(1))R(X̃(1), δYn)
]2

1

(5.4′)

Example 2. Some generalizations of the filter in Example 1. As can be
observed from the proof of Theorem 5.1, the crucial step is the establishing of
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convergence of the expression in (4.18) or, equivalently, of (5.4′), the form that
we will use. This convergence is essentially the consequence of the consistency
condition (A4.1). However, as we will indicate in the following discussion, this
consistency condition can be weakened considerably. This leads to many useful
extensions of the basic form of the “sampling” algorithm of Example 1.

A weaker form of the consistency assumption (A4.1). We retain the
assumption of mutual independence (conditional on Πh(n − 1), δYn) of the
{X̃h,l,n(·), l ≤ vh} for each h, n, and that the probability law of {X̃h,l,n(0)}
is Πh(n− 1), but allow more flexibility in the choice of the individual X̃h,l,n(·).
Namely, in the construction of Πh(n) in (5.1), the Markov family from which
X̃h,l,n(·) is sampled may differ for different l, n. However the initial conditions
X̃h,l,n(0) still form an i.i.d sample from Πh(n−1). To see the possibilities, write
the expression in the brackets in (5.2) as the sum of the two terms:∑vh

l=1 φ(X̃h,l,n(1))R(X̃h,l,n(1), δYn)/vh∑vh

l=1R(X̃h,l,n(1), δYn)/vh

−
E{Πh(n−1),δYn}

∑vh

l=1 φ(X̃h,l,n(1))R(X̃h,l,n(1), δYn)/vh

E{Πh(n−1),δYn}
∑vh

l=1R(X̃h,l,n(1), δYn)/vh
,

(5.5)

and
E{Πh(n−1),δYn}

∑vh

l=1 φ(X̃h,l,n(1))R(X̃h,l,n(1), δYn)/vh

E{Πh(n−1),δYn}
∑vh

l=1R(X̃h,l,n(1), δYn)/vh

−
E{Πh(n−1),δYn}

[
φ(X̃(1))R(X̃h(1), δYn)

]
E{Πh(n−1),δYn}R(X̃(1), δYn)

.

(5.6)

Owing to the use of the [·]21 metric defined by (4.14), it is enough to work
separately with the differences of the numerators and of the denominators in
each of (5.5) and (5.6). Then, to handle (5.5), use the mutual independence and
the uniform bounds on the expectations of the conditional variances. To handle
(5.6), we will use a revised form of the consistency assumption (A4.1), which is:

A5.1. For each (n, h), the set {X̃h,l,n(·), l} is mutually independent and in-
dependent of δYn, conditioned on Πh(n − 1). Suppose that an arbitrary Πh

replaces Πh(n− 1) in the construction of the {X̃h,l,n(0), l}. Then, as h→ 0, for
any such sequence, and for each bounded, continuous and real valued function
Φ(·),

EΠhΦ(X̃h,l,n(1))− EΠhΦ(X̃(1)) → 0 (5.7)

uniformly in n and l.

This assumption, when used for Φ(x) ≡ Φy(x) = φ(x)R(x, y), for each fixed
y, leads to the desired convergence for the expression in (5.6). Observe that
even though R(·) is not bounded we can, without loss of generality, assume so
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since the family {δYn;n ≥ 1} is tight. For this reason and the fact that we use
the metric (4.14), we don’t need the convergence in (A5.1) for Φ(·) = Φy(·) to
hold uniformly in y.

Note that we are no longer assuming that the X̃h,l,n(·) are all samples of the
same X̃h(·) process. The second part of (A5.1) will hold iff for all Π and any
sequence {hk, lk, nk}k≥1 for which (L(X) denotes the probability law of X)

L(X̃hk,lk,nk(0)) ⇒ Π,

as k →∞, we have that

L(X̃hk,lk,nk(0), X̃hk,lk,nk(1)) ⇒ L(X̃(0), X̃(1)) as k →∞,

where X̃(0) has the law Π.

Dropping the mutual conditional independence. Return to the expression
(5.2). Let Φ(·) be bounded and continuous. Then the convergence in (5.2) is
implied by the even weaker consistency assumption, which can replace (A4.1)
and the mutual independence in Theorem 5.1:

A5.2. For each (h, n), {X̃h,l,n(·), l} is independent of δYn, conditioned on
Πh(n − 1), but they might not be independent in l. They are constructed
subject to the following rule. Suppose that an arbitrary measure Πh,n (on G)
takes the role of Πh(n − 1) in the construction of the {X̃h,l,n(·), l}. Then the
associated process {X̃h,l,n(·), l} is constructed such that as h→ 0 and, for any
bounded, continuous and real valued function Φ(·),

1
vh

vh∑
l=1

Φ(X̃h,l,n(1))− E{Πh,n}Φ(X̃(1)) → 0, (5.8)

in probability, uniformly in n.

It is clear that this condition (instead of (A4.1) and mutual independence of
samples) suffices for Theorem 5.1 to hold for the corresponding {Πh(n)}. The
usefulness of this condition lies in the cases where the samples {X̃h,l,n(·)), l ≤
vh} for fixed h, n are not mutually independent. It is of particular value when
the random sampling incorporates some variance reduction method where the
samples are not mutually independent; e.g., antithetic variables or stratified
sampling such as discussed next.

Variance reduction methods. The standard methods for variance reduction
in Monte Carlo, such as stratified sampling and antithetic variables, can all
be used here and in the subsequent algorithms and examples. We comment
on one form of stratified sampling. Let Πh(n − 1) be concentrated on points
{xh,l,n; l = 1, . . . , vh}, and let Πh

l (n− 1) denote the weight that Πh(n− 1) puts
on xh,l,n.
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In this example, we only use variance reduction to get the samples of the
initial values X̃h,l,n(0). Once these are given, the sample values of X̃h,l,n(1)
are obtained by sampling independently, using the transition probability of the
approximating Markov process X̃h,n(·). So we concentrate on the initial values
for fixed n.

If the vhΠh
l (n− 1) were all integers, then the best sampling of the values of

the X̃h,l,n(0) would be to take the initial point xh,l,n exactly vhΠh
l (n−1) times,

since then the variance of the sampling error of the initial condition would be
zero. Clearly all the vhΠh

l (n − 1) would not usually be integers, but one tries
to approximate the ideal as well as possible. One common approach is the
following. First take the point xh,l,n exactly [vhΠh

l (n − 1)] (the integer part)
times. After this step, the “residual” number of points remaining to be chosen
is

δvh,n =
∑

l

δvh,n
l ,

where
δvh,n

l =
(
vhΠh

l (n− 1)− [vhΠh
l (n− 1)]

)
.

The “residual frequency” of point xh,l,n is δvh,n
l /δvh,n. Now, divide the set

{xh,l,n, l} into disjoint subsets Sh,n
i , i = 1, . . .. The set Sh,n

i has δvh,n,i points
where

δvh,n,i =
∑

l∈Sh,n
i

δvh,n
l .

Allocate [δvh,n,i] initial points to subset i, and then select these points randomly
(with replacement) from Sh,n

i , where the point xh,l,n ∈ Sh,n
i is given the weight

δvh,n
l /δvh,n,i. Since

v̄h,n ≡ δvh,n −
∑

i

[δvh,n,i] ≥ 0,

we still need to allocate v̄h,n points, if this is positive. Generally, if the division
into subgroups is done properly, v̄h,n/vh will be either zero or small. If it
is positive, either repeat the above procedure to allocate the remaining v̄h,n

points, or just select v̄h,n points randomly from the original vh points with
appropriately modified weights.

It is easy to see that the above construction can be put in the framework of
Example 2 and condition (A5.2) holds.

The grouping into subsets might be done by dividing the points according
to their “geographic location,” if this is meaningful.

Example 3. We would like to treat algorithms that use combinations of ran-
dom sampling and integration methods in a general way. This will require an
alteration in the consistency condition (A5.1) or (A5.2). In order to motivate
the form which it will take, we first consider an example for which (A5.2) is
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satisfied. Let X̃h,n(·) be processes satisfying (A5.1). Having defined the ap-
proximate filter Πh(j) for j = 1, 2, · · · , n − 1 suppose that {X̃h,l,n(·), l ≤ vh}
are samples of X̃h,n(·) and that they are conditionally independent of δYn given
Πh(n − 1). Define Πh(n) via (5.1). If the samples are mutually independent
(conditioned on Πh(n − 1)) and X̃h,n(0) has distribution Πh(n − 1), then con-
dition (A5.1) (and thus (A5.2)) is satisfied. Theorem 5.1 can be proved under
weaker consistency conditions than (A5.1) or (A5.2), which allow great and use-
ful flexibility in constructing the filter. To motivate a useful general form, let
us first rewrite Example 2 in the following suggestive way.

For each h and n, define a measure (on the sample space G × G) valued
random variable Ph,n

Πh,n−1 as follows. Let Ph,n
Πh(n−1)

(A) be the fraction of the

samples {X̃h,l,n(·), l ≤ vh} that are in the Borel set A ⊂ G×G. In particular,
Ph,n

Πh(n−1)
{B × G} is the fraction of the samples X̃h,l,n(0) which are in the set

B. Since this Ph,n
Πh(n−1)

is just the “sampling occupation measure,” condition
(A5.2) is equivalent to

E

[∫
Φ(x(1))dPh,n

Πh(n−1)
(x(·))− E{Πh(n−1)}Φ(X̃(1))

]2

1

→ 0, (5.9)

uniformly in n as h→ 0.
Thus the crucial condition becomes the convergence of the expression in

(5.9). The advantage of writing the condition in the form (5.9) is that, being
written in terms of a random measure Ph,n

Πh(n−1)
, it suggests other choices of

approximate filters that need not be based exclusively on Monte Carlo or ran-
dom sampling. For example, as seen in Example 4 below, Ph,n

Πh(n−1)
might be

determined partly by random sampling and partly analytically.

A generalization of Ph,n
Πh(n−1)

and the approximating filter. Motivated
by the suggestiveness of (5.9), we now consider the following general form of the
approximate filter and the consistency condition. Let {Πh(n);n ≥ 1} be defined
recursively as follows. Having defined Πh(n − 1), let Ph,n

Πh(n−1)
be a measure–

valued random variable on the sample space G × G, which is conditionally
independent of δYn given Πh(n− 1). Define Πh(n) by

〈Πh(n), φ〉 =

∫
φ(x(1))R(x(1), δYn)dPh,n

Πh(n−1)
(x(·))∫

R(x(1), δYn)dPh,n
Πh(n−1)

(x(·))
. (5.10)

We will need the following consistency condition.

A5.3. For each bounded, continuous and real valued function Φ(·), as h→ 0,∫
Φ(x(1))dPh,n

Πh(n−1)
(x(·))− E{Πh(n−1)}Φ(X̃(1)) → 0, (5.11)

in probability, uniformly in n.
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We now have the following useful result whose proof follows from the above
comments.

Theorem 5.2. Theorem 5.1 holds for the above constructed Πh(·) if in the
assumptions of that theorem the consistency condition (A5.3) replaces (A4.1)
and the mutual independence of the samples.

Remarks. Although not needed, it will often be the case that

EΠh(n−1)P
h,n
Πh(n−1)

{B ×G} = Πh(n− 1)(B). (5.12)

The advantage of (A5.3) is that it can be used for a large variety of approxi-
mation methods. For example, in the form (4.4), Ph.n

Πh(n−1) would be the measure

of (X̃h(0), X̃h(1)) with X̃h(0) having the (random) distribution Πh(n− 1). The
conditions for the convergence for the classical Markov chain approximation,
the random sampling method above and various combinations of them, either
in the same or in different time frames can all be put into the form of (5.11)
for appropriate choices of Ph.n

Πh(n−1). Importance sampling methods can also be
fit into the same scheme and used to improve the performance of the filter, as
shown in the next section.

Example 4. An application of (A5.3): Combined random sampling
and integration. Consider the following commonly used model. Let X(n) =
b(X(n− 1), ζ(n− 1)), where b(·) is bounded and continuous and the {ζ(n)} are
mutually independent, identically distributed (with distribution function Pζ ,
with compact support), and independent of X(0). First, suppose that Π(n− 1)
is the actual conditional distribution of X(n−1), given Y0,n−1. Then the optimal
Π(n) is defined by (4.2). If the computation on the right side of (4.2) is not
possible, as is usually the case, it would be approximated in some way. The
difficulties in evaluating the right side might be due to the problem of computing
the one step transition probability of the Markov process {X(n)}, or to the
actual integrations over a possibly continuous state space that are required to
evaluate (4.2). As usual, let h denote the approximation parameter for the
actual practical filter, and Πh(n) the estimate of the conditional distribution
given Y0,n.

Let Πh(n − 1) be given. We wish to compute Πh(n). This can be done by
a direct simulation as in Example 1 or by combined “simulation-integration”
or perhaps even by a pure “integration” method. These possibilities will be
illustrated. Suppose that we approximate Pζ by Ph

ζ , which might have a (com-
putationally) more convenient support and is such that Ph

ζ ⇒ Pζ . In addition,
approximate b(·) by a measurable function bh(·) such that

lim
h→0

sup
x,ζ

|b(x, ζ)− bh(x, ζ)| = 0.

If the associated integrations are convenient to carry out, one can use (4.3)
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to define Πh(n), where we define

X̃h(1) = bh(X̃h(0), ζh), (5.13a)

In (5.13a), X̃h(0) has distribution Πh(n − 1) and ζh has distribution Ph
ζ . If

the support of Ph
ζ is finite and bh(·) takes only finitely many values, then the

integrations reduce to summations. The X̃h(·) process thus defined satisfies
the consistency condition (A4.1). Hence Theorem 4.1 holds for Πh(·) if (A4.2)
holds.

Alternatively, one can simply use Monte Carlo as in Example 1. All sampling
below is “conditionally independent” of the past, given Πh(n − 1). Take vh

independent samples from Πh(n − 1) and from Ph
ζ , call them X̃h,n,l(0) and

ζh,n,l, l ≤ vh, resp. Then use the formula

X̃h,n,l(1) = bh(X̃h,n,l(0), ζh,n,l), (5.13b)

and (5.1) to get Πh(n).
Combinations of the above two approaches might be worthwhile also. For

example, if the support of the Ph
ζ is a (not too big) finite set, then one can

sample from Πh(n − 1), but “integrate” over the noise for each sample of the
initial condition, by doing the necessary summations. One would normally try
to choose the support of Ph

ζ such that the integrals are well approximated for
an appropriate set of functions φ(·). On the other hand, one might discretize
the state space such that the support of the X̃h(0) (i.e., of each of the Πh(n)) is
confined to a finite set Gh, and integrate with respect to the “initial” measure
Πh(n − 1), but simulate the noise. For each of these combinations, there is a
Ph,n

Πh(n−1)
such that (A5.3) holds, provided that the discretization of the space

converges to the whole space in an appropriate manner and, for the part of the
computation which involves random sampling, the number of samples goes to
infinity as h→ 0. The construction of Ph,n

Πh(n−1)
is not hard and the details are

omitted.

Example 5: A Markov chain approximation method. A sampled dif-
fusion model. In this example, we illustrate a potentially useful combination
of integration and simulation. Suppose that the signal process X(n) is a sample
from a diffusion process X(·) at discrete time n. Suppose that X(·) solves an Itô
equation with a unique weak sense solution for each initial condition, and has
continuous drift and diffusion coefficients. Then the exact filter (4.2) involves
getting the probability distribution of X̃(1) (which solves the same Itô equa-
tion) with the correct initial distribution Π(n− 1), n = 1, . . . . One could try to
solve the Fokker-Planck equation by some numerical method. This is not easy
when there are degeneracies. The Markov chain approximation method [23] is a
general and powerful approach, which converges under the specified conditions,
even with quite weak (reflecting) boundary reflections and jumps added. The
following discussion uses the idea of the Markov chain approximation, without
going into excessive details.
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For each h, let {Xh
n} be a discrete parameter Markov chain on a finite state

space Gh ⊂ G, and let ph(x, z) denote the one step transition probabilities.
For δh > 0, define the continuous time interpolation X̃h(·) by X̃h(t) = Xh

n on
the interval [nδh, nδh + δh). Suppose, without loss of generality, that 1/δh is
an integer, and assume that X̃h(·) satisfies the consistency assumption (A4.1).
The use of such chains in the construction of approximate filters is now quite
common. See [20, 23, 22]. The references [20, 23] give straightforward and
automatic ways of constructing such chains.

In [20, 23] and in current usage in applications, the process X̃h(·) is used
as in the algorithm (4.4). But, it can also be used as the basic simulated
process in (5.1). In order to demonstrate the possibilities, we now illustrate
an interesting combination of these two schemes which is rather different from
the combinations illustrated by Example 4. We work with a single observation
interval at a time, and for concreteness we discuss the method for the time
interval [0, 1]. Let Πh = Πh(0) denote the approximation to the distribution
of X(0). We need to approximate the distribution of X̃(1). This is done by
either computing or estimating the distribution of Xh

1/δh
, where Xh

0 has the
distribution Πh.

To estimate or compute the distribution of Xh
1/δh

, we recursively estimate
or compute the distribution of the Xh

m for m = 1, 2, . . . , 1/δh. The motivation
behind the combined integration/monte carlo procedure to be described is that
in some regions of the state space, it might be easier to use one method and
in other regions the other method. For illustrative purposes, we suppose that
G is divided into disjoint subsets G1 and G2, and define Gh,i = Gh ∩ Gi.
Suppose that it is easy to compute the transition probabilities ph(x, z) for x ∈
some neighborhood of G1, but harder for x outside of that neighborhood. We
suppose that it is feasible to run simulations of the process for any selected initial
condition. For example, ph(x, z) might be given implicitly as the output of a
complicated physical mechanism for which the transition probability is hard
to compute when x is in G2 but which can be simulated. We try to exploit
this situation by simulating where convenient and integrating where that is
convenient. The division into subsets Gi and the associated “difficulty” of some
procedure in Gi is meant to be suggestive. We will sometimes be “integrating”
when in G2 and sometimes simulating when in G1. But, the major part of each
type of computation will be done in the region where it is advantageous.

Let us divide the unit interval is divided into nh (an integer) subintervals,
with ε = δhkh. Thus, 1/δh = khnh. For notational simplicity, we work with the
interval [0, 1], but the method is identical for all the intervals [n, n+ 1]. Let µh

m

denote the estimate of the distribution of Xh
mkh

. with values µh
m(x), x ∈ Gh,

where we start with µh
0 = Πh. The time interval ε should be small enough such

that the paths starting in Gh,i stay close to it with a high probability on that
interval. One needs to be careful if ε is allowed to go to zero as h → 0 (which
we do not do), since it is well known from simulations that the procedure can
degenerate unless vh goes to infinity fast enough (and at a rate which depends
on how fast ε → 0). In fact, there is little loss of generality or practicality in
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fixing ε to be a small constant.
Suppose that µh

m is given. Then µh
m+1 is computed as follows. First, do the

analytic computation using ph(x, z) to get the part of µh
m+1(z) which is due to

the initial states in Gh,1. Namely, compute∑
x∈Gh,1

P
{
Xh

(m+1)kh
= z

∣∣Xh
mkh

= x
}
µh

m(x). (5.14a)

The part of µh
m+1(z) which is due to initial states in Gh,2 is obtained by

simulation. To simulate, we sample a total of vh points (where vh → ∞) in
Gh,2 with relative probabilities {µh

m(x), x ∈ Gh,2}. Denote the samples by
{Xh,l,m

0 , l ≤ vh}. The sampling of the {Xh,l,m
0 , l ≤ vh} can be done either with

replacement or, preferably, using a variance reduction method such as the one
based on stratified sampling which was described at the end of Example 2. For
each of these “initial values” Xh,l,m

0 , l ≤ vh,, simulate at random a path of the
chain for kh steps. Let {Xh,l,m

k , k ≤ k0} denote the sample values.
Then the part of the estimate of µh

m+1(z) which is due to initial states in
Gh,2 is  ∑

x∈Gh,2

µh
m(x)

 1
vh

∑
l

I{Xh,l,m
kh

=z}. (5.14b)

The sum of (5.14a) and (5.14b) is µh
m+1(z). If h→ 0 and Πh converges weakly

to, say, Π, it follows from the consistency condition (A4.1) for the X̃h(·) process
that µh

nh
(·) converges weakly to the distribution of X̃(1), which corresponds to

X̃(0) having distribution Π.
To identify the measure Ph,n

Πh(n−1)
in (A5.3) (for our example n = 1) note the

following. It is the measure on Gh ×Gh, with initial distribution given by our
combination of µh

0 (x) for x ∈ Gh,1 and the sampling distribution for x ∈ Gh,2.
The distribution of the terminal value, conditioned on the initial distribution,
is computed by repeating the updating procedure outlined above 1/ε times.

We note that variance reduction methods can be employed in the sampling
of the random paths themselves.

6 More Examples: Importance Sampling Meth-
ods for Discrete Time Models

Importance sampling methods are in common use to improve the performance
of Monte Carlo algorithms (see, for example [9, 10]). They have also been
used to improve the quality of nonlinear filtering algorithms that use random
sampling [3, 28]. When used over an infinite time interval, the robustness and
convergence questions raised earlier in the paper remain important. In the next
example, we discuss the general idea of importance sampling and show how the
associated proof of convergence is covered by what has already been done for
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setups such as that in Example 1 of Section 5. In this next example, we describe
the importance sampling on a typical interval [n− 1, n] and it does not use the
next observation δYn. This next observation can provide useful information
to guide the sampling. There are many intriguing possibilities, and one form
of such a use is discussed in Example 7. We only illustrate some possibilities.
There are numerous possible variations, and the choice of the better ones is still
a matter of research. With all of the variations, variance reduction methods can
be used, as can combined sampling–integration methods.

Example 6: The basic idea of importance sampling. Return to the
setup used in Example 1 of Section 5. Let Ph

n−1 denote the probability law of
X̃h(·) = (X̃h(0), X̃h(1)) when Πh(n − 1) is the measure of X̃h(0). For each h
and n, let Mh,n denote a random measure which is a.s. mutually absolutely
continuous with respect to Ph

n−1. For each h and n, let {X̃h,l,n(·), l ≤ vh}
be mutually conditionally independent, conditioned on δYn, P

h
n−1,M

h,n, and
with the distribution Mh,n. Define the likelihood ratio (the Radon–Nikodym
derivative) and its value on the random path X̃h,k,n(·) by

Lh,n =
dPh

n−1

dMh,n
, Lh,k,n =

dPh
n−1

dMh,n

(
X̃h,k,n(·)

)
. (6.1)

We introduce the following assumption.

A6.1.

sup
h,n

E
dPh

n−1

dMh,n
(X̃h(1))R2(X̃h(1), δYn) <∞, (6.2)

where X̃h(·) in (6.2) has the distribution Ph
n−1 (conditioned on δYn, P

h
n−1,M

h,n).
.

Define the approximate filter Πh(·) to be:

〈Πh(n), φ〉 =
∑vh

l=1 L
h,k,nφ(X̃h,l,n(1))R(X̃h,l,n(1), δYn)/vh∑vh

l=1 L
h,k,nR(X̃h,l,n(1), δYn)/vh

, (6.3)

Theorem 6.1. Assume (A4.1), (A4.2) and (A6.1) and the filter form (6.3).
Then Theorem 5.1 holds.

Proof. To prove the theorem, it suffices to show that

E

[
1
vh

∑
k

(
Lh,k,nΦ(X̃h,k,n(1), δYn)− EΠh(n−1),δYn

Φ(X̃h(1), δYn)
)]2

(6.4)

converges to 0 uniformly in n, as h → 0, where Φ(x, y) = φ(x)R(x, y) and φ(·)
is any bounded and continuous real valued function.
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We can write

EMh,n,P h
n−1,δYn

Lh,k,nΦ(X̃h,k,n(1), δYn) =

EMh,n,P h
n−1,δYn

Φ(X̃h(1), δYn) = EΠh(n−1),δYn
Φ(X̃h(1), δYn),

(6.5)

where as before the subscript in the expectation is the conditioning data and
X̃h(·) in the second and the third expression has the law (conditioned on
Mh,n, Ph

n−1, δYn) Ph
n−1. The first equality follows by the definition of the

Radon–Nikodym derivative. The second equality is simply a statement of the
fact that all we need to know about X̃h(·) to compute the expectation is its
initial distribution and the one step law of evolution.

UnderMh,n, the samples are mutually independent, conditioned on δYn, P
h
n−1,M

h,n.
By the above facts, in (6.4) can be rewritten as

EEMh,n,P h
n−1,δYn

[
1
vh

∑
k

(
Lh,k,nΦ(X̃h,k,n(1), δYn).− EΠh(n−1),δYn

Φ(X̃h(1), δYn)
)]

=
1

(vh)2
EEMh,n,P h

n−1,δYn

∑
k

[
Lh,k,nΦ(X̃h,k,n(1), δYn).− EΠh(n−1),δYn

Φ(X̃h(1), δYn)
]2

.

(6.6)
The right hand side of (6.6) is

O(1)
1
vh
EEMh,n,P h

n−1,δYn

[
Lh,nR2(X̃h(1), δYn)

]
.

The last term, in turn can be bounded by

O(1)
1
vh

(
E

[
dPh

n−1

dMh,n

(
X̃h(1)

)
R2(X̃h(1), δYn)

]
+ ER2(X̃h(1), δYn)

)
,

where X̃h(·) is as in (A6.1). The above expression is easily seen to be O(1/vh)
by (6.2).

An extension: Dropping the mutual independence. As in example 2 of
Section 5, where we relaxed the condition on mutual independence of samples
by instead assuming (A5.2), we can formulate a similar condition here which
can be used to incorporate variance reduction methods along with importance
sampling. More precisely, let Mh,n be as before. Also let {X̃h,l,n(·); l ≤ vh} be
as before, except that they need not be (conditionally) mutually independent.
Instead of assuming (A6.1), assume (A6.2) below.

A6.2. Let Φ(x, y) = φ(x)R(x, y), where φ(·) is a bounded and continuous real
valued function. Then

E

[
1
vh

∑
k

(
Lh,k,nΦ(X̃h,k,n(1), δYn).− EΠh(n−1),δYn

Φ(X̃h(1), δYn)
)]2

1

converges to 0 uniformly in n as h→ 0.
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The following extension of Theorem 6.1 can now be stated.

Theorem 6.2. Theorem 5.1 holds for the filter defined by (6.3) under (A4.1),
(A4.2) and (A6.2).

Of special interest is the case where the importance sampling is with respect
to the initial condition only. To illustrate this case, we consider the special
case of Example 4 of Section 5, where the sampling filter without importance
sampling is given by (5.1) with X̃h,n,l(·) defined via (5.13b). Then Ph

n−1 can
be identified with the measure Πh(n− 1)× Ph

ζ in that this measure determines
that of (X̃h(0), X̃h(1)). Now, let us write Mh,n in a similar manner; namely,
Mh,n = Mh,n

0 × Ph
ζ , where Mh,n

0 is a random measure on G. In this case, the
measure transformation is over the initial condition only and we have

Lh,n =
dΠh(n− 1)

dMh,n
0

and Lh,k,n =
dΠh(n− 1)

dMh,n
0

(X̃h,k,n(0)).

In the next example, we see that the idea of applying importance sampling
to the initial condition can be enhanced by the use of the next observation δYn

to determine the Mh,n
0 .

Example 7: Observation dependent importance sampling. Appropri-
ate measure transformations Mh,n (or Mh,n

0 as defined at the end of the above
example) can improve the estimates quite a bit [3, 28]. Better Mh,n will depend
on the next observation δYn and we will illustrate the point via the signal model
of Example 4 of Section 5, where X̃h(·) is defined by (5.13). Data and examples
of such a procedure can be found in [28]. Again, (A6.1) and the mutual absolute
continuity are the only conditions (in addition to (A4.1) and (A4.2)) that need
to be verified for Theorem 5.1 to hold for the Πh(·) defined in this example.
Keep in mind that we are illustrating only one type of procedure, and even that
has many variations. Consider the following procedure.

Suppose that Πh(n − 1) is concentrated on the vh points {xh,l,n, l ≤ vh},
with the l−th point having probability Πh

l (n − 1). The path emanating from
some of the xh,l,n might be “poor” predictors of the observation δYn in the sense
that the conditional density

p
{
δYn

∣∣X(n) = bh(xh,l,n, ξh)
}

is very small with a high probability. For some other points xh,l,n, this value
might be high with a reasonable probability. It seems reasonable to explore
the paths emanating from the more promising initial points more fully, if this
can be done without (asymptotically) biasing the procedure. The main prob-
lem is that we do not know (apart from the values of the Πh(n − 1)) which
are the more promising points, and how much more promising they are. The
“weights” for the importance sampling are to be determined by an exploratory
sampling procedure, after which the sampling to get the next estimate Πh(n)
will be done. This “double” sampling explains the complexity of the following
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algorithm. Nevertheless, such algorithms are sometimes useful [28] in that the
total computation for a filter with comparable accuracy can be less than what
is needed for a direct method such as that in Example 1.

The procedure starts by getting a “typical” value of bh(xh,l,n, ξh). The word
“typical” is used loosely here. The aim is to get some preliminary approximation
to the “predictive values” of the trajectories emanating from the point, given the
next observation. This “typical value” might be an estimate of the mean value,
or it might be a simple sample value or an average of several sample values. We
call these the “indicator” values, and denote them by X̂h,l,n(1), l ≤ vh. Then
the “predictive power” of this indicator value is computed, and the associated
weights used to get the importance sampling measure for the final computation
of Πh(n). The details follow in algorithmic form.

(1) Let X̂h,l,n(1) (l ≤ vh) denote an “indicator” quantity, which (hopefully)
is highly correlated with the “value” of sampling with initial condition xh,l,n.
[The points for which we get such an “indicator” quantity might also be chosen
by some sampling procedure.]

(2) Compute the conditional Gaussian density p(δYn|X(n) = X̂h,l,n(1)), and
define the “conditional likelihood” of the observation

ph,l,n =
p(δYn|X(n) = X̂h,l,n(1))∑

k Πh
k(n− 1)p(δYn|X(n) = X̂h,k,n(1))

, l ≤ vh. (6.7)

The numerator of ph,l,n up to a normalizing factor is R(X̂h,l,n(1), δYn). Note
that ph,l,n is not a probability. If the numerator in (6.7) is the same for all
points, then ph,l,n = 1 for all l.

(3) Sample mh,n ≥ vh times (with replacement) from the set

{xh,l,n, l ≤ vh}

with weights proportional to the ph,l,nΠh
l (n−1). Note that

∑
l p

h,l,nΠh
l (n−1) =

1. This yields a set which we denote by

{xh,l,n, l ≤ mh,n}.

It is found in practice that the performance is often better if mh,n is several
times vh. This tends to assure a better spread for the support of the conditional
distribution.
(4) Sample {ζh,k,n, k ≤ mh,n} from Ph

ζ and compute

X
h,l,n

(1) = bh(xh,l,n, ζh,k,n), k ≤ mh,n. (6.8)

(5) If vh = mh,n, then set X̃h,l,n(1) = X
h,l,n

(1) = xh,l,n+1. If vh < mh,n, then
resample at random (with replacement) vh times from {Xh,l,n

(1), l ≤ mh,n}, to
get the set {X̃h,k,n(1), k ≤ vh}, and set xh,k,n+1 = X̃h,k,n(1).
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In this procedure, the measure Mh,n was defined by defining Mh,n
0 via the

weight
Mh,n

0,k = ph,k,nΠh
l (n− 1) (6.9)

that it puts on the initial point xh,l,n. Finally, we use the filter defined by (6.3)
with

Lh,l,n =
1

ph,l,n
. (6.10)

The set of likelihood functions clearly satisfy (A6.1) and the corresponding
measures satisfy the mutual absolute continuity requirement.

7 The Continuous Time Problem

In this section we will study the continuous time analogs of the various ran-
dom sampling and combined random sampling-integration algorithms studied
in Sections 5 and 6. Our basic filtering model will be that in Section 2. To
fix ideas, we will begin by indicating the form of the approximating filter for
the case where the random samples are mutually independent and identically
distributed, analogously to what was done in (5.1). We will then consider a
general form of the approximating filter which would cover not only the case of
such i.i.d. samples but also various variance reduction schemes and importance
sampling algorithms of the type studied in Examples 2, 6 and 7.

7.1 Example and motivation.

On the approximation (2.7), (2.8). In typical uses of the approximation
(2.7), the approximating signal process X̃h(·) is a piecewise constant interpo-
lation of a discrete time process. One good example is the Markov chain ap-
proximation such as used in Example 5. Most current applications seem to use
such Markov chain based approximations, whether they are of the explicit forms
discussed in [23] or other forms which satisfy the required local consistency prop-
erty; e.g., based on approximate solutions to the Fokker-Planck equation over
small intervals.

Following the idea and terminology of Example 5, let Xh
n denote the un-

derlying Markov chain, and X̃h(·) its piecewise constant interpolation, with
interpolation interval δh. Then one can use the approximating filter (2.7). Since
the approximating process X̃h(·) there is piecewise constant, R(X̃h

0,t, Y0,t) equals

exp
[t/δh]−1∑

k=0

[
g′(Xh

k ) [Y (kδh + δh)− Y (kδh)]− δh
2

∣∣g(Xh
k )

∣∣2]
× exp

[
g′(Xh

[t/δh]) [Y (t)− Y ([t/δh]δh)]− t− [t/δh]δh
2

∣∣∣g(Xh
[t/δh])

∣∣∣2] .
(7.1)
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However, in practice observations cannot truly be taken continuously and one
would incorporate the observation into the filter at the discrete time instants
nδh only. In fact, for such nonlinear problems the notion of continuous updating
seems to be a mathematical fiction, although the times between updating might
be very small. Thus, one would approximate R(X̃h

0,t, Y0,t) by Rh(X̃h
0,t, Y0,t)

which is defined by the following (piecewise constant) expression

exp
[t/δh]−1∑

k=0

[
g′(Xh

k ) [Y (kδh + δh)− Y (kδh)]− δh
2

∣∣g(Xh
k )

∣∣2] . (7.2)

Whatever the form of X̃h(·), whether it is obtained explicitly as an interpolation
of a discrete time chain Xh

n or not, the samples X̃h(nδh) are always a Markov
chain. For notational simplicity, we always write X̃h(nδh) = Xh

n .

A random sampling algorithm. The above paragraph argues that it is
not a restriction to require the approximating filter process to be piecewise
constant. This logic also holds for algorithms based on random sampling. It
holds even if some higher order interpolation method (say of the Milstein or other
types used in [16]) are used, since even then we would use the interpolation
to get a better approximation to the signal process at discrete time instants
nδh. Thus, in the approximate filters that are considered here, we approximate
the conditional distribution at the instants nδh, and suppose that the filter is
constant on [nδh, nδh + δh).

Since the estimate of the conditional distribution will be updated at each
nδh, we could try to duplicate the various methods in Examples 1 to 7, with the
basic interval being δh, and then prove convergence as δh → 0. The resampling
at the beginning of each interval in the various examples exploited the updated
information to get more sample trajectories from the points which seemed to be
more likely, in view of the information in the observations. But random sampling
also loses information. There is always a chance that the better points will not
be sampled. This chance is reduced as vh increases. When resampling occurs
very frequently, say at each time instant nδh, the procedure can degenerate very
fast as δh → 0, unless vh increases fast enough as δh → 0. One can quantify
such a statement. But it is also a common observation in simulations, including
the ones that we have carried out. The reference [4] resamples at each discrete
interval, in a “minimum variance” way, but vh must grow as 1/δh. Such a rapid
increase in vh is an inefficient use of the computational resources, especially in
view of the fact that the estimates of the conditional distribution do not change
much in small intervals.

Owing to the above observations, we take the following “practical” approach.
Divide time into subunits of (small, but fixed–they do not go to zero) length ε,
and suppose that ε/δh = nh is always an integer. We resimulate the X̃h(·) each
ε units of time, although the observations are incorporated at the instants nδ.

The general model given below is motivated by the ideas of Examples 3
to 7, and we give an analog of condition (A5.3) (namely, conditions (A7.1),
(A7.2)) which covers many cases of interest. But, for specificity, let us first
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consider the case where the process X̃h(·) satisfies the consistency assumption
(A2.1) and the samples taken on [nε, nε + ε) are mutually independent and
independent of Y (·) given their initial distribution Πh(nε). Denote these samples
by {X̃h,l,n(·), l ≤ vh}. Define

Rh(X̃0,s, Ynε,nε+s)

= exp
[s/δh]−1∑

k=0

[
g′(Xh

k ) [Y (nε+ kδh + δh)− Y (nε+ kδh)]− δh
2

∣∣g(Xh
k )

∣∣2] .
(7.3)

Thus Rh(x0,s, Ya,b) differs from R(x0,s, Ya,b) only in that in the former the func-
tion x(·) is replaced by the piecewise constant function with value x(kδh) on
[kδh, kδh + δh). The basic approximating filter based on random sampling, for
s = qδh < ε where q is an integer, is

〈Πh(nε+ s), φ〉 =

∑vh

l=1 φ(X̃h,l,n(s))Rh(X̃h,l,n
0,s , Ynε,nε+s)/vh∑vh

l=1R
h(X̃h,l,n

0,s , Ynε,nε+s)/vh
. (7.4)

This is just the “continuous time” analog of (5.1).
As stated earlier, we will suppose that Πh(·) is constant on the intervals

[qδh, qδh + δh). Alternatively, if desired, we can interpolate and one natural
interpolation would use the form (7.4), but with the term

g′(Xh
[s/δh]) [Y (nε+ s)− Y (nε+ [s/δh]δh))]− s− [s/δh]δh

2

∣∣∣g(Xh
[s/δh])

∣∣∣2 (7.5)

added to the sum in (7.3). The treatment of both forms is nearly identical.
As in the discrete time case, we are interested in random sampling and ran-

dom sampling-integration algorithms which are more general than (7.4), with
(conditional) i.i.d. samples. We would like to allow the possibility of incorpo-
rating variance reduction methods as in Example 2, or perhaps the sampling
can be guided using some importance sampling scheme as in Examples 6 and
7. We might even be interested in algorithms which are part integration and
part random sampling, say of the form discussed in Examples 4 and 5. In
view of this, we work with the following general form of the approximate filter,
which is our continuous time analog of the discrete time filter defined via (5.10).
The chosen general structure is motivated by the same considerations which
led to (5.10) and (A5.11), the desire to include many types of approximations
of interest under one roof, with a general assumption which can be verified in
particular cases of interest, analogously to what was done for the discrete time
case. The conditions (A7.1) and (A7.2) hold for the independent samples case
under (A2.1).

Let δh, ε, nh be as above. Define the approximating filter Πh(·) as follows.
Having defined Πh(t) for 0 ≤ t ≤ nε, let Ph,n

Πh(nε)
is conditionally independent of

{Yt − Ynε; t ≥ nε} given Πh(nε). Define, for 1 ≤ j ≤ nh,

〈Πh(nε+ jδh), φ〉 =

∫
φ(x(jδh))Rh(x0,jδh

, Ynε,nε+jδh
)dPh,n

Πh(nε)
(x(·))∫

Rh(x0,jδh
, Ynε,nε+jδh

)dPh,n
Πh(nε)

(x(·))
. (7.6)
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For points in [nε, (n + 1)ε) not of the form nε + jδh, the filter is defined via
the piecewise constant and right continuous interpolation. In the independent
sample case (7.4), Ph,n

Πh(nε)
is the occupation measure defined analogously to the

the way it was defined above (5.9) for the discrete time case. We assume that
the family {Ph,n

Πh(nε)
} satisfies (A7.1) and (A7.2) below. Given the very general

structure allowed for the filter, some condition such as (A7.2) is needed for the
continuous time problem in order to avoid simulated processes that are “wild.”
Under (A2.1), Condition (A7.2) holds for the i.i.d case illustrated in (7.4), since
there each X̃h,l,n(·) is a replica of the X̃h(·) of (A2.1) with initial conditions in
the compact set G.

A7.1. For every bounded and continuous real valued function Φ(·) of x(·) on
the interval [0, ε] and which depends on x(·) only at a finite number of points

lim
h→0

sup
n
E

[∫
Φ(x(·))dPh,n

Πh(nε)
(x(·))− EΠh(nε)Φ(X̃(·))

]2

1

= 0.

We will impose another condition on the Ph,n
Πh(nε)

. For motivation, consider
the case of independent samples discussed above. For µ > 0, δ > 0,, define the
set of paths

Cδ
µ =

{
x(·) : sup

s≤δ,t+s≤ε,t≤ε
|x(t+ s)− x(t)| ≥ µ

}
.

Then
lim
δ→0

lim sup
h

sup
n
EPh,n

Πh(nε)
(Cδ

µ) = 0 for each µ > 0. (7.7)

The limit (7.7) continues to hold for the model of Example 5 for our current
case where the observations are incorporated at each time nδh. It holds if
the samplings of the initial conditions X̃h,l,n(0) are determined by importance
sampling as in Example 7. It also holds for many variance reduction methods.
For example, stratified sampling of the initial condition or of the intermediate
noises. The expression (7.7) simply states that for small h, the sampled paths
don’t change much in the mean over small intervals, uniformly in n. We will
impose this reasonable property as a requirement by assuming:

A7.2. The condition (7.7) holds.

The following lemma will be used in some of the tightness arguments used
below.

Lemma. [18, Theorem 2.7b]. Let {Zn(·), n} be a family of processes with paths
in the Skorohod space D[S0; 0,∞), where S0 is a complete and separable metric
space with metric γ(·). For each δ > 0 and each t in a dense set, let there be a
compact set Sδ,t ⊂ S0 such that

sup
n
P{Zn(t) /∈ Sδ,t} ≤ δ.
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Let Fn
t denote the minimal σ−algebra which measures {Zn(u), u ≤ t}, and

Tn(T ) the set of Fn
t -stopping times which are less than T > 0. Suppose that for

each T
lim
δ→0

lim sup
n

sup
τ∈Tn(T )

E [γ (Zn(τ + δ), Zn(τ)) ∧ 1] = 0.

Then {Zn(·)} is tight.

Theorem 7.1. Let (X(·), Y (·)) be as in Section 2. Assume (A3.1), (A7.1) and
(A7.2). Then the conclusions of Theorem 3.1 hold for the approximate filter
Πh(·) defined as above.

Proof. Many of the details of the proof are the same as in the proof of Theorem
3.1, and in the way that its was used in Theorem 5.1 and its successors for
the discrete time case. The key differences are in the proof of tightness of
{Qhk,Tk(·); k ≥ 1} for any sequences hk → 0, Tk → ∞, and the proof of the
representation (3.8) and we concentrate on these points. In the discrete time
theorems, the tightness of {Qhk,Tk(·); k ≥ 1} was essentially obvious due to the
compactness of G. There was no issue of “path properties,” in showing the
tightness due to the discrete time parameter. In the current continuous time
case, we need to deal with the path properties. Owing to the use of the weak
topology, it is enough to prove the tightness of the set{

〈Πhk(tk + ·), φ〉;hk, Tk

}
for each bounded and continuous real valued function φ(·) on G.

In proving the tightness of the above family, we use the criterion in the
lemma. The main step is establishing that for each φ(·) as above

lim
δ→0

lim sup
h→0

sup
t

sup
τ∈T h,t(ρ)

E
∣∣〈Πh(t+ τ + δ), φ〉 − 〈Πh(t+ τ), φ〉

∣∣2
1

= 0, (7.8)

where T h,t(ρ) denotes the set of stopping times bounded by ρ, for the process
Πh(t+·). We can assume without loss of generality that δ in the above expression
is less than ε. Thus t + τ and t + τ + δ are either in the same interval of the
form [jε, (j+1)ε) or they are in adjacent such intervals. This observation along
with an application of a triangle inequality shows that, in order to prove (7.8)
it suffices to prove that

lim sup
h→0

sup
j

sup
0≤K1≤K2≤nh,|K1−K2|δh≤δ

E
∣∣〈Πh(jε+K1δh), φ〉 − 〈Πh(jε+K2δh), φ〉

∣∣2
1

(7.9)
converges to 0 as δ → 0. Note that jε + K1δh and jε + K2δh are both in the
interval [jε, jε+ ε].

Now we bound the above expectation by the sum of the following three
terms. The first two terms are, for i = 1, 2,

lim sup
h→0

sup
j

sup
0≤Kiδh≤ε

F1(j, h,Kiδh), (7.10)
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where

F1(j, h,Kiδh) =

E

∣∣∣∣∣〈Πh(jε+Kiδh), φ〉 −
EΠh(jε),Yjε,jε+Kiδh

φ(X̃(Kiδh))Rh(X̃0,Kiδh
, Yjε,jε+Kiδh

)

EΠh(jε),Yjε,jε+Kiδh
Rh(X̃0,Kiδh

, Yjε,jε+Kiδh
)

∣∣∣∣∣
2

1

.

The third term is

lim sup
h→0

sup
j

sup
0≤K1δh≤K2δh≤ε,|K1−K2|δh≤δ

F2(j, h,K1δh,K1δh), (7.11)

where

F2(j, h,K1δh,K1δh) =

E

∣∣∣∣∣EΠh(jε),Yjε,jε+K1δh
φ(X̃(K1δh))Rh(X̃0,K1δh

, Yjε,jε+K1δh
)

EΠh(jε),Yjε,jε+K1δh
Rh(X̃0,K1δh

, Yjε,jε+K1δh
)

−
EΠh(jε),Yjε,jε+K2δh

φ(X̃(K2δh))Rh(X̃0,K2δh
, Yjε,jε+K2δh

)

EΠh(jε),Yjε,jε+K2δh
Rh(X̃0,K2δh

, Yjε,jε+K2δh
)

∣∣∣∣∣
2

1

.

In dealing with (7.11), owing to the properties of the | · |21 metric defined
by (4.14), we need only work with the differences of the numerators and de-
nominators separately. Then, (7.11) is easily dealt with using the continuity
property of X̃(·). In particular, it follows from the fact that for any bounded
and continuous function φ(·)

lim
δ→0

sup
|K1−K2|δh≤δ

sup
π
E

∣∣∣∣Eπ,Yjε,jε+K1δh
φ(X̃(K1δh)Rh(X̃0,K1δh

, Yjε,jε+K1δh
)

−Eπ,Yjε,jε+K2δh
φ(X̃(K2δh))Rh(X̃0,K2δh

, Yjε,jε+K2δh
)
∣∣∣∣2
1

= 0,

(7.12)
where Kiδh ≤ ε.

Now we consider (7.10). By the definition of Πh(jε) in terms of Ph,j
Πh(jε)

in
(7.6), the first term inside the bars in (7.10), equals∫

φ(x(Kiδh))Rh(x0,Kiδh
, Yjε,jε+Kiδh

)dPh,j
Πh(jε)

(x(·))∫
Rh(x0,Kiδh

, Yjε,jε+Kiδh
)dPh,j

Πh(jε)
(x(·))

. (7.13)

Again, we need only work with the differences of the numerators of the right
hand term inside the bars in (7.10) and that in (7.13), for arbitrary bounded
and continuous φ(·).

The proof that the limit of (7.10) as δ → 0 is zero will use an approxi-
mation method. For small ∆ > 0, with ε an integral multiple of ∆, define
R∆(x0,s, Ya,a+s) by

exp{
∑

i:i∆<s

g′(x(i∆)) [Y (a+ i∆ + ∆)− Y (a+ i∆)]− ∆
2

∑
i:i∆<s

|g(x(i∆))|2 .}

36



For each h, define

Ah,∆ = sup
Kiδh≤ε

sup
j

sup
π
Eπ

∣∣∣Rh(X̃0,Kiδh
, Yjε,jε+Kiδh

)−R∆(X̃0,Kiδh
, Yjε,jε+Kiδh

)
∣∣∣2
1
.

For each ρ > 0, there is ∆0 > 0 such that for ∆ < ∆0 and small h > 0 we have
Ah,∆ ≤ ρ. Define

Bh,∆ =

sup
Kiδh≤ε

sup
j
E

∫ ∣∣Rh(x0,Kiδh
, Yjε,jε+Kiδh

)−R∆(x0,Kiδh
, Yjε,jε+Kiδh

)
∣∣2
1
dPh,j

Πh(jε)
(x(·)).

(7.14)
By (A7.2), for each ρ > 0 there is ∆0 > 0 such that for ∆ < ∆0, and small
h > 0, Bh,∆ ≤ ρ. This assertion is proved as follows. Define x∆(t) = x(i∆) for
t ∈ [i∆, i∆ + ∆). To prove the assertion, it is sufficient to show that

lim sup
h

sup
j

sup
Ki≤nh∫ ∣∣∣∣∣

Ki∑
l=0

[
g(x(lδh))− g(x∆(lδh))

]′
[Y (lδh + dh)− Y (lδh)]

∣∣∣∣∣
2

d
[
EPh,j

Πh(jε)
(x(·))

]
(7.15)

is arbitrarily small if ∆ is small enough. By (A7.2), we can suppose that the
difference of the g−terms in the bracket in (7.15) is as small as we wish and this
implies the assertion.

Thus, to show that the limit of (7.10) is zero as δ → 0, it is sufficient to show
that

lim
∆→0

lim sup
h→0

sup
j

sup
0≤Kiδh≤ε

E

∣∣∣∣ ∫
φ(x(Kiδh))R∆(x0,Kiδh

, Yjε,jε+Kiδh
)dPh,j

Πh(jε)
(x(·))

−EΠh(jε),Yjε,jε+Kiδh
φ(X̃(Kiδh))R∆(X̃0,Kiδh

, Yjε,jε+Kiδh
)
∣∣∣∣2
1

= 0

(7.16)

By (A7.2), is is sufficient to show (7.16) if the Kiδh in the φ(x(Kiδh)) and
φ(X̃(Kiδh)) are replaced by the closest integral multiple of ∆ for small ∆. Now,
all the Kiδh in (7.16) are integral multiples of ∆ for some fixed ∆. Hence, the
sup0≤Kiδh≤ε in (7.16) is redundant and can be dropped. We would like to use
(A7.1) at this point. But (A7.1) holds only for each function Φ(·). In (7.16), ∆
is fixed, and we can suppose, without loss of generality that ε = k0∆ for some
integer k0. Given any small ρ > 0, there is a bounded set Bρ such that the
values of {Y (jε+ t)− Y (jε), t ≤ ε} are confined to Bρ with at least probability
1− ρ for all j. Because of this, and the continuity of R∆(·), we need only verify
(7.16) for some finite set of values of the Y−variables. Due to this and to the
fact that k0 < ∞, we need only evaluate (7.16) for each Y (·) and Kiδh ≤ ε
being some arbitrary multiple of ∆. Then (A7.1) can be used, and guarantees
(7.16). This completes the proof of tightness of {Qhk,Tk(·), k ≥ 1}.
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We now prove the representation in (3.8). The general scheme used in Theo-
rem 5.1 for this characterization will be followed. Let ψ(·) = (x(·), π(·), y(·), b(·))
denote the (canonical paths of the signal process, the conditional probability
process, the observation process and the observation noise process). They are
connected by y(t) =

∫ t

0
g′(x(s))ds+ b(t). For arbitrary bounded and continuous

φ(·), arbitrary ψ(·) and times t, s, define the function A(ψ(·); t, s)) by

A(ψ(·); t, s) = 〈π(t+ s), φ〉 −
E{π(t),yt,t+s}

[
φ(X̃0,s)R(X̃0,s, yt,t+s)

]
E{π(t),yt,t+s}R(X̃0,s, yt,t+s)

. (7.17)

Recall the definition of Ψω(·) from Theorem 3.1. We will also use other notations
from Section 3. The aim of the proof of Theorem 3.2 in [2], which is our Theorem
3.1, was to show that, for almost all ω and all t, s,

A(Ψω(·); t, s) = 0, with probability 1 (7.18)

which implies (3.8). In fact it suffices to consider s ≤ ε. Hereafter we will
consider only such values of s without any further comment.

The statement in (7.18) will be proved by showing that

0 = E

∫
Qω(dψ) [A(ψ(·); t, s)]21 , (7.19)

The prelimit form of the right side of (7.19) is

E

∫
Qh,T (dψ) [A(ψ(·); t, s)]21 ,

which, by the definition of Qh,T (·), equals

1
T

∫ T

0

E
[
A(Ψh(·);u+ t, s)

]2
1
du, (7.20)

where

A(Ψh(·); t, s) = 〈Πh(t+ s), φ〉−
E{Πh(t),Yt,t+s}

[
φ(X̃(s))R(X̃0,s, Yt,t+s

]
E{Πh(t),Yt,t+s}R(X̃0,s, Yt,t+s)

. (7.21)

In order to show (7.19), it suffices to show that

lim
h

sup
t
E[A(Ψh(·); t, s)]21 → 0. (7.22)

Furthermore, in view of the properties of the X̃(·) process and the tightness of
the set {Πh(t);h, t}, to prove (7.22) it is clearly sufficient to show that

sup
t
E

∣∣∣∣∣∣〈Πh(t+ s), φ〉 −
E{Πh(t),Yt,t+s}

[
φ(X̃(s))Rh(X̃0,s, Yt,t+s)

]
E{Πh(t),Yt,t+s}R

h(X̃0,s, Yt,t+s)

∣∣∣∣∣∣
2

1

→ 0 (7.23)

38



as h→ 0.
Since s < ε, the points t and t+ s are either in the same subinterval of the

form [jε, (j + 1)ε] or are in adjacent intervals of this form. We consider below
the case of adjacent intervals. The arguments required for the same interval
case are simpler versions of the former case and thus are omitted. Let now
t ∈ [jε + iδh, jε + iδh + δh) and t + s ∈ [(j + 1)ε + i′δh, (j + 1)ε + i′δh + δh).
Showing (7.23) is equivalent to proving that, for each s

E

∣∣∣∣∣∣〈Πh(t+ s), φ〉 −
E{Πh(jε+iδh),Yjε+iδh,t+s}

[
φ(X̃(αδh))Rh(X̃0,αδh

, Yjε+iδh,(j+1)ε+i′δh
)
]

E{Πh(jε+iδh),Yjε+iδh,t+s}R
h(X̃0,αδh

, Yjε+iδh,(j+1)ε+i′δh
)

∣∣∣∣∣∣
2

1
(7.24)

converges to 0 as h→ 0, uniformly in t, where α = nh + i′− i. Thus, |αδh−s| ≤
δh.

The expectation in (7.24) can be bounded above by the sum of

E

∣∣∣∣∣∣〈Πh(t+ s), φ〉 −
E{Πh((j+1)ε),Y(j+1)ε,t+s}

[
φ(X̃(i′δh))Rh(X̃0,i′δh

, Y(j+1)ε,(j+1)ε+i′δh
)
]

E{Πh((j+1)ε),Y(j+1)ε,t+s}R
h(X̃0,i′δh

, Y(j+1)ε,(j+1)ε+i′δh
)

∣∣∣∣∣∣
2

1
(7.25)

and

E

∣∣∣∣∣∣
E{Πh((j+1)ε),Y(j+1)ε,t+s}

[
φ(X̃(i′δh))Rh(X̃0,i′δh

, Y(j+1)ε,(j+1)ε+i′δh
)
]

E{Πh((j+1)ε),Y(j+1)ε,t+s}R
h(X̃0,i′δh

, Y(j+1)ε,(j+1)ε+i′δh
)

−
E{Πh(jε+iδh),Yjε+iδh,t+s}

[
φ(X̃(αδh))Rh(X̃0,αδh

, Yjε+iδh,(j+1)ε+i′δh
)
]

E{Πh(jε+iδh),Yjε+iδh,t+s}R
h(X̃0,αδh

, Yjε+iδh,(j+1)ε+i′δh
)

∣∣∣∣∣∣
2

1

.

(7.26)
Using the definition from (7.6) of Πh(t+ s) in terms of Ph,j+1

Πh((j+1)ε)
in (7.25)

and working with numerators and denominators separately, as we may, it follows
that showing the convergence to zero of the supt of (7.25) as h → 0 to zero is
equivalent to showing the same for

E

∣∣∣∣∫ φ(x(i′δh))Rh(x0,i′δh
, Y(j+1)ε,(j+1)ε+i′δh

)dPh,j+1
Πh((j+1)ε)

(x(·))

− E{Πh((j+1)ε),Y(j+1)ε,t+s}

[
φ(X̃(i′δh))Rh(X̃0,i′δh

, Y(j+1)ε,(j+1)ε+i′δh
)
]∣∣∣2

1
(7.27)

Let ∆ > 0 be small. Now, repeat the logic which led to (7.16). By (A7.2) and
the continuity properties of X̃(·), it is sufficient to prove the result if both of
the Rh(·) in (7.27) are replaced by R∆(·), and the i′δh in X̃(i′δh) and x(i′δh)
are replaced by the nearest integral integral multiple of ∆. Then (A7.1) yields
the desired convergence. This takes care of (7.25).

We now turn to (7.26). This time we do not work with the numerators
and denominators separately. For motivation, note that if Πh(·) were the true
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conditional distribution for the discrete time signal process X(nδh), then (7.26)
is identically zero. Let ∆ > 0 be small and ε an integral multiple of ∆. Owing to
the properties of X̃(·) and the tightness of the set {Πh(t+ ·);h, t} it is sufficient
to show that the limh supt of (7.26) is zero if Rh(·) were replaced by R∆(·) and
the iδh and i′dh were integral multiples of ∆. Thus we can write t = jε+ k1∆
and t+s = (j+1)∆+k2∆, where ki∆ ≤ ε. Using the fact that the ki have only
finitely many values, it is sufficient to show that

lim
h

sup
j
E

∣∣∣∣∣∣
E{Πh((j+1)ε),Y(j+1)ε,(j+1)ε+k2∆}

[
φ(X̃(k2∆))R∆(X̃0,k2∆, Y(j+1)ε,(j+1)ε+k2∆)

]
E{Πh((j+1)ε),Y(j+1)ε,(j+1)ε+k2∆}

[
R∆(X̃0,k2∆, Y(j+1)ε,(j+1)ε+k2∆)

]
−
E{Πh(jε+k1∆),Yjε+k1∆,(j+1)ε+k2∆}

[
φ(X̃(ε− k1∆ + k2∆))R∆(X̃0,ε−k1∆+k2∆, Yjε+k1∆,(j+1)ε+k2∆)

]
E{Πh(jε+k1∆),Yjε+k1∆,(j+1)ε+k2∆}

[
R∆(X̃0,ε−k1∆+k2∆, Yjε+k1∆,(j+1)ε+k2∆)

]
∣∣∣∣∣∣
2

1

= 0.

(7.28)
The difficulty in treating this term is that the initial times are different,

being (j + 1)ε in the first term and jε+ iδh in the second. Because of this, we
need to represent both initial measures in terms of the same quantity, namely
in terms of Ph,j

Πh(jε)
, and the details will now be given. Define the function

Θ
(
φ, k2∆, Y(j+1)ε,(j+1)ε+k2∆, x

)
=

E

[
φ(X̃(k2∆))R∆(X̃0,k2∆, Y(j+1)ε,(j+1)ε+k2∆)

∣∣∣∣X̃(0) = x, Y(j+1)ε,(j+1)ε+k2∆

]
.

(7.29)
If φ(·) is equal to the constant function with value unity, we simply write 1 for
φ in (7.29). Then, using the definition (7.6) of Πh((j + 1)ε) in terms of Ph,j

Πh(jε)
,

the numerator of the first term inside the bars in (7.28) can be rewritten as∫
Θ

(
φ, k2∆, Y(j+1)ε,(j+1)ε+k2∆, x(ε)

)
R∆(x0,ε, Yjε,(j+1)ε)dP

h,j
Πh(jε)

(x(·))∫
R∆(x0,ε, Yjε,(j+1)ε)dP

h,j
Πh(jε)

(x(·))
, (7.30)

The denominator of the left hand term inside the bars in (7.28) has the same
representation, but with 1 replacing φ. Thus, that left hand term can be written
as∫

Θ
(
φ, k2∆, Y(j+1)ε,(j+1)ε+k2∆, x(ε)

)
R∆(x0,ε, Yjε,(j+1)ε)dP

h,j
Πh(jε)(

x(·))∫
Θ

(
1, k2∆, Y(j+1)ε,(j+1)ε+k2∆, x(ε)

)
R∆(x0,ε, Yjε,(j+1)ε)dP

h,j
Πh(jε)

(x(·))
. (7.31)

By (A7.1), without changing the limits in (7.28), this fraction can be replaced
by

E{Πh(jε),Yjε,(j+1ε)+k2∆}Θ
(
φ, k2∆, Y(j+1)ε,(j+1)ε+k2∆, x(ε)

)
R∆(x0,ε, Yjε,(j+1)ε)

E{Πh(jε),Yjε,(j+1ε)+k2∆}Θ
(
1, k2∆, Y(j+1)ε,(j+1)ε+k2∆, x(ε)

)
R∆(x0,ε, Yjε,(j+1)ε)

.

(7.32)
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In turn, using the Markov property of X̃(·), the definition of Θ(·) as a conditional
expectation, and the fact that R∆(·) is the exponential of a sum, this equals

E{Πh(jε),Yjε,(j+1)ε)+k2∆}φ(X̃(ε+ k2∆))R∆(X̃0,ε+k2∆, Yjε,(j+1)ε+k2∆)

E{Πh(jε),Yjε,(j+1)ε)+k2∆}R
∆(X̃0,ε+k2∆, Yjε,(j+1)ε+k2∆)

(7.33)

Now, we turn our attention to the second term inside the bars in (7.28).
This is treated in essentially the same way as was the first term. Consider the
numerator of that term. The expectation, conditioned on{

X̃(ε− k1∆) = x, X̃0,ε−k1∆, Yjε+k1∆,(j+1)ε+k2∆

}
,

is just

Θ
(
φ, k2∆, Y(j+1)ε,(j+1)ε+k2∆, x

)
R∆(X0,ε−k1∆, Yjε+k1∆,(j+1)ε).

We proceeding as we did above with the first term. Using the definition (7.6)
yields an expression analogous to (7.29). Then applying first (A7.1) and then
the Markov property of X̃(·) to that expression yields that we can replace the
second term in (7.28) by (7.33) as well without changing the limit. We omit the
details, which are nearly the same as for the first term. Thus, the term in the
bars in (7.28) can be replaced by zero without changing the limit.

The proof of (7.22) is now completed.
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