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ABSTRACT

Calvin Deutschbein: Mining Secure Behavior of Hardware Designs
(Under the direction of Cynthia Sturton)

Hardware presents an enticing target for attackers attempting to gain access to a secured

computer system. Software-only exploits of hardware vulnerabilities may bypass software level

security features. Hardware must be made secure. However, to understand whether a hardware

design is secure, security specifications must be generated to define security on that design.

Micro-architectural design elements, undocumented or under-documented features, debug in-

terfaces, and information–flow side channels all may introduce new vulnerabilities. The secure

behavior of each must be specified in order ensure the design meets its security requirements and

contains no vulnerabilities. However, manual efforts can be overwhelmed by design complexity,

and many hardware vulnerabilities, such as Memory Sinkhole, SYSRET privilege escalation,

and most recently Spectre/Meltdown, persisted in product lines for decades despite extensive

testing. An automated solution is needed to specify secure designs. Specification mining offers

a solution by automating security specification for hardware. Specification miners use a form of

machine learning to specify behaviors of a system by studying a system in execution. However,

specification mining was first developed for use with software. Complex hardware designs offer

unique challenges for this technique. Further, specification miners traditionally capture functional

specifications without a notion of security, and may not use the specification logics necessary to

describe some security requirements.

This work demonstrates specification mining for hardware security. On CISC architectures

such as x86, I demonstrate that a miner partitioning the design state space along control signals

discovers a specification that includes manually defined properties and, if followed, would secure

CPU designs against Memory Sinkhole and SYSRET privilege escalation. For temporal prop-

iii



erties, I demonstrate that a miner using security specific linear temporal logic (LTL) templates

for specification detection may find properties that, if followed, would secure designs against

historical documented security vulnerabilities and against potential future attacks targeting sys-

tem initialization. For information–flow hyperproperties, I demonstrate that a miner may use

Information Flow Tracking (IFT) to develop output properties containing designer specified

information–flow security properties as well as properties that demonstrate a design does not

contain certain Common Weakness Enumerations (CWEs).
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CHAPTER 1: INTRODUCTION

Hardware presents an enticing target for attackers attempting to gain access to a secured

computer system. Software-only exploits of hardware vulnerabilities may bypass software

level security features. Hardware must be made secure. However, for designers to determine

whether hardware is secure, security specifications must be generated for a given design. Micro-

architectural design elements, undocumented or under–documented features, debug interfaces,

and information–flow side channels all may introduce new vulnerabilities. The secure behavior of

each must be specified in order to ensure the design meets its security requirements and contains

no vulnerabilities. Yet manual efforts can be overwhelmed by design complexity. An automated

solution is needed to specify secure designs. Mining secure behavior for hardware designs of-

fers an automated approach to security specification, an important step toward achieving secure

hardware design.

In hardware designs, weaknesses or vulnerabilities may be introduced, usually alongside new

design features offering higher performance, that persist within product lines for years or decades.

Consider the Memory Sinkhole vulnerability (Domas, 2015). Introduced to x86 designs in the

mid-1990’s with the new System Management Mode (SMM), it remained exploitable on x86

architectures until the Sandy Bridge-EP release in 2011. Despite affecting hardware for almost

two decades, the vulnerability was first publicly demonstrated only in 2015. The vulnerable hard-

ware was intended to be secure, and tested for security, but was not validated against a security

specification that precisely disallowed the Memory Sinkhole’s attack mechanisms. In Chapter 3, I

show how mining can automatically generate such a security specification.

Mining can also promote best practice for the development of secure designs. For example,

the Common Weaknesses Enumerations (CWEs) database describes high level design goals
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for secure systems, often for software. Recently, as part of an industry-wide effort to secure

hardware, CWEs describing many forms of secure design for hardware have been added to the

database as well. CWEs may be specified over particular types of designs and represent best

practices for generally secure design, such as debug and reset implementations. While assessing

designs against CWEs relies on manual efforts, including reasoning about what security means

for a given design, CWEs may offer an early line of defense against broad spectrums of attacks.

Automated application of CWEs to designs could create designs secure against vulnerabilities

to potential future attacks by eliminating common weaknesses. In Chapter 5, I show how min-

ing can automatically generate a specification containing CWE–relevant properties for a given

design.

Specification mining offers a powerful tool that designers may use as part of broader efforts to

prevent future attacks. For the many designs for which there is no existing security specification,

security specification mining can generate one. These generated specifications may then be used

for validation efforts. Specification miners use a form of machine learning to specify behaviors

of a system by studying the execution of said system, and these behaviors may include the secure

operations of intentionally secure designs. In this work, I show how specification mining can

address challenges of developing security specifications for different designs, ranging from x86

to SoC designs, and for different logics of specifications, including linear temporal logic (LTL)

properties and hyperproperties. I design and implement a series of specification miners to cre-

ate security specifications of hardware, and evaluate generated specifications against manually

defined notions of security. Each miner uses unique methods developed for hardware security

mining to define specific security goals.

Specification miners consider a design by taking as input traces of execution and producing

as output lists of properties of the design. While traces may take different forms, they capture in

some way the state of a design at different time points during a run of execution, such as in value

change dumps (VCDs), which log every time the value held by a register or wire changes, or as in

debug logs, which may log software-visible signals across clock cycles or control flow changes.
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Specification miners may produce invariants, logical expressions that must hold over some design

elements at all time points within a set of traces. Miners may also consider temporal properties,

such as properties specified in Linear Temporal Logic (LTL), which define behavior across dif-

ferent time points. Miners may even consider hyperproperties, which require reasoning across

multiple runs of execution of a design and therefore require reasoning about more than a single

trace. Increasingly complex logics of specification allow defining security properties preempting

correspondingly complex attack patterns. A temporal property may be used to secure a design

against timing attacks, or a hyperproperty may be used to secure a design against information

flow leakage.

Specification mining was pioneered for use on software, and state–of–the–art specification

miners are often not intended for use on hardware designs. Early specification miners, such as

DIDUCE (Hangal and Lam, 2002), which studied Java programs, or Perracota (Yang et al., 2006),

which studied APIs, were specifically based around common errors in programs. Miners devel-

oped for hardware designs, which lack abstractions present in software such as types or functions,

used different approaches to understand design behavior. Earlier hardware miners, such as IO-

DINE (Hangal et al., 2005) and later on, GoldMine (Hertz et al., 2013), extracted only invariants,

and often only specific kinds of invariants, such as one–hot encoding. These invariants were

valuable for studying designs, but were not intended to capture all security agreements of the

underlying hardware. Later hardware miners using more descriptive logics, such as SAM (Li

et al., 2010) and A-TEAM (Danese et al., 2017) with temporal logics and Hyperminer (Rawat

et al., 2020) with hyperproperties, generate valuable specifications more expressive than earlier

tools. However, challenges remained to automatically generate properties such as temporal ex-

pressions over equalities between registers or information flows that may occur but only under

certain conditions. And as expressiveness improves, mining hardware designs may produce far

more properties than can be reasonably considered by human designers.

Mining for security introduces further challenges, as specification miners do not innately dif-

ferentiate security and functional correctness. Especially when considering designs for which
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no security specification exists, identifying which properties enact some implicit security agree-

ment may require domain specific or even design specific solutions. Even when specifications

cover some cases of insecure behavior identified on a given design, it is another matter entirely

to compose these disparate examples into a notion of design–level security, much less a method

for understanding secure design generally. Specification mining for security must engage with the

question of what is, and is not, a security property.

Secure hardware behavior offers an ever-moving target for security researchers and hardware

designers. This work must contend with what it means for a property to be a security property,

or a specification to be a security specification. In the case of known attacks, such as Memory

Sinkhole (Domas, 2015), security properties may be understood to be some specification mining

output property that, if followed, would mean the attack could not be used against the design.

Yet secure behavior with respect to known attacks does not necessarily mean a design is secure

against all possible attacks. Vulnerabilities may only be classified as vulnerabilities after some

attack is discovered, and many designs do not have complete functional specifications that are

validated for correctness or complete enumerations of their security requirements in order to an-

ticipate what forms an attack may take. Consequently, generated security specifications can, and

in many cases should, contain properties for which there is no known attack or exploit. Further,

secure behavior for hardware designs must also consider expectations of software, including oper-

ating systems, that run on the design. Hardware features, such as memory protections or privilege

levels, may be implemented to service software-level requirements. When automatically generat-

ing specifications with the intent to support the security validation process, an automated process

may target:

• Software expectations of hardware for security

• Historical examples of exploits

• Existing best practices

Each of these cases are considered in this thesis, often in conjunction.
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While scaling to hardware and refining to security both represent challenges, specification

mining remains well placed to specify hardware security. In fact, the additional complexities of

hardware can in part be addressed by considering security cases specifically, and the comparative

complexity itself makes use of automated tools more desirable. The usefulness of specification

mining increases further when considering complex notions of security such as temporal prop-

erties or hyperproperties. This thesis demonstrates that specification mining can solve vital chal-

lenges for secure hardware designs by exploring three cases where security specifications would

assist designers in securing hardware.

To demonstrate security specification mining on Complex Instruction Set Computer (CISC)

architectures, I created Astarte, a specification miner that partitions the x86 design state space

along control signals that govern secure behavior of the processor. Astarte works at the Instruc-

tion Set Architecture (ISA) level and may therefore be used for hardware designs that are closed

source. By evaluating the output specification against security properties from a manual review of

design documentation and additional properties capturing correct design behavior with respect to

two historical attacks, Memory Sinkhole (Domas, 2015) and SYSRET privilege escalation (Dun-

lap, 2012), I show that the Astarte specifications contain properties that are security relevant in

each of these cases. Astarte addresses software expectations of hardware for security by consider-

ing how operating systems interface with underlying hardware. Some hardware features, such as

privilege levels and operating modes, are assumed to provide certain controls, and software may

make assumptions of how underlying hardware manages internal state that introduce potential

exploits. This was the case for SYSRET privilege escalation, where the SYSRET instruction had

different specified behaviors on AMD and Intel designs. When software assumed the AMD be-

havior applied to Intel designs, the unanticipated hardware behavior allowed user–level attackers

to elevate their privilege level. By applying Astarte to traces generated by different operating

systems and comparing output properties across them, Astarte may provide insight into the secu-

rity expectations software may have of hardware. In turn, hardware designers may implement or

preempt design behavior related to these expectations to achieve the assumed notions of security.

5



Astarte is presented in Chapter 3 and is based on joint work with Cynthia Sturton (Deutschbein

and Sturton, 2020).

To demonstrate security specification mining of temporal properties, I created Undine, a se-

curity specification miner that uses security specific LTL templates to mine security properties.

Undine targets Reduced Instruction Set Computer (RISC) central processing unit (CPU) or Sys-

tem on a Chip (SoC) designs. As these designs are open source, Undine works at the Register

Transfer Level (RTL). Undine is situated as an extension of the invariant detection methods of

SCIFinder (Zhang et al., 2017) to temporal properties, and similarly is oriented toward describing

secure design behavior against historical examples of exploits while also producing new prop-

erties. The output specification provides properties that, if followed, would prevent known and

potential future attacks on hardware that can be defined before, after, and across system state

transitions. I show an example exploit of privilege escalation that violates a generated tempo-

ral property specifying system behavior prior to reset in Section 4.4.5. Undine uses a labelling

system of events to generate LTL properties over propositional variables including equalities

between registers and over registers and values for RISC CPUs. Doing so results in output specifi-

cations with high coverage and density of historically established security properties. To produce

these properties, Undine uses a library of labelled linear temporal logic templates useful across

multiple designs, a valuable product of this line of research. Undine is presented in Chapter 4 and

is based on joint work with Cynthia Sturton (Deutschbein and Sturton, 2018).

To demonstrate security specification mining of information flow properties, I created Isadora,

a security specification miner that uses information flow tracking to mine information flow spec-

ifications. Like Undine, Isadora works at the Register Transfer Level (RTL) and is suitable for

use on open source hardware designs including RISC CPUs and SoC designs. The output spec-

ification gives the information flow relations between all design elements, specifying whether

flows may occur between two elements and, if so, specifying the design conditions under which

information flow occurs. By evaluating the output specification against designer–provided sets of

security properties and against high level Common Weakness Enumerations (CWEs), I show that
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the Isadora miner finds security properties representing security efforts of individual designers

for a specific design and security properties representing established best practices for security.

The evaluation considers multiple designs, including an access control module, an SoC design,

and a RISC-V CPU. This is presented in Chapter 5 and is based on joint work with Andres Meza,

Francesco Restuccia, Ryan Kastner, and Cynthia Sturton (Deutschbein et al., 2021).

The thesis of this work is:

Specification mining can discover properties that can be used to verify the secure
behavior of closed source CISC CPU designs, properties that can be used to verify
the temporal correctness of CPU designs, and hyperproperties that can be used to
verify that modules, SoCs, and CPUs have secure information flow.

The techniques developed and presented in this thesis can enable hardware designers to better

specify their designs with respect to security, either fully automatically or alongside existing

security efforts, and reduce the barriers to developing more secure hardware.
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CHAPTER 2: RELATED WORK

I organize work related to this thesis using three dichotomies:

• Manual versus Automatic

• Software versus Hardware

• Functional Correctness versus Security

2.1 Automatic Software Functional Correctness

Specification mining as a technique was introduced in Ammons et al. (2002) in which ex-

ecution traces are examined to infer protocol specifications in the form of regular expressions.

Weimer and Necula (2005) used both static and dynamic traces to filter out less useful candidate

specifications. The Perracotta miner (Yang et al., 2006) tackled the challenges posed by having

imperfect execution traces and by the complexity of the search space. DIDUCE (Hangal and

Lam, 2002) studied software designs by instrumenting them to extract invariants online rather

than offline. The Daikon Dynamic Invariant Detector (Ernst et al., 2007) learns properties that

express desired semantics of a program running offline on execution traces.

While described as intended to discover program invariants, Daikon represents an ongoing

and multi-decade research effort in dynamic invariant detection, and its underlying inference

engine offers a powerful tool for exploration of hardware designs as well. For this reason, in this

work Daikon is used within both the Astarte and Isadora framework. Astarte applies Daikon in

multiple passes over trace sets to produce properties conditioned on extracted control signals.

Isadora applies Daikon to trace slices identified by information flow tracking to define predicates

that specify design conditions during information flows.
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Specification mining has also been applied to temporal logics. The Javert miner (Gabel and

Su, 2008a) finds temporal properties using small generic patterns that are composed soundly into

larger specifications, and establishes this form of mining is NP-Complete. Reger et al. (2013)

extends mining with patterns to parametric temporal specifications expressed as quantified event

automata. The Texada General LTL Specifications Miner (Lemieux et al., 2015) accepts user-

defined LTL templates and studies traces to produce instantiations of the LTL formula.

While first demonstrated for use in software engineering, the generality of Texada allows it

to be easily extensible. Texada supports arbitrary templates and is helpfully maintained as an

open source tool. For this reason, Texada is used within the Undine framework, where Texada’s

template enumerator is modified to incorporate a labelling system on trace events.

2.2 Automatic Software Security

In the software domain a number of technologies, including specification mining, have been

applied to develop security specifications automatically.

AutoISES (Tan et al., 2008) uses security check rules and static analysis of source code to

automatically generate security specifications of operating systems. Juxta (Min et al., 2015) also

uses static analysis, in this case applied to the Linux file system and extensible to web browsers,

network protocols, and other forms of software with multiple implementations. ClearView (Perkins

et al., 2009) is a security autopatcher for Windows that works on binaries rather than source code

with a specification mining component that studies normal behavior to devise error detectors.

Yamaguchi et al. (2011) datamines API usage patterns which, when provided with a known vul-

nerability, enable automatic extrapolation of vulnerabilities over libraries.

2.3 Automatic Hardware Functional Correctness

Specification extraction has been applied to hardware, usually run in simulation, with differ-

ent considerations made to handle hardware complexity.
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IODINE (Hangal et al., 2005) applied automatic specification generation to hardware by

looking for instances of known patterns, such as one-hot encoded signals and req-ack. Reflecting

the origins of the technique in the software domain, IODINE continues the research directions

of both DIDUCE (Hangal and Lam, 2002) and Daikon (Ernst et al., 2007) from the software

domain, applying optimizations from both online and offline software mining to generate results

over hardware in an offline context.

Rather than rely on patterns, Chang and Wang (2010) use sequential data mining of simula-

tion traces for automatic exploit detection specifically around potentially malicious inputs. Liu

and Vasudevan (2013) perform mining at a higher abstraction level by studying Transaction Level

Model (TLM) simulated traces.

El Mandouh and Wassal (2012) also use hardware specific patterns, but use static analysis to

generate them before moving to a dynamic stage. GoldMine (Hertz et al., 2013) mines traces for

specific patterns, and also includes manual efforts in a stage where designers rank assertions.

More recent work has focused on mining temporal properties from execution traces. Similar

to techniques in software with temporal specification, Li et al. (2010) use predefined patterns

and pattern chaining to mine temporal properties from traces. Liu et al. (2012) mine over traces

specified at word level rather than bit level, and shows that experimentally this results in higher

expressiveness, including on RISC CPU designs. Behavioral models (Danese et al., 2015) and

power state machines of SoC designs (Danese et al., 2016) both may also provide useful abstrac-

tions to study hardware. The A–TEAM miner (Danese et al., 2017) is able to mine designs given

LTL templates.

Most recently, Rawat et al. (2020) developed algorithms to mine hyperproperties expressed

in HyperLTL using trace fuzzing. Their framework, Hyperminer, finds useful hyperproperties,

including noninterference, an information flow property, over a small SoC design. In this respect,

Hyperminer is similar to Isadora which produces information flow properties of small SoCs and

other designs. By way of contrast, Isadora additionally describes flow conditions, or conditional
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interference patterns, which capture common security goals where design elements must interact

but only with certain privileges, permissions, or under some other design condition.

2.4 Manual Hardware Security

The first security properties developed for hardware designs were manually crafted. Security

Checkers (Bilzor et al., 2011) uses manually defined hardware design language (HDL) assertions

to generate hardware runtime monitors. SPECS (Hicks et al., 2015) also uses manual assertions

but works on only security critical state at the ISA level to reduce overhead and run on a full

RISC processor. Brown (2017) reviewed the Intel Software Developers Manuals (Intel, 2020) to

manually define security critical properties at ISA level for x86. Recent case studies (Dessouky

et al., 2019) have revealed the types of properties needed to find exploitable bugs in the design of

a RISC-based system-on-chip.

2.5 Automatic Hardware Security

SCIFinder (Zhang et al., 2017) semi-automatically generates security critical properties by

using machine learning to label generated invariants based on similarity to known bugs. Tran-

sys (Zhang and Sturton, 2020) is able to automatically generate security properties for a target

design by translating known properties from some other design to analogous properties on the

original design, but does require some initial set of known security properties.

2.6 Contextualizing this Thesis

This thesis considers security specification mining with intent to support security validation

of hardware designs. To do so, each miner takes lessons from across each dichotomy, and adapts

them to work specifically on hardware security. For example, the Undine miner, which creates

linear temporal logic (LTL) specifications, uses the Texada LTL Specifications Miner, and the

Astarte miner, which discovers invariants using control signals, and the Isadora miner, which

11



generates predicates that condition information flows, use the Daikon Dynamic Invariant Detector.

However, Texada and Daikon are tools for automating software functional correctness. To use

these tools for hardware security requires synthesizing insights from both applying specification

mining to hardware, such as the patterns seen in IODINE and other miners, and from distin-

guishing security properties from functional properties, such as in SPECS and SCIFinder. In

isolation, IODINE, A-TEAM, and other miners do not target security specifications, and SPECS

and SCIFinder do not automatically generate information flow or LTL specifications or specifi-

cations for CISC designs. To automatically generate security specifications of hardware designs

that cover known and potential future attacks, the work presented in thesis develops hardware

security specification mining over different designs and logics of specification.

2.6.1 Astarte

In the case of Astarte, which targets the Instruction Set Architecture level, existing tools in-

cluding the Daikon Dynamic Invariant Detector readily produce trace invariants given some form

of trace data. However, Daikon does not innately generate properties of the form A =⇒ B.

Daikon allows users to specify possible predicates for the antecedent A, and will then generate

implication properties which specify some consequent B. Many manual efforts to describe secure

behavior of processor designs frequently contain implications (Bilzor et al., 2011; Hicks et al.,

2015; Brown, 2017; Bilzor et al., 2012). One approach may be to specify every possible predi-

cate A, but this approach is exceedingly costly over x86, the studied design, which contains too

many possible antecedents to consider exhaustively. Further, this approach would produce many

properties with no notion of their relevance to preventing future attacks.

The Astarte framework approaches the challenge of dynamic invariant detection over x86 us-

ing the notion of security critical control signals. Astarte iteratively performs invariant detection

to restrict the space of candidate predicates and then uses these predicates to discover a property

set expressive enough to contain manually developed security properties, including implications,

yet excluding many redundant or uninteresting properties.
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2.6.2 Undine

Undine approaches the challenge of generating LTL properties over up to three propositional

variables to include register, subfield, bit, and delta values and equality between registers over gi-

gabyte trace sets. Existing hardware miners could address subsets of these events or templates of

up to two variables, and Texada could mine properties of this form generally but faced challenges

with regard to complexity. Additionally, Undine targets output specifications that specifically pre-

vent attacks. When approaching the trace sets needed to converge on a steady state of properties

for open source RISC designs, Texada struggled to produce properties in under four hours due

to the number of unique variables in RISC traces, which were approximately three times greater

than the maximum of 1000 unique variables used to evaluate Texada by Lemieux et al. (2015).

This is explored in depth in Section 4.4.3, where the Undine workflow is evaluated with unmod-

ified and partially modified Texada instances to contextualize Undine with prior art on different

templates.

Undine can also be considered in the context of temporal hardware miners. SAM (Li et al.,

2010) extracts expressive properties using many scalability optimizations, including submodule

and subtrace decomposition. SAM uses delta event traces which only capture register values, and

extension to consider equality between registers would be nontrivial. A–TEAM extracts proper-

ties of the form G(θ =⇒ ψ) by combining coverage analysis with data mining. By contrast,

Undine is able to consider templates over three variables yet innately contains no coverage anal-

ysis. With respect to coverage for Undine, trace volume needed to converge to a steady set of

properties was studied and is discussed in Section 4.4.6.

2.6.3 Isadora

In the case of Isadora, existing specification miners with the exception of Hyperminer were

unable to produce information flow properties. Hyperminer produces noninterference properties

over pairs of design elements using template enumeration (the technique used in Undine). An

Isadora information flow specification contains two parts. The first part is the “Never-Flow Pairs”
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of Section 5.3.2 which are equivalently expressive to properties produced by Hyperminer using

the noninterference template. The second part is the “Flow Conditions” which are equivalently

expressive to declassification, a form of information flow property distinct from noninterference

(and dynamic determinism, the other demonstrated Hyperminer template).

It is likely the case that Hyperminer template enumeration could be extended through further

efforts to target declassification properties. This would be logically similar to property develop-

ment in Isadora, which at a high level used IFT to determine interference patterns and from there

composed declassification properties. This process and more comparisons to Hyperminer are

discussed in Chapter 5.

14



CHAPTER 3: ASTARTE: MINING CISC ARCHITECTURES

3.1 Introduction

Many existing property specification tools were developed for, and are applicable to, open-

source programs with respect to functional correctness. Even when applied to hardware, tools

often only work with open source designs, such as OR1200 or RISC-V. Considering the x86 in-

struction set architecture (ISA) introduces three main challenges. First, the size of the ISA makes

even a semi-manual approach prohibitive; Second, x86 is closed-source and existing approaches

to mining security specifications relied on access to both the source code and the developers’

repositories, bugtracker databases, and email forums (Deutschbein and Sturton, 2018); Third,

compared to today’s RISC architectures, x86 offers a richer landscape of security features and

privilege modes, increasing the number and complexity of the associated security properties.

To overcome these challenges, I developed Astarte, a fully automatic security specification

miner for x86. On x86, the key challenge with mining security critical properties is automatically

identifying those properties that are relevant for security, that if violated would leave the proces-

sor vulnerable to attack. In general, there is no fixed line separating functional properties from

security properties. The environment in which a processor operates and the attacker’s motiva-

tion and capabilities may move some properties across the security-critical boundary in either

direction.

Prior work tackled this problem by analyzing existing design bugs and manually sorting them

as exploitable or not exploitable (Zhang et al., 2017). However, this approach is labor intensive

and does not easily scale to x86. Further, this approach requires knowledge of and access to the

details of known design bugs culled from developers’ archives, code repositories, and bugtacker

databases, which are not available for the closed-source x86 designs.
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Astarte uses a different approach. By mining properties that are conditioned on the state of

the various control signals that govern security-critical behavior of the processor, Astarte need

not rely on inaccessible documentation. The corresponding properties are by definition important

for the correct and secure behavior of the processor, which in turn is important for the correct

implementation of the security primitives that operating systems (OSs) and software rely on. In

this respect, Astarte is inspired by prior, manual efforts (Bilzor et al., 2011; Hicks et al., 2015;

Brown, 2017; Bilzor et al., 2012).

Astarte handles the complexity of the x86 ISA by independently considering the space of

properties for each instruction preconditioned on the value of a single security-relevant control

signal. In other words, the mining partitions the specification generation problem with respect to

each control signal. It is perhaps counter-intuitive that this approach works; it would seem nec-

essary to consider all possible combinations of all security-relevant signals for every instruction

in order to produce meaningful security properties. Yet, compared to prior manual efforts and to

known bugs in shipped x86 products, the specification output of Astarte independently produces

valuable properties using this technique.

The Astarte framework relies on two existing tools, the QEMU emulator (Bellard, 2005),

which creates traces over x86, and the Daikon Dynamic Invariant Detector (Ernst et al., 2007),

a popular tool for mining specifications of programs. Using the QEMU debug interface, I gen-

erated ISA level traces of x86 running four distinct operating systems and bare metal programs.

Astarte incorporates a custom front end for Daikon to interpret the QEMU debug logs as trace

data and mine invariants over these emulated runs. Daikon, a major research and software engi-

neering effort extending for decades, offers modular interfaces for this custom front end and a

powerful internal inference engine. Together these provide a strong foundation for scalability to

studying the x86 architecture.

When run on emulated traces, Astarte produces roughly 1300 properties. I evaluated these

properties against 29 security properties manually discovered by Brown (2017). Of the 29 iden-

tified security properties, Astarte generates 23, and the remaining 6 require invariants over pro-
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cessor state unimplemented in QEMU. Astarte also generates properties that, if followed, would

prevent two bugs in x86 documented in public domain, Memory Sinkhole (Domas, 2015) and

SYSRET privilege escalation (Dunlap, 2012).

By performing trace generation over multiple operating systems and bare metal execution, I

show Astarte can also differentiate properties enforced by the processor from those that must be

enforced by the operating system. This analysis also provides insight into properties that are not

specified, but that operating systems have come to rely on.

This chapter presents a security specification miner for closed-source, x86 architectures and

its evaluation for the Intel x86 (Ivy Bridge) processor. Astarte demonstrates:

• partitioning specification ming using security-relevant control signals;

• automatically identifying the control signals of interest;

• differentiating processor-level properties and operating system-level properties; and

• identifying de facto security-critical properties upon which operating systems rely.

3.2 Properties

The Astarte framework generates properties written over instruction set architecture (ISA)

level expressions conditioned on current instructions and automatically discovered control sig-

nals. This section discusses the structure of these properties and describes which properties are

considered to be security properties for this framework.

3.2.1 Example Properties

Astarte properties describe the constraints and behavior of ISA level state. The grammar is

described in Figure 3.1, where insn represents the predicate for some specific instruction and

sig represents the valuation of a signal. Signals here can represent software visible registers
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φ
.
= insn ∧ e1 =⇒ e2 | e1 =⇒ e2 | insn =⇒ e

e
.
= sig1 = sig2 | sig = n | sig ∈ {n1, n2, n3} | sig = orig(sig)

Figure 3.1: The grammar of Astarte properties

or individual bits within some specific registers. The process of determining individual bits for

consideration is detailed in Section 3.3.2.2.

Each property produced by Astarte describes the processor state as an implication. The an-

tecedent may be a predicate specifying that the property describes processor state during the

execution of a particular instruction, specifying that some expression over signals holds, or spec-

ifying both. For brevity, these antecedent predicates will be referred to as preconditions. The

consequent specifies an expression over signals. Expressions over signals, in either antecedents or

consequents, may be:

• equalities between the values of two signals,

• equalities between the value of a signal and a constant,

• a signal’s value falling within a set of up to three constants, or

• equality between the current value of a signal and the previous value of the same signal,

which is specified using orig().

For example, the property in Figure 3.2a states that when the in instruction executes, the I/O

privilege level (IOPL, as given by bit 13 of the EFLAGS register) must be greater than or equal

to the current privilege level (CPL, as given by bit 13 of the Code Segment Pointer). In this case,

this is an property found in the context of a single instruction.

A property may refer to the value held by a bit or register both before and after the relevant

instruction executes by using an orig() expression to describe the original value before execution.

For example, the property in Figure 3.2b refers to the state of the Code Segment Pointer (CS)
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before and after execution of the jmp far instruction. It states that if a new CS is loaded by a far

jump, then the privilege levels of the other current segment pointers, the Stack Segment Pointer

(SS) and Data Segment Pointer (DS), must be equal. Here DPL denotes ‘descriptor privilege

level’ and is the privilege of a given segment pointer; the CPL is simply the DPL for the CS. In

this case, this is a property found using a precondition that the CS value after instruction executes

must differ from the CS prior to execution. Of note, while near and far jumps are not differenti-

ated by name in emulation, the Astarte trace encoding stage inspects opcodes to differentiate near

and far cases, and appends the far suffix at this time.

in→ EFL[13] ≥ CS[13]

(a) After the in instruction executes IOPL must be greater than CPL

(jmp far ∧ CS 6= orig(CS))→ DS.DPL = SS.DPL = CPL

(b) If a far jump loads a new code segment pointer, privilege levels of segment pointer must be equal.

Figure 3.2: Example properties

Given the constraints of generating traces over a closed source design, the example properties

here describe values as reported through emulation debug interfaces. Astarte assumes the correct-

ness of emulation. Prior work, such as Fast PokeEMU (Yan and McCamant, 2018), addresses

directly the correctness of CPU emulation.

3.2.2 Control Signals for Preconditions

Key to the working definition of security property for Astarte is the notion of a control signal.

Within Astarte, control signals are registers or bits which, when included in the trace generation

stage within preconditions, produce output properties distinct from the set of output properties

discovered when not using preconditions. The precise preconditions are described in detail in

Section 3.3.2.1.

Should some signal, when used as a precondition for extracting properties, produce a distinct

property set, the signal is then associated with some distinct behavior of the processor, such as

that the signal’s value may only be changed under certain conditions, that certain instructions
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may operate in a particular way while the signal is set, or that, when set, values of other design

elements may or may not be updated. In brief, these signals control the allowable behavior of a

design.

3.2.3 Security Properties for Astarte

Astarte is intended to discover properties that describe the intended secure behavior of proces-

sor designs. Astarte should capture some notion of software’s expectations of hardware, such as

by enforcing control bits exercised by operating systems including the IOPL and CPL. Astarte

should also provide coverage of some security properties discovered through manual review of

documentation, and discover properties that, if followed, would prevent processors from being

vulnerable to documented historical attacks. Ideally, Astarte would not be limited to just these

cases and may additionally discover unanticipated properties that may aid hardware designers in

ensuring secure behavior of the processor. Using control signals within property preconditions

may address each of these goals.

For this reason, within the context of the Astarte framework, the working definition of a

security property is a property over the design describing allowable designs states either when a

control signal is fixed or when a control signal value is updated. Some of the limitations of this

working definition are explored in the context of the results in Section 3.5.3.

3.2.4 Properties in Implementation

To consider the output properties of Astarte, Figures 3.3 and 3.4 shows the invariant with

the precondition of a far jumps that loads a new code segment pointer. This is the condition

referenced by the example property in Figure 3.2b.

In these figures, the first line gives the preconditions, and each successive line (which may

be wrapped) contains tuples of values or signals which are found to be equal within the trace set

when this condition holds. The most frequent cases are comparisons to zero or one, which are

broken out specifically in Figure 3.3. The size of this output is greatly inflated by considering
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"..jmp_far():::EXIT;condition="not(CS==orig(CS))""
[’1’, ’A20’, ’CR0_0’, ’CR0_1’, ’CR0_18’, ’CR0_3’, ’CR0_5’,
’CR4_6’, ’CR4_9’, ’D_CPL’, ’D_CR0_0’, ’D_CR0_1’, ’D_CR0_18’,
’D_CR0_2’, ’D_CR0_20’, ’D_CR0_3’, ’D_CR0_5’, ’D_CR0_7’,
’D_CR4_11’, ’D_CR4_12’, ’D_CR4_6’, ’D_CR4_8’, ’D_CR4_9’,
’D_EFL_1’, ’D_EFL_11’, ’D_EFL_13’, ’D_EFL_2’, ’D_EFL_4’,
’D_EFL_6’, ’D_EFL_8’, ’D_EFL_9’, ’D_SMM’, ’EFL_1’, ’EFL_9’,
’orig(A20)’, ’orig(CR0_0)’, ’orig(CR0_1)’, ’orig(CR0_18)’,
’orig(CR0_3)’, ’orig(CR0_5)’, ’orig(CR4_6)’, ’orig(CR4_9)’,
’orig(D_CR0_0)’, ’orig(D_CR0_1)’, ’orig(D_CR0_18)’,
’orig(D_CR0_2)’, ’orig(D_CR0_20)’, ’orig(D_CR0_3)’,
’orig(D_CR0_5)’, ’orig(D_CR0_7)’, ’orig(D_CR4_11)’,
’orig(D_CR4_12)’, ’orig(D_CR4_6)’, ’orig(D_CR4_8)’,
’orig(D_CR4_9)’, ’orig(D_EFL_1)’, ’orig(D_EFL_11)’,
’orig(D_EFL_13)’, ’orig(D_EFL_2)’, ’orig(D_EFL_4)’,
’orig(D_EFL_6)’, ’orig(D_EFL_8)’, ’orig(D_EFL_9)’,
’orig(D_SMM)’, ’orig(EFL_1)’, ’orig(EFL_9)’]
[’0’, ’CR0_2’, ’CR0_20’, ’CR0_7’, ’CR4_11’, ’CR4_12’, ’CR4_8’,
’DR1’, ’EFER’, ’EFL_11’, ’EFL_13’, ’EFL_4’,
’EFL_8’, ’FS_DPL’, ’GS_DPL’, ’HLT’, ’II’, ’LDT_DPL’, ’SMM’,
’orig(CR0_2)’, ’orig(CR0_20)’, ’orig(CR0_7)’, ’orig(CR4_11)’,
’orig(CR4_12)’, ’orig(CR4_8)’, ’orig(EFL_11)’, ’orig(EFL_13)’,
’orig(EFL_4)’, ’orig(EFL_8)’, ’orig(GS_DPL)’, ’orig(HLT)’,
’orig(II)’, ’orig(LDT_DPL)’, ’orig(SMM)’]

Figure 3.3: All signals equal to zero or one during far jumps across code segments.

individual bit values and their delta values (with the ‘D ’ prefix) within many registers and con-

sidering each of these both before and after the instruction executes. Delta values are not noted

in the grammar and are not necessary to the Isadora workflow, but deriving these values offered

niceties in implementation, and they are included here for completeness. The delta values for

bits are incremented by one so that they do not take on a negative value which is used for error

checking within the workflow, so ‘orig(D CR0 0) == 1’ denotes that the 0th bit of the CR0 reg-

ister was unchanged from the previous clock cycle before the far jump executes. This bit encodes

whether the design is in protected mode, and means the trace set contains no case of a change to

protected mode status immediately prior to a far jump that loads a new CS pointer.
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"..jmp_far():::EXIT;condition="not(CS==orig(CS))""
...
[’EFL_2’, ’orig(EFL_2)’]
[’CPL’, ’CS_DPL’, ’DS_DPL’, ’ES_DPL’, ’SS_DPL’]
[’4294905840L’, ’DR6’, ’orig(DR6)’]
[’"0080c1100a800000207300008900"’, ’TR’, ’orig(TR)’]
[’1024’, ’DR7’, ’orig(DR7)’]
[’CR2’, ’orig(CR2)’]
[’CR3’, ’orig(CR3)’]
[’IDT’, ’orig(IDT)’]
[’EFL_11’, ’HLT’, ’orig(EFL_11)’, ’orig(II)’]
[’A20’, ’D_EFL_11’]

Figure 3.4: All remaining signal equalities during far jumps across code segments.

Beyond signals found to be equal to zero or one, the example property in Figure 3.2b appears

within the output. The second line in Figure 3.4 shows that, over properly encoded traces and

under the relevant preconditions, Astarte may detect an equality between the descriptor privilege

levels (DPLs) of the code segment, stack segment, and data segment pointers after a far jump exe-

cutes. Of note, CPL and CS DPL are both listed because both the emulator and Astarte derive the

value independently. QEMU only derives the CPL and Astarte derives the DPL for all segment

pointers; the two are always equal because they refer to the same bits in CS.

This output additionally specifies the values or equalities of other registers. The Extra Seg-

ment Pointer (ES) is also found to have a descriptor privilege level equal to that of the CS, SS,

and DS. DR7, a debug register, is found to always hold the value 1024. DR7 is frequently set to

1024, and it fact is set to 1024 in all cases in operating system traces. CR3, the Page Fault Linear

Address for recovery after page faults, is also held constant across code segment changes. CR3 is

updated within the trace set but never during a far jump.

Astarte’s output properties can appear large and complex due to the internal implementation

details and scope of design state, but they conveniently define processor conditions within a

single instruction and precondition and simply describe the software visible state as emulated and

logged at these points.
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3.3 Methodology

Astarte works in three phases: trace generation, property mining, and post-processing. Fig-

ure 3.5 provides an overview of the Astarte workflow. In the first phase I generate traces of exe-

cution of the processor. Without access to the source code of the processor design, I can not use

a simulator to generate traces of processor execution as in prior work. Instead I use QEMU, an

x86 emulator, to emulate processor execution. QEMU translates blocks of code at a time, and

as such produces traces of basic blocks. The miner requires traces of individual instructions, so

Astarte extends the generated traces so that each event in the trace represents a single instruction.

This extension is sound with respect to the generated properties. In keeping with prior art, As-

tarte tracks processor state that is visible to software; the final security properties are written over

this software-visible state. I emulate the processor loading and running four different operating

systems as well as running software on the bare (emulated) metal.

In the second phase Astarte mines the traces of execution looking for security properties. I

build the miner on top of the Daikon invariant generation tool (Ernst et al., 2007). The closed-

source nature of x86 processors precludes using known, exploitable design bugs to differentiate

security-critical properties from functional properties as was done by Zhang et al. (2017) when

targeting RISC processors. Furthermore, the complexity of the many x86 protection modes and

their associated control flags overwhelms the miner. In an initial experiment letting a naive miner

run for 7 days, hundreds of millions of invariants were generated, with only a fraction represent-

ing useful security properties. To address this, Astarte partitions the state space of the processor

on each of a small handful of security-critical control signals, and generates invariants within

each partition. It is perhaps counter-intuitive that this approach works; it would seem necessary

to consider all possible combinations of all security-relevant signals for every instruction in order

to produce meaningful security properties. Yet, compared to prior manual efforts and to some

known bugs in shipped x86 products, the specification output of Astarte independently produces

valuable properties using this technique.
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Figure 3.5: An overview of the Astarte workflow

In the third phase, post-processing, Astarte combines like invariants, integrates results across

multiple runs of the miner (e.g., using traces generated from different operating systems), and

simplifies expressions. The result is a manageable set of security properties.

3.3.1 Trace Generation

To generate traces of execution I use QEMU, a full system, open source machine emula-

tor (Bellard, 2005). Running a processor in emulation allows us visibility into the processor’s

state. QEMU-emulated x86 CPUs can boot operating systems, run user-level applications, and

output log data about the state of the CPU as software executes. The log data forms the basis of

the execution traces over which security properties are mined.

QEMU dynamically translates machine instructions from the target architecture (in this case,

x86) to the host architecture. To ease portability QEMU translates first to an intermediate lan-

guage and then to the host instruction set. To improve performance QEMU translates a block

of machine instructions at a time, rather than translating line by line. While this feature may be

deactivated, doing so prevented emulation from being able to boot most modern OSs in under a

day and greatly increases trace size.

A QEMU translation block (TB) is akin to a basic block (Aho et al., 2006). It is a sequence

of instructions with a single entry point—the first instruction in the TB—and a single exit point—

the last instruction in the TB. A TB ends at any instruction that modifies the program counter,

such as syscall, sysenter, or jmp, or at a page boundary.
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The translated TBs can be cached and reused, reducing translation time. However, translating

a block of code at a time obscures CPU state at instruction boundaries. In other words, QEMU

maintains consistent target CPU state at TB boundaries rather than at instruction boundaries.

From the QEMU execution logs, Astarte may extract events corresponding to the execution of

a single TB. An event shows the sequence of instructions that make up the TB and the CPU state

after the TB executes:

〈instruct1, instruct2, . . . , instructn〉(r0, r1, . . . , rm)

In the above, (r0, . . . , rm) represents the state of the m ISA-level registers after the TB exe-

cutes. A trace of events gives the CPU state at every TB boundary. The first event in a QEMU

trace is always the single instruction ljmpw, which jumps to the code entry point. A trace of TBs

might look like this:

〈ljmpw〉(r0
0, r

0
1, . . . , r

0
m)

〈instruct1, instruct2, . . . , instructn〉(rn0 , rn1 , . . . , rnm)

. . .

〈instruct1, instruct2, . . . , instructj〉(r∗0, r∗1, . . . , r∗m)

The CPU state logged at the end of the first TB gives us the CPU state before the second TB

executes. Consider this compared to a trace specifying each instruction. The single logged event

〈instruct1, instruct2, . . . , instructn〉(rn0 , rn1 , . . . , rnm), would correspond to an extended trace of
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events:

〈instruct1〉(r1
0, r

1
1, . . . , r

1
m) (3.1)

〈instruct2〉(r2
0, r

2
1, . . . , r

2
m) (3.2)

. . .

〈instructn〉(rn0 , rn1 , . . . , rnm) (3.3)

Producing the extended trace of events would require the emulator translate code line-by-line.

But, the emulator still needs to be fast enough to boot operating systems and run application-

level code. I take an intermediate approach for trace generation: I use QEMU translation blocks

and build a lightweight extension to generate partial per-instruction events. For every TB in a

trace, the event generator creates a new sequence of events, one event for each instruction in the

TB. Each event lists the instruction executed and partial information about the CPU state. Any

software-visible register that can be modified by the instruction is marked as invalid, and all other

registers retain their value from the previous event. The generated event corresponding to the last

instruction in the TB has the full CPU state as given by the original QEMU event. Continuing

with the above extended trace of events, and considering the second event at line (3.2) in the

trace, ∀i, 0 ≤ i ≤ m either r2
i = r1

i or r2
i = invalid.

The event generator errs on the side of soundness: if it is possible for an instruction to change

an aspect of CPU state, the generator assumes it does. I used the Intel 64 and IA-32 Architectures

Software Developer Manuals (Intel, 2020) as reference when building the event generator.

3.3.2 Property Mining

Astarte uses Daikon (Ernst et al., 2007) as the base for property mining. I build a custom

front-end that reads in the extended traces of events produced in the first phase, and outputs a

trace of observations suitable for Daikon.
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Daikon was developed for use with software programs: it looks for invariants over state

variables for each point in a program. This front-end treats x86 instructions as program points;

Daikon therefore will find invariants over ISA variables for each x86 instruction.

Daikon can handle individual program modules with relatively few program points and few

program variables, it is not intended for analysis of entire programs. The amount of ISA state

and the number of instructions in x86 is too large for Daikon to handle. The amount of trace data

required to achieve coverage of a single instruction, and the size of the state over which to find

invariant patterns for a single instruction overwhelm Daikon.

To mitigate the complexity, for each instruction Astarte partitions the space of properties on

individual control signals.

3.3.2.1 Partitioning on Control Signals

For each instruction, Astarte separately considers the space of invariants over ISA state for

that instruction, preconditioned on a single control bit. The key insight is that if Astarte chooses

the control bits wisely, the partitioning not only mitigates performance and complexity issues

with Daikon, it also produces sets of properties that are critical to security, and can then classify

the properties by their precondition. The properties that make up each class provide some insight

into the modes and behaviors of the processor governed by the preconditioning control signal.

For each control signal, how Astarte partitions the space of invariants for a single instruction

depends on the control signal. For a one-bit signal Astarte creates four partitions, one for each

combination of signal values before and after the instruction executes. For example, with the

IOPL flag and addl instruction, Table 3.1 shows the four partitions of the space of invariants.

Each row of the table represents one of the four possible antecedents of a property. The four

antecedents represented in the table completely partition the space. For signals longer than one

bit Astarte divides the space of invariants into two partitions for each instruction: instruct ∧

orig(reg) = reg and instruct ∧ orig(reg) 6= reg.
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addl ∧ orig(IOPL) = 0 ∧ IOPL = 0
addl ∧ orig(IOPL) = 0 ∧ IOPL = 1
addl ∧ orig(IOPL) = 1 ∧ IOPL = 0
addl ∧ orig(IOPL) = 1 ∧ IOPL = 1

Table 3.1: Astarte partitions shown on the IOPL signal for instruction addl

Category Registers

General Purpose Registers EAX, EBX, ECX, EDX
Interrupt Pointer EIP
Control Registers EFL, CR0, CR2, CR3, CR4, EFER
Individual Bitflags II, A20, SMM, HLT, CPL
Current Segment Pointers CS, SS, DS
Special Segments Pointers ES, FS, GS, LDT, TR
Descriptor Tables GDT, IDT
Debug Registers DR0, DR1, DR2, DR3, DR6, DR7
Command Control CCS, CCD, CC0

Table 3.2: Categorization of QEMU logged registers

The set of properties produced for a particular preconditioning signal tell us something about

the behavior governed by that signal. For example, providing CPL 6= orig(CPL) as a precondition

will mine properties related to how the current privilege level (CPL) of the processor is elevated

and lowered.

3.3.2.2 Identifying Control Signals

The first step is to choose which control signals to use as preconditions. I manually organized

the x86 ISA state by category and then let Astarte find the meaningful signals within a category.

The registers and their categories are given in Table 3.2.

Of these, Astarte focuses on the three control encoding categories: the Control Registers, the

Individual Bitflags, and the Current Segment Pointers. These design elements either themselves

control or contain fields that control security critical state, such as privilege levels and location

of page tables. I chose these categories based on knowledge of the x86 ISA. Initially, Astarte

used only the Control Registers and Bitflags, but initial evaluation led me to add the Current
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Segments. It is possible other categories may also yield interesting properties. Fortunately, each

control signal is analyzed independently of the others, so additional categories of ISA state can

be analyzed without incurring a combinational explosion in performance cost. (In Section 3.4.6 I

discuss the cost.)

During the signal-finding phase Astarte unpacks registers to consider one- and two-bit fields

separately. Mining can be used to reveal many fields that keep a constant value which are dis-

carded as unused fields. To remove these from the considered fields, Astarte collapses all x86

instructions into a single pseudo-instruction and runs the property miner on this modified trace.

Any found properties of the form reg = N are an indication that for all instructions reg has the

constant value N and regis therefore unused. Astarte discards these flags from further consid-

eration. At the end of this phase Astarte is left with 24 signals of interest that either single bits,

two-bit fields, or registers.

3.3.3 Postprocessing

The Daikon miner produces tens of millions of properties. In post-processing Astarte removes

invalid properties, removes redundant properties, and combines similar properties into a format

that is easier to read.

3.3.3.1 Intersection Across Trace Sets

Astarte runs the Daikon miner separately for each set of traces representing separate operat-

ing system boots and bare-metal execution. In the first step of post-processing, properties from

different traces are combined by taking the intersection of all sets with shared elements within a

precondition. This ensures that no property that is invalidated by any one trace is considered as

an output property. It also generalizes properties to the implementation being studied, rather than

to just a single trace.
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3.3.3.2 Transitive Closure

Frequently, especially in the case of single bit values, many registers will take on the same

value and Daikon will return many equality properties. To make these properties more man-

ageable, Astarte takes the transitive closure of all the equality properties and, instead of lists

of pairwise equalities, equality properties are presented as sets of registers that are equal. For

example, given the three invariants andb → orig(CPL) = 3, andb → CPL = DS DPL, and

andb → CPL = orig(CPL), the postprocessor would return as a single property andb →

{orig(CPL), 3, CPL, DS DPL}=, where the notation {}= indicates that any two signals in the set

are equal (∀r, s ∈ {}=, r = s).

instruct ∧ precondition→

{〈var〉, 〈var〉, . . .}=

In the next stage, properties that share a common precondition are combined to form larger

properties that more completely express processor behavior with regard to a control signal. These

properties are similar to the previous properties with the sole exception of having multiple sets of

equal values, registers, or bits.

instruct ∧ precondition→

{〈var〉, 〈var〉, . . .}=

{〈var〉, 〈var〉, . . .}=

{〈var〉, 〈var〉, . . .}=

. . .
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3.3.3.3 OS-Specific Values

In some cases, general purpose registers take on a particular value or set of values for an

operating system. These values may differ across operating systems, but there is an underlying

pattern that is upheld across operating systems and that is critical to security. For example, values

must be word aligned or in a canonical form. To identify these properties the post-processor

applies a bit mask to equalities between values and general purpose registers to find which bits

are held constant in multi-bit registers.

3.3.3.4 Identify Global Properties

As a final step Astarte ensures that all properties are specific to a control signal by comparing

against global properties. Recall that Astarte identifies control signals of interest in the first phase.

Eleven of the 24 identified signals were found to produce properties specific to those bits. The

remaining 13 signals all preconditioned the same global properties. During postprocessing As-

tarte removes any of these global properties from the sets of properties produced for each of the

11 control signals. These properties are necessarily not specific to a control signal since they have

been found to hold globally.

3.4 Evaluation

I evaluate Astarte on its ability to find security properties of the x86 architecture to answer the

following research questions:

1. Can Astarte efficiently generate assertions to prevent known CPU security bugs, specifi-

cally Memory Sinkhole and SYSRET privilege escalation?

2. How effective is control signal partitioning in achieving effective security properties,

specifically versus manually discovered properties?

3. Does Astarte produce a manageable number of properties?
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Instruction Description Number of
Mnemonic Instructions

aes AES acceleration 6
k mask register operations 13
p packed value operations 87
sha SHA acceleration 7
v vector operations 162

Table 3.3: QEMU unmodelled instructions by mnemonic

4. How can we expect the Astarte iterative mining technique to improve performance com-

pared to a hypothetical approach of using exhaustive precondition enumeration in Daikon

over the same trace set?

The experiments are performed on a machine with an Intel Core i5-6600k (3.5GHz) processor

with 8 GB of RAM.

3.4.1 Trace Data

To avoid capturing only properties enforced by, or relevant to, a specific operating system

I generate trace data while booting multiple operating systems. I boot two Linux distributions

(Ubuntu and Debian), Solaris, seL4, and FreeDOS ODIN.

To achieve high instruction coverage I use Fast PokeEMU (Yan and McCamant, 2018), a tool

for testing consistency between hardware and the QEMU emulator. Fast PokeEMU repeatedly

executes an instruction with varying inputs to achieve high path coverage within an instruction

with high probability without relying on manual test generation. I execute these instructions on

the “bare metal” QEMU emulator.

Over all traces, Astarte modeled 333 distinct instructions while the Intel specification de-

scribes 611. Reviewing the specification I find that of the 278 instructions not modeled by Astarte

over the trace set, 275 fall into one of five categories: AES and SHA acceleration, mask register

operations, packed value operations, and vector operations (see Table 3.3).
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Signal Flag Name Description

CS[13] CPL Current privilege level Gives current ring while in protected mode
SMM SMM System Management Mode If set, processor is in SMM (ring -2)
EFL[6] ZF Zero Flag Indicates zero result of arithmetic
EFL[9] IF Interrupt enable flag Enables hardware interrupts
EFL[11] OF Overflow Flag Indicates overflow result of arithmetic
CR0[0] PE Protected Mode Enable If set, processor is in protected mode
CR0[1] MP Monitor co-processor If CR0[0]=CR0[1]=CR0[3]=1

(F)WAIT raises an #NM exception
EFL[4] AF Adjust Flag Indicates arithmetic carry or borrow over

four least significant bits
CS Code Segment The currently used program code segment
SS Stack Segment The currently used program stack segment
DS Data Segment The currently used program data segment

Table 3.4: Control signals discovered by Astarte

I analyzed 10.2GB of trace data comprising 4.1 million instruction executions. This trace

volume is consistent with requirements to find complex conditions in prior art: Amit et al. (2015)

found that in fewer than 1k iterations of tests of 4096 instructions—a similar trace volume—most

known complex race conditions could be found.

3.4.2 Control Signals

Of the 24 control signals identified prior to mining (Section 3.3.2.2), 11 govern a class of

properties preconditioned on that signal. The remaining 13, when used as a precondition, pro-

duced only properties common to all preconditions; in other words, they do not govern a particu-

lar set of behaviors. Table 3.4 shows the 11 control signals along with their common name and a

brief description.

3.4.3 Achieving Manageable Numbers of Properties through Postprocessing

This section address the research question “Does Astarte produce a manageable number of

properties?”
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Bit/Reg Flag Clauses Properties Clauses per Property

CPL CPL 235 59 4.0
SMM SMM 335 60 5.6
EFL[6] ZF 1182 286 4.1
EFL[9] IF 1102 164 6.7
EFL[11] OF 390 46 8.5
CR0[0] PE 1159 173 6.7
CR0[1] MP 777 68 11.4
EFL[4] AF 1402 244 5.7
CS CS 465 55 8.5
SS SS 432 52 8.3
DS DS 480 50 9.6

Total 8571 1393 6.2

Globals 4187 246 17.0

Table 3.5: Astarte properties’ implied clauses per control signal.

At the end of the property mining phase (Sec. 5.3.2), Daikon produces 13,722,294 properties

across all instructions and preconditions. After taking the intersection of properties across distinct

trace sets and taking the transitive closure of properties, Astarte is left with 122,122 properties.

Identifying the global properties reduces the total to 1,393 properties, a reduction of close to five

orders of magnitude from the naive property total. These properties average 6 implied clauses

each per precondition. Each class of properties, defined by a single preconditioning control sig-

nal, has 127 properties on average. The distribution of the number of properties and average

property size by control signal is shown in Table 3.5.

3.4.4 Historical Exploits

This section addresses the research question “Can Astarte efficiently generate assertions

to prevent known CPU security bugs, specifically Memory Sinkhole and SYSRET privilege

escalation?”

To evaluate the efficacy of the Astarte framework in producing properties relevant for security

I consider two case studies, Memory Sinkhole (Domas, 2015) and SYSRET privilege escala-

tion (Dunlap, 2012). Both of these cases received considerable attention from the security and
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No. Property Found Ctrl Astarte
Signal Property

1 CALL→ SMM=0 X SMM G5
2 SYSRET→ canonical(ECX) X CPL 5, 7

Table 3.6: Astarte performance versus known historical bugs

research communities and, thanks to these efforts to reverse engineer the bugs, I have information

about the technical details of the bugs beyond the high-level information provided by Intel’s er-

rata documents. For each case study I examine whether the properties generated by Astarte define

secure behavior with respect to these exploits. Table 3.6 presents the results.

3.4.4.1 Memory Sinkhole

At Black Hat 2015, Domas (2015) disclosed the Memory Sinkhole escalation vulnerability

in SMM. The vulnerability allows an OS-level attacker to enter System Management Mode and

execute arbitrary code. The attack relies on using the call instruction with a particular parameter

while in SMM. The security properties discovered by Astarte would disallow this exploit. The

generated properties prohibit the execution of the call instruction while in SMM, capturing the

secure usage of SMM in practice across the studied OSs.

3.4.4.2 SYSRET Privilege Escalation

This vulnerability, as described by the Xen Project (Dunlap, 2012) arises from the way in

which Intel processors implement error handling in their version of AMD’s SYSRET instruction.

If an operating system is written according to AMD’s specification, but run on Intel hardware,

an attacker can exploit the vulnerability to write to arbitrary addresses in the operating system’s

memory.

The crux of the vulnerability has to do with when the Intel processor checks that, when re-

turning to user mode, the address being loaded into the RIP register from the RCX register is in

canonical form. Astarte generates properties that require RCX to always be in canonical form
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when the current privilege level is elevated, which would prevent the vulnerability. It is interest-

ing to note that Astarte only finds this property over traces produced by operating systems, an

indication that this desired behavior is not enforced by the hardware and must be enforced by an

operating system, as is indeed the case.

3.4.5 Manually Developed Properties

This section address the research question “How effective is control signal partitioning in

achieving effective security properties, specifically versus manually discovered properties?”

3.4.5.1 Evaluating Astarte Coverage

Brown (2017) manually studied the Intel 64 and IA-32 Architectures Software Developer

Manuals (Intel, 2020) and crafted 29 properties they found to be critical to security. The Astarte

properties cover 23 of the 29 manually written properties. The remaining 6 properties required

exercising processor state unimplemented in QEMU. These properties are presented in Table 3.7.

In this case, the coverage versus manual efforts suggests Astarte achieves coverage over

security properties discovered manually.

3.4.5.2 Effectiveness of Control Signals

Manually developed properties also provide a helpful point of comparison to assess the con-

trol signal partitioning methodology.

In Table 3.7, the relevant control signal on which the manually written property is condi-

tioned is listed in column three. Astarte discovered 11 unqiue control signals, of which 7 were

used in this portion of the evaluation. The two most commonly used control signals, the CPL flag

also denoted as CS[13] and the entire CS register, were used for 8 properties each. Of note, the

CS[13] was explored using the preconditions described in Table 3.1 to capture fixed values and

value changes. The full CS register was not compared to fixed values, only value changes. An

example property over CS value changes is shown in Figure 3.2b.
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No. Property Signal Astarte Property

1 IN/OUT/INS/OUTS→ IOPL ≥ CPL CS[13] G65, G68-71, G104-107,
G243-244

2 !(JMP/CALL/RET/SYS*)→ CS=orig(CS) CS 29 properties in
[298,351]

3 POPF/IRET & !CPL=0→ EFL 13=orig(EFL 13) EFL[13] G72, G111-G112, G206
4 STI/CLI & CPL > EFL 13→ EFL 9=orig(EFL 9) EFL[9] G53, G141
5 IRET & EFL 9=orig(EFL 9) & EFL[9] 1044-1045

CPL > EFL 13→ EFL 9=orig(EFL 9)
6 IRET & CPL6= 0→ EFL 13=orig(EFL 13) CS[13] G72, G206
7 SYSEXIT→ CPL=0 CS[13] 3, 7
8 SYS*→ CPL ≤ DPL CS[13] 37, 39
9 SYS*→ CS DPL ≤ CPL CS[13] 37, 39
10 JMP/CALL(FAR) & CS6=orig(CS)→ DPL = CPL CS 15, 16, G18
11 JMP/CALL(FAR) & CS6=orig(CS)→ DPL ≤ CPL CS 15, 16, G18
12 CALL(FAR) & CS6=orig(CS)→ CPL ≤ DPL CS 15, 16
13 JMP(FAR) & CS6=orig(CS)→ DPL ≤ CPL CS G18
14 JMP/CALL(FAR) & CS6=orig(CS)→ CS 15, 16, G18

CS DPL ≤ orig(CPL)
15 RET & CS6=orig(CS)→ CS DPL≥ CPL CS G35, G72, G90, G120,

G206, G224
16 SS6=orig(SS)→ SS DPL=CPL SS G245
17 DS6=orig(DS)→ DS DPL≥CPL DS G245
18 CS 11=1→ CS 12=0 CS G245
19 SS 9=1 & SS 12=SS 11=0 SS G245
20 DS 9=DS 11=DS 12=1 DS G245
21 IRET & EFL 13→ CS DPL ≤ SS DPL CS[13] G35, G72, G90, G120,

G206, G224

22- SYSENTER/SYSEXIT & CR0 0=1→ CS[13] 37, 39
23 CS=val,EIP=val,SS=val,SP=val

24- Properties over unimplemented - unknown
29 MSRs or VMX instructions

Table 3.7: Astarte performance versus manually specified properties.
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Of all these properties, only those numbered 19 and 20 do not include an implication and

therefore could have been discovered without specifying a Daikon precondition.

3.4.5.3 Implications of Postprocessing

In Table 3.7, Astarte Properties listed with a ‘G’ prefix denote those that are found in Daikon

output under a heading that does not specify both an instruction and a precondition. These con-

tain the “Global Properties” addressed in Section 3.3.3.4, are identified as “Globals” in Table 3.5,

and are counted separately from the 1393 properties not prefixed with ‘G’.

For example, in the case of properties numbered 19 and 20, these properties were discovered

when mining with control signal conditions but not mining within specific instructions. Property

number 1 offers a similar case with respect to precondition rather than instruction, where the

relevant terms were found specified only within a particular instruction without regard for an

additional precondition over control signals.

In each case, with a different postprocessing implication, the relevant terms in the ‘G’ des-

ignated properties could be output in more specific properties specifying both instruction and

precondition, but to do so would expand the size of each property and may, as in the case of prop-

erties numbered 19 and 20, require a property for every instruction in the design, greatly compli-

cating validation efforts. These properties were not initially considered within output, but were

added to consideration motivated by indices 19 and 20, and I found they greatly eased the process

of comparison to manual properties. Astarte property G245 in particular, the property that com-

bines all instructions to assess invariants across the design preconditioned only on control signals

but not on instructions, captures all five properties indexed 16 to 20, and G245 describes three

control signals over 333 instructions, setting a lower bound of 333 instruction specific properties

to describe the behavior captured by G245 in these cases.
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3.4.6 Performance Expectations and Daikon

This section address the research question “How can we expect the Astarte iterative mining

technique to improve performance compared to a hypothetical approach of using exhaustive

precondition enumeration in Daikon over the same trace set”

Generating the trace data took approximately 8 hours, processing the traces to make them

suitable for Daikon took 57 minutes, identifying control bits on which to partition the property

space took 44 minutes. Mining along all preconditions took approximately 16 hours with each

control bit costing roughly 44 minutes. Overall, the Astarte framework completed the property

generation in 29 hours running sequentially but could be accelerated considerably by paralleliz-

ing trace generation and mining runs.

I completed the full mining process for 24 control signals as preconditions. Excluding unused

control signals from consideration provided an estimated speedup of 5.82x. This speedup repre-

sents a theoretical comparison to a specification mining approach not using the Astarte process

and is comparable to running Daikon using the minimal Astarte features necessary to encode

generated traces for property generation. However, this implementation would still include such

features as derived descriptor privilege levels and opcode aware instruction differentiation for

jump and call instructions. Running Daikon without these features would not produce compara-

ble properties. For example, each of property numbered 10 through 14 specifically applies to far

jumps and calls.

This estimate assumes that control bits all take roughly the same amount of time to mine.

In practice all mining runs specifying a precondition completed in around 44 minutes, and all

mining runs completed within 20 seconds of of each other. I believe it reasonable to assume this

timing trend would apply to other untested preconditions, especially as a majority of these tests

were performed over the 13 preconditions that were not found to be associated with any unique

design behavior, the expected case for the unstudied preconditions.
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Figure 3.6: Distribution of properties by number of enforcing OSs

3.4.7 Operating System-Enforced Properties

When mining over traces from different operating systems, some properties are found over

all operating systems and some over only a subset of operating systems or only on bare metal

traces with no operating system. In Figure 3.6 I show how many operating systems are found

to enforce each property. Figure 3.7 shows, for each property enforced by 1, 2, or 3 operating

systems, which operating systems enforce these properties.

Properties were predominantly enforced either by a single operating system or by all oper-

ating systems. Properties enforced by a single operating system are likely fall into two main

possibilities: either the properties are well-founded properties that, when enforced, make the op-

erating system more secure in some way, or that they are false positives and found only within a

single operating system for this reason. In manual inspections of properties, I found that many of

the properties unique to Linux and seL4 were related to ensuring the safety of the specific imple-

mentations of system calls used by the operating system. Unsurprisingly, more properties were

enforced on Linux and seL4 which have the highest usage levels and most rigorous theoretical
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Figure 3.7: Distribution of partially OS enforced properties by enforcing OS

assurances respectively. The remainder of unique properties governed specific instruction usage

from specific processor states only exercised by that operating system that may or may not be

associated with security.

I interpret properties enforced by all operating systems to be necessary implementation fea-

tures as changing any one of them would would likely cause compatibility issues across many

operating systems. This assessment is extensible to properties implemented by all but one oper-

ating system, especially as the operating system most frequently missing was seL4. As seL4 by

design has provably correct behavior it cannot rely on undocumented or incidental features. With-

out the burden of provable correctness and security enforcement, other operating systems may

make reasonable assumptions of processor behavior. These assumptions may eventually become

part of the processor specification if many operating systems come to rely on them, making it

difficult for hardware designers to modify the expected, though undocumented, behavior.

The few properties enforced by just two operating systems usually govern behavior of a very

specific type of system call that is enforced by precisely two operating systems. A few properties
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Figure 3.8: Signals by mentions in Intel documentation

govern specific instruction usage enforced by precisely two operating systems. Similarly, these

may be best practice or false positive properties, but represent a small minority of output.

There were also a few properties found to be enforced on bare metal traces but not operating

system traces. I regard these as either false positives or these are vestigial properties that persist

in hardware but OSs no longer need to rely upon.

3.4.8 Properties in the Specification

To provide a sense for how difficult the properties generated by Astarte would be to find man-

ually, I use a scoring function for properties that considered each bit or register within a property

against how many times that bit or register is referenced in the Intel Software Developers Manu-

als (Intel, 2020) to give a sense of how many pieces of discrete information must be considered to

generated a property. Figure 3.9 shows the cumulative distribution function of this specification

score for properties.

42



Figure 3.9: Properties by relevant mentions in Intel documentation

Properties typcially would require reviewing approximately 7000 mentions (median 6874,

mean 7088) with a minimum of 413, a maximum of 19669, and about 8.9 million in total. The

distribution is nearly uniform with slight clustering at the minimum and slightly longer tails on

the maximum. Figure 3.8 shows how many discrete mentions of each bit or register occur in the

ISA specification.

3.5 Limitations

In this section, I will discuss the threats to validity for properties produced using Astarte,

including false positives and false negatives.

With regard to false positives, Daikon’s inference engine infers only properties not violated

over the trace set, so using Daikon’s inference engine within Astarte restricts false positives to

two cases: false positives arising from trace generation, which can include limitations of em-

ulation, and false positives arising from misclassification, which can occur when functional

properties are classified as security properties. Some examples of false positives are shown in
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Section 3.5.3, along with a discussion of consequences and potential remedies. Though presented

within the evaluation, Section 3.4.7 also discusses possible false positives in the context of prop-

erties solely over bare metal traces and over no operating systems, which gives a false positive

rate of 37 out of 1393 or approximately 2.7%.

With regard to false negatives, they fall into two cases: known and unknown. There are six

known false negatives from the evaluation which result from limitations in the emulator and

debug logging. Two false negatives relate to logging while switching into long mode, and four

false negatives relate to logging while using VMX. Unknown false negatives could arise from

limitations in trace coverage, in logical specificity, or in the abstraction level. Even within ISA

level conditions, Astarte may miss any property not expressible in the grammar which specifies

preconditions over single control bits, or properties involving individual bit flags of a register that

was not decomposed into derived variables.

3.5.1 Trace Reliance

As with any specification mining technique, Astarte many only determine invariants that

hold over traces. In the case of traces over buggy hardware, discovered invariants may form a

specification describing buggy behavior. Traces may not cover all cases that can be reached by a

design or even occur during normal design operation.

For example, within the trace set, Astarte only observed usage of System Management Mode

while running traces using the seL4 operating system. SeL4 offers much higher degrees of se-

curity assurances than other operating systems, so the corresponding properties in SMM may

restrict what could be allowable behavior to ease the burden of making security assurances.

None of AES, SHA, mask register operations, packed value operations, or vector operations

were used at any point in the trace set. Consequently, Astarte does not define secure behavior

with respect to any of these instructions, and this lack of specificity is a threat to the validity of

the output specification.
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3.5.2 Emulation Reliance

Astarte relies on traces produced in emulation and logged through debug ports. Further, traces

are produced in translation blocks rather than on a per-instruction level, while properties target

instructions. While QEMU does support single instruction translation blocks, doing so incurs

memory and I/O costs so prohibitive as to preclude trace generation covering interesting design

behavior, such as completing a Linux boot, which crashes early due to memory requirements

when attempting to log each instruction.

Further, emulation may not precisely capture hardware implementation. Astarte assumes

the correctness of emulation. Prior work, such as Fast PokeEMU (Yan and McCamant, 2018),

addresses directly the correctness of CPU emulation.

QEMU is capable of emulating VMX instructions but due to implementation details regard-

ing nested virtualization is not able to log during VMX emulation. Consequently, there are no

VMX instructions in the trace set, a limitation relevant to false negatives. Within the set of manu-

ally discovered properties, four describe VMX.

Beyond VMX, the QEMU implementation in use in this chapter contains a known error re-

garding switching into long mode while debugging, which was used for trace generation. Further,

long mode is implemented in the model specific EFER control register, and similarly to VMX,

processor extensions and model specific registers are not fully supported by QEMU. Ultimately

I was unable to log traces while in long mode. While potentially related to trace limitations or

human error, this coverage gap occurs around known limitations for the emulator.

3.5.3 Functional Properties

Astarte discovers a number of properties that could reasonably be considered more closely

related to functional correctness than secure behavior.

Of the 11 control signals discovered by Astarte, three strictly implement arithmetic opera-

tions:
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• EFL[04]: AF: the Adjust Flag

• EFL[06]: ZF, the Zero Flag

• EFL[11]: OF, the Overflow Flag

While each of these do affect conditional operation of the processor, they do so largely on the

basis of jump/call conditions. Ultimately, each describes arithmetic operations upon which the

processor relies to implement secure control flow, but this is not their main purpose within the

design and they are not necessarily security specific.

Together, properties over these signals represent 575 out of 1393 discovered properties, a

false positive rate under this characterization of just over 41%. The AF and ZF together represent

the two signals with the most properties. AF in particular has 286 properties, over a hundred

more than any other signal except ZF at 244 and more than double the average.

False positives of this nature could greatly increase effort required for validation. One path to

validation with respect to the Astarte specification is to use formal tools, such as model checkers,

which incur high time and memory costs over large designs such as x86, and this false positive

rate would almost double these costs.

One possible rememedy to reduce the false positive rate with respect to misclassification is to

use machine learning to characterize output properties based on known vulnerabilities, as shown

by SCIFinder (Zhang et al., 2017). SCIFinder used developers’ repositories, bugtracker databases,

and email forums to create a training data set, and none of these while studying a closed source

design. However, SCIFinder demonstrates a promising technique to for characterizing security

properties of CPUs, and could be used to reduce Astarte’s false positivity rate given adequate

training data, which is likely available to hardware designers.

3.5.4 Specification Logic and Abstraction Level

Astarte does not discover any temporal properties or information flow properties. Properties

are described at ISA level and do not address any microarchitectural state.
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Pipeline properties arise from both the lack of temporal properties and the ISA abstraction,

and can describe important security requirements. Hardware validation efforts such as Hicks

et al. (2015) and Zhang et al. (2017) define security properties at the register transfer level across

pipeline stages.

3.6 Conclusion

This chapter presents Astarte, a framework for mining security critical properties from a

closed source, CISC architecture. Astarte produces manageable numbers of properties that cap-

ture the behavior of the processor under security-relevant control signals. Astarte addresses issues

of complexity and closed-source designs not seen in RISC-based security specification miners.

I show that Astarte can automatically generate specifications containing manually discovered

security properties and capable of securing designs against historical bugs.
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CHAPTER 4: UNDINE: MINING FOR TEMPORAL PROPERTIES

4.1 Introduction

Efforts at automatic security property generation can struggle to move beyond invariants to

more powerful logics of specification, such as those able to capture temporal properties. Early

specification miners for software and hardware, such as DIDUCE (Hangal and Lam, 2002) and

IODINE (Hangal et al., 2005) studied only invariants or subsets of invariants, and early efforts

at temporal specifications frequently addressed specific patterns rather than temporal logics gen-

erally, like Javert (Gabel and Su, 2008a), or study hardware at higher abstraction levels (Danese

et al., 2015, 2016). Prior security efforts at the register transfer level (RTL) also studied invari-

ants, such as SCIFinder (for ‘Security Critical Invariant Finder’), used statistical learning to

identify invariants as security critical or not (Zhang et al., 2017). SCIFinder produced only non-

temporal properties and relied on human expertise to produce the initial training set of properties.

To achieve automatic RTL temporal security specification, an automated approach to capture

the security critical patterns within designs and a corresponding library of such patterns must

be developed. With such an approach, a new design can be mined to generate a set of security

properties with little human intervention.

To address this need with specification mining, I developed Undine, a tool for mining tem-

poral security specifications of processor designs. The specifications take the form of linear

temporal logic formulas and capture properties that are critical to the security of the processor.

Undine introduces the notion of event labels and uses these labels to find the patterns that are

common to the known security properties discovered manually or composed from invariants over

the design. For example, many invariants may hold when restricting the considered system to

only be studied after it correctly comes out of reset, and invariants that only hold under these cer-
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tain design conditions that may be defined temporally. Using event labels and Undine, I build a

library of labelled property templates and develop a specification miner for use with the labelled

templates.

Undine uses a modified version of the Texada LTL Specifications Miner (Lemieux et al.,

2015). Texada mines properties expressible in linear temporal logic (LTL), a modal logic which

can encode formalae about the future of paths. Texada offers functionality that dynamic invariant

detection, such as by Daikon (Ernst et al., 2007), does not, but requires LTL templates to be

provided to the miner. I modify Texada to accept traces containing event labels and to reason

effectively about register slices. I added a preprocessing step to provide the needed labelling

information to traces of execution, and to apply filters to reduce the complexity of the search.

Given these output properties based on security templates, Undine then uses a postprocessing

step to logically compose related properties into a concise set of more expressive properties that

are critical to security.

I demonstrate the use of the library of labelled LTL security property templates and the Un-

dine label-aware specification miner by mining security specifications of three open source RISC

processors: OR1200, Mor1kx, and RISC-V. Using the library of templates, Undine automatically

mines 25 of the 28 known security critical properties on OR1200. Undine additionally finds new

security critical properties that require temporal logic to express. I provide an example exploit for

one such property over the Mor1kx CPU design.

4.2 Properties

Undine generates properties related to temporal relations between elements of design state.

The precise structure of these properties is described in detail alongside the Undine methodology

in Section 4.3. In this section, I will briefly describe the reasoning behind understanding these

properties as related to security.
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4.2.1 Security Properties for Undine

Undine is intended to discover properties that describe the desired secure behavior of open

source RISC designs in linear temporal logic (LTL) over gigabyte trace sets at register transfer

level (RTL). Undine generates temporal properties as expressions over up to three propositional

variables that either specify that the value of a register, a subfield, or a bit is equal to some con-

stant, specify the delta value of a register, or specify an equality between the values of two regis-

ters. Within the context of the Undine framework, the working definition of a security temporal

property for a design is one of these expressions for which a violation would indicate the pres-

ence of a vulnerability that an attacker may exploit to breach a security requirement. In brief, for

each security property, there is some corresponding attack.

4.2.2 Evaluating Undine Properties

There may be many security properties of a design, and since not all attacks are known, there

will be some security properties for which the corresponding attack is not yet known. Assessing

these properties poses a challenge, as for some output property that does not describe behav-

ior preventing a known vulnerability, it could be the case that the property is relevant to some

unknown vulnerability or that it is simply a functional property.

Ideally, there would exist complete documentation regarding the security requirements of

open source RISC CPU designs. In such a case, Undine’s properties could be evaluated for cov-

erage of known requirements, and the relevance of the overall generated specification to security

requirements could be also be evaluated.

In practice, there is no large body of known security temporal requirements for RISC designs.

If there were, there would be little need for a tool such as Undine to generate security proper-

ties. Nevertheless, it is possible to study properties generated by Undine and determine how a

design not upholding a particular property could be vulnerable to some exploit. However, Undine

produces many properties, and as a practical matter I could not produce corresponding attacks

for all of the generated properties. Given this challenge, I assessed Undine in two main ways.
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First, I compared Undine against known, manually specified properties from prior work (Zhang

et al., 2017) that could be expressed as Undine LTL expressions. Second, I created and demon-

strated an example exploit violating a temporal property discovered by Undine. The exploit, on

the Mor1kx design, manipulates status registers prior to reset in such a manner that a user may

gain supervisor privileges after an exception is raised. This exploit shows that the violated tempo-

ral property enforces a security agreement related to privilege levels, and establishes this property

as a security temporal property. The exploit is discussed in greater detail in Section 4.4.5.

4.3 Methodology

Figure 4.1 provides an overview of the Undine workflow. As a preliminary step, the processor

design is simulated to generate traces of execution. The traces are then input to Undine, which

works in three steps: preprocessing, mining, and postprocessing. During preprocessing Undine

converts the traces of execution to traces of labelled events and then applies a filter. During min-

ing Undine takes filtered, labelled event traces and a labelled property template, and produces a

set of security critical properties. During postprocessing Undine synthesizes properties to pro-

duce a manageable set of properties that can be understood by the user and are critical to the

security of the processor.

I will use the following security property as a motivating example while describing this pro-

cess:

assert property

(¬((ex insn & 0xFFFF0000) >> 16 == 8192))

|| (id flushpipe == 1);
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Figure 4.1: An overview of the Undine workflow.

In this property, the ampersand character & denotes the bitwise “AND” operation. This prop-

erty was developed manually by Hicks et al. (2015). It states that when a system call instruction

is being executed that the instruction pipeline should be flushed at the instruction decode phase.

It is critical to security because a system call causes a change in privilege level, and the instruc-

tion following a syscall in the pipeline, which will not be part of the system call, should not be

executed at the elevated privilege level.

4.3.1 Trace Generation

For Undine, a trace of execution is produced by simulating the register transfer level (RTL)

specification of the design under consideration. The value of each signal in the RTL model is

logged at every clock cycle. More formally, a trace T is an ordered sequence of time-stamped,
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o r 1 2 0 0 c t r l . e x i n s n == 1234
o r 1 2 0 0 c t r l . i d f l u s h p i p e == 1
. . . / / t h i s d e n o t e s a change i n t ime
o r 1 2 0 0 c t r l . e x i n s n == 4321 / / e t c .

Figure 4.2: Commented excerpt of a trace of execution from the OR1200 processor

signal–value pairs:

T =[(q, x)t, (r, y)t, (s, z)t, . . . ,

(q, x′)t+1, (r, y
′)t+1, (s, z

′)t+1, . . . ,

(q, x′′)t+2, (r, y
′′)t+2, (s, z

′′)t+2, . . .],

where q, r, s represent state-holding signals in the design, and x, y, z represent numeric values.

Tick-marks indicate the passage of a single clock cycle: if x represents the value of register q at

time t, x′ represents the value of register q at time t + 1. I will use this notation throughout the

chapter. Where context makes the meaning clear, I will sometimes overload terms and use q, r, s

to mean both the register and its value.

Each signal–value pair in the trace is an event. A standard value change dump (VCD) file

as produced by many simulators suffices as a trace of execution. An excerpt from the VCD file

produced by simulating the OR1200 processor is shown in Figure 4.2.

4.3.2 Event Labels

Central to the design of Undine is the notion of a labelled event. I define five event labels,

which apply to events that may occur at any time point within some trace.

• register–register (RR): (q1 == q2). Two registers, q1 and q2, have the same value.

• delta–register (DR): (q′ == q + y). Register q changes by some value y in the next clock cycle.

• register–value (RV): (q == y). Register q has value y.

• slice–value (SV): (q[i : j] == y). A slice of register q has value y.
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• bit–value (BV): q[i : i+ 1] == y. The ith bit of register q has value y.

Returning to the example, a slice of the register ex insn is compared to a value, in this case

using a bit mask. (This comparison checks whether the instruction in the execute phase of the

pipeline is a syscall.) This is expressible as an equivalent slice–value event. The id flushpipe

clause is an example of a register–value event. The original property can be restated using la-

belled events.

assert property

(¬((ex insn & 0xFFFF0000) >> 16 == 8192)) // SV event

|| (id flushpipe == 1); // RV event

Event labels inform specification mining in two ways:

1. Registers in the design are associated with a particular label and will only appear in events

of the correct label;

2. Property templates are written in terms of labelled events and only property instances with

the correct labelling will match a given template.

4.3.3 Grammar of LTL Properties

Undine mines for properties by looking for possible instantiations of a given template. It is

not limited to a predefined set of property templates, but rather takes the template as an input

from the user. A user is free to create their own template or choose a template from the library

I developed. Figure 4.3 defines the language of properties expressible in Undine. The temporal

operators (G,U,X) have the standard definitions of Globally, Until, neXt. The event labels

(RR, DR, RV, SV, BV) are as defined in section 4.3.2.
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LTL
.
= G(φ)

φ
.
= φ→ φ | ¬φ | φ | φ ∧ φ | φ ∨ φ
| φU φ |X φ | e

e
.
= RR | DR | RV | SV | BV

Figure 4.3: The grammar of labelled LTL properties

4.3.4 Preprocessing

The preprocessor takes as input a set of execution traces and produces a filtered set of labelled

event traces ready for specification mining. There are two tunable parameters to the preprocessor

that determine the trace transformation:

• labelling information for signals in the design, and

• register slice size

In prior work, Zhang et al. (2017) found that there is a subset of registers in the design that

are associated with properties critical to security. I dub these the security-critical registers. Un-

dine extends this idea further. On manual inspection of the properties, I noted that a security-

critical register will occur within the assertion grammar for security properties in a predictable

and consistent manner. For example, the id flushpipe register from the running example would

be labelled as RV event. In the security-critical properties in Zhang et al. (2017) and Hicks et al.

(2015) the id flushpipe register appears only in events of that would be labelled as RV. The

first parameter to the preprocessor is the labelling information for the security-critical registers in

the design.

Hardware designs often use bit packing, for example, storing 32 individual control bits in

a single 32-bit register. Another design tactic is to encode semantic information in a slice of a

register, as when the highest-order 16 bits of the 32-bit ex insn register determine whether the

instruction is a systen call instruction. Security properties are often concerned with the control

and semantic information available at the sub-register level. To enable this, the second parameter

to the preprocessor is the register slice size: the preprocessor will break every register into its
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e x i n s n [ 1 5 : 0 ] == 1234 / / SV
e x i n s n [ 3 1 : 1 6 ] == 0 / / SV
i d f l u s h p i p e == 1 / / RV

Figure 4.4: Sliced and labelled excerpt of a trace of execution from the OR1200 processor

component slices of the given size. As I discuss in Section 4.3.7, register slicing situationally

reduces the time cost of property mining for any given template.

The trace of execution is converted to a filtered trace of labelled events as follows. At each

clock cycle in the trace, each register is split according to the register slice size parameter. Each

register is then labelled according to the signal labelling parameter. Next, a set of derived events

are added to each clock cycle in the trace. The derived events are calculated as follows. For every

event label that appears in the property template, for every register of the appropriate label, the

set of possible derived events is added to the trace. The execution trace from Figure 4.2 could be

sliced and labelled as follows, given certain input parameters.

Finally, at each clock cycle, registers in the execution trace that are of a label that does not

correspond to any of the event labels in the property template under consideration are removed

from the trace.

4.3.5 Property Mining

After preprocessing, the filtered labelled event traces and the property template are passed to

the specification miner.

Undine builds on the Texada LTL Specifications Miner (Lemieux et al., 2015). Texada takes

in a trace of events and a property template and produces all property instantiations of the given

template that are true of the event trace. I modify Texada to handle labelled events and labelled

LTL property templates. With event labels, potential properties that would otherwise match the

property template but have a label mismatch can be discarded early. The event labels provide an

effective filter at both the preprocessing and the mining stage.
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Two additional modifications to Texada include discarding registers with uninitialized values

and adding support to recognize and effectively handle sliced registers.

4.3.6 Postprocessing

The postprocessing step combines and simplifies properties to produce a more manageable set

of final properties. First, all properties that contain an implication are sorted by antecedent. Prop-

erties that have the same antecedent are grouped into a new property in which all the consequents

are joined together in a conjunction. Second, properties containing an implication are sorted by

consequent and all properties with the same consequent are grouped into a new property in which

all the antecedents are joined together in a disjunction. Finally, the properties are simplified using

the Z3 SMT solver (De Moura and Bjørner, 2008).

4.3.7 Complexity

As with most specification miners the time complexity of Undine is exponential in the num-

ber of unique terms in the property template under consideration (Gabel and Su, 2008b). Un-

dine’s complexity is given by eT , where e is the number of unique events in the set of traces being

mined and T is the number of events in the template.

Register slice size affects the run time of Undine in two ways. If the slice size is aligned

with semantic and control components of a register the templates required to capture the desired

security properties tend to be simpler. If, on the other hand, the slice size is too big or too small

the number of unique events in the template (T ) grows. On the other hand, smaller slices always

reduce the number of unique events in a trace (e).

4.4 Evaluation

I evaluate Undine and the library of labelled templates on its ability to extract temporal secu-

rity properties at the register transfer level to answer the following research questions:
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1. Can Undine find known properties formulated as LTL expressions?

2. Can Undine find new temporal properties that secure designs against potential exploits?

In comparison to other tools, a helpful point of comparison would be to use Undine trace

generation and encoding stages but interface with Texada directly rather than using the Texada

variant modified to apply the Undine labelling system during property generation. In this sense,

Section 4.4.3 offers a point of comparison for the Undine mining stages compared to Texada.

4.4.1 Property Templates

I developed a library of nine labelled LTL templates that describe the patterns common to

security critical properties for open source, RISC, pipelined processors. These are described in

Table 4.1. The first eight templates in the library come from studying security critical properties

developed, either manually or semi-automatically, by Zhang et al. (2017) and Hicks et al. (2015).

The ninth template comes from my own study of the processor design specifications.

The third and fourth columns of Table 4.1 list how many properties each template produced

when mining the OR1200 processor (Section 4.4.6 provides details on the evaluated designs

and mining configuration). Column five lists how many of the known security critical properties

of prior art were found by each template. In total, the library of templates covers 25 of the 28

security critical properties of prior work. The 3 properties not found require a bit shift that is

determined dynamically, which is not supported by the Undine grammar.

Template 9 uniquely uses the ‘U’ (until) LTL operator and is necessary for finding proper-

ties that ensure the processor is initialized correctly. I discuss this template further in the next

Section 4.4.2.

4.4.2 Mining with Temporal Templates

In prior work, properties are often defined for the processor starting at the first clock cycle

after reset. These assume that processor state is initialized correctly; if it is not, security may
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Labelled Mined Postprocessed Known
ID Template Properties Properties Properties

1 G(RRa) 2 2 1

2 G(SVa → ¬RRb) 46843 32 2

3 G(SVa → SVb) 8134 376 2

4 G(SVa | ¬SVb) 5794 431 1

5 G((SVa ∧ SVb)→ RRc) 1026262 19 14

6 G(SVa → DRb) 13088 4 1

7 G((SVa ∧ SVb)→ BVc) 204138 3 1

8 G(SVa → (SVb | RRc)) 525322 648 1

9 RRUG(BV) 134 134 0

Table 4.1: LTL templates over labelled events

be compromised without violating any property. Specifying the sequence of events required for

secure initialization requires temporal operators or some equivalent formulation, a prospect not

addressed in prior work on defining security properties.

Using the ninth template ‘RRUG(BV)’, Undine mines properties on the Mor1kx processor

and finds seven groups of registers that must be set as equal to each other until the initialization

period has ended (until ¬reset). These properties are listed in Table 4.2. The first six properties

describe registers that are free to change their values after reset; the last property describes reg-

isters that must always be equal and could therefore have been captured with the simpler G(BV)

template. In Section 4.4.5 I use the first property listed in Table 4.2 as a case study and examine

how a design that violates of the property may contain an exploitable security vulnerability.

4.4.3 Labelling and Performance vs. Texada

I examine the performance benefits of introducing labelled events, including a direct compar-

ison with baseline Texada to contextualize Undine within prior art. Table 4.3 compares mining

time for each template for each of three versions of Undine: Texada, Security Signal, and La-

belled. The Texada implementation uses traces containing events from all registers, allows any
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Registers Equal During Initialization Description

spr esr, spr sr, spr sr o Status registers and exception status register

ctrl epcr o, pc execute to ctrl Program counter and exception program counter

ctrl lsu adr o, dbus dat o, du dat o,
mfspr dat o, pc decode to execute, Decoder and data channels
pc fetch to decode, spr bus dat i
spr bus dat o

decode rfa adr o, decode rfb adr o Decode stage register file address registers
decode rfd adr o

fetch rfa adr o, fetch rfb adr o Fetch stage register file address registers
wb rfd adr o

ctrl rfd adr o, execute rfd adr o All pipeline register file data registers
fetch rfd adr o, wb rfd adr o

du dat i, snoop adr i Debug ports to databus (globally true)

Table 4.2: Properties mined using initialization template on Mor1kx.

signal to be associated with an event of any label, and does not include label checking in the

miner. This is termed Texada because it is equivalent to using the Undine workflow only for

trace generation and encoding and thereafter using an unmodified Texada implementation. In

this sense, the Texada implementation represents a helpful comparison to prior work on template

driven LTL specification mining, with the caveat that other Undine techniques, such as register

slicing 4.4.4, still inform performance and feasibility. The Texada implementation reaches a four

hour timeout in all cases, including the minimal template G(RRa), which as a point of compari-

son could be mined using invariant detection, such as through Daikon (Ernst et al., 2007), rather

than an LTL miner. Security Signal implementation uses traces with only registers associated

with security critical properties, allows any signal to be associated with an event of any label, and

does not include label checking in the miner. The Labelled implementation uses traces with only

registers associated with security critical properties, uses only events in which signals have the

correct label to be security relevant, and includes label checking in the miner. In all except the

most trivial cases, mining is prohibitively expensive without any labelling, and in the cases of
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Labelled Texada Security Labelled
ID Template Miner Signals Templates

1 G(RRa) t/o 6.823 0.600

2 G(SVa → ¬RRb) t/o 38.682 1.777

3 G(SVa → SVb) t/o 122.186 7.826

4 G(SVa | ¬SVb) t/o 71.694 6.856

5 G((SVa & SVb)→ RRc) t/o t/o 217.988

6 G(SVa → DRb) t/o 122.186 18.445

7 G((SVa & SVb)→ BVc) t/o t/o 515.168

8 G(SVa → (SVb | RRc)) t/o t/o 1521.896

9 RRUG(BV) t/o 27.995 0.987

Table 4.3: Time in seconds to mine the template library by miner implementation

the fifth, seventh, and eighth template, mining also timed out at four hours in the security signals

case.

4.4.4 Slicing and Performance

The register slice size is a parameter to the preprocessor and is adjustable by the user. Smaller

slice sizes lead to fewer possible unique events for a given trace, giving a performance boost to

the miner. However, changing the slice size in either direction can affect the number of property

instantiations for any given template as well as the rate at which properties can be mined. Fig-

ure 4.5 explores this trade-off using example template ‘BVUG(SV → RR)’ which was selected

for evaluation to use multiple LTL operators and event labels.

4.4.5 Example Exploit

In the Mor1kx processor, the exception, output, and basic status registers must be equal until

initialization completes. The first property in Table 4.2 captures this requirement. The lowest

order bit of the basic status register indicates whether the processor is the supervisor bit and a low
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Figure 4.5: Mining rate and quantity of output properties by slice size

user changing this bit would constitute a privilege escalation. After initialization the basic status

register holds the current status unless an exception has occurred, in which case the status register

is saved to the exception status register. I insert a bug into the control module of the Mor1kx

processor that causes this property to be violated by the design. The inserted bug changes the

initial value of the exception status register and modifies the exception status register update

to update all bits except the lowest order bit, rather than the entire register. The system boots

normally and appears identical, other than violating this property, until an exception occurs. As

soon as an exception occurs, the correct value of the supervisor mode bit is lost. I exploit this

bug to allow an unprivileged user to enter supervisor mode by triggering a trivial exception, so

that when control returns to the user, its status register incorrectly grants the user supervisor

privileges.
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Mining Consequent Antecedent

OR1200 597838 234096 22

Mor1kx 755530 135378 26

RISCV 278960 104370 8

Table 4.4: Property numbers by postprocessing stage using Template 5.

4.4.6 Number of Properties

I evaluate Undine on three open source RISC processors: Mor1kx, OR1200, and RISC-V.

Using template (5) G((SV & SV) → RR I mine each of the three processors until a stable set of

properties is reached.

On OR1200 and mor1kx the execution traces were

1. arbitrary assembly code,

2. a Linux boot,

3. the built-in test suites of the designs, and

4. a bare metal hello world C program (for a system call)

On RISC-V, I used the C program and three benchmarks: quicksort, towers, vector-vector-add.

Figure 4.6 shows how the set of properties converges to a steady state as the trace length and

number of traces increase on the RISC-V processor. The OR1200 and mor1kx processors exhib-

ited similar trends.

The figures show the number of properties produced without postprocessing. Table 4.4 shows

how postprocessing reduces the final number of properties produced by Undine.

Runs to steady state finish in under 15 minutes. Table 4.5 shows the time it takes Undine to

complete a steady state run for a given architecture, broken out into different stages.
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Preprocessing Mining Postprocessing

OR1200 34.24 171.36 7.87

Mor1kx 1.00 105.79 14.58

RISCV 173.20 842.13 3.26

Table 4.5: Undine stage times in seconds per design.

Figure 4.6: Steady state convergence of Undine output by trace data
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4.5 Limitations

In this section, I will discuss the threats to validity for properties produced using Undine,

including false positives and false negatives.

With regard to false positives, Undine utilizes template enumeration so any output property

must hold over the trace set. Therefore, false positives are restricted to two cases: false positives

arising from trace generation, and false positives arising from misclassification, which can occur

when functional properties are classified as security properties.

With regard to false negatives, they fall into two cases: known and unknown. There are three

known false negatives from the evaluation which result from failures across both the mining ap-

proach and labelling system to address equality across bit shifts and the introduced complexity

with regards to template enumeration. Reaching these properties require a either a complete re-

design (probably from template enumeration to the property inference technique used in other

miners, such as Daikon and IODINE) or enough processing power to make most of the Undine

methodology unnecessary. Unknown false negatives could arise from limitations in trace cover-

age, in logical specificity, within the template library, or within the labelling system.

4.5.1 Trace Reliance

As with any specification mining technique, Undine may only determine invariants that hold

over traces. In the case of traces over buggy hardware, discovered invariants may form a specifi-

cation describing buggy behavior. Traces may not cover all cases that can be reached by a design

or even occur during normal design operation.

For example, within the trace set, there is no Linux boot over RISC-V, and Undine discovers

only about a third as many RISC-V properties when using Template 5. This is consistent with the

RISC-V being incompletely explored by Undine, especially in comparison to other designs.
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4.5.2 Uninteresting Properties

Undine does discover a number of properties prior to postprocessing that appear to not be rel-

evant to any security requirements, especially with regards to redundancy or labels not capturing

security relevance.

For example, once again consider RISC-V with regards to Template 5. Texada finds 597838

instantiations of this labelled template over the trace set. While these are composed into only

8 properties during postprocessing, this simply means these properties are unwieldy. However,

26944 of instantiations of this implication property specify a consequent term that is known to

hold globally. There were two such terms of the appropriate label that were discovered from

evaluating Template 1. These properties therefore are redundant.

Additionally, Template 5, developed over OR1200 to find properties about system calls us-

ing slices of instruction registers, overwhelmingly captures information other than whether an

instruction is a system call, a limitation of the labelling system in assessing security relevance.

Even on OR1200, the register slices over the instruction register produced on the order of

thousands of properties while corresponding to only tens of properties describing system calls.

Ultimately, in the case of the register slices, the labelling system was more successful in moving

mining into feasible time frames than restricting output to only contain security properties.

Notably, this was not the case for all templates, such as Template 9, where most of the initial-

ization properties were interesting in the sense that the template generated single digit numbers of

properties and manually crafting an exploit for one of these properties was a straightforward task.

4.5.3 Library Limitations

While the template library greatly expands the number of propositional terms that may be

considered in specification mining, in testing it could only complete mining over templates of

up to four terms, precluding many complex properties. Further, any property that does not pre-

cisely match a known template would not be discovered without somehow knowing to expand the

library. Both of these are sources of false negatives.
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4.5.4 Labelling Limitations

Relying on known properties for labelling means any register relevant to some security prop-

erty that is not known to be security relevant would not be included in generated properties. Un-

dine does generate novel properties, but does not generate properties over novel registers.

Additionally, the labelling system required manual efforts in translating across designs and

this manual effort introduced the possibility of human error. Translating across designs is a sig-

nificant research problem that is addressed directly in other research efforts, particularly Tran-

sys (Zhang and Sturton, 2020).

4.5.5 Specification Logic

Undine does not discover information flow properties or properties requiring specification in

branching time logics such computation tree logic (CTL).

4.6 Conclusion

In this chapter I present Undine, which automatically mines securty critical LTL properties

to create RTL specifications of processors. Undine produces manageable numbers of properties

which, if violated, leave vulnerabilities over which exploits can be readily demonstrated. Un-

dine runs in minutes, is usable across different architectures and can be easily parameterized as

needed. I also propose a labelling system for processor events for security critical LTL properties.

Using Undine, I develop and demonstrate the usefulness of a library of templates in this labelling

system to secure designs against both new and known attacks.
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CHAPTER 5: ISADORA: MINING FOR INFORMATION FLOW

5.1 Introduction

Attacks targeting information flow through hardware designs are rapidly growing in number

and severity (Chen et al., 2018; Evtyushkin et al., 2018; Kocher et al., 2019; Lipp et al., 2018).

Like Memory Sinkhole (Domas, 2015) and SYSRET privilege escalation attacks (Dunlap, 2012),

many information flow attacks existed in product lines for decades despite manual verification

efforts and extensive testing. What sets information flow attacks apart is that the security proper-

ties they violate cannot necessarily be detected by naive specification mining as the attacks work

across multiple runs of a design. While specification mining may be extended, it innately only

generates properties for a single run of design. Astarte offers an automated methodology that

combines Information Flow Tracking (IFT) with specification mining to create information flow

security specifications of hardware designs.

Information Flow Tracking (IFT) is a technique to measure flows of digital information

through a hardware design by monitoring how data propagates across elements of the design

during execution. Recently, IFT has been demonstrated at the RTL (Ardeshiricham et al., 2017b;

Hu et al., 2018) and gate level (Hu et al., 2014; Hu et al., 2016; Becker et al., 2017), and has been

used to monitor implicit flows through digital side channels (Ardeshiricham et al., 2017a).

Existing verification engines that incorporate IFT capabilities can be used to confirm whether

a particular information flow property stated over RTL elements holds. However, it is up to the

designer to specify the full set of desired flow behaviors, which is a difficult and time-consuming

task and can easily miss some necessary properties. To find these vulnerabilities and others an

analysis of how information flows through a design is needed.
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IFT and specification mining, together, can provide automated analysis of a hardware de-

sign that identifies flow relations between all design elements, including flow conditions and

multi-source and multi-sink cases. The methodology presented in this chapter is partially self cor-

recting with respect to trace coverage and requires no input from the designer beyond the design

and a testbench.

To evaluate these technologies together, I developed Isadora, a fully automatic security speci-

fication miner for information flow properties. Isadora uses IFT technology from Tortuga Logic’s

Radix-S simulation based security verifcation engine and for specification mining uses the in-

ference engine of the Daikon Dynamic Invariant Detector (Ernst et al., 2007), a popular tool for

mining specifications of programs. Daikon, also used for security specification mining in Chap-

ter 3, excels at specifying behavior over traces or trace slices, and was used here to determine

predicates over design state during information flows, for which it was well suited.

Isadora demonstrates specification miners are capable of extracting information flow security

properties from hardware designs. To understand security of hardware designs, I use high level

Common Weaknesses Enumerations from the database maintained by MITRE as a baseline for

secure design. The results demonstrate:

• Isadora characterizes the flow relations between all elements of a design.

• Isadora identifies important information flow security properties of a design without guid-

ance from the designer.

• Isadora can be used to find undesirable flows of information in the design.

• Isadora is applicable to SoCs and CPUs.

To measure this methodology and the usefulness of Isadora’s mined specification, I evaluated

Isadora over an access control module (ACM), a multi-controller and multi-peripheral system

with a known security policy, and a RISC-V design. I evaluated the output of Isadora versus

expected information flow policies of the design and find information flow specifications that, if

followed, protect designs from known and potential future attack patterns.
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5.2 Properties

Isadora generates properties related to how information flows through a design using trace-

based analysis and specification mining. However, a single trace of execution cannot demon-

strate how information is flowing through the design. For example, consider a design with a

user-controlled write-ready signal (WREADY) and an internal write-ready signal (WREADY int).

While the system is undergoing a reset cycle (ARESETN = 0), the user should not be able to affect

the internal state of the module. It is not possible to examine any single trace of execution and

determine whether this property is being violated. The individual values of WREADY, WREADY int,

and ARESETN do not reveal how the values were calculated nor what information was used in the

calculation.

Isadora therefore leverages information flow tracking to yield traces of execution that can be

analyzed to determine how information flows through a design, and produce output that specifies

secure relations between registers.

5.2.1 Example Information Flow Properties

While trace properties capture many important security policies, some policies, such as

noninterference or GMNI, for Goguen and Meseguer noninterference (Goguen and Meseguer,

1982), cannot be expressed as a property of a single trace of execution (Clarkson and Schneider,

2008). Policies over information flow, including those defining security against side channel at-

tacks (Lipp et al., 2018; Kocher et al., 2019; Ho et al., 2018) require expressing a security policy

over multiple traces of execution. Whereas trace properties are sets of traces (where a system has

a property if its output traces fall within the set of traces making up the property), information

flow properties are sets of trace properties, or sets of sets of traces. Information flow properties

hold over systems while trace properties hold for each discrete run of a system.

To explore information flow, let’s consider GMNI:

T ∈ GMNI := ∀t ∈ T : ∃t′ ∈ T : t 6=H t′ ∧ t =L t
′
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Where t and t′ are traces, T is a set of traces that map to the set of possible traces generated

by some design, and relation =L represents the notion of traces equal at a low level, or the por-

tions of trace data visible to a low user, and =H corresponding refers to the trace as view by a

privileged or high user.

Consider the case with a low user data signal is visible to a low user and privileged user data

signal is only visible to the privileged user. To demonstrate GMNI over these signals, show that

for any traces t there exists a trace t′ that differs in the value of privileged user data but

which does not differ in the value of low user data.

∀t ∈ T : ∃t′ ∈ T : low user data = low user data′∧

privileged user data 6= privileged user data′

In the context of naive trace generation and specifcation mining, this is impossible to demon-

strate because to describe the property requires a comparison between multiple traces. There is

no way from the perspective of a specification miner to determine that a single trace that could be

generated by the studied system could be added to a trace set to satisfy GMNI. Similarly, a single

additional trace could be generated by a design but was not included in some studied trace set.

There must be some notion of what possible states may exist for a design.

Of note, Hyperminer (Rawat et al., 2020) used specification mining specifically to find non-

interference properties of this type using a fuzzing technique. Doing so, Hyperminer may find

many important design features. By way of contrast, Isadora also finds noninterference properties

as discussed in Section 5.3.2, but further finds conditions under which interference may occur as

in the example with WREADY, WREADY int, and ARESETN and as described in Section 5.3.3. These

Isadora properties correspond to the information flow property of declassification as described

by Clarkson et al. (2014) wherein information may flow between two design elements but only

under defined conditions. In the context of security specifications, 95% of the manually defined

security properties used for evaluating Isadora presented in Section 5.5.3 are expressed as condi-

tional flow properties.
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5.2.2 Properties with Information Flow Tracking

IFT offers a technqiue for measuring information flows between different elements of de-

sign state. Isadora uses IFT at the register transfer level and measures flow between registers

specifically, rather than considering individual bits, with ‘registers’ in this context referring to the

Verilog notion of a register. Isadora may additionally be configured to consider Verilog registers

and wires, though doing so provided no observable improvements to generated specifications

and considerably increased trace generation costs. The Isadora methodology can be applied to

individual bits, as the underlying information flow tracking used within Isadora does consider

individual bits. However, bit level analysis would result in extraordinarily high trace generation

costs even over smaller designs.

IFT may precisely measure all digital information flows in the underlying hardware, includ-

ing, for example, implicit flows through hardware-specific timing channels. From the perspective

of specifications, adding IFT to a design allows the use of a ’not-flow’ operator (written ’=/=>’)

when defining properties of the design. In the case of the noninterference example:

privileged user data =/=> low user data

To provide this functionality, for each signal sig present in a design, the design is instru-

mented in simulatation with a new ‘shadow’ signal shadow sig. When considering informa-

tion flow, one or many signals may be set as the source from which information flow is tracked.

These source signals will have their corresponding shadow signals set to be nonzero during trace

generation, whereas all other shadow signals will take on an initial value of zero. The added in-

strumentation will then track flows of information from the source(s) through the design, toggling

the relevant shadow signals from zero to nonzero as information flows to a given signal. In the

case of GMNI over privileged user data as a source and low user data as the sink to which

there should be no information flow, there is no interference if at a trace point the relevant IFT

has tracked no information flowing into the shadow low user data signal:

shadow privileged user data 6= 0 ∧ shadow low user data = 0
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Assume in this case that no signals other than shadow privileged user data are set as

the initial source, as it could be the case that some other signal, perhaps another low user data

register, could flow into shadow low user data. This is equivalent to assessing at the first trace

point that for all signals s in the set of shadow signals in the design S, the starting value for all

signals other than shadow privileged user data is zero. In that case, the low value for the

tracking signal holds over the entire trace, here given by the Linear Temporal Logic ’global’

operator G, that the value of shadow low user data is equal to zero at every trace point.

(G(shadow privileged user data 6= 0)∧

∀s ∈ S \ {shadow privileged user data} : s = 0) =⇒

G(shadow low user data = 0)

In this chapter, Isadora will always consider the case where a single source is specified along

a trace. When multiple sources are considered, either multiple traces or multiple instances of

instrumentation over a single trace can be used to track distinct information flows from multiple

sources.

5.2.3 Expressing Conditions on Information Flow

Properties including ’when’ keywords can be expressed similarly to the logical expression of

GMNI by considering a trace set T .

∀t ∈ T : ∃t′ ∈ T :

(WREADY = WREADY′ =⇒ WREADY wire = WREADY wire′) =⇒ ARESETN 6= 0

That is, if the value of WREADY can be determined by examining the value of WREADY wire,

then the system must not be in reset. If reset is nonzero, then WREADY is declassified and may flow

to WREADY wire.

Figure 5.1 shows the equivalent expression of the write readiness property over a single trace

using IFT.
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• Line 5.1 specifies the starting state of the source signal.

• Line 5.2 specifies the starting state of all signals other than the source signal.

• Line 5.3 specifies the sink signal.

• Line 5.4 specifies the condition on this information flow over signals in the original design,

and is the only line not to refer to information flow tracking state.

(G(shadow WREADY = 1)∧ (5.1)

∀s ∈ S \ {shadow WREADY} : s = 0) =⇒ (5.2)

G(shadow WREADY wire 6= 0 =⇒ (5.3)

ARESETN 6= 0) (5.4)

Figure 5.1: A flow relation as formulated over IFT and original design signals.

5.2.4 Properties and Common Weakness Enumerations

This section is based on the process for creating information flow security properties of hard-

ware designs put forth by Restuccia et al. (2021) for the AKER access control module. An early

developmental verison of AKER is studied by Isadora throughout this chapter.

AKER implements the ARM Advanced eXtensible Interface (AXI) standard to provide se-

cure intermodule communication for SoC designs. The AXI standard is a commonly used on-

chip communication protocol. It employs a flexible, asymmetric, synchronous interface targeting

high performance and low latency communications. An AXI architecture defines one or more

controller devices accessing one or more peripheral devices. Different processors, accelerators,

and other IP cores can be assigned as a controller. This allows them to autonomously and con-

currently communicate with shared peripheral resources available on the SoC, e.g., a DRAM

memory controller, ROM, and GPIOs. In this case, we will consider the AKER access control

module specifically.
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Secure access control within SoCs are contested sites for both security engineers and attack-

ers, and the MITRE Common Weakness Enumeration database reports a substantial and growing

number of hardware weaknesses related to access control systems. While some of these are weak-

nesses expressible as trace properties and may be captured by traditional specification mining or

other techniques, others are expressable only as information flows. In order to properly define

secure information flow, Isadora must be able to provide specifications for hardware designs that

capture whether a design contains a given common weakness.

Consider this section’s running example on write readiness over AKER:

WREADY =/=> WREADY wire unless (ARESETN 6= 0)

This uses the ’not-flow’ operator with the addition of the ’unless’ keyword to specify that the

flow in question constitutes a violation of secure behavior only under certain conditions, in this

case unless the ARESETN signal is not equal to zero, which means AKER is not undergoing reset.

This property was manually specified as a security property by the designers of AKER. Addi-

tionally, this flow relation partially implements secure behavior with respect to CWE 1272, on

leaking sensitive information during power state transitions, for the WREADY signal. In this case,

AKER is interfacing with some peripheral, and the WREADY signal is a peripheral visible register

while the WREADY wire is an internal register to AKER. The peripheral should not be able to in-

terface with AKER while AKER is undergoing reset as access controls may not be configured.

A flow in this case would constitute the propagation of potentially sensitive information without

passing access control checks during a power state transition, the weakness described by CWE

1272.

When assessing CWE 1272 more generally over register transfer level state, Tortuga Logic’s

Radix Coverage for Hardware Common Weakness Enumeration (CWE) Guide provides lower

level descriptions of CWEs alongside the high level descriptions present in the CWE database.

For example, CWE 1272 is described using the “unless” keyword:
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{{Security-critical signals}}
=/=>
{{User-accessible signals}}
unless
(privileged operating mode)

Figure 5.2: CWE 1272 expressed over generic signals

In consultation with the Coverage Guide, to demonstrate CWE relevance for some property

it suffices to find some source, sink, and predicate fall within these generic signal groups. While

doing so remains nontrivial, it is a lower burden than to define security generally.

5.2.5 Security Properties for Isadora

Isadora is intended to discover properties that describe the intended information flow of hard-

ware designs.

Within the context of the Isadora framework, the working definition of a security information

flow property is an information flow property over a design that corresponds to a high level se-

curity requirement described in the Common Weaknesses Enumeration database and the Radix

Coverage Guide. The CWE database is far from an exhaustive set of security requirements, but

represents the collective efforts of hardware engineering and security research communities. It

offers a baseline for weakness identification, mitigation, and prevention efforts. This formulation

of security properties, especially with regard to the Radix Coverage Guide, is described in greater

detail by Restuccia et al. (2021) specifically for access control.

Some properties produced by Isadora are classified as functional properties under this defini-

tion, which is discussed further in Section 5.6.2.

5.2.6 Properties in Implementation

To consider the output properties of Isadora, Figures 5.3 shows an example of Isadora output,

Case 154 of the 303 output properties over AKER. Here the predicates shown are register equal-
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case 154: 2_121_250_379_543
_src_ in {w_base_addr_wire, M_AXI_AWREADY_wire, AW_CH_DIS,
w_max_outs_wire, AW_ILLEGAL_REQ, w_num_trans_wire, AW_STATE,
AW_CH_EN}
=/=>
_snk_ in {M_AXI_WDATA}
unless
0 != _inv_ in {ADDR_LSB, ARESETN, M_AXI_ARBURST_wire,
M_AXI_ARCACHE_wire, M_AXI_ARLEN_wire, M_AXI_ARREADY,
M_AXI_ARSIZE_wire, M_AXI_AWBURST_wire, M_AXI_AWCACHE_wire,
M_AXI_AWLEN_wire, M_AXI_AWREADY, M_AXI_AWSIZE_wire, M_AXI_BREADY,
M_AXI_BREADY_wire, M_AXI_WREADY, M_AXI_WREADY_wire,
M_AXI_WSTRB_wire, OPT_MEM_ADDR_BITS, S_AXI_CTRL_BREADY,
S_AXI_CTRL_RREADY, data_val_wire, r_burst_len_wire, r_displ_wire,
r_max_outs_wire, r_num_trans_wire, r_phase_wire,
w_burst_len_wire, w_displ_wire, w_max_outs_wire,
w_num_trans_wire, w_phase_wire}

Figure 5.3: An example of an Isadora property, Case 154, over AKER.

ity testing versus zero. Other predicates are captured within the workflow but not propagated to

individual properties formatted for output.

A visible difference between an Isadora output property and some given information flow

property, such as the running example, is that Isadora properties may specify multiple source

registers, may consider multiple sink registers though Case 154 does not do so, and may contain

multiple predicates specifying conditions.

Case 154 includes an example of a flow condition between internal and peripheral visible

signals in addition to specifying other aspects of design behavior. This is similar to the example

of write readiness, but in Case 154, the flow is from the internal signal to the peripheral, but the

predicate over the power state is identical. Of note, as in the case of write readiness, this flow

occurs exclusively within the write channel, as denoted by the “W” present in ready wire and the

data register.

AWREADY wire =/=> WDATA unless (ARESETN 6= 0)
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Under the working definition of security properties for Isadora, where internal signals and

peripheral signals should not flow to one another unless AKER is not undergoing a reset, this

description of behavior composed of a single source, single sink, and single predicate establishes

Case 154 as a security property under the working definition. Case 154 describes signals marked

as sensitive by designers, both labelled as such within the design using comments and present

within security properties they specified, and differs from a designer provided property only in

the specific pairing of registers. Additionally, the paired registers match the descriptions for CWE

1272 from the Coverage Guide. Case 154 and other properties compared against the working

definition of security properties for Isadora are consider further when evaluating the Isadora

methodology in Section 5.5.4.1, including an example of property not meeting the working

defition.

5.3 Methodology

Isadora studies designs in four phases (Fig. 5.4): generating traces, identifying flows, mining

for flow conditions, and postprocessing.

The first phase instruments the design with IFT logic and executes testbench over the instru-

mented design in simulation. The result is a trace of that specifies the value and tracking value of

every design signal and every time point of execution.

In the second phase, every flow that occurred during the simulation of the design is captured.

This set of flows is complete: if a flow occurred between any two signals, it will be included in

this set. At the end of this phase, Isadora also produces a set of never-flow pairs: pairs of signals

between which no information flow occurs.

The third phase uses an inference engine to infer predicates specifying, for every flow that

occurred, the conditions under which the flow occurred.

The final phase removes redundant and irrelevant properties from the set of flow properties.

The final set of flow properties plus the set of never-flow properties are produced.
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Figure 5.4: An overview of the Isadora workflow

5.3.1 Generating Traces with Information Flow Tracking

In the first phase, the design is instrumented with IFT logic and then executed in simulation

with a testbench feeding input values to the design.

Let τsrc = 〈σ0, σ1, . . . , σn〉 be the trace of a design instrumented to track how information

flows from one signal, src, during execution of a testbench. The state σi of the design at time i

is a list of signal-value pairs describing the current value of every original design and tracking

signal in the instrumented design:

σi =[(s1, v1, v
t
1), (s2, v2, v

t
2), . . . , (sm, vm, v

t
m)]i.

In order to distinguish the source of a tainted sink signal, each input signal must have a sepa-

rate taint label. However, tracking multiple labels is expensive (Hu et al., 2014). Each added label

bit doubles the state space of the design. Isadora initially requires 10s of gigabytes of trace data.

Therefore, Isadora takes a compositional approach. For each source signal, IFT instrumentation

is configured to track the flow of information from only a single input signal of the design, the

src signal. This process is applied to each signal in a design. The end result is a set of traces for
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design D and testbench T: TDT = {τsrc, τsrc′ , τsrc′′ , . . .}. Each trace in this set describes how

information can flow from a single input signal to the rest of the signals in the design. Taken to-

gether, this set of traces describes how information flows through the design during execution of

the testbench T.

5.3.2 Identifying All Flows

In the second phase, the set of traces are analyzed to find:

1. every pair of signals between which a flow occurs, and

2. the times within the trace at which each flow occurs.

Each trace τsrc is searched to find every state in which a tracking signal goes from being set to

0 to being set to 1. In other words, every tracking-signal-value pair (st, vt) that is of the form

(st, 0) in state σi−1 and (st, 1) in state σi is found and the time i is noted. This is stored as the

tuple (src, s, {i0, i1, . . .}), which indicates that information from src reached signal s at all

times i ∈ {i0, i0, . . .}. We call this the time-of-flow tuple. The tracking value of signals may be

reset to zero by design events such as resets, so the tracking value may be found to change from

zero to nonzero at multiple time points within a single trace.

Once all traces have been analyzed, the collected time-of-flow tuples (src, s, {i0, i1, . . .})

are organized by time. For any given set of times {i0, i1, . . .} there may be multiple source-sink

flows that occur in the design. Because the same testbench is used to generate every trace τsrc,

the timing of flows from one source src can be compared to the timing of flows from a second

source src′; the value i will refer to the same point in each testbench. At the end of this phase,

the tool produces two outputs. The first is a set of the flows through the design and the time at

which they occur:

Sflows = [〈{i0, i1, . . .} :{(src1, s1), (src2, s2), . . .}〉; (5.5)

〈{i′0, i′1, . . .} :{(src1′, s1′), (src2′, s2′), . . .}〉; . . .].
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The same src may flow to many sinks s ∈ {s1, s2, . . .} at the same times i ∈ {i0, i1, . . .}, and

the same sink s may receive information from multiple sources s ∈ {src1, src2, . . .} at the same

times i ∈ {i0, i1, . . .}.

The second output from this phase is a list of source-sink pairs between which information

never flows:

Sno−flow = {(src, s), (src′, s′), . . .}. (5.6)

The pairs in this set comprise the no-flow properties of the design, and can be trivially rewrit-

ten using a no-flow operator, for example src =/=> s. This provides a helpful point of compar-

ison between Isadora’s property generation and automated tools used for property verification.

When specified on a single source-sink pair, these no-flows are expressible in the Sentinel lan-

guage used to write information flow assertion for Radix-S, which Isadora uses to generate traces,

and which may also be used to verifying any of of these no-flows. However, Isadora captures all

no-flow properties in the design using only one security model per source, whereas checking all

pairwise flows individual would have an exponential higher time cost of number of sources times

number of sinks (which is one less than the number of sources). Further, Isadora captures the

flow conditions.

5.3.3 Mining for Flow Conditions

In the third phase, Isadora finds the conditions under which a particular flow will occur.

For example, if every time src flows to s, the register r has the value x, Isadora can infer that

(src =⇒ s)→ r = x may be property of the design.

Isadora uses a miner, which itself contains an inference engine, when reading in traces of ex-

ecution to infer design behavior using pre-defined patterns. In order to isolate the conditions for

a particular source-sink flow, Isadora uses Sflows to find all the trace times i at which information

flows from src to s during execution of the testbench. The trace τorig containing the state of the

original design is then sliced to produce a set of two-clock-cycle trace slices, one for each time
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i. Consider time-of-flow tuple (src, s, [i, j, k, . . .]), which as a notational convenience here uses

distinct letters to denote time points rather than subscripts for clarity in the following expression.

Given this tuple, Isadora will produce the trace slices 〈σi−1, σi〉, 〈σj−1, σj〉, 〈σk−1, σk〉. These

trace slices include only the signals of the original design, all tracking logic and shadow signals

are pruned.

The trace slices for a particular source-sink pair are passed into the miner which infers the

predicates capturing flow conditions for Isadora properties. These predicates match one of five

patterns:

r ∈ {x, y, z},

Ar1 +Br2 + C = 0,

r1 = r2,

r1 6= r2,

r = prev(r).

The first line indicates that signal r in the original design can take on one of three values: x, y,

or z. The second line indicates equality to a linear combination of terms. The third line indicates

that two signals in the original design r1 and r2 must be equal. The fourth line indicates that

two registers are never equal. And, the fifth line indicates that a register r does not change value

during the two clock-cycles of any slice.

5.3.4 Postprocessing

As a final step, Isadora eliminates redundant and uninteresting information flow properties.

When initialling evaluating Isadora, we found that predicates of the form r1 6= r2 are usually

redundant with the equality predicates of the form r = {x, y, z} because the two registers r1

and r2 were both constants with different constant values. We also found that predicates involv-
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ing a linear combination of terms did not produce meaningful properties that could be mapped

back to any semantic meaning within the design. In the one case a linear combination appeared

interesting, it was actually capturing a property of a trivial testbench used during development.

Consequentially, Isadora simply eliminates linear combination properties.

Finally, Isadora performs additional analysis to find invariants hold over the entire trace set

by running the miner on the unsliced trace τorig. One such trivial example is the invariant clk =

{0, 1}. Isadora eliminates any predicate that is also found to be a trace set invariant.

The final output properties are potentially multi-source to multi-sink flows with a number

of predicates, where flows within the same property occur at the same time and under the same

conditions. This produces comparatively few properties, which in practice were approximately

as many as the number of unique source signals, and avoids redundant information. Along with

the no-flow properties output directly from the second mining phase in Section 5.3.2, these condi-

tional flows comprise the information flow properties produced by Isadora.

This provides the second helpful point of comparison between Isadora’s property generation

and automated tools used for property verification. Using these properties from Isadora, by se-

lecting a single source to single case within some property, assertions may be written of the form

(src==>s) =⇒ Inv, where ‘ ==> ’ denotes information flow and ‘ =⇒ ’ denotes logical

implication. This represents a common template used in verification. This process is similar to

that described in Section 5.2.6

5.4 Implementation

Isadora uses the Radix-S simulation-based security verification technology to generate IFT

logic for a hardware design, the Questa Advanced Simulator to simulate the instrumented design

and generate traces, and the Daikon Ernst et al. (2007) invariant miner to find flow conditions. A

Python script manages the complete workflow and implements flow analysis and post-processing.
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5.4.1 Generating Traces

Traces are generated for all signals within a design. An automated utility, implemented in

Python, identifies every signal within a design and configures Tortuga Logic’s Radix-S to build

the separate IFT logic for each of these registers. Isadora runs Tortuga in exploration mode,

which omits cone of influence analysis, and track flows to all design state using the $all outputs

variable. The resulting instrumented designs are simulated in QuestaSim over a testbench (see

Evaluation, Sec. 5.5) to produce a trace of execution.

5.4.2 Identifying Flows

The second phase is implemented as a Python tool that reads in the traces generated by Ques-

taSim and produces the set of no-flow properties and the set of all source-sink pairs along with

their timing information. This phase combines the bit-level taint tracking by Radix-S into signal-

level tracking. Each n-bit signal in the original design is then tracked by a 1-bit shadow signal,

which will be set to 1 at the first point in the trace that any of the component n shadow bits where

set.

5.4.3 Mining Flow Conditions

The third phase is built on top of the Daikon Dynamic Invariant Detector Ernst et al. (2007),

which was developed for use with software programs. Daikon looks for invariants over state

variables for each point in a program. For Isadora I wrote a custom Daikon front-end in Python

(411 LoC, including comments) that converts the trace data to be Daikon readable, treating the

state of the design at each clock cycle as a point in a program. The front-end also removes any

unused or redundant signals and outputs relevant trace slices over two clock cycles as described

in Sec. 5.3.3.
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5.4.4 Postprocessing

The postprocessor is implemented as a simple Python script that interacts with Daikon out-

puts through the file system. The postprocessor does make one additional Daikon run, over the

entire trace (rather than slices) but only considering the original design set, to find the set of in-

variants that hold globally. Then, the the postprocessor filters Daikon output from a flow case

based on the predicate types discussed in Section 5.3.4 as well as eliminating any predicates

hold globally. The postprocessor also takes the transitive closure across equalities to reduce the

number of pairwise properties and redundant mentions of specific registers in the output.

5.5 Evaluation

I evaluate the proposed methodology by assessing Isadora’s ability to find information flow

security properties, especially those related to Common Weakness Enumerations (CWEs), to

answer the following research questions:

1. Can Isadora independently mine security properties manually developed by hardware

designers?

2. Can Isadora automatically generate properties describing CWEs over a design?

3. Does Isadora scale well for larger designs, such as CPUs or SoCs?

In comparison to other tools, my collaborators and I are aware of no other tools capable of

automatically generating conditions for information flows, and these are the properties considered

in Section 5.5.4. Ardeshiricham et al. (2017b) shows register transfer level information flow

tracking may be used to verify known conditions on information flows. Likewise, Radix-S and

JasperGold are commercial tools that may verify conditions for information flows, but require

the properties to be specified for verification. Hyperminer (Rawat et al., 2020) is a specification

miner capable of producing information flow properties, specifically noninterference, and is

discussed in Section 5.5.3.1.
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5.5.1 Designs

I assessed Isadora on two designs, AKER (Restuccia et al., 2021), an Access Control Module

(ACM), and PicoRV32, a RISC-V CPU. AKER wraps any AXI controller to implement access

control by checking the validity of read and write requests and rejecting those that violate a con-

figured access control policy. AKER was verified as secure by the designers. PicoRV32 is a CPU

core that implements the RISC-V RV32IMC Instruction Set, an open standard instruction set

architecture based on established reduced instruction set computer principles.

I study AKER to evaluate how Isadora’s properties compare to a manually developed security

specification. Isadora was tested on AKER in two configurations: first as a stand-alone ACM

with input signals dictated by the testbench, and a second system with two ACM-wrapped traffic

generators and three unwrapped and unprivileged modules meant to test the AKER instances in

a simulated SoC environment. I refer to these as “Single ACM” and “Multi ACM” cases, shown

in Figures 5.5 and 5.6 respectively. For both set-ups I compare Isadora’s mined properties to

those manually developed by hardware designers. I use the Multi ACM case to evaluate how well

Isadora scales on an SoC design. I use the PicoRV32 to evaluate how well Isadora automatically

generates properties describing CWEs and to evaluate how well Isadora scales on a CPU design.

5.5.2 Time Cost

Mining was done on a system with an Intel Core i5-6600k (3.5GHz) processor with 8 GB of

RAM. Trace generation was done on a Intel Xeon CPU E5-2640 v3 @ 2.60GHz server. Trace

generation dominated time costs, and scaled slightly worse than linear with number of unique

signals in a design. Trace generation was suitable for parallelization though parallelization was

not considered in the evaluation.

The design sizes are given in Table 5.1. For the Single ACM, trace generation took 9h33m.

For the Multi ACM, trace generation exceeded 24 hours so I consider a reduced trace, which

tracks sources for one of ACMs, though all signals are studied considered as sinks or in condi-

tions. The reduced trace was generated in 6h48m. For PicoRV32, trace generation took 8h35m.
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Figure 5.5: Block diagram of the Single ACM, with the signal groups numbered
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Figure 5.6: Block diagram of the Multi ACM

Design Unique Unique LoC Trace Trace Daikon Isadora Miner Time
Signals Sources Cycles GBs Traces Properties In Minutes

Single ACM 229 229 1940 598 .7 252 303 29:51
Multi ACM 984 85 4447 848 4.3 378 160 8:31
PicoRV32 181 181 3140 1099 .6 955 153 15:09

Table 5.1: Various size measures of studied designs
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5.5.2.1 Theoretical Gains to Parallelization

When parallelizing all trace generation and all case mining, Isadora could theoretically eval-

uate the Single ACM case fully in less than five minutes. Parallelizing the first phase requires a

Radix-S and QuestaSim instance for each source register, and each trace is generated between

120 and 180 seconds. Further, the trace generation time is dominated by write–to–disk, and per-

formance engineering techniques could likely reduce it significantly, such as by changing trace

encoding or piping directly to later phases. Parallelizing the second phase requires a Python

script for each source register, and takes between 1 and 2 seconds per trace. Parallelizing the third

phase requires a Daikon instance for each flow case, usually roughly the same number as unique

sources, and takes between 10 and 30 seconds per flow case. The final phase, postprocessing,

is also suitable for parallelization, but runs in under 4 seconds on the whole design other than

single Daikon instance to generate global properties which took approximately 20 seconds includ-

ing processing. Maximally parallelized, this gives a design–to–specification time of under four

minutes for the single ACM and for similarly sized designs, including PicoRV32.

5.5.3 Designer Specified Security Properties

For the Single ACM I compared Isadora’s output against a designer–provided, assertion–

based, information–flow security specification. The specification was written in the Radix-S

Sentinel language by applying CWEs to the ACM using to the Radix Coverage for Hardware

Common Weakness Enumeration (CWE) Guide, which provides architecturally neutral security

templates for hardware CWEs. This specification, the covered CWEs, and the results of Isadora

on the Single ACM are shown in Table 5.2. For each assertion Isadora mined either a property

containing the assertion or found both a violation and the violating conditions for each assertion.

For the provided assertions, I grouped them by source, sink, and predicate if applicable using the

signal groups in the block diagram, which were also provided by the designers. I reported the

observed violations to the designers who determined that the design remained secure but a condi-
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Source Sink Predicate # of Assert’s Result Isadora CWEs
Group Group Group Provided Properties

M PORT M INT GLOB 19 3 2, 40, 1258, 1266, 1270,
M INT M PORT 19 3 43, 53, 1271, 1272, 1280

M PORT M INT C PORT 19 3 54, 204, 1258, 1270,
M INT M PORT 19 3 214 1272, 1280
S PORT CNFG - 4 7 2, 6 1269, 1272, 1280

Table 5.2: Isadora performance versus manual specification, on the Single ACM

tional flow had been incorrectly specified as always illegal. Isadora also found the conditions for

legality.

Only 9 Isadora properties, out of 303 total Isadora properties generated, were required to

cover the designer–provided properties, including conditions specifying violations. The Isadora

output properties may contain many source or sink signals that flow concurrently and their cor-

responding conditions. The template–based assertions considered two or three registers. For

example, on the ACM nine distinct read channel registers always flow to a corresponding read

channel output wire at the same time, so Isadora outputs a single property for this design state.

This state included the reset signal and a configuration signal both set to non-zero values, which

were captured as flow conditions, demonstrating correct design implementation. This single

Isadora property captured 18 low level assertions related to multiple CWEs.

5.5.3.1 Performance vs. Hyperminer

Hyperminer has demonstrated template enumeration of flow properties with no predicate over

SoC designs and therefore should be expected to find any property with no specified predicate,

including the interference between S PORTs and CNFGs in the last line of Table 5.2, which

should be observable in Hyperminer as the absence of a noninterference property over these

registers.

While it may be the case that trace fuzzing and information flow tracking do not produce the

same results and Hyperminer erroneously produces a noninterference property for these registers,
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or that specific traces may be needed for some properties, that is unlikely in this case. These

properties are similar to those reported by Rawat et al. (2020), which desribes discovery of an

expected decoder noninterference properties in an SoC. Conversely, there could exist adversely

affecting information flow tracking in cases where Hyperminer does succeed, and information

flow tracking, especially for RTL, remains active research area (Ardeshiricham et al., 2017b).

While representing only 5% of the properties studied in this section, these properties contain

all observed violations, so over this set of properties Hyperminer would capture all the specifica-

tion violates captured by Isadora.

By way of contrast, Isadora does additionally find negative properties specifying the condi-

tions under which flows do occur, and has specificity to discover the remaining satisfied asser-

tions.

These comparisons to Hyperminer similarly apply to the case of using Isadora to study the

Multi ACM.

5.5.3.2 Properties of SoCs

In the Multi ACM case, I studied CWE 411: Unintended Proxy or Intermediary (‘Confused

Deputy’). The system contained two controllers (C), with two access control modules (ACM), a

trusted entity that configured each ACM (T), and three peripherals (P). The ACMs each imple-

mented an access control (AC) policy shown in Figure 5.6 and given as:

AC1 of ACM1 : R = {P1, P2}, W = {P1}

AC2 of ACM2 : R = {P3}, W = {P2, P3}

Isadora discovered legal flows from the ACM2 write data to P3 read and write data, and P2 read

data. Isadora also finds an illegal flow to P1 write data. The the ACM2 to P1 illegal flow has a

flow condition specifying a prior flow from the relevant signals within ACM2 to ACM1. While
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not constituting a precise path constraint, this captures an access control violation and suggests

the confused deputy scenario because the flow profile from ACM2 is consistent with this path.

These observed interference patterns are again consistent with the capabilities of Hyperminer,

which would likely find similar results.

5.5.4 Automatic Property Generation

For the two designs with full trace sets, the Single ACM and PicoRV32, Isadora generates a

specification describing all information flows and their conditions with hundreds of properties. To

assess whether these properties are security properties, for each design I randomly selected 10 of

the 303 or 153 total properties (using Python random.randint) and assessed the security relevance

using CWEs.

I use CWEs as a metric to evaluate the security relevance of Isadora output properties. To do

so, for some design, I first determine which CWEs apply to a design. For both the ACM and Pi-

coRV32, I used the Radix Coverage for Hardware Common Weakness Enumeration(CWE) Guide

to provide a list of CWEs that specifically apply to hardware. I considered each documented

CWE for both designs. CWEs, while design agnostic, may refer to design features not necessarily

present in the Single ACM or PicoRV32 or may not refer to information flows. High level de-

scriptions in multiple CWEs may corresponding to the same low level behavior for a design and I

consider these CWEs together.

Information flow hardware CWEs describe source signals, sink signals, and possibly con-

dition signals. CWEs provide high level descriptions, but Isadora targets an RTL definition. To

apply these high level descriptions to RTL, I group signals for a design by inspecting verilog files

and grouping signals, either using designer notes or manual code inspection. With the groups

established, I label every property by which group–to–group flows they contain. I also determine

which source-sink flows could be described in CWEs, which often correspond or even match a

signal group. I use these groups to find CWE relevant low level signals as sources, sinks, and
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CWE(s) Description

1220 Read/write channel separation
1221-1259-1271 Correct initialization, reset, defaults
1258-1266-1270-1272 Access controls respect operating mode
1274-1283 Anomaly registers correctly log transactions
1280 Access control checks precede granting access
1267-1269-1282 Configuration/user port separation

Table 5.3: The 14 CWEs considered for ACM

conditions in an Isadora property. I also use these groups to characterize the relative frequency of

conditional flows between different groups, which I present as heatmaps.

5.5.4.1 ACM Conditional Information Flow

Over the ACM I assess fourteen CWEs which I map to five plain language descriptions of the

design features, as shown in Table 5.3.

For the ACM signal groups, all registers were helpfully placed into groups by the designer

and labelled within the design. The design contained seven distinct labelled groups:

• ‘GLOB’ - Global ports

• ‘S PORT’ - AXI secondary (S) interface ports of the ACM

• ‘C PORT’ - Connections to non-AXI ports of the controller

• ‘M PORT’ - AXI main (M) interface ports of the ACM

• ‘CNFG’ - Configuration signals

• ‘M INT’ - AXI M interface ports of the controller

• ‘CTRL’ - Control logic signals

GLOB signals are clock, reset, and interrupt lines. S PORT represents the signals that the

trusted entity T uses to configure the ACW. C PORT represents the signals which are used to
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configure the controller C to generate traffic for testing. M PORT carries traffic between the

peripheral P and the ACW’s control mechanism. CNFG represents the design elements which

manage and store the configuration of the ACW. M INT carries the traffic between the ACW’s

control mechanism and the controller. If it is legal according to the ACW’s configuration, the

control mechanism will send M INT traffic to M PORT and vice versa. CTRL represents the

design elements of the aforementioned control mechanism.

First consider the heatmap view of the Single ACM in Figure 5.7. In this view, all of the

designer-provided assertions fall into just 3 of the 49 categories which are outlined in red. Fur-

ther, all of the violations were found with S PORT to CNFG flows, while all satisfied assertions

were flows between M INT and M PORT. Another interesting result visible in the heatmap is the

infrequent flows into S PORT, which is used by the trusted entity to program the ACM. Most of

the design features should not be able to reprogram the access control policy, so finding no flows

along these cases provides a visual representation of secure design implementation with respect

to these features.

For the ACM, all ten sampled properties encode CWE defined behavior to prevent common

weaknesses, as showin in Table 5.4. In this table, the columns giving a CWE number with a ‘+’

are referring to all the CWEs given in a row of Table 5.3. 8 of 10 properties provide separation

between read and write channels showing how many flows within the design occur within these

channels, which constitute the main functionality of the ACM module. CWEs 1267-1269-1282

are not found within the conditional flow properties produced by Isadora as these are never flow

properties, so they are not present within the samples drawn from numbered conditional flow

properties, but I was able to verify they are implemented as never flows in the separate Isadora

output capture these types of flows.

5.5.4.2 PicoRV32 Conditional Information Flow

Over PicoRV32 I assess eighteen CWEs which I map to seven plain language descriptions of

the design features, as shown in Table 5.5.
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Figure 5.7: Group-to-group conditional flow heatmap for the Single ACM.

# Description 1220 1221+ 1258+ 1274+ 1280

3 Control check for first read request after reset X X X
10 Secure power-on X
37 Anomalies and memory control set after reset X X X X
96 T via S PORT configures ACM X X X

106 Interrupts respect channel separation X
154 Base address not visible to P during reset X
163 Write transaction legality flows to P X
227 Write channel anomaly register updates X X
239 Write validity respects channel separation, reset X X
252 Read validity respects channel separation, reset X X

Table 5.4: Sampled Isadora properties on Single ACM
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CWE(s) Description

276-1221-1271 Correct initialization, reset, defaults
440-1234-1280-1299 Memory accesses pass validity checks
1190 No flows from memory to outputs prior to reset
1191-1243-1244-1258-1295-1313 Debug signals flow to no other signal groups
1245 Correct hardware implementation of state machine
1252-1254-1264 Data and control separation

Table 5.5: The 18 CWEs considered for PicoRV32

PicoRV32 had no designer specified signal groups so I used descriptive comments regarding

code sections, register names, and code inspection to group all signals. I use lower case names to

denote these groups were not defined by the designer.

• ‘out’ - Output registers

• ‘int’ - Internal registers

• ‘mem’ - Memory interface

• ‘ins’ - Instruction registers

• ‘dec’ - Decoder

• ‘dbg’ - Debug signals and state

• ‘msm’ - Main state machine

The memory interface and the main state machine were indicated by the designer. The instruc-

tion registers, the decoder, and debug all appeared under one disproportionately large section

described as the instruction decoder. Debug was grouped by name after manual analysis found

registers in this region prefixed with ‘dbg ’, ‘q ’, or ‘cached ’ to interact with and only with one

another. Instruction registers prefixed ‘instr ’ all operate similarly to each other and differently

than the remaining decoder signals, which were placed in the main decoder group. Internal sig-

nals were the remaining unlabelled signals that appeared early within the design, such as program
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Figure 5.8: Group-to-group conditional flow heatmap for PicoRV32.

and cycle counters and interrupt signals, and the output registers were all signals declared as

output registers.

First consider the heatmap view of PicoRV32 in Figure 5.8. An interesting result visible in

the heatmap is the flow isolation from debug signals to the rest of the design. Many exploits, both

known and anticipated target debug information leakage, and this entire class of weakness is

shown to be absent within the studied design at a glance.

For PicoRV32 I find eight of ten sampled properties encode CWE defined behavior to prevent

common weaknesses. I present these results in Table 5.6. In this table, the columns giving a

CWE number with a ‘+’ are referring to all the CWEs given in a row of Table 5.5. The remaining

two Isadora properties were single source or single sink properties representing a simple logical

combination inside the decoder, and captured only functional correctness. CWEs 276-1221-1271
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# Description 276+ 440+ 1190 1191+ 1245 1252+

1 No decoder leakage via debug X
16 Instructions update state machine X X
30 Decoder updates state machine X
47 No state machine leakage via debug X
52 SLT updates state machine X
66 Handling of jump and load X X X
79 Loads update state machine X

113 Decoder internal update
130 Write validity respects reset X
144 Decoder internal update

Table 5.6: Sampled Isadora properties on PicoRV32

are not found within the conditional flow properties produced by Isadora as only 3 of the 153

properties defined flows prior to reset and none were sampled.

5.6 Limitations

In this section, I will discuss the threats to validity for properties produced using Isadora,

including false positives and false negatives.

False positives may be introduced by insufficient trace coverage, by limitations of information

flow tracking, or by incorrectly classifying functional properties as security properties. Sampling

output properties found a 10% false positivity rate with respect to misclassification. This rate is

discussed in greater detail in Section 5.6.2.

With regard to false negatives, they fall into two cases: known and unknown. There are no

known false negatives from evaluation. Isadora was able to capture all known register transfer

level security properties. The sampled properties partially addressed all Common Weakness Enu-

merations manually determined to be relevant to studied designs, but no CWE was completely

covered within the sampled properties, so false negatives with respect to CWEs could still exist

if some CWE relevant flow is not specified by the overall property set. Unknown false negatives

could arise from limitations in trace coverage or in logical specificity, which I discuss in the fol-

lowing sections.
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5.6.1 Trace Reliance

As with any specification mining technique, Isadora relies on traces. The second stage of

Isadora, which extracts cases where information flow occurs, relies on generating instrumented

traces with sufficient case coverage to drive information flow through all channels present in the

design. Additionally, the third stage of Isadora, which mines over the original design state to dis-

cover flow conditions, also relies on traces. In the case of traces over buggy hardware, predicates

detected in this stage may form a specification describing buggy behavior. Traces may not cover

all cases that can be reached by a design or even occur during normal design operation.

Traces may not precisely describe some design features. For example, when considering

flows between internal and peripheral signals as in the Case 154 example from Section 5.2.6,

Isadora found a flow condition that ARLEN wire and AWLEN wire are both set to be exactly 8

for any flow to occur. These registers set transaction burst size for reads and writes. For Case 154,

which only described flows in write channels, the ARLEN wire value should be irrelevant, and

this clause within the broader property constitutes a likely false positive.

The AWLEN wire is a different case. In a property specifying flows during write channel

transcations, this register would necessarily be non-zero, and for wrapping bursts must be a

power of two (wrapping is implemented by AKER), but manual inspection of the code provides

no indication the value must be precisely 8. Some efforts were made to manipulate this and other

values for which similar reasoning applied, but ultimately it was difficult to tightly define possible

values for which the design could operate but were distinct from the default test bench values for

this and other signals.

My collaborators and I are currently working to address this limitation in collaboration with

Sam Meng and Kanad Basu of UT Dallas. They study concolic test benches which may drive

testing coverage on the basis of defined properties, which in this case would be those generated

by Isadora.
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5.6.2 Functional Properties

Under the working definition of security property for Isadora from Section 5.2.5, Isadora

does contain functional properties in output, as shown in Table 5.6. Sampling output properties

found a 10% false positivity rate with respect to misclassification for the sampled properties from

both designs, with 0 of 10 properties found to be false positives over the Single ACM version of

AKER, and 2 of 10 properties found to be false positives over the PicoRV32 RISC-V CPU.

All functional properties under the working definition were found in RISC-V which I at-

tribute primarily to differences in design and testbench. AKER was studied using a testbench

specifically intended for security research, including validation efforts related to information flow.

Further, as an access control module, by nature much of its functionality was relevant to secure

access control. For this reason, I believe the observed error rate over RISC-V is likely closer

to what would be encountered in common practice, especially as test bench creation is an open

research problem.

With RISC-V, a minimal test bench was used that was intended only to run the design in an

environment without access to the full RISC-V toolchain (such as the simulation environment for

instrumented trace generation), and much of the design was devoted to behavior for which CWEs

didn’t not necessarily apply, such as logical updates during instruction decoding. One example

of an Isadora property classified as functional, with truncated flow conditions, is presented in

Figure 5.9, and captures a logical update to an internal decoder signal.

case 154: 128
_src_ in {instr_lw}
=/=>
_snk_ in {is_slti_blt_slt, is_sltiu_bltu_sltu}
unless
0 == _r_ in {alu_eq, alu_shl, alu_shr, alu_wait, alu_wait_2, ... }
0 != _r_ in {alu_add_sub, alu_lts, alu_ltu, alu_out_q, ... }

Figure 5.9: An example of an Isadora property, Case 144, over RISC-V.
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5.6.3 Measuring Interference

Isadora assumes the correctness of the information flow tracking used in trace generation.

This is not necessarily reliant on Tortuga Logic, and Isadora was able to use information flow

tracking technologies developed by Armaiti Ardeshiricham then of UC San Diego and her collab-

orators in the Kastner Research Group to similar results in early testing, including over an AES

module.

As an alternative, Isadora could perhaps be configured to interface with Hyperminer or Jasper-

Gold to detect information flows, but Isadora uses timing of specific information flows. Hyper-

miner finds whether an information flow occurs within a trace set rather than at some trace point,

and JasperGold as a formal tool finds flows within a design rather than at some trace point. Ex-

tending either technique to study trace points would likely require considerable effort and innova-

tion.

Nevertheless, JasperGold offers a formal method for verifying Isadora output properties, and

could provide insight into false positives, an immediate further research direction.

5.6.4 Specification Logic

Isadora does not define temporal properties beyond a single delay slot incorporated in the

trace slices of length two. However, manual examination of output properties suggests infor-

mation flow patterns during initialization, which is the first 4 cycles for the ACM and first 80

for RISC-V, are highly dissimilar to latter flows. During initialization, Isadora discovers flows

with conditions referencing registers with unknown states (given as ‘x’ in Verilog and encoded

as ‘-1’ within Isadora to use integer encoding, a performance optimization). Isadora also finds

concurrent flows between pairs of registers for which no concurrent flows occur after reset. By

examining commingled trace slices during and after initialization, the generated predicates may

be insufficiently precise to capture secure behavior related to this boundary. Isadora could likely

produce more descriptive properties using temporal conditions on information flows, such as the

temporal property discussed in Section 4.4.5.
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This limitation on specifying conditions extends to all logical expressions not produced in the

third stage of Isadora, such as implications. Applying the techniques developed in Chapter 3 to

produce more descriptive properties would offer one approach to addressing these shortcomings.

5.7 Conclusion

I developed and implemented a methodology for creating information flow specifications of

hardware designs in Isadora. By combining information flow tracking and specification mining,

Isadora is able to produce information flow properties of a design without prior knowledge of

security agreements or specifications. Isadora characterizes the flow relations between all ele-

ments of a design and identifies important information flow security properties of SoCs and CPUs

according to Common Weakness Enumerations.

102



CHAPTER 6: CONCLUSION

This work demonstrated specification mining can solve vital challenges for securing hardware

designs. To demonstrate security specification mining on CISC architectures, I created Astarte,

an ISA level security property miner that partitions the x86 design state space along control

signals that govern secure behavior of the processor. security properties comparable to those pro-

duced by human experts. The output specification contains properties determined to be security

relevant by manual review of design documentation, as well as additional properties capturing

correct design behavior with respect to known historical attacks, such as Memory Sinkhole.

To demonstrate security specification mining of temporal properties, I created Undine, a regis-

ter transer level security property miner that uses security specific LTL templates for specification

detection. The output is automatically generated properties addressing hardware vulnerabilities

that can be defined before, after, and across system state transitions on RISC CPU designs.

To demonstrate security specification mining of information flow properties, I created Isadora,

an RTL level security property miner that uses information flow tracking on designs to mining

information flow specifications. The output gives the information flow relation between all de-

sign elements, specifying whether flow may occur between two elements and, if so, under what

design conditions. This specification provided coverage over designer–provided sets of security

properties and produced output properties that captured CWEs over multiple designs, including

an access control module, an SoC design, and a RISC-V CPU.
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