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ABSTRACT

Tanya Amert: Enabling Real-Time Certification of Autonomous Driving Applications
(Under the direction of James H. Anderson)

The push towards fielding advanced driver-assist systems (ADASs) is happening at breakneck speed.

Semi-autonomous features are becoming increasingly common, including adaptive cruise control and au-

tomatic lane keeping. Today, graphics processing units (GPUs) are seen as a key technology in this push

towards greater autonomy. However, realizing full autonomy in mass-production vehicles will necessitate the

use of stringent certification processes.

Unfortunately, currently available GPUs tend to be closed-source “black boxes” that have features that

are not publicly disclosed; these features must be documented for certification to be tenable. Furthermore,

existing real-time task models have not evolved to handle historical-result requirements common in computer-

vision (CV) applications, which introduce cycles in processing graphs; existing models must be extended

to account for such dependencies. Additionally, due to size, weight, power, and cost constraints, multiple

CV applications may need to share a single hardware platform; if the platform contains accelerators such as

non-preemptive GPUs, such sharing must be managed in a way that ensures applications are isolated from

one another. For ADAS certification to be possible, these challenges must be addressed.

This dissertation addresses each of these three challenges. First, scheduling details of NVIDIA GPU

are presented, as derived through extensive micro-benchmarking experiments. These details provide the

foundation for identifying and automatically detecting key issues when using NVIDIA GPUs in real-time

safety-critical applications. Second, a generalization of a real-time task model is introduced, enabling the com-

putation of response-time bounds for processing graphs that contain cycles. This model exposes a trade-off

between the age of historical data, the resulting response-time bounds, and the accuracy of the CV application;

this trade-off is explored in detail. Finally, a time-partitioning framework for multicore+accelerator platforms

is introduced. When applied alongside existing methods for alleviating spatial interference, this framework

can help enable component-wise ADAS certification on multicore+accelerator platforms.
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CHAPTER 1: INTRODUCTION

Semi- and fully autonomous advanced driver-assist systems (ADASs) have become mainstream; systems

such as Tesla Autopilot and Cadillac Super Cruise provide features like adaptive cruise control and automatic

lane keeping. To produce fully autonomous vehicles at a mass scale, increasingly complex sensing and

computer-vision (CV) algorithms will be necessary. However, there is a fundamental disconnect between the

design of CV applications and the real-time guarantees necessary to certify their use in such safety-critical

applications. CV applications are designed to be throughput-focused, i.e., they seek to ensure real-fast

execution. In contrast, real-time systems require predictable execution subject to timing constraints. If these

timing constraints are violated, accidents and even fatalities can result.

Such timing constraints can be checked through extensive real-world testing. For example, Waymo, a

leader in autonomous driving, has reported over 20 million miles driven by their autonomous vehicles (Waymo,

2021). However, it is prohibitive to drive million of miles to verify the predictable timing of any new features.

Instead, timing guarantees can be provided by real-time certification. Such certification entails analyzing the

computational workload and the hardware platform to provide bounds on the worst-case completion time, or

response time, of any invoked task.

Response-time analysis of CV applications is complicated for several reasons; we focus on three specific

challenges. First, many CV algorithms require results from prior execution instances, leading to potential

delays in cases when those executions have not yet completed and made the results available. These CV

algorithms are frequently structured as task graphs in which cycles represent dependencies on historical

results. Unfortunately, existing analysis techniques prohibit cyclic dependencies or remove them in a way

that results in overly conservative analysis. Second, the CV algorithms used in automotive applications

typically make use of specialized hardware accelerators, such as graphics processing units (GPUs), to improve

performance through parallelism. However, GPUs are designed for throughput rather than predictability,

and therefore can have unexpected behavior (Otterness et al., 2016). Furthermore, autonomous vehicles

are subject to size, weight, power, and cost (SWaP-C) constraints, so it is often necessary for multiple

applications to execute on the same hardware. Thus, the scheduling policies of such hardware platforms
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must be understood in order to ensure that timing constraints will be met. Finally, some existing certification

specifications, such as ARINC 653 (Prisaznuk, 2008) for avionics platforms, require that temporal isolation

be guaranteed when executing multiple applications on a single shared hardware platform. This is made

significantly more challenging for CV applications, which may be developed and tested independently,

possibly by different vendors, and which may utilize GPUs, which present a challenge for isolation due to

non-preemptive GPU execution.

In this dissertation, we seek to address these challenges and bridge the divide between the design of

CV algorithms and the requirements of the real-time systems of which they are a part. In the remainder

of this chapter, we discuss the requirements of real-time systems. Next, we explore the sources of the

disconnects between real-time systems and GPU-equipped CV applications. Then, we present the thesis of

this dissertation and provide an overview of the contributions supporting that thesis. Finally, we outline the

remaining chapters in this dissertation.

1.1 Real-Time Systems

In real-time systems, the correctness of a system of applications depends not only upon the correctness

of the output, but also upon the timeliness of the computations. Associated with each recurrent task in a

real-time system are an invocation period, a relative deadline, and a worst-case execution time (WCET). To

verify the correctness of a real-time task, one thus must prove that the response time of a task, i.e., the time

between its invocation and corresponding completion, will be bounded.

If the response time of a task must not exceed its relative deadline, then the deadline is considered to be

hard; missing a hard deadline can have catastrophic consequences, such as a vehicle accident or occupant

injury or fatality. Some deadlines, on the other hand, are classified as soft; it is sometimes acceptable for

a soft deadline to be missed. Applications with soft deadlines are typically less safety critical. Multiple

definitions exist for soft deadlines: for example, the tardiness (i.e., the amount by which the deadline is

missed) must be bounded, or at most a given number of deadline misses may occur. In this dissertation, we

focus on soft deadlines for which the tardiness of each task must be bounded.

A hard-real-time task is schedulable if all of its deadlines are guaranteed to be met, whereas the soft-real-

time tasks we consider are schedulable if every invocation of each task can be guaranteed to have bounded

tardiness. Schedulability analysis is used to determine whether a set of tasks is schedulable, and takes into
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consideration the available processors on the platform, the parameters of each task, and the scheduling

algorithm used to assign tasks to processors. Analysis has been developed for many different schedulers for

uniprocessor platforms, and has been the subject of much research for multicore platforms in recent years.

However, prior work has failed to adequately address systems that rely on multicore+accelerator platforms, or

CV applications that may require cyclic data dependencies. In the next sections, we explore these challenges

in more detail.

1.2 Autonomous Driving Applications

The input to an autonomous-driving system is a set of sensors, including cameras, lidar (light detection

and ranging), and radar. Autonomous-driving applications use data from these sensors to determine the

control values for the vehicle, typically specified as steering (direction), throttle (speed), and brake. There

are two distinct approaches to autonomous-vehicle design. In the first approach, a system is composed

of a large set of components, each developed to perform a specific task, e.g., (Franke, 2017; Paden et al.,

2016). Common components are those for sensor-based perception of the surrounding scene, path planning to

navigate through the scene, and local control used to follow the desired path. The alternative approach takes a

more end-to-end view: Deep Neural Networks (DNNs) are used to process all sensor input and directly select

vehicle control values, e.g., (Codevilla et al., 2018; Mnih et al., 2016). In this dissertation, we focus on the

modular ADAS design approach. As many of these components involve scene perception via image-based

sensors, much of our work has focused on CV algorithms used in ADAS applications.

ADAS features like adaptive cruise control necessitate the anticipation of dangerous scenarios with

enough time for driver or vehicle intervention. Predicting dangerous situations typically entails tracking

dynamic objects, such as pedestrians and other vehicles, and using a motion model to extrapolate future

positions. Such a tracking application can be expressed as a dataflow graph in which nodes represent

computations or other high-level CV primitives and edges represent data dependencies. A graph for a tracking

pipeline is depicted in Figure 1.1. In this example, the “Predict track positions” node uses the track produced

by the “Update tracks” node during the prior time step to predict the location of an object in the current time

step, introducing a cyclical dependency on prior results.

Recent work has applied real-time scheduling principles to produce response-time bounds for graphs (El-

liott et al., 2015; Yang et al., 2015, 2016, 2018a). Unfortunately, most graph-based response-time analysis
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Figure 1.2: The tracking-by-detection pipeline with a supernode in place of the cycle.

assumes that all graphs are directed acyclic graphs (DAGs), that is, that they do not contain any cycles. Thus,

for prior analysis to apply, any cycles must be replaced with supernodes, as shown in Figure 1.2. To ensure the

cyclic dependencies are respected, the supernodes are forced to execute sequentially, i.e., a given invocation

of a supernode must complete before the next can begin. However, if the utilization of the supernode is

greater than 1.0 (i.e., the sum of the WCETs of the nodes comprising the cycle is greater than the invocation

period of the graph), then sequential execution may lead to unbounded response times. In order to be able to

certify CV applications as used in ADASs, response-time analysis for cyclic graphs is needed. This requires

a new task model that ensures data dependencies are respected while enabling the parallelism necessary to

guarantee bounded task response times.

1.3 Graphics Processing Units

GPUs were originally designed to work alongside Central Processing Units (CPUs) to accelerate

computer-graphics applications. These applications require writing shaders, which process triangle-based

matrix-multiply operations in parallel to render images. As a result, modern commercial GPUs have hundreds

or thousands of parallel hardware cores to perform these computations.

The two primary GPU manufacturers are AMD and NVIDIA. AMD provides an open-source software

stack for their GPUs, whereas the NVIDIA ecosystem is proprietary, including the drivers. However, in

2007, NVIDIA positioned itself as a market leader in GPU hardware with the introduction of the CUDA

API (a C/C++ extension to enable general-purpose GPU computing). NVIDIA GPUs span the spectrum of
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space and computing power: the Jetson series of system-on-a-chip (SoC) platforms, with low power and size

profiles, are tailored for ADAS applications; the GeForce series of discrete GPUs, on the other hand, are

heavier, larger, and require more power, but focus on providing high performance for personal computers.

Unfortunately, with this focus on performance, GPUs have traditionally been designed for throughput

rather than predictability. For example, many details related to GPU scheduling policies are omitted from

NVIDIA’s documentation. This omission prevents users from developing programs that depend on CUDA

features or hardware micro-architectures that may change. The cost to real-time system developers is the loss

of information necessary for analysis of predictability. Furthermore, as NVIDIA drivers and CUDA source

code are closed source, determining such scheduling details is a challenging task.

Additionally, the SWaP-C constraints that arise for ADAS systems necessitate sharing of hardware

accelerators, such as GPUs, between multiple system components implementing the many ADAS functions.

The question then arises: how can we ensure temporal isolation between multiple GPU-using components?

Put another way, how can different components be given the illusion of full ownership of a GPU, such

that each component may execute independently of the presence of others in the system? Once again, the

closed-source nature of the NVIDIA software stack and a lack of clarity in CUDA documentation prevent

simple solutions to these problems.

1.4 Thesis Statement

The disconnect between real-time requirements and CV-application design is a key hurdle that must

be overcome to enable the certification of ADASs. In this dissertation, we assume a multicore+accelerator

platform, with a focus on NVIDIA GPUs as hardware accelerators. With such a platform in mind, we address

the design disconnect from three directions, as summarized in the following thesis statement:

Enabling the real-time certification of autonomous-driving applications relies on bridging

the divide between real-time and computer-vision system design. This includes evaluating the

trade-offs between history requirements, accuracy, and response-time bounds of computer-vision

applications, utilizing knowledge of GPU scheduling policies and best practices for using GPUs

in real-time applications, and enabling temporal isolation on multicore+accelerator platforms.
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1.5 Contributions

We now briefly overview the contributions that support this thesis.

1.5.1 Generalized Task Model for Applications with Historical Dependencies

In Chapter 3, we introduce the rp-sporadic task model (restricted parallelism), which adds a per-task

settable parameter, p, specifying the number of invocations of the same task that may execute concurrently.

From a schedulability point of view, such parallelism for graph nodes in a cycle equates to setting of history

age requirements for data produced by prior node execution instances. Therefore, instead of insisting on

sequential cycle execution, which is the root cause of any over-utilization, we instead allow parallel execution

by permitting the use of slightly older history, i.e., p > 1. By allowing p > 1, the rp-sporadic task model thus

enables response-time bounds to be computed for any graph containing a cycle, even if the cycle utilization

exceeds 1.0.

1.5.2 Evaluation of the History-vs.-Response-Time-vs.-Accuracy Trade-Off

Allowing p > 1 is clearly not a solution that comes entirely “for free”: as p increases, although

response-time bounds may decrease, so too may CV accuracy due to using older history. This history-versus-

response-time-versus-accuracy trade-off is a key issue in the real-time certification of ADASs, of which both

CV researchers and automotive designers should be aware, yet it has never been examined in depth.

In Chapter 3, we provide the first-ever detailed study of this trade-off. For the history-versus-response-

time trade-off, we explore the impact on analytical response-time bounds as p increases for a large set of

synthetically generated cycle-containing graph-based task systems. To observe the impact of increasing p on

the accuracy of a cyclic workload, we consider a CV application in which pedestrians and other vehicles are

tracked via images recorded by a camera attached to a moving vehicle. We perform our evaluation using

CARLA (Dosovitskiy et al., 2017), an open-source simulator designed for ADAS research. The use of

CARLA allows us to generate a broad range of scenarios, to consider each sensing component independently,

and to consider and evaluate potential modifications to the vehicle’s behavior based on tracking results.
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1.5.3 Model of NVIDIA GPU Scheduling

NVIDIA has marketed its Jetson line of embedded CPU+GPU platforms specifically targeting au-

tonomous artificial-intelligence (AI) applications. In Chapter 4, we present a set of experimentally determined

rules that define how the NVIDIA Jetson TX2’s GPU schedules work submitted to it. These rules take into

account the ordering within and among first-in-first-out (FIFO) streams of requests for GPU operations,

the means by which various internal queues of requests are handled, the ability of the GPU to co-schedule

operations so they execute concurrently, the selection mechanism used to determine the order in which

requests are handled, and the resource limits that constrain the GPU’s ability to handle new requests. Our

rules indicate that the TX2’s GPU employs a variant of hierarchical FIFO scheduling that is amenable to

real-time schedulability analysis.

We then explore multiple optional GPU features that cause certain request streams to be treated specially,

further complicating GPU scheduling. These features include the usage of a special stream called the NULL

stream and the usage of stream priorities. The available documentation regarding both of these features lacks

several details necessary for predicting specific runtime behavior. Through further experiments, we show how

each of these features affects our derived scheduling rules. In addition, we discuss the differences between

the rules we discerned for the TX2 and the scheduling behavior of several discrete NVIDIA GPUs.

1.5.4 Guidance for Using NVIDIA GPUs in Real-Time Applications

In Chapter 4, we detail several pitfalls that can arise when using NVIDIA’s CUDA API to utilize NVIDIA

GPUs in real-time systems, leading to unexpected delays not only on the GPU, but also on the host CPU.

Such CPU blocking must factor into response-time analysis if it may occur in safety-critical applications, and

thus can lead to system capacity loss.

To address the problem of detecting improper GPU use, we present CUPiDRT (CUDA Pitfall Detector for

Real-Time Systems), a library we developed to monitor operations submitted to NVIDIA GPUs and report

issues based on the most severe pitfalls we identified. CUPiDRT can be used with any applications that utilize

NVIDIA GPUs, and although CUPiDRT was designed with real-time systems in mind, throughput-oriented

applications can also benefit from detection and remediation of these issues.

To evaluate its usefulness, we detail the results produced by using CUPiDRT to analyze ten GPU-using

sample applications from the popular CV library OpenCV (Bradski, 2000). Based on two of the most
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problematic pitfalls we identified, we configured CUPiDRT to detect issues related to specific CUDA API

commands. Of the ten sample applications we analyzed, we found that each was subject to at least one of

the issues we sought to detect. We also performed a case study demonstrating the benefits of resolving the

issues detected by CUPiDRT. To do so, we modified the source code of one of the ten applications, resolving

all detected issues, and showed that such changes reduced execution times and improved predictability of

computation-submission times.

1.5.5 Enabling Isolation on Multicore+Accelerator Platforms

In Chapter 5, we address the problem of ensuring temporal isolation between different components on a

multicore+accelerator platform. We specifically focus on accelerators that require non-preemptive execution,

and assume that each component in the system has been assigned to a given set of hardware resources that

the component “owns” for given slices of time.

To ensure such isolation, we designed a hierarchical scheduler, which consists of three main parts: a table-

driven scheduler to allocate time slices and hardware resources to components, per-component schedulers

that allocate processors to tasks, and a specialized locking protocol to orchestrate accelerator accesses while

respecting time-slice boundaries. In addition, we provide blocking analysis for our locking protocol.

To evaluate our solution, we implemented the specialized locking protocol within the hierarchical

scheduler as a scheduler plugin using LITMUSRT on a multicore+GPU platform. Enforcing temporal

isolation between GPU accesses from different components revealed some unexpected edge cases, which we

discuss in detail, as well as our resulting solution for budgeting GPU accesses.

1.5.6 Additional Evaluations

In Chapter 6, we consider a set of automotive applications, including the tracking application consid-

ered in Chapter 3, all running as real-time tasks within the LITMUSRT developmental real-time operating

system (Brandenburg, 2011; Calandrino et al., 2006). We use this task set as a basis of further evaluation.

First, we consider the full history-versus-response-time-versus-accuracy trade-off. Our experiments show that

relaxing the history requirements (i.e., allowing p > 1) can enable lower observed response times with only

a minimal impact on application accuracy. Then, we provide a detailed evaluation of our time-partitioning

solution from Chapter 5. We explore the appropriate choice of time-slice lengths and validate the isolation

afforded by our approach.
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1.6 Organization

The rest of this dissertation is organized as follows. In Chapter 2, we provide an overview of related

background on real-time scheduling, CV applications used in ADASs, and the software and hardware used to

enable such applications. We then dive into the trade-offs between historical data dependencies, algorithm

accuracy, and application response times in Chapter 3. In Chapter 4, we detail the scheduling policies of

NVIDIA GPUs, and address the pitfalls that can arise in their use in real-time applications and how to detect

such issues. In Chapter 5, we introduce our framework to ensure temporal isolation on multicore+accelerator

platforms between unrelated system components. Then, in Chapter 6, we discuss the results of our extended

evaluations using a set of ADAS-related applications. Finally, we conclude in Chapter 7.
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CHAPTER 2: BACKGROUND

In this chapter, we provide an overview of background related to real-time autonomous-driving applica-

tions. We first discuss various applications necessary for ADASs (Section 2.1). Then, we list several software

libraries and GPUs that can be used to realize such applications (Sections 2.2 and 2.3). Finally, we formally

review existing real-time task models, including models for graph-based CV applications (Section 2.4). We

conclude by discussing our contributions in the context of prior work (Section 2.5).

2.1 Autonomous-Driving Applications

A common approach to autonomous-vehicle design is to separately develop several software components

that facilitate path planning, perception, and control for a vehicle, e.g. (Franke, 2017; Paden et al., 2016). We

now briefly survey different applications used to implement these components. We will see that a feature of

these algorithms is that they are often graph based, e.g., organized as a dataflow graph of processing steps.

2.1.1 Path Planning

Path planning can be done at two granularity levels: a global planner determines the high-level path

from the start position to the goal position, and a local planner determines more fine-grained motion between

waypoints on that path. For example, a global planner may determine which intersections and lanes a vehicle

should traverse, whereas the local planner chooses the steering angles necessary to perform lane changes.

Global planning. Global planning algorithms typically act on graph-based discretizations of mapping data.

As an example, consider the map depicted in Figure 2.1. This map has eight intersections, labeled A-H, which

correspond to nodes in the map’s graph-based representation. Roads connecting intersections correspond

to edges in the graph. Global planning can thus be viewed as a shortest-path problem in a graph. For

example, breadth-first search, depth-first search, or Dijkstra’s algorithm may be used. A breadth-first path

from intersection C to intersection H (assuming ties are broken alphabetically) is shown in Figure 2.2. The

corresponding search graph is shown in Figure 2.3.
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Figure 2.1: A town from the autonomous-driving simulator CARLA (Dosovitskiy et al., 2017), overlaid with
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Figure 2.2: The path from node C to node H resulting from breadth-first search.
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Figure 2.3: The path from node C to node H resulting from breadth-first search.

Other shortest-path algorithms, such as A∗, can make use of heuristics to improve the shortest path

found in global planning. Another approach, called Rapidly-exploring Random Trees (RRT) (LaValle and

Kuffner Jr, 2001), randomly chooses a node in the graph to extend at each iteration.

Local planning. Local planners act on segments of the path produced by a global planner to determine more

fine-grained actions. For example, given the path segment between intersections A and H in Figure 2.2, a

local planner will navigate between waypoints along that segment, and utilize perception algorithms to ensure

that the vehicle stays in the appropriate lane. Additionally, a global planner may not consider obstacles in the

scene, but the local planner must ensure an obstacle-free path if possible.

One approach to local planning is the Pure Pursuit path-tracking algorithm (Coulter, 1992). This

algorithm computes the curved trajectory necessary for a vehicle to travel from its current position to a goal

point (e.g., the next waypoint along the path computed by the global planner). If perception algorithms detect

obstacles along the computed arc, an alternate steering direction can be chosen to avoid those obstacles.

Local planning can also be implemented using the Artificial Potential Field (APF) method (Khatib, 1986),

which associates with each point in space (e.g. positions on the 2D road map) a potential value corresponding

to whether the vehicle should occupy that point. Obstacles (or points not on the road) are assigned a high

repulsive potential, and the center of the appropriate lane is given a high attractive potential. Additionally,

vehicle-dynamics constraints can be included when determining potential values to rule out regions of space

that the vehicle cannot reach, e.g., based on its current orientation and turning radius (Song et al., 2020). The

local planner then chooses a path that tends towards the attractive-potential points on the way to the goal.
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Figure 2.5: Pedestrian-detection pipeline using HOG features.

2.1.2 Perception

The path-planning algorithms discussed in Section 2.1.1 rely on perception algorithms, e.g., to determine

lane boundaries and detect and track potential obstacles. We now discuss a few of these algorithms for CV

applications that process streams of images from cameras.

Lane detection via the Hough Transform. Lane detection can be done using the Hough Transform, which

detects features such as lines in an image. As shown in Figure 2.4, the image is first converted to grayscale

and unnecessary regions (e.g., the top half, which may correspond to the sky and is unlikely to contain lane

lines) are masked out. Then, a threshold is applied, given the assumption that lane lines are bright and the

road is dark. Finally, the Hough Transform can be used to detect lane lines in the thresholded image.

Pedestrian detection via Histogram of Oriented Gradients (HOG). The HOG-based pedestrian-detection

algorithm (Dalal and Triggs, 2005; Prisacariu and Reid, 2009) computes gradients (the HOG features) within

an image at a range of different scales, and classifies potential detections at each scale. The computational

cost increases with the number of image scales, but each scale enables detection of a pedestrian at a different

distance from the camera. The HOG features are provided to a classifier such as a Support Vector Machine

(SVM), which determines whether a potential detection is a pedestrian. The output is a series of rectangular

regions of the image (“bounding boxes”) of varying sizes and positions, along with probability values that

reflect the likelihood of a correct detection. This process is depicted in Figure 2.5 for three image scales; in

the experiments in Chapters 4–6, we used 13 image scales.
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Multi-Object Tracking (MOT). MOT tracks an unknown number of objects, or targets, through a scene.

A track is a sequence of estimated positions and sizes (as bounding boxes) of a target over time. A track is

a model of a target’s trajectory, i.e., the sequence of its actual real-world positions through time. Time is

measured by camera frames.

Tracking-by-detection is a common approach to MOT. This pipeline is illustrated in Figure 1.1. The

output from frame t is the set of tracks after frame t. The input to frame t is an RGB image and the set of

tracks from frame t−1. A key challenge in tracking-by-detection is to match detected bounding boxes with

predictions of new track positions. To do this, the percentage overlap is compared for all detection-prediction

rectangle pairs. The Hungarian method (also known as Munkres’ algorithm) can be used to quickly match

detections to predictions (Milan et al., 2016; Stiefelhagen et al., 2006). The overlap of two rectangles is

computed using the Intersection-over-Union measure (IoU) (Rezatofighi et al., 2019), also known as the

Jaccard index. The IoU (a scalar) is the ratio of the size of the intersection to the size of the union of two

rectangles within an image. The Hungarian algorithm chooses an assignment of detections to predictions that

maximizes the IoU of the selected pairs.

2.1.3 Control

Using the results of perception algorithms, the local planner must output control values. For a vehicle,

these are typically in the form of steering, throttle, and brake. However, the desired values may change greatly

from one time step to the next. To generate a stable and smooth path, a controller, e.g., a proportional-integral-

derivative (PID) controller (Åström and Murray, 2021), uses a feedback loop to determine the control output

for the current time step. For a PID controller, this output depends on the error (computed as the difference

between the desired value and the observed value), as well as the integral and derivative of the error. The

resulting control output can then be translated to motor revolution speed, wheel angles, etc.

2.2 Software for Real-Time Autonomous-Driving Applications

In this section, we provide a brief overview of several software libraries that enable real-time graph-based

applications to be developed, autonomous vehicles to be simulated, and CV and other AI applications to be

designed and built upon.
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2.2.1 Real-Time Software

A real-time operating system (RTOS) provides support for predictable job execution based on real-time

scheduling algorithms. One such RTOS is LITMUSRT (Brandenburg, 2011; Calandrino et al., 2006), which

was designed for real-time researchers to prototype different schedulers and synchronization protocols.

LITMUSRT is a modified Linux kernel that introduces a real-time scheduling class for which scheduling

plugins can be written. LITMUSRT provides several existing plugins, and in Chapter 5 we discuss a new

plugin that enables time partitioning between different system applications. As part of this plugin, we

implemented a time-partitioning-aware locking protocol to arbitrate access to hardware accelerators.

To enable real-time scheduling of graph-based applications, Elliott et al. (2014) developed PGMRT. This

library enables inter-process communication by operating-system threads representing different graph nodes;

each invocation of a node in the graph must wait until all of its predecessors (corresponding to incoming

graph edges) have produced data. We utilize PGMRT in our evaluation discussed in Chapter 6.

2.2.2 CARLA: an Autonomous-Driving Simulator

CARLA (Dosovitskiy et al., 2017) is an open-source urban-driving simulator. CARLA uses Unreal

Engine 4 (Epic Games, 2020) to produce photo-realistic scenes, such as the one depicted in Figure 2.1,

combined with accurate physical models of automobile dynamics. CARLA is a client-server system. The

urban environment and the interactions of all vehicles and pedestrians with it are simulated on the server.

The client sends choices of steering, acceleration, and braking to the server. These values must be

determined by manually operating the vehicle (e.g., via the keyboard) or by a software agent that implements

the perception, planning, and control components for driving. Sensor data for these components are provided

by the server. Such data can include physically based graphics renderings of camera frames and the pose

(location and orientation) of the camera and each vehicle and pedestrian in the scene.

2.2.3 CV and Other AI Frameworks

Many popular frameworks provide various AI functionality. We briefly discuss three of them here.

TensorFlow. TensorFlow (Abadi et al., 2016) was developed by Google to serve as an open-source framework

for machine learning. TensorFlow is commonly used with Python to train and re-train deep-learning models;

models trained using TensorFlow can then be packaged and used on other machines. In the work presented in
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Chapter 3, we used TensorFlow to train a model (which had been pre-trained on a different dataset) to detect

vehicles and pedestrians in CARLA.

PyTorch. Facebook developed the machine-learning framework PyTorch (Paszke et al., 2019). PyTorch also

features a Python API for ease of use. Both TensorFlow and PyTorch provide native support for NVIDIA

GPUs, which can enable substantial speed improvements for training and inference using neural networks.

OpenCV. Focusing specifically on computer-vision algorithms, OpenCV (Bradski, 2000) is a software

library that provides C++ and Python APIs for a broad range of CV algorithms. In this dissertation, we

leveraged many algorithms available as part of OpenCV 3.4.

OpenCV includes several sample applications to demonstrate different algorithmic functionality. Here,

we list several of those that use GPUs as hardware accelerators:

• Background/Foreground Segmentation: A video sequence is processed to classify pixels in each video

frame as being in the background or foreground of the image.

• Optical Flow: Using two images, the movement of each pixel from one image to the other is deter-

mined. Optical-flow algorithms include the Brox et al. algorithm (Brox et al., 2004), the Farnebäck

algorithm (Farnebäck, 2003), the iterative Lucas-Kanade method with image pyramids (Lucas and

Kanade, 1981), and the TV-L1 method (Pérez et al., 2013; Zach et al., 2007); these algorithms are

demonstrated in three different OpenCV sample applications.

• Feature Extraction: Features of certain types (e.g., lines or circles) are located in an individual image.

The Generalized Hough Transform extends the original Hough transform to arbitrary shapes; these

algorithms are demonstrated in two sample applications.

• Object Detection: Although similar to feature extraction, object detection entails detecting high-level

objects, such as pedestrians. In the hog sample application, detections are performed for each frame of

a video.

• Morphology: Morphological operations modify binary images, e.g., by “eroding” the foreground

(shrinking any white regions) or by “dilating” the foreground (expanding any white regions). More

complex operations, such as “opening” and “closing,” can be performed by combining the basic erosion

and dilation operations.
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• Stereo Matching: Given a pair of stereo images taken from different positions, corresponding points in

the two images can be used to compute a depth map of the distance to any point in the scene.

• Super Resolution: Given an input video, the resolution of each frame in the video can be increased by

leveraging optical-flow techniques (Farsiu et al., 2004; Mitzel et al., 2009).

2.3 NVIDIA GPUs

We focus our attention on NVIDIA GPUs, as they are ubiquitous in CV and ADAS applications. First,

we discuss the hardware comprising various NVIDIA GPUs, and then we provide an overview of CUDA, the

API for GPU programming provided by NVIDIA.

2.3.1 NVIDIA GPU hardware

NVIDIA provides both discrete and integrated GPU families. An integrated GPU tightly shares DRAM

memory with CPU cores, typically draws between 5 and 15 watts, and requires minimal cooling and additional

space. Alternatively, discrete GPUs are packaged on adapter cards that plug into a host computer PCI-e bus,

have their own local DRAM memory that is completely independent from that used by CPU cores, typically

draw between 150 and 250 watts, need active cooling, and occupy substantial space.

As shown in Figure 2.6, the Jetson TX2 employs an SoC design that incorporates a quad-core 2.0-GHz

64-bit ARMv8 A57 processor, a dual-core 2.0-GHz superscalar ARMv8 Denver processor, and an integrated

Pascal GPU. There are two 2-MB L2 caches, one shared by the four A57 cores and one shared by the two

Denver cores. The GPU has two streaming multiprocessors (SMs), each providing 128 1.3-GHz cores that

share a 512-KB L2 cache, and one copy engine (CE) used to copy data between the host CPU and the device

GPU. The six CPU cores and integrated GPU share 8 GB of 1.866-GHz DRAM memory.

Discrete GPUs, such as the Titan V depicted in Figure 2.7, utilize their high space and energy requirements

to provide significantly increased computational power compared to integrated GPUs. The Titan V boasts

80 SMs (compared to the TX2’s two SMs), each with 64 1.46-GHz cores, and seven CEs (compared to the

TX2’s one).

For a simpler abstraction, programmers can think of a GPU as consisting of one or more CEs (e.g., the

TX2 has only one, whereas the Titan V has seven) that copy data between host memory and device memory,

and an execution engine (EE) that has one or more SMs (e.g., the TX2 has two SMs, the Titan V has 80)
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Table 2.1: Details of NVIDIA GPUs we consider in this dissertation.

GPU Type Micro-architecture Cores CEs SMs
Jetson TX2 Integrated Pascal 256 1 2
GTX 980 Ti Discrete Maxwell 2816 2 22
GTX 1070 Discrete Pascal 1920 2 15
Titan V Discrete Volta 5120 7 80

consisting of many cores that execute GPU kernels. An EE can execute multiple kernels simultaneously,

but a CE can perform only one copy operation at a time. EEs and CEs can operate concurrently. Details

regarding the different GPUs we consider in this dissertation are listed in Table 2.1.

2.3.2 CUDA Programming Fundamentals

GPUs act as co-processors, performing operations requested by CPU code. CUDA programs use a set

of C or C++ library routines to request GPU operations implemented by a combination of hardware and

device-driver software. The typical structure of a CUDA program is as follows: (i) allocate GPU-local

(device) memory for data; (ii) use the GPU to copy data from host memory to GPU device memory; (iii)

launch a program, called a kernel,1 to run on the GPU cores to compute some function on the data; (iv) use

the GPU to copy output data from device memory back to host memory; (v) free the device memory. An

example vector-addition CPU procedure and associated kernel are given in Listing 1.

In the usual programming model for writing CUDA code, input data is partitioned among hardware

threads on the GPU. When launching a kernel (line 27), the programmer specifies the distribution of GPU

threads into thread blocks (line 22) and thread blocks into a grid (line 23). Thread-related system variables,

such as the number of threads per block and the total number of blocks, are used by the CUDA kernel code to

identify the specific data element(s) handled by a given thread. In the vector-addition example, each thread

calculates the index i of the element it operates on in Line 3 using these CUDA-provided built-in variables.

Additional optional kernel-launch arguments include the per-block shared-memory requirement (line 24),

and the FIFO stream of operations into which to launch the kernel (line 25). By default, no shared memory is

used, and all kernels are launched into a special stream, called the NULL stream. Note that kernel launches

are typically asynchronous with respect to the CPU,2 so a stream synchronization (line 28) can be used to

ensure the kernel has completed execution before copying the results back to the CPU.

1Unfortunate terminology, not to be confused with an OS kernel.
2See Sec. 3.2.6.1 of the CUDA Programming Guide (NVIDIA, 2019b) for more details.
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Listing 1 Vector Addition Routine using CUDA.

/∗ Performs single addition: C[i] = A[i] + B[i] ∗/
1: static global void vecAdd(int* A, int* B, int* C) {
2: // Calculate index using built-in thread, block info

3: int i = blockDim.x * blockIdx.x + threadIdx.x;

4: C[i] = A[i] + B[i];

5: }

/∗ Element-wise addition: C = A + B, returns pointer to C

(assumes n is a multiple of 32) ∗/
6: int ∗ vectorAdd(int* A, int* B, int n) {
7: // Allocate CPU (host) memory for result array C

8: size t bytes = n ∗ sizeof(int);

9: int* C = (int *) malloc(bytes);

10:

11: // Allocate GPU (device) memory for arrays A, B, and C

12: int *d A, *d B, *d C;

13: cudaMalloc(&d A, bytes);

14: cudaMalloc(&d B, bytes);

15: cudaMalloc(&d C, bytes);

16:

17: // Copy arrays A and B from CPU to GPU memory

18: cudaMemcpy(d A, A, bytes, cudaMemcpyHostToDevice);

19: cudaMemcpy(d B, B, bytes, cudaMemcpyHostToDevice);

20:

21: // Launch the kernel

22: int nt = 32; // threads per block

23: int nb = n / 32; // blocks per grid

24: int sm = 0; // no shared memory used

25: cudaStream t stream; // user-defined stream

26: cudaStreamCreate(&stream);

27: vecAdd<<<nb, nt, sm, stream>>>(d A, d B, d C);

28: cudaStreamSynchronize(stream);

29: cudaStreamDestroy(stream);

30:

31: // Copy results from GPU to CPU

32: cudaMemcpy(C, d C, bytes, cudaMemcpyDeviceToHost);

33:

34: // Free GPU memory for arrays A, B, and C

35: cudaFree(d A);

36: cudaFree(d B);

37: cudaFree(d C);

38:

39: return C;

40: }

The example in Listing 1 also demonstrates common CUDA API functions, such as cudaMalloc

(lines 13–15), cudaMemcpy (lines 18 and 19), and cudaFree (lines 35–37) used to allocate, copy to and

from, and free GPU device memory, respectively. Unlike cudaMalloc and cudaFree, cudaMemcpy has

an asynchronous variant, cudaMemcpyAsync, that can be used with user-defined streams for additional
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concurrency; cudaMemcpyAsync can return control to the calling CPU task before the copy is completed,

whereas cudaMemcpy blocks the CPU task until the memory copy completes.

As seen in Listing 1, dispersing code to execute across one or more blocks, each with many threads,

enables the significant parallelism afforded by GPUs to be exploited. Recall from Table 2.1 that the TX2, for

example, contains 256 GPU cores, 128 per SM. Each SM is capable of running four units of 32 threads each

(called a warp) at any given instant. The SM’s four warp schedulers (contained in hardware) take advantage

of stalls, such as waiting to access memory, to immediately begin running a different warp on the set of 32

cores assigned to it. In this way, the SM’s warp schedulers can hide memory latency.

2.4 Real-Time Systems

We now formally define the real-time task models that we utilize. We first consider a set of independent

tasks, and discuss the scheduling algorithms and analysis that apply to such a model. Then, we describe a

graph-based model extension that enables us to leverage existing analysis for applications that are represented

as graphs.

2.4.1 Real-Time Task Model

In this dissertation, we consider a task set τ comprised of n tasks: τ = {τ1,τ2, . . . ,τn}. Each task τi

releases a (potentially infinite) sequence of jobs: Ji,1, Ji,2, . . . ; we refer to an arbitrary job of task τi as Ji.

Under the periodic task model (Liu and Layland, 1973), jobs are released exactly Ti time units apart; this is

generalized under the sporadic task model (Mok, 1983), in which the task period Ti is the minimum, rather

than exact, separation between job releases. Also associated with each task is a relative deadline Di; a task is

said to be implicit-deadline if Ti = Di, constrained-deadline if Ti ≤ Di, and arbitrary-deadline if no relation

is assumed between Ti and Di.

The absolute deadline for job Ji, j is given by di, j = ri, j +Di, where ri, j is the release time of the job. The

first job of task τi has a non-negative release offset given by Φi (i.e., ri,1 = Φi). Each job of τi performs work

with worst-case execution time (WCET) given by Ci. The utilization of a task indicates the fraction of a single

processor’s capacity that it requires: ui =Ci/Ti. The utilization of the entire task set τ is given by U = ∑i ui.

Given these definitions, each task can be represented as a four-tuple: τi = (Φi,Ti,Ci,Di). These parame-

ters are depicted in Figure 2.8 for a task defined as τi = (2,6,2,5). If not specified otherwise, we assume
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Figure 2.8: Illustration of the real-time task model for a task τi = (2,6,2,5).

synchronous releases (i.e., ∀i : Φi = 0), and implicit-deadline tasks, and thus represent a task as only a

two-tuple: τi = (Ti,Ci). The traditional sporadic task model assumes that tasks must execute sequentially, i.e.,

that no two jobs of the same task may execute concurrently; we briefly discuss an alternative to this model in

Section 2.4.3, and introduce a generalized task execution model in Section 3.1.

We denote the completion (or finish) time of job Ji, j as fi, j. We can therefore refer to the response time

of Ji, j as fi, j− ri, j, and the tardiness of Ji, j as δi, j = max{0, fi, j−di, j}. For the job depicted in Figure 2.8,

ri,1 = 2, fi,1 = 5, its response time is 5−2 = 3, and δi,1 = 0.

2.4.2 Scheduling Algorithms

We assume that τ is scheduled on a platform with m CPUs; a scheduling algorithm is used to allocate

processing time to tasks within τ . A scheduler is said to be static if it does not depend on jobs’ actual

execution times and releases (i.e., it can be generated offline). For example, a table-driven scheduler uses a

previously generated table to determine which task may execute jobs at any given time. Dynamic schedulers,

on the other hand, make scheduling decisions at runtime, based on how the jobs in the system are prioritized.

In this dissertation, we focus primarily on dynamic scheduling.

Dynamic schedulers can further be classified depending on the task or job parameters used to calculate

a job’s priority. Static-priority schedulers make decisions based on task parameters. For example, the rate-

monotonic (RM) (Liu and Layland, 1973) and deadline-monotonic (DM) (Audsley et al., 1991) scheduling

algorithms assign job priorities based on task periods and relative deadlines, respectively. Dynamic-priority

schedulers, on the other hand, rely on job parameters to assign job priorities, and therefore may assign a

different priority to each job of a given task. For example, the FIFO scheduling algorithm assigns higher

priorities to jobs with earlier release times, whereas earliest-deadline-first (EDF) (Liu and Layland, 1973)

assigns higher priorities to jobs with earlier absolute deadlines. The static-priority and dynamic-priority
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scheduling algorithms just discussed are job-level fixed-priority (JLFP) schedulers, i.e., they assume that

a job’s priority is fixed once assigned; schedulers for which a job’s priority may change after release are

beyond the scope of this dissertation, and thus are not discussed here.

A scheduling approach is said to be partitioned if each task in τ is assigned to a specific CPU, and global

if tasks can migrate between CPUs. From an implementation perspective, this corresponds to having one

runqueue per CPU, or a global runqueue from which tasks are scheduled on any CPU. Clustered scheduling

generalizes these two extremes by assigning each task to a cluster of CPUs; tasks are scheduled globally

within a given cluster. Other alternatives, such as semi-partitioned (Anderson et al., 2008) and federated (Li

et al., 2014) scheduling, allow some tasks to be assigned to specific processors while others may migrate

freely between all or a given set of processors.

We can refer to a scheduler based on its job prioritization and the assignment of tasks to processors, e.g.,

global EDF (G-EDF) corresponds to tasks scheduled globally using EDF. Scheduling algorithms can also be

classified by whether they allow jobs to be preempted during execution. Because FIFO prioritizes jobs by

release time, it is naturally non-preemptive. By default, RM, DM, and EDF are all assumed to be preemptive;

non-preemptive EDF is specified as NP-EDF.

2.4.3 Schedulability

A schedulability test can be used to determine whether a task system is schedulable on a given platform

using a given scheduling algorithm. For example, on a uniprocessor platform, the hard-real-time schedulability

test for EDF and implicit-deadline tasks is a simple utilization-based test:

U ≤ 1. (2.1)

The schedulability test in Equation (2.1) is an exact test: if a task set violates this condition, then jobs may

miss deadlines (in fact, this is guaranteed if jobs are released periodically and every jobs executes for its

WCET).

On a multiprocessor platform, no exact utilization-based schedulability test exists for sporadic tasks with

hard deadlines when scheduled under G-EDF. Instead, existing tests are merely sufficient (i.e., there exist

schedulable task sets for which a given test fails) (Baker, 2003; Baruah, 2007; Baruah and Baker, 2008a,b;

Bertogna et al., 2005, 2008). For a set of periodic implicit-deadline tasks with hard deadlines, a sufficient
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utilization-based test was presented by Andersson et al. (2001):

U ≤ (m+1)/2. (2.2)

Unfortunately, the condition in Equation (2.2) is subject to utilization loss: a task set is deemed unschedulable

if its utilization exceeds approximately half of the available processing capacity.

Recall from Section 1.1 that our focus in this dissertation is on soft real-time tasks for which response

times must be bounded. Devi and Anderson proved a simple exact utilization-based test (Devi and Anderson,

2008) for determining whether tardiness and hence response times of all tasks in τ are bounded:

U ≤ m. (2.3)

This test does not result in the utilization loss present in Equation (2.2); as long as the m processors are not

overutilized, then response times are bounded.

Devi and Anderson also proved the following upper bound on the tardiness of each task τi scheduled

under G-EDF, assuming the condition in Equation (2.3) holds (Devi and Anderson, 2008):

max
j

δi, j ≤
CΛ−Cmin

m−UΛ−1 +Ci, (2.4)

where Ck is the sum of the k highest task WCETs, Uk is the sum of the k highest task utilizations, and

Λ = dUe−1.

The response-time analysis from Devi and Anderson (2008) was extended by Leontyev and Anderson to

ensure bounded response times for sequential sporadic tasks under any G-EDF-like (GEL) scheduler (Leon-

tyev and Anderson, 2010) as long as Equation (2.3) holds. This includes any global JLFP scheduler with

window-constrained job priorities, i.e., schedulers for which a job’s priority is chosen based on a time instant,

called a priority point, within a bounded window of the job’s release and deadline. For example, FIFO and

G-EDF fall in this class, as they use a job’s release and actual deadline, respectively, as priority points.

The schedulability tests discussed so far assume that tasks must execute sequentially (in fact, the

sequential sporadic task model requires that ui ≤ 1.0). If this requirement is relaxed, then any number

of jobs of the same task may execute in parallel. Erickson and Anderson explored this fully parallel task

model (Erickson and Anderson, 2011), for which ui can exceed 1.0, and showed that enabling such intra-task
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parallelism can result in lower per-task response-time bounds, as long as Equation (2.3) holds. In Section 3.1,

we present a task model that generalizes both the sequential and fully parallel sporadic task models by

introducing a per-task parameter that specifies the possible intra-task parallelism and utilization bound.

2.4.4 Graph-Based Tasks

Many CV applications can be represented as dataflow graphs. In order to leverage existing real-time

schedulability analysis, such graph-based task systems can be converted to sets of sporadic tasks. We

now discuss one such representation of dataflow graphs for CV applications, and give an overview of the

transformation process from graphs to sets of sporadic tasks.

2.4.4.1 OpenVX

To facilitate the development of CV algorithms, the OpenVX standard was first ratified in 2014 (The

Khronos Group, 2014). OpenVX allows programmers to specify CV algorithms as dataflow graphs by

interconnecting high-level CV primitives.

In OpenVX, primitives and the data objects upon which they operate comprise a bipartite graph (The

Khronos Group, 2018). An OpenVX graph Gk contains data objects Dk
1, . . . ,D

k
yk

and nodes Nk
1 , . . . ,N

k
zk

. An

edge
(
Nk

v ,D
k
w
)

corresponds to a data object Dk
w that is written by node Nk

v , and
(
Dk

w,N
k
v
)

corresponds to a

data object read by node Nk
v . Data objects can optionally be delay objects, indicating that the data from prior

time steps must be buffered for later use. Associated with each delay object is a value indicating the age, in

time steps, of the data.

To simplify analysis, we assume that each graph has a single source node and a single sink node. (If

this is not the case, then a single “virtual” source and/or sink can be added.) For all graphs we consider, we

assume that the first indexed node (Nk
1 for an OpenVX graph Gk) is the source.

Example 2.1. An example OpenVX graph G1 is shown in Figure 2.9. In this figure, rectangles correspond to

the eight data objects, D1
1, . . . ,D

1
8, and round nodes indicate the four primitives, N1

1 , . . . ,N
1
4 , that act on them.

There are three delay objects, D1
3, D1

5, and D1
6, with delay values 1, 3, and 2, respectively, shown as insets in

the delay object boxes. ♦

The OpenVX standard specifies a series of rules for processing graphs (The Khronos Group, 2018). The

rules relevant to the work in this dissertation are:
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Figure 2.9: An example OpenVX graph G1.

1. Single Writer: Every data object has at most one incoming edge.

2. Broken Cycles: Every cycle in Gk must contain at least one input edge
(
Dk

w,N
k
v
)

where Dk
w is a delay

object.

Example 2.1 (continued). In G1, every data object has at most one incoming edge (although D1
2 has two

outgoing edges). Additionally, there are two cycles, containing edges from delay objects D1
5 and D1

6 to node

N1
3 . ♦

2.4.4.2 Transforming OpenVX Graphs to Sporadic Task Sets

An OpenVX graph can be transformed into an “equivalent” set of independent sporadic tasks (Liu and

Anderson, 2011; Yang et al., 2015, 2018a), for which response-time analysis exists (Devi and Anderson,

2008; Erickson and Anderson, 2011; Erickson et al., 2010; Leontyev and Anderson, 2007a,b, 2010). This

process is depicted in Figure 2.10. Note that Step 3, as originally proposed (Yang et al., 2015), requires that

the utilization of each cycle is at most 1.0.

The transformation process must be performed for each OpenVX graph Gk in a system. We now illustrate

each step in detail.

Step 1: From a coarse- to a fine-grained OpenVX graph. The OpenVX standard specifies little about the

concurrent execution of primitives within a graph. M. Yang et al. (2018a) showed that treating each primitive

as a schedulable entity can be too coarse-grained to guarantee bounded response times, as pessimistic inflation

of GPU execution times can result in utilization-based feasibility conditions not being met. Rather, primitives

that utilize both a CPU and GPU should be split into multiple nodes, with each executing on either a CPU

or a GPU. (Note that we assume the mapping of primitives to processor types is decided by the application
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Figure 2.10: The transformation process from an OpenVX graph to a set of sporadic tasks.
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Figure 2.11: A fine-grained OpenVX graph G2 corresponding to the coarse-grained graph in Figure 2.9.

designer.) For the DAGs considered by M. Yang et al., this transformation enabled the separate computation

of response-time bounds for CPU and GPU nodes; in their DAG-based case study, feasibility conditions were

satisfied for the fine-grained graph representation.

Example 2.2. We illustrate the transformation process with a continuing example. Figure 2.11 depicts a

fine-grained OpenVX graph G2 corresponding to the coarse-grained OpenVX graph G1 from Figure 2.9.

Graph G2 contains six nodes (four CPU nodes and two GPU nodes) and ten data objects.

Primitives N1
3 and N1

4 have been decomposed into nodes {τ2
3 ,τ

2
4} and {τ2

5 ,τ
2
6}, respectively, with

additional data objects D2
9 and D2

10 added between the new nodes. Additionally, each node in Figure 2.11 is

shaded based on whether that node executes on a CPU or a GPU. ♦

Step 2: From a fine-grained OpenVX graph to a sporadic task graph. We now formalize the graph-

based task model. As our final transformation target is a set of sporadic tasks, we refer to the graph produced

by Step 2 as a sporadic task graph Γk. We add notation to the task model introduced in Section 2.4.1 to retain

information aout the graph to which a given task corresponds: a sporadic task graph Γk is comprised of zk

nodes, τk
1 , . . . ,τ

k
zk

, with each node corresponding to a task. Similarly, we refer to the jth job of task τk
v as

Jk
v, j. Edges in Γk indicate producer/consumer relationships between tasks: a job must wait to begin execution

until the corresponding job of each task from which it consumes data (i.e., for each edge for which it is a

consumer) has completed.
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Given a fine-grained OpenVX graph Gk, we can perform a simple transformation to obtain a sporadic

task graph Γk:

• Each node τk
v in Gk becomes a node τk

v in Γk.

• Each input edge
(
Dk

w,N
k
v
)

in Gk, other than that into the source τk
1 , becomes a directed edge

(
τk

u ,τ
k
v
)

in Γk, where τk
u is the single writer of data object Dk

w.

• An edge in Γk is a delay edge if its corresponding data object Dk
w in Gk is a delay object, and a regular

edge otherwise.

• Multiple edges of the same type between the same pair of nodes are merged into a single edge of that

type.

Note that delay edges can be either forward or backward edges, depending on whether they result in

a cycle in the graph. For each delay edge
(
τk

v ,τ
k
u
)
, we include a range [p,q], p ≤ q, corresponding to the

range of delay values for that edge (note that, for simplicity of notation, we omit subscripts and superscripts

for delay edges’ ranges when the edge in question is clear). Thus, a delay edge
(
τk

v ,τ
k
u
)

with range [p,q]

indicates that a job Jk
u, j relies on the outputs of {Jk

v, j−q, . . . ,J
k
v, j−p}.

Example 2.2 (continued). Figure 2.12 shows the sporadic task graph Γ2 corresponding to the fine-grained

OpenVX graph from Figure 2.11. The three delay objects are represented as two delay edges, one forward

and one backward. The delay values are encapsulated in the p and q values for the delay edges. ♦

Step 3: From a sporadic task graph to a sporadic task DAG. K. Yang et al. (2015) provided a series of

rules for removing delay edges from a graph Γk, resulting in a DAG τk, with nodes corresponding to sporadic

tasks. K. Yang et al. showed that forward delay edges can simply be replaced by regular edges, and they

proposed to break cycles by combining all nodes in a given cycle in a graph into a single supernode.

Example 2.2 (continued). Figure 2.13 shows the DAG τ2 derived from the cyclic graph Γ2 in Figure 2.12.

The forward delay edge from τ2
1 to τ2

2 has been removed because a regular edge between these nodes exists,

and nodes τ2
4 , τ2

5 , and τ2
6 comprising the cycle have been combined into a single supernode τ2

456. ♦

Step 4: From a sporadic task DAG to a sporadic task set. Given a sporadic task DAG τk, it is straightfor-

ward to consider each node as an independent sporadic task. Each task τk
v has a worst-case execution time
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Figure 2.12: A sporadic task graph Γ2 derived from the fine-grained OpenVX graph G2 in Figure 2.11.
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Figure 2.13: A sporadic task DAG τ2 derived from the cyclic graph from Figure 2.12.

given by Ck
v and a relative deadline given by Dk

v. All tasks belonging to τk share a period T k. Jobs of the

source task τk
1 are assumed to be released sporadically, at least T k time units apart.

For non-source tasks, Liu and Anderson (2011) showed how response-time bounds Rk
u of tasks τk

u that

produce data consumed by τk
v can be used to set an offset Φk

v . This offset specifies the release time of a

job Jk
v, j relative to that of its graph’s corresponding source job Jk

1, j (thus, the source task has Φk
1 = 0). For a

non-source task τk
v , its offset is the sum of the offsets and response-time bounds for each incoming edge:

Φ
k
v = max

u
(τk

u ,τ
k
v)is an edge inτk

{Φk
u +Rk

u}. (2.5)

The end-to-end response-time bound for a DAG τk is given by the sum of the offset and response-time bound

of its sink node: Rk = Φk
zk
+Rk

zk
.

Example 2.2 (continued). Figure 2.14 depicts an example schedule for the task set derived from the sporadic

task DAG τ2 in Figure 2.13. In this example, we assume response-time bounds of the four DAG tasks have
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Figure 2.14: A possible schedule of two sets of jobs of the sporadic tasks in τ2 in Figure 2.13. The second
job of each task is shaded darker than the first.

been computed to be R2
1 = 9, R2

2 = 8, R2
3 = 5, and R2

456 = 8. Per-task response-time bounds and offsets are

labeled in Figure 2.14 for the second invocation of the graph.

As τ2
1 is the source node of τ2 in Figure 2.13, it is defined to have Φ2

1 = 0. τ2
2 and τ2

3 each have only a

single incoming edge, from τ2
1 . By Equation (2.5), their offsets are given by Φ2

2 = Φ2
3 = Φ2

1 +R2
1 = 0+9 = 9

time units. The sink node, τ2
456, has two incoming edges, from τ2

2 and τ2
3 . Thus, by Equation (2.5), its offset

is computed as Φ2
456 = max{Φ2

2 +R2
2,Φ

2
3 +R2

3}= {9+8,9+5}= 17 time units.

The end-to-end response-time bound for the entire DAG τ2 is based on the offset and response-time

bound for the sink node: R2 = Φ2
456 +R2

456 = 17+8 = 25 time units. ♦

Note that as we focus on soft-real-time applications, task deadlines are used here to define priorities

rather than strict (hard) timing constraints, and thus Rk
v may exceed Dk

v, i.e., jobs may complete after their

deadlines. Additionally, a job Jk
v, j can be scheduled as soon as its predecessors (i.e., previous jobs of the

same task, depending on whether jobs of the same task execute sequentially, as well as all jobs Jk
u, j from the

same graph invocation, for which
(
τk

u ,τ
k
v
)

is an edge in the DAG τk) have completed. Such early releasing

may occur before a job’s actual release time, as long as its absolute deadline (and thus priority) remain

unchanged (Devi, 2006). Liu and Anderson showed that early releasing can improve response times under

G-EDF scheduling (Liu and Anderson, 2011).
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Example 2.2 (continued). In Figure 2.14, job J2
2,1 completes at time 16.5, after its deadline at time 16. Thus,

job J2
2,1 has a response time of 7.5 time units; however, this is less than the bound of R2

2 = 8 time units.

Assuming that jobs of the same task must execute sequentially, job J2
456,2 has three predecessors: J2

2,2 and

J2
3,2 due to graph edges, and J2

456,1 due to sequential execution. These jobs complete at times 18.5, 19, and 21,

respectively. Thus, job J2
456,2 is eligible for early releasing at time 21 and begins execution at time 22, even

though its actual release does not occur until time 24. ♦

2.5 Chapter Summary

In this chapter, we have reviewed the algorithms necessary for ADAS development, software libraries

used to implement these algorithms, details of GPUs used to accelerate them. We have additionally formally

discussed existing real-time task models and scheduling algorithms. However, some of the applications

discussed in Section 2.1 can be represented as graphs containing cycles, for which the existing response-

time analysis discussed in Section 2.4 may not apply; we introduce a new task model in Chapter 3 that

addresses this challenge, and we evaluate the trade-off that arises in its application. Many details of the GPUs

discussed in Section 2.3 are missing from NVIDIA documentation, jeopardizing in their use in safety-critical

applications. In Chapter 4, we explore the scheduling policies of NVIDIA GPUs, and discuss potential

pitfalls of GPU use in detail, including a case study of some of the applications listed in Section 2.2. The

planning, perception, and control components discussed in Section 2.1 may be developed independently but

need to coexist on the same hardware platform; in Chapter 5, we introduce a framework to ensure temporal

isolation between such components in the presence of non-preemptive GPU use. Finally, in Chapter 6, we

present case-study evaluations of the results in prior chapters using several of the applications discussed in

Section 2.1.
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CHAPTER 3: THE HISTORY VS. RESPONSE TIME VS. ACCURACY TRADE-OFF1

In this chapter, we present the rp-sporadic (restriced parallelism) task model, which enables scheduling

of tasks with utilization exceeding 1.0 by allowing a limited number of jobs of the same task to execute in

parallel. Idle CPU time may be reduced by the execution of additional jobs of the same task, increasing

throughput. Furthermore, enabling such intra-task parallel execution may result in lower response-time

bounds.

However, for graph-based workloads containing cycles, allowing intra-task parallelism results in a

trade-off between the degree of parallelism, the response-time bounds of the application, and the accuracy

of the resulting computations. Added parallelism may lead to historical data used within the cycle being

unavailable, and the use of older history may decrease application accuracy; the age of such historical data

is directly related to the amount of available parallelism. In this chapter, we explore this trade-off in detail.

For the history-versus-response-time side of the trade-off, we explore the impact on analytical response-time

bounds as parallelism increases for a large set of synthetically generated graph-based task systems for which

per-task utilizations may exceed 1.0. To investigate the history-versus-accuracy trade-off, we consider a

multi-object tracking (MOT) system in which pedestrians and vehicles are tracked via images recorded by a

camera attached to a moving vehicle, and measure the tracking accuracy as the age of historical data varies.

Organization. The remainder of this chapter is organized as follows. In Section 3.1, we discuss the

drawbacks of existing task-execution models and formally define the rp-sporadic task model. Then, in

Section 3.2, we detail our experiments to evaluate the history-versus-response-time trade-off. We describe

our evaluation of the history-versus-accuracy trade-off in Section 3.3 before concluding in Section 3.4. Note

that we consider the full history-versus-response-time-versus-accuracy trade-off in Chapter 6, in which we

1Contents of this chapter previously appeared in preliminary form in the following papers:

Amert, T., Voronov, S., and Anderson, J. H. (2019). OpenVX and real-time certification: The troublesome history. In
Proceedings of the 40th IEEE Real-Time Systems Symposium, pages 312–325.

Amert, T., Yang, M., Nandi, S., Vu, T., Anderson, J. H., and Smith, F. D. (2020). The price of schedulability in multi-
object tracking: The history-vs.-accuracy trade-off. In Proceedings of the 23rd IEEE International Symposium on Real-Time
Distributed Computing, pages 124–133.
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combine the results of this chapter to explore the impact on accuracy of our MOT applications when executing

in the presence of other automotive-based applications under a real-time scheduler.

3.1 Rp-Sporadic Task Model

As detailed in Section 2.4.4.2, prior work has shown how to transform a graph into a set of independent

sporadic tasks. The scheduling of these tasks depends on the choice of intra-task parallelism. We first consider

both sequential and fully parallel task execution, and then introduce our generalized concept of restricted

parallelism. Finally, we formally define our rp-sporadic task model.

3.1.1 Existing Task-Execution Models

The traditional sporadic task model assumes that jobs of the same task must execute sequentially, as

discussed in Section 2.4. Erickson and Anderson considered a variant of the sporadic task model in which

full parallelism was allowed for tasks (Erickson and Anderson, 2011), which we refer to as fully parallel

execution.

Example 3.1. Figure 3.1 depicts possible schedules for jobs of the supernode τ2
456 from Figure 2.13 on a

platform with four CPUs and one GPU, assuming T 2 = 5, C2
456 = 6, and R2

456 = 21. Each job J2
456, j is released

at time r2
456, j; the schedule is shown starting at time 100 when job J2

456,21 is released. Successive jobs are

shaded progressively darker, and the depicted jobs are assumed to be scheduled alongside other jobs in the

system, which are not shown.

In schedule (a), the jobs execute sequentially. Due to jobs of other tasks (not shown), J2
456,21 is released

at time 100, but not scheduled until time 114. This postponement impacts the subsequent jobs; J2
456,24 has a

response time of 7.4. However, the p = 2 requirement is met, i.e., J2
456,21 completes before J2

456,23 begins.

Schedule (b) shows the result of fully parallel execution. We assume GPU computations are FIFO

scheduled, which causes three of the four jobs’ execution times to increase due to blocking waiting to access

the GPU. However, the response time of J2
456,24 is reduced to 3.2 time units. ♦

Unfortunately, unrestricted intra-task parallelism creates two problems. First, the jobs of a task can

complete out of order; however, this can be simply resolved by buffering job outputs, as discussed by Elliott

et al. (2015). Second, and more importantly, such parallelism can violate the dependencies required by

backward delay edges. Yang et al. (2015) proved that if p = 1 for some backward delay edge, then no two
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Figure 3.1: Scheduling repercussions of the degree of intra-task parallelism, including a) sequential execution,
b) fully parallel execution, and c) restricted parallelism.

jobs of any task in that cycle may execute in parallel. This proof can be generalized to show that if more than

p jobs of a task in a cycle execute concurrently, then a precedence constraint must be violated.

Example 3.1 (continued). Recall that the supernode τ2
456 was created from a cycle with p = 2 (see Fig-

ures 2.12 and 2.13). Thus, job J2
456,23 requires output from job J2

456,21. However, in schedule (b) of Figure 3.1,

jobs J2
456,21, J2

456,22, and J2
456,23 all execute concurrently, violating this precedence constraint. ♦

We define the utilization of τk
v to be uk

v =Ck
v/T k. The utilization of the entire graph-based task system is

given by U = ∑τk∈τ ∑τk
v∈τk uk

v. We can define the utilization of a cycle similarly: ∑τk
v∈τ ′ u

k
v, where τ ′ is the set

of tasks in the cycle.

Response-time analysis for sequential sporadic tasks requires uk
v ≤ 1.0 for all tasks. In their transfor-

mation, Yang et al. extended this requirement to supernodes (Yang et al., 2015): if sequential execution is

assumed, the utilization of each cycle must be at most 1.0.

Example 3.1 (continued). If jobs execute sequentially as in Figure 3.1(a), response times can be unbounded

for τ2
456, as u2

456 = 6/5. ♦

Unfortunately, if smaller bounds are desired or if the cycle has utilization greater than 1.0, no existing

analysis can be applied. Furthermore, cycles with utilization exceeding 1.0 can easily occur in actual CV

graphs. When full intra-task parallelism is enabled, uk
v ≤ 1.0 is no longer required, but historical requirements

may not be met.
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3.1.2 Allowing Restricted Parallelism

Our work bridges this parallelism divide, resulting in response-time bounds for sporadic task graphs (and

thus OpenVX graphs) that prior work deemed infeasible. We provide a new restricted-parallelism sporadic

task model that specifies intra-task parallelism on a per-task basis. A key feature of our approach is that

per-task utilizations are allowed to exceed 1.0, yet parallelism (and hence accuracy) is controlled.

Example 3.1 (continued). Restricted intra-task parallelism is shown in schedule (c) of Figure 3.1. The

response time of J2
456,24 is increased to 4.1, but the history requirements are respected, as only p = 2 jobs of

τ2
456 execute concurrently. ♦

Abstracting GPU computations. Although M. Yang et al. (2018a) suggested considering CPU and GPU

tasks separately in response-time analysis, their results hold only for DAGs. Instead, as did K. Yang

et al. (2015), we arbitrate access to the GPU with a multiprocessor locking protocol (e.g., the global

OMLP (Brandenburg and Anderson, 2010)). Thus, we henceforth assume that all graph nodes are CPU nodes,

with their worst-case execution times inflated to include GPU blocking and execution time, and that tasks can

contain non-preemptive regions due to said locking protocol.

Transforming cycles, revisited. We leverage the supernode concept from K. Yang et al. (2015) to transform

a sporadic task graph Γk into a sporadic task DAG τk. We supplement each node τk
v of the DAG with a value

Pk
v indicating the allowed intra-task parallelism for jobs of that task.

Recall from Section 2.4.4.2 that p and q define the range of delay values for a delay edge in a sporadic

task graph. All tasks within a cycle are combined into a single supernode τk
u , with Pk

u defined to be the

smallest p of any forward or backward delay edge contained in the cycle (we do not use q, as it is does

not limit the parallelism of the cycle). A task τk
v that is not part of any cycle has Pk

v = m, i.e., unrestricted

intra-task parallelism, as assumed by M. Yang et al. (2018a).

Example 3.2. Figure 3.2 depicts the DAG that results from our parallelism-aware supernode transformation.2

The nodes correspond to those in Figure 2.13, and are labeled with their intra-task parallelism values Pk
v . For

tasks that are not supernodes, the intra-task parallelism is m. Task τ2
456 is a supernode derived from a cycle

with p = 2 in Figure 2.12, so it has P2
456 = 2. ♦

2Note that, while we ended up with the same number of compute nodes as in the original coarse-grained graph in Figure 2.9, this
will generally not be the case.
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Figure 3.2: Intra-task parallelism for nodes of τ2 from Figure 2.13.

Offset computation for forward delay edges. In prior work, forward delay edges were either deemed as

out of scope (Yang et al., 2018a) or supported assuming only sequential task execution (Elliott et al., 2014;

Yang et al., 2015). We propose a different method for handling such edges here.

Consider a forward delay edge
(
τk

u ,τ
k
v
)

with delay value p. Denote the offset of τk
v computed in a DAG

without the delay edge as Φ ′kv . The forward delay edge adds the requirement that a job Jk
v, j must not start

earlier than the completion of Jk
u, j−p, p DAG periods prior. Thus, we require Φk

v ≥Φk
u +Rk

u− p ·T k. At the

same time, we require Φk
v ≥Φ ′kv . Combining both expressions, we have Φk

v = max(Φ ′kv ,Φ
k
u +Rk

u− p ·T k).

Note that, because offsets are determined from source to sink (Liu and Anderson, 2011), by the definition

of a forward delay, Φk
u is available when Φk

v is determined. Note also that the method above can be generalized

for the case wherein forward delay edges are directed from several nodes to the node τk
v .

K. Yang et al. (2015) proposed instead to replace each forward delay edge with a regular forward edge.

Effectively, such a replacement is equivalent to the computation of Φk
v with p = 0, so our approach generalizes

theirs.

3.1.3 The Rp-Sporadic Task Model

We now formally define the rp-sporadic task model, which permits per-task parallelism to be specified.

Under this model, the ith task is specified as τi = (Φi,Ti,Ci,Pi), where Φi, Ti, and Ci are as defined in

Section 2.4.4 (but omitting the graph index, as it is not relevant to us here), and Pi is the parallelism level

allowed for jobs of τi.

As in existing response-time analysis, we require

U ≤ m, (3.1)
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or the entire system can become overutilized, with response times being unbounded. Additionally, at most Pi

jobs of a task τi can execute at once, so we require

∀i : ui ≤ Pi. (3.2)

In particular, with jobs of τi restricted to execute on at most Pi processors at any time, if ui > Pi, jobs execute

for their full WCET, and τi releases jobs as early as possible, then the response time of τi will grow without

bound.

3.2 Trading Off History and Response Time

Recall from Section 2.4.1 that the response time of a job is the length of the interval between its release

and finish times. The response times of rp-sporadic tasks can be bounded using analysis provided by Amert

et al. (2019).3 In this section, we first give an overview of the closed-form response-time bound. Then, we

explore the history-versus-response-time trade-off through an experimental evaluation.

3.2.1 Bounding Response Times for Rp-Sporadic Tasks

We facilitate our discussion of such bound computations with a running example, using the task set

depicted in Figure 3.3 with task parameters given in Table 3.1.

Example 3.3. Consider the task set depicted in Figure 3.3 with task parameters given in Table 3.1. In order

to apply the bounds provided by Amert et al. (2019), we must first verify that the feasibility conditions given

by Equations (3.1) and (3.2) are satisfied.

For this example, assume that m = 3. Equation (3.1) is satisfied, as U = 2.8. Additionally, note that for

all tasks, Pi ≥ ui, so Equation (3.2) is also satisfied. Furthermore, as Pi ≤ 2, the precedence constraints are

not violated. ♦

The closed-form response-time bound for rp-sporadic tasks relies on the summed utilizations and WCETs

of the tasks with restricted parallelism. This required definition, as well as the bound, are copied below.

3The response-time analysis for rp-sporadic tasks was derived by a co-author, Sergey Voronov, and thus is not presented as a
contribution here.
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Table 3.1: Task parameters for the tasks in Figure 3.3, assuming a platform with m = 3 CPUs.

Task Graph Ci Ti Pi ui

τ1 τ1 4 10 m 0.4
τ2 τ1 12 10 2 1.2
τ3 τ1 2 10 m 0.2
τ4 τ2 1 5 m 0.2
τ5 τ2 4 5 1 0.8

𝜏2𝜏1 𝜏3 𝜏5𝜏4

DAG 𝜏1 DAG 𝜏2

Figure 3.3: An rp-sporadic task set derived from two DAGs, containing two supernodes, τ2 and τ5, both with
p = 2.

Definition 3.1. (Definition 5 in (Amert et al., 2019)) Call a task τi p-restricted (parallelism-restricted) if

Pi < m, and non-p-restricted if Pi ≥ m. Also, let

Ub
res = ∑

b largest values
τi is p-restricted

ui and Cb
res = ∑

b largest values
τi is p-restricted

Ci,

and let Ures =Un
res and Cres =Cn

res.

Corollary 3.1. (Corollary 1 in (Amert et al., 2019)) The response time of any task τi ∈ τ is bounded by

x+Ti +Ci, where

x =
(m−1)Cmax +Bmax +2Cres

m−Ures
. (3.3)

Furthermore, if there exists Pmin ≥ 1 such that for every p-restricted task τi, Pi ≥ Pmin, then Ures and Cres in

Equation (3.3) can be replaced with U `
res and C`

res, where `= b(m−1)/Pminc.

Corollary 3.1 gives a formula for calculating an upper bound on the response time of any task in the

system. To bound the end-to-end response time of a graph, we take the maximum sum of the response times

of each task along any path in the graph.

We assume global earliest-deadline first (G-EDF) scheduling on a system with m CPUs, and, as discussed

in Section 3.1.2, we also assume that access to any accelerators (e.g., a GPU) is non-preemptive and managed

by locking protocols. Therefore, we let Bmax be the duration of the longest non-preemptive accelerator access.
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Example 3.3 (continued). Assume a maximum non-preemptive GPU access duration of Bmax = 2 time

units. For the system described in Table 3.1, Cmax = 12, C`
res = 16, U `

res = 2.0. Corollary 3.1 gives a value

for x of 58. Thus, the end-to-end response-time bounds of the graphs are R1 = 72+ 80+ 70 = 222 and

R2 = 64+67 = 131 time units. ♦

To compare bounds between graphs with different periods, we instead will refer to the maximum relative

tardiness of a graph τk. Recall that tardiness is defined as the amount by which a job misses its deadline:

δi, j = max{0, fi, j−di, j}, where the absolute deadline di, j is assumed to be implicit (i.e., di, j = ri, j +Ti). Note

that tardiness cannot be negative. Given a response-time bound Rk for a graph, we can thus compute the

maximum relative tardiness using
(
Rk−T k

)
/T k (recall that every node in a graph shares the same period).

Example 3.3 (continued). Graph τ1 has a period of 10 time units and a response-time bound of R1 = 222

time units. Thus, its maximum relative tardiness is 21.2. Similarly, graph τ2 has a period of 5 time units and

a response-time bound of R2 = 131 time units, so its maximum relative tardiness is 25.2. ♦

Although the per-task parallelism Pi is constrained from below by the utilization of a supernode, it can be

as high as p, albeit with a potential loss of algorithmic accuracy. Increasing Pi can increase Pmin and thus

decrease `, leading to drastic reductions in analytical response-time bounds.

Example 3.3 (continued). Assume that p = 2 for both supernodes. If we instead set P5 = 2, ` decreases

to 1, reducing C`
res and U `

res to 12 and 1.2, respectively. As a result, x = 27.8, so the graphs’ response-time

bounds are reduced to R1 = 131.3 and R2 = 70.6 time units, respectively. Therefore, the maximum relative

tardiness bounds are reduced to 12.1 and 13.1, respectively, a reduction of over 42%. ♦

This example demonstrates that allowing older history to be used can reduce the analytical bounds

on tardiness (and thus response times) for a task system. Next, we provide an in-depth evaluation of this

history-versus-response-time trade-off.

3.2.2 Evaluating the History-versus-Response-Time Trade-Off

Example 3.3 in Section 3.2.1 provides intuition for our study of the history-versus-response-time trade-off.

We now explore the impact of changing Pmin on the maximum end-to-end relative tardiness of a graph-based

task system.4

4Source code is available at https://cs.unc.edu/~anderson/diss/tanyadiss/.
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3.2.2.1 Experimental Setup

We consider a platform with m = 16 CPUs. Recall from the response-time bound calculation in

Corollary 3.1 that Bmax is independent of Pmin. Thus, we did not consider GPU usage in our experiments (so

Bmax = 0). Instead, we focused on the effects of changing Ures and Cres by increasing Pmin past the minimum

possible value given by the per-task feasibility condition in Equation (3.2).

In this study, we generated 200,000 graph-based task systems, with system utilizations in the range

[2.5,16]. To generate a task system, we first chose a target system utilization value, and selected per-task

utilizations from a given distribution (described below) until an additional task would cause total utilization

to exceed m. Then, tasks were randomly assigned to graphs such that four to eight tasks were assigned to

each graph (once fewer than four tasks remained, the rest were assigned to a final graph). Finally, edges were

selected with probability 0.3, according to the Erdős-Rényi graph generation model (Erdős and Rényi, 1958),

which is commonly used to generate random graphs. Note that as each of the possible edges in the graph was

independently added with probability 0.3, we do not require a graph to be connected.

We selected per-task utilizations from two distributions: uniform and exponential. For the uniform distri-

bution, the utilization of each task was independently chosen uniformly from [0,1.5). Thus, approximately

one-third of tasks generated using this distribution required Pi ≥ 2. When using the exponential distribution,

each task had utilization chosen independently from an exponential distribution with mean 0.6. With both

distributions, any task with ui ≤ 1 was assumed to have Pi = m; otherwise, Pi was set to duie. Periods were

chosen per-graph uniformly from [10,100] time units.

3.2.2.2 Results

After computing the maximum relative tardiness for each task system, we grouped the results into system-

utilization buckets, with bucket sizes of 1.0 for low system utilizations to 0.5 for high system utilizations,

and report the average of the maximum relative tardiness values for each utilization bucket. The results of

our tardiness study are shown in Figure 3.4 and Figure 3.5 for uniform and exponential per-task utilizations,

respectively. Each figure contains three curves, one for each of three values of Pmin. In this context, Pmin

corresponds to the minimum Pi of any task in the system. To ensure that Pmin = 2 was valid for each task

system, we re-generated the per-task utilizations (as described in Section 3.2.2.1) if no task had Pi = 2.

Observation 3.1. Increasing Pmin decreases relative tardiness.
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Figure 3.4: Maximum relative tardiness results for uniform per-task utilizations.
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Figure 3.5: Maximum relative tardiness results for exponential per-task utilizations.
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Increasing Pmin corresponds to increasing the value of Pi for a subset of supernodes in the system, thus

allowing more parallelism through the use of (possibly) older history. Given Corollary 3.1, this should

decrease the relative tardiness for the task system. This intuition is borne out in both figures. Allowing

Pmin = 3 instead of Pmin = 2 led to a 19.5% reduction in relative tardiness for uniform tasks, and a 8.5%

reduction for exponential tasks. Allowing instead Pmin = 4 greatly increased the reduction in relative tardiness,

by 37.6% and 27.1% for uniform and exponential tasks, respectively.

These results demonstrate the significant analytical improvement that can be gained by allowing the use

of older historical information. However, this gain comes at a price; the accuracy side of the history-versus-

response-time-versus-accuracy trade-off will be explored next.

3.3 Trading Off History and Accuracy

We now describe the experiments we performed to evaluate the trade-off between history and accuracy.

After describing our evaluation metrics and experimental setup, we discuss our experimental results.5

3.3.1 Evaluation Metrics for MOT

In this section, we provide an overview of the standard metrics used to evaluate MOT applications (Stiefel-

hagen et al., 2006). We consider first the metrics defined for each frame, then the metrics for each trajectory,

and finally the high-level MOT metrics.

Per-frame metrics. A track represents not only where a target is believed to have been, but also a prediction

of where it will be in future frames. Thus, a track for which the prediction is matched to a detection is

considered a true positive, and we let TPt be the number of such matches for frame t. A false positive

represents a prediction that is not matched to any detected target, and a false negative corresponds to an

unmatched detection. These are represented by FPt and FNt , respectively. The ground-truth number of

targets present in frame t is represented by GTt .

The final per-frame metric is the number of ID switches. We use the stricter definition given by Milan

et al. (2016): an ID switch (IDSWt) occurs for frame t when a target is assigned a track that is different from

its prior track assignment. In the best case, TPt = GTt and FNt = FPt = IDSWt = 0.

5Source code is available at https://cs.unc.edu/~anderson/diss/tanyadiss/.
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Per-trajectory metrics. In addition to per-frame metrics, we evaluate the results of tracking for each ground-

truth trajectory. Following the CLEAR 2006 evaluation (Stiefelhagen et al., 2006), we classify each target

as mostly tracked (MT) if it is successfully tracked (i.e., its detections are matched to track predictions) for

at least 80% of the frames for which it is present, mostly lost (ML) if it is tracked successfully for at most

20% of the frames for which it is present, and partially tracked (PT) otherwise. We can also measure the

continuity of each track by considering the track’s fragmentation count (FM). A fragmentation occurs when

a target’s trajectory becomes untracked and later becomes tracked again.

With an ideal tracker, all targets should be mostly tracked, and thus we would expect to find PT = ML = 0.

Additionally, we would also expect FM = 0.

Overall metrics. A number of overall metrics are standardly used in the CV literature to evaluate a tracker’s

performance holistically. The Multiple Object Tracking Accuracy (MOTA) metric combines information

about the false positives, false negatives, and ID switches:

MOTA = 1− ∑t (FNt +FPt + IDSWt)

∑t GTt
.

For an ideal tracker, MOTA = 1.0. However, if maintaining the correct ID of each tracked object is

not needed for a given application, the MOTA might not appropriately represent the success of the tracker.

Instead, A-MOTA can be used in this case, as it ignores ID switches:

A-MOTA = 1− ∑t (FNt +FPt)

∑t GTt
.

The other common overall metric for MOT applications is the Multiple Object Tracking Precision

(MOTP), given as a ratio of the distances between ground-truth object positions and predicted track positions

and the number of matches made, summed over all objects and all frames:

MOTP =
∑t,o dt,o

∑t ct
.

In this expression, dt,o is the IoU of the bounding boxes of object o and its predicted track position at

frame t, and ct is the number of detection-track matches found at frame t. For an ideal tracking system,

MOTP = 1.0 (i.e., each detection-track match has perfect overlap).
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3.3.2 Experimental Setup

We now give an overview of our traffic scenario selection, and then discuss how we varied the age of

historical data provided to the MOT application.

3.3.2.1 Driving Scenarios in CARLA

We evaluated the impact of increasing p in a broad range of scenarios generated from CARLA. These

scenarios need to be challenging driving situations that require highly accurate tracking. The CARLA Chal-

lenge provides scenarios that are selected from the NHTSA (National Highway Traffic Safety Administration)

pre-crash typology (Najm et al., 2007), which provides scenarios that are identified as common pre-crash

scenarios of all police-reported crashes. From these scenarios, we selected the list below, which heavily

rely on tracking and prediction, as our focus. We modified each scenario by adding additional vehicles

and pedestrians to make the tracking task more challenging (as we aim to track all visible vehicles and

pedestrians). In the descriptions that follow, “ego-vehicle” refers to the vehicle that navigates the scenario.

• Scenario 1: Obstacle avoidance with prior action. As the ego-vehicle turns right at a red light, an

unexpected obstacle (a cyclist) crosses into the road. The ego-vehicle must perform an emergency

brake or an avoidance maneuver.

• Scenario 2: Right turn at an intersection with crossing traffic. The ego-vehicle must turn right on red

at an intersection and in the presence of crossing traffic. In this scenario, the ego-vehicle must track all

crossing vehicles, yielding to avoid collisions.

• Scenario 3: Crossing traffic running a red light at an intersection. As the ego-vehicle enters an

intersection going straight, a vehicle runs a red light from the right. In this scenario, the ego-vehicle

must perform a collision avoidance maneuver.

• Scenario 4: Unprotected left turn at an intersection with oncoming traffic. The ego-vehicle must

perform an unprotected left turn at an intersection, yielding to oncoming traffic.

• Scenario 5: Lane changing to pass a slow-moving leading vehicle. While driving on the highway, the

vehicle in front of the ego-vehicle rapidly decelerates. The ego-vehicle must change lanes to avoid a

collision, yielding to traffic in the next lane.
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The five scenarios are depicted in Figure 3.6. Scenarios 1-4 feature city driving; Scenario 5 involves

highway speeds. In our experiments, each scene is populated with additional vehicles and pedestrians that

obey all traffic laws (e.g., additional pedestrians do not enter the road, additional vehicles and cyclists obey

stop lights and lane markings). Scenario 1 features three vehicles and twelve pedestrians. Scenarios 2-4

have six vehicles, and Scenarios 2 and 4 also have four pedestrians. Scenario 5 contains eleven vehicles.

For each scenario, the start position and path of the ego-vehicle are indicated by a yellow star and solid

line, respectively. The cyclist/vehicle the ego-vehicle must avoid are indicated with a pink dashed path and

appropriate icon; additional vehicles and pedestrians are not shown.

3.3.2.2 Varying the Age of History

For our MOT experiments, we implemented the tracking-by-detection pipeline in Figure 3.7. This graph

contains a cycle comprised of tasks τ1, τ3, and τ4. The prior-history requirement p for the back edge from τ4

to τ1 is what we seek to vary; increasing p means that the track prediction step (τ1) may use less-recently

updated tracks to make predictions.

By definition, p is the maximum difference in time steps between the completion of an invocation of

τ4 and when those results are used by τ1. However, more recent results can be used, if available. In our

evaluation, we represent the distribution of available prior results using a probability mass function (PMF),

which we represent as a tuple.

To measure the impact of varying p in our experiments, we executed the code sequentially, and for each

invocation of τ1, we chose the prior history to use based on a random number sampled from the PMF.6 For

example, for a PMF represented as (0.8,0.2), we selected one frame prior with probability 0.8, and two

frames prior with probability 0.2.

We evaluated eight PMFs, listed in Table 3.2, chosen to answer four questions:

Q1 What if the most recent data are sometimes unavailable?

Q2 How much of an impact does the worst-case age have if the most recent data are usually available?

Q3 Is it better to have a higher chance of more recent data, or a lower worst-case age?

Q4 How does the average case differ from the worst case?

6The availability of prior results is unlikely to be a random variable, as we have assumed here. Rather, if the result of one frame is
delayed, the next frame is likely to be subject to similar delaying effects; we leave such explorations to future work.
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(a) Scenario 1: Obstacle avoidance with prior action. (b) Scenario 2: Right turn at an intersection with crossing traffic.

(c) Scenario 3: Crossing traffic running a red light at an intersec-
tion.

(d) Scenario 4: Unprotected left turn at an intersection with
oncoming traffic.

(e) Scenario 5: Lane changing to pass a slow-moving leading
vehicle.

Figure 3.6: The five scenarios we considered.
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Figure 3.7: The tracking-by-detection pipeline.

Table 3.2: Probability mass functions (PMFs) corresponding to available history results.

PMF (represented as a tuple)
PMF 1 (0.9,0.09,0.009,0.001)
PMF 2 (0.8,0.2)
PMF 3 (0.8,0.02,0.02,0.16)
PMF 4 (0.5,0.4,0.1)

PMF Hp

(
0, p−1. . . ,0,1

)
The PMFs are described as tuples: (x,y) indicates that the result of one and two frames prior are available with probabilities x and y,
respectively. In PMF Hp, 0, p−1. . . ,0 denotes a sequence of p−1 0’s, where p ranges over (1, ...,4). Note that the values of each PMF
sum to 1.0.

Comparing PMFs 1 and H1 should answer question Q1. We can answer question Q2 by comparing

PMFs 2 and 3. For question Q3 we compare PMFs 3 and 4. Finally, we compare PMFs 1-4 to the

corresponding worst-case PMF Hp (e.g., PMFs 4 and H3) to answer question Q4.

The answers to these four questions will give insight into the history-versus-accuracy trade-off. We

anticipate that PMF H1 will perform the best, but that PMFs 1 and 2 may have similarly high accuracy to

PMF H1. If this is the case, then we can conclude that allowing a small reduction in accuracy is acceptable if

it enables response-time bounds to be computed (as PMFs 1 and 2 enable intra-task parallelism of Pi = 4 and

Pi = 2, respectively) for otherwise-unschedulable tasks.

3.3.3 Perfect Sensing

We now describe the results of tracking both vehicles and pedestrians in the scenarios listed in Sec-

tion 3.3.2.1, sampling from the PMFs in Table 3.2. We first consider tracking in isolation, i.e., in the

presence of perfect sensors. For each frame of the video, we provide the ground-truth 3D motion of the

camera (representing perfect ego-motion estimation), ground-truth 2D bounding boxes (as if from a perfect
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detector), and the 3D distance to each target within the scene (corresponding to perfect stereo estimation). In

Section 3.3.4, we remove the assumption of a perfect detector.

Each tracking scenario lasted 300 camera frames. We evaluated tracking accuracy and precision,

comparing the results for each PMF to those of PMF H1. For each scenario, we controlled the vehicle

manually and collected RGB images generated by a single front-facing camera, as well as ground-truth

bounding boxes of all vehicles and pedestrians that were captured by the camera and the ground-truth motion

of the camera itself.

The A-MOTA, MOTP, and average FM count for each scenario and PMF are reported in Table 3.3 for

vehicle tracking and Table 3.4 for pedestrian tracking (note that Scenarios 3 and 5 had no pedestrians). For

PMFs 1-4, we repeated the scenario 100 times, and report the average A-MOTA, MOTP, and FM count results.

Given these data, we can now answer the four questions posed in Section 3.3.2.2.

Q1: What if the most recent data are sometimes unavailable? To explore this question, we compare the

results of PMFs 1 and H1. As PMF 1 has the most recent data available with probability 0.9, we expect

that the accuracy and precision will be comparable to PMF H1, for which the most recent data are always

available.

Comparing the two columns in Tables 3.3 and 3.4, we see that PMF 1 has an A-MOTA score within

0.62% and 0.90% of that of PMF H1 across all scenarios for vehicles and pedestrians, respectively. Similarly,

the MOTP score for PMF 1 is within 2.07% and 1.61% of that of PMF H1 for vehicles and pedestrians,

respectively. The average FM count is only slightly larger for PMF 1 in all scenarios as well.

Q2: How much of an impact does the worst-case age have if the most recent data are usually available?

This question can be answered by comparing PMFs 2 and 3. For both distributions, the most recent data are

available with probability 0.8. However, PMF 3 represents a bimodal distribution, which may result if tasks

become greatly delayed; its worst-case age is four frames, which occurs with probability 0.16. For PMF 2,

the worst-case data age is only two frames.

For pedestrian tracking, PMF 3 was within at most 1.14% of PMF 2 in terms of A-MOTA across all

scenarios. For vehicle tracking, this difference dropped to 0.73%. PMF 3 had MOTP within 4.95% that of

PMF 2 across all scenarios and both target types. Additionally, PMF 3 resulted in up to 2.5 times as many

track fragmentations than PMF 2. These results suggest that although it is better to have a lower worst-case
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Table 3.3: Results for vehicle tracking using ground-truth detections.

Metric PMF 1 PMF 2 PMF 3 PMF 4 PMF H1 PMF H2 PMF H3 PMF H4

A-MOTA 0.951 0.952 0.947 0.939 0.951 0.927 0.893 0.888
Scenario 1 MOTP 0.709 0.700 0.669 0.670 0.724 0.644 0.588 0.567

Avg. FM 1.117 1.160 1.503 1.350 1.000 1.667 2.000 2.667
A-MOTA 0.966 0.962 0.955 0.951 0.972 0.933 0.943 0.933

Scenario 2 MOTP 0.730 0.724 0.699 0.697 0.736 0.669 0.609 0.560
Avg. FM 0.590 0.688 1.077 1.070 0.500 1.500 1.833 1.667
A-MOTA 0.982 0.980 0.977 0.974 0.985 0.973 0.954 0.931

Scenario 3 MOTP 0.721 0.714 0.689 0.686 0.730 0.656 0.628 0.580
Avg. FM 0.553 0.642 1.110 1.058 0.500 1.333 1.833 2.000
A-MOTA 0.965 0.962 0.957 0.952 0.968 0.939 0.934 0.908

Scenario 4 MOTP 0.777 0.772 0.751 0.751 0.784 0.741 0.690 0.650
Avg. FM 1.583 1.622 1.985 1.948 1.500 2.500 2.500 2.333
A-MOTA 0.978 0.976 0.970 0.968 0.982 0.957 0.942 0.904

Scenario 5 MOTP 0.652 0.646 0.614 0.607 0.659 0.575 0.511 0.483
Avg. FM 0.695 0.785 1.140 1.122 0.636 1.636 2.455 2.455

The best result in each row, as well as any within 1% of the best, are shown in bold.

age, the differences in both accuracy and precision are not extreme. However, higher worst-case age does

contribute to more track fragmentations.

Q3: Is it better to have a higher chance of more recent data, or a lower worst-case age? PMFs 3 and 4

were chosen to answer this question: PMF 3 has more likely availability of the most recent results (probability

0.8 rather than 0.5), but has greater worst-case age (four frames versus three frames).

The results for PMFs 3 and 4 indicate that recency of available data is slightly more important than the

worst-case data age. PMF 3 outperformed PMF 4 for A-MOTA and MOTP in seven out of eight comparisons

each. However, the difference in these scores was only up to 0.84% for A-MOTA and 1.89% for MOTP. On

the other hand, PMF 3 resulted in higher average FM count in six out of eight comparisons, although in the

worst case PMF 3 only had 10.18% more track fragmentations. Therefore, although PMF 3 seems to perform

slightly better, our experiments have not demonstrated a clear answer to this question.

Q4: How does the average case differ from the worst case? For the average and worst cases, we compare

PMFs 1-4 to the corresponding worst-case PMF Hps. We expect the average case to result in higher A-MOTA

and MOTP scores and lower average FM counts, and for this difference to become more pronounced as the

worst-case history age increases.
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Table 3.4: Results for pedestrian tracking using ground-truth detections.

Metric PMF 1 PMF 2 PMF 3 PMF 4 PMF H1 PMF H2 PMF H3 PMF H4

A-MOTA 0.884 0.878 0.868 0.863 0.892 0.847 0.842 0.825
Scenario 1 MOTP 0.672 0.663 0.634 0.622 0.683 0.601 0.569 0.541

Avg. FM 0.853 0.888 1.324 1.237 0.667 1.917 1.583 1.667
A-MOTA 0.968 0.969 0.959 0.962 0.971 0.962 0.956 0.936

Scenario 2 MOTP 0.808 0.803 0.785 0.783 0.814 0.767 0.731 0.702
Avg. FM 0.225 0.220 0.568 0.590 0.000 1.000 1.000 1.000
A-MOTA 0.936 0.934 0.928 0.927 0.938 0.920 0.856 0.840

Scenario 4 MOTP 0.794 0.788 0.767 0.767 0.800 0.748 0.736 0.720
Avg. FM 0.135 0.178 0.445 0.525 0.000 1.000 1.000 1.000

The best result in each row, as well as any within 1% of the best, are shown in bold.

For a worst-case history age of two, we compare PMF 2 to PMF H2: PMF 2 performed better than

PMF H2 in every comparison. Similarly, for worst-case history age of three frames, PMF 4 outperformed

PMF H3 in every comparison. As expected, for a worst-case history age of four frames, both PMF 1 and

PMF 3 beat the worst-case PMF H4 in every comparison, and for most by a large margin.

The history-versus-accuracy trade-off. The experimental results relating to question Q4 hint at our overall

conclusion: allowing the infrequent use of older results in a MOT application has only minimal impact on the

application’s accuracy and precision, while allowing the computation of bounded response times for use in

real-time certification. To explore this a little further, we make a final comparison against PMF H2, which

always uses the results of two frames prior, and thus corresponds to tracking using only half of the frames.

PMFs 1-4 are indexed in order of the expected results. That is, prior to performing experiments, we

expected PMF 1 to perform the best and PMF 4 to perform the worst of this group. In fact, comparing these

four PMFs to PMF H2, we see that PMF H2 did not perform as well as PMF 1 or PMF 2 in any comparison.

Additionally, PMF H2 scored better than PMF 3 or PMF 4 in only one of the 24 comparisons.

Although results hold for both city- and highway-driving scenarios, the motion of the ego-vehicle does

factor into the trade-off. Scenarios 1-4 feature city driving (of these, Scenario 3 involves the highest speed, as

it does not involve the ego-vehicle turning sharply), and Scenario 5 occurs at highway speeds with only minor

direction changes. As shown in Table 3.3, direction changes were inversely correlated with A-MOTA scores:

Scenarios 3 and 5 had much higher A-MOTA values for PMFs 1-4 and PMF H1 than the other scenarios. For

MOTP, the speed seemed to be the largest factor: Scenario 5 had much lower MOTP than all other scenarios.
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3.3.4 Camera-Based Sensing

We have thus far examined the history-versus-accuracy trade-off in the presence of perfect detections, i.e.

using the ground-truth bounding boxes of pedestrians and vehicles. However, in real-world scenarios, such

ground-truth data are not available, which necessitates the use of CV-based object-detection algorithms.

We chose for a detector a state-of-the-art deep-learning model, Faster R-CNN (Ren et al., 2015), which

has been shown to achieve a high level of accuracy. We used TensorFlow (Abadi et al., 2016) to train a Faster

R-CNN model with the Inception v2 feature extractor (Ioffe and Szegedy, 2015) (that was pre-trained on

the COCO dataset (Huang et al., 2017; Lin et al., 2014)) on a small dataset of 1,300 images of bicycles,

motorbikes, cars, and pedestrians generated from CARLA (DanielHfnr, 2020; tkortz, 2020).

We measured the detection accuracy of our model using a popular object-detection accuracy metric, the

mean average precision (mAP) (Everingham et al., 2010; Hui, 2020). After over 42,000 training iterations,

our Faster R-CNN model achieved a mAP score of 92.89%, indicating a high level of detection accuracy; a

perfect object-detection algorithm would have a mAP score of 100%.

We now examine the impact of imperfect detections on tracking accuracy and precision. For this second

set of accuracy experiments, we replaced the ground-truth vehicle and pedestrian detections with those

generated by the Faster R-CNN model; the remainder of the experimental setup was unchanged. The

resulting A-MOTA and MOTP values are given in Tables 3.5 and 3.6. Note that computing FM counts requires

mapping the ground-truth trajectories to detections in order to determine whether a target’s trajectory becomes

untracked and later re-tracked; when using detections produced by the Faster R-CNN model, we did not have

such a ground-truth-based mapping, so we do not include FM counts in Tables 3.5 and 3.6.

The impact of imperfect detections. We first compare the results using ground-truth data (Tables 3.3

and 3.4) with those from imperfect detections (Tables 3.5 and 3.6). As we would expect, using a detector

decreased the accuracy of vehicle tracking and the precision of pedestrian tracking. Furthermore, PMF H1

had the highest MOTP in each scenario for both vehicles and pedestrians. However, accuracy seems to be

more affected by potentially incorrect detections. For example, PMF 4 resulted in the highest A-MOTA score

for vehicles in Scenario 1, despite using older data with probability 0.5, and PMF H4, which corresponds

to always using data from four frames prior) had the highest A-MOTA score for pedestrians in Scenario 2.

Altogether, our results suggest that tracking of pedestrians is less impacted by imperfect data, whereas for

vehicles the impact can be quite large.
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Table 3.5: Results for vehicle tracking using Faster R-CNN to detect vehicles.

Metric PMF 1 PMF 2 PMF 3 PMF 4 PMF H1 PMF H2 PMF H3 PMF H4

Scenario 1 A-MOTA 0.741 0.785 0.810 0.844 0.761 0.727 0.698 0.659
MOTP 0.727 0.721 0.664 0.696 0.728 0.642 0.584 0.561

Scenario 2 A-MOTA 0.833 0.844 0.810 0.815 0.836 0.836 0.837 0.833
MOTP 0.704 0.689 0.673 0.649 0.705 0.631 0.593 0.547

Scenario 3 A-MOTA 0.896 0.874 0.883 0.877 0.904 0.858 0.850 0.836
MOTP 0.601 0.586 0.556 0.573 0.609 0.532 0.506 0.496

Scenario 4 A-MOTA 0.828 0.818 0.793 0.802 0.831 0.817 0.810 0.789
MOTP 0.766 0.757 0.711 0.712 0.766 0.712 0.688 0.656

Scenario 5 A-MOTA 0.968 0.968 0.964 0.964 0.970 0.960 0.961 0.949
MOTP 0.747 0.728 0.703 0.703 0.758 0.659 0.579 0.536

The best result in each row, as well as any within 1% of the best, are shown in bold.

Table 3.6: Results for pedestrian tracking using Faster R-CNN to detect pedestrians.

Metric PMF 1 PMF 2 PMF 3 PMF 4 PMF H1 PMF H2 PMF H3 PMF H4

Scenario 1 A-MOTA 0.882 0.888 0.894 0.873 0.890 0.847 0.834 0.835
MOTP 0.639 0.640 0.600 0.612 0.654 0.622 0.535 0.449

Scenario 2 A-MOTA 0.697 0.688 0.717 0.697 0.703 0.641 0.706 0.723
MOTP 0.729 0.745 0.690 0.734 0.751 0.707 0.681 0.663

Scenario 4 A-MOTA 0.938 0.938 0.934 0.938 0.938 0.938 0.936 0.920
MOTP 0.763 0.745 0.723 0.727 0.769 0.721 0.694 0.663

The best result in each row, as well as any within 1% of the best, are shown in bold.

Q1 through Q4, revisited. For question Q1, we again compare PMF 1 and PMF H1. The MOTP score for

PMF 1 was at most 2.93% lower than that of PMF H1, indicating that there is still a precision loss due to

having older data. Similarly for A-MOTA, the score for PMF 1 was at most 2.63% lower than that of PMF H1.

In comparing PMF 2 and PMF 3, we see that having a higher worst-case history age (PMF 3) corre-

sponded to much lower MOTP in all scenarios: MOTP was decreased by up to 7.91% compared to using

PMF 2. However, A-MOTA was much more varied in the presence of a CV-based vehicle detector. In four of

the eight comparisons, PMF 3 resulted in higher accuracy than PMF 2.

For the comparison for questions Q3, we again see different trends for precision relative to accuracy. In

four of the eight comparisons, PMF 3 corresponded to lower accuracy than PMF 4; for MOTP, this number

was six out of eight. Combined with the comparison for question Q2, this suggests that MOT precision relies

on having lower worst-case history age, but MOT accuracy does not have such a clear dependence.
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Finally, we revisit the comparisons related to question Q4. As with ground-truth detections, PMFs 1 and 3

usually outperformed PMF H4, both by a large margin; for Scenario 2, however, this trend was surprisingly

reversed. The differences for the other comparisons were less pronounced with CV-based detections than

ground-truth detections: PMF 4 usually outperformed PMF H3 in A-MOTA but had much higher MOTP, and

the same trend held for PMF 2 and PMF H2.

The trade-off, revisited. Compared to always having the most recent data (i.e., PMF H1), the lowest

A-MOTA score among PMFs 1-4 was reduced by 4.57%, and the lowest MOTP score was reduced by 8.79%.

This suggests only a minor drop in accuracy, with a moderate drop in precision, as a result of using older data.

It is also worth restating that the introduction of a real detector into the MOT pipeline makes these results

less definitive, however: in some scenarios, using older data actually resulted in higher precision or accuracy.

However, if requiring p = 1 results in a system for which no response-time bounds can be computed, then

measuring accuracy relative to PMF H1 no longer has any relevance. Instead, we compare against PMF H2,

to compare to a system in which the history age of two is always used. In this case, both precision and

accuracy are somewhat robust to a potentially imperfect detector. This is evident when comparing PMF H2

to PMFs 1-2, which correspond to situations in which the most recent data are available with probability at

least 0.8 and the the worst-case age is two with probability at least 0.99. Aside from a single comparison

in which PMF H2 has slightly higher accuracy, when using our Faster R-CNN model to detect vehicles

and pedestrians, PMFs 1 and 2 had 0.12-8.74% higher accuracy than that of PMF H2 and 2.73-13.35%

higher tracking precision. These results suggest that for a system that would otherwise be unschedulable, the

increased worst-case history requirement due to increased parallelism only slightly reduces MOT accuracy

and precision, and that reduction can be greatly mitigated if the most recent results are usually available.

3.4 Chapter Summary

In this chapter, we have shown that a new real-time task model can enable scheduling of cyclic real-time

processing graphs if p > 1 is allowed for any cycle with utilization exceeding 1.0. Such graphs are crucial to

consider in real-time certification processes applicable to autonomous vehicles due to the prevalence of use

cases where historical information must be tracked.

Our new task model reveals interesting trade-offs pertaining to graph cycles that hinge on response

times, allowed parallelism, and CV accuracy. We explored the history-versus-response-time trade-off through
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synthetic experiments, and demonstrated that relative tardiness can be reduced by as much as 37.6% by

increasing the minimum intra-task parallelism as high as Pmin = 4. However, Pmin > 1 permits non-immediate

back history to be used, which in the context of CV tracking applications could potentially compromise

tracking accuracy. We have additionally studied this issue in detail using a tracking algorithm and data

generated in the CARLA autonomous-driving simulator. In our experiments, allowing Pi to be as high as 4

resulted in at most a 2.63% drop in accuracy, as long as immediate back history is available approximately

90% of the time.

The reduction of response-time bounds enabled by the trade-off explored in this chapter can improve the

safety of the resulting system by ensuring that ADAS-related tasks may complete execution more quickly.

Although reducing the accuracy of the resulting computations may serve to decrease safety, it is worth

noting that accuracy loss is mainly being contemplated here to ensure the schedulability of graphs that would

otherwise be unschedulable. In our evaluations of this trade-off, we have not sought to explore how increasing

parallelism directly impacts safety; we leave such an exploration to future work.

Acknowledgements. The initial work on the rp-sporadic task model presented in Section 3.1 and the bounds
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CHAPTER 4: USING NVIDIA GPUS IN REAL-TIME APPLICATIONS1

In this chapter, we explore the challenges that arise when using NVIDIA GPUs in real-time applications.

The first such challenge is centered around the scheduling policies that determine the ordering of work

on a GPU. Despite the extensive documentation provided by NVIDIA, important details are omitted, such

as what conditions permit multiple computations to execute concurrently on a GPU. Through extensive

experimentation, we were able to discern many of these details.

Unfortunately, complexities arise in even the simplest GPU-using applications. Our experiments revealed

a series of pitfalls, many relating to unexpected sources of synchronization on the GPU, that may entrap

even the most seasoned GPU programmer. We designed CUPiDRT (CUDA Pitfall Detector for Real-Time

Systems), a software tool to detect the most problematic of these pitfalls, and illustrated the benefits of fixing

the detected issues through a case-study evaluation.

Organization. The remainder of this chapter is organized as follows. In Section 4.1, we overview what

details are already known about scheduling on NVIDIA GPUs, and what open questions remain. We

answer these questions in Sections 4.2 and 4.3 by providing a series of scheduling rules that we validated

experimentally. In Section 4.4, we detail the possible pitfalls when using NVIDIA GPUs in real-time

applications. Then we describe CUPiDRT and present an experimental evaluation of its use in Sections 4.5

and 4.6, respectively. Finally, we conclude our discussion of GPU use in real-time applications in Section 4.7.

1Contents of this chapter previously appeared in preliminary form in the following papers:

Amert, T., Otterness, N., Yang, M., Anderson, J. H., and Smith, F. D. (2017). GPU scheduling on the NVIDIA TX2:
Hidden details revealed. In Proceedings of the 38th IEEE Real-Time Systems Symposium, pages 104–115.

Yang, M., Otterness, N., Amert, T., Bakita, J., Anderson, J. H., and Smith, F. D. (2018b). Avoiding pitfalls when using
NVIDIA GPUs for real-time tasks in autonomous systems. In Proceedings of the 30th Euromicro Conference on Real-Time Systems,
pages 20:1–20:21.

Amert, T. and Anderson, J. H. (2021). CUPiDRT: Detecting improper GPU usage in real-time applications. In Proceed-
ings of the 24th International Symposium on Real-Time Distributed Computing, pages 86–95.
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Figure 4.1: The relation between CUDA programs, kernels, and thread blocks.

4.1 Documented Ordering and Execution of NVIDIA GPU Operations

As discussed in Section 2.3.2, a CUDA program consists of CPU code that invokes GPU code contained

in CUDA kernels, each of which is executed by running a programmer-specified number of thread blocks on

the GPU. This hierarchy is depicted in Figure 4.1 for two CUDA programs executed by processes running on

different CPUs in a multicore platform.

Multiple thread blocks from the same CUDA kernel can execute concurrently if sufficient GPU resources

exist, although this is not depicted in Figure 4.1. The figure distinguishes between block time, which is the

time taken to execute a single thread block, kernel time, which is the time taken to execute a single kernel

(from when its first block commences execution until its last block completes), and total time, which is the

time taken to execute an entire CUDA program (including CPU portions). We refer to copy operations and

kernels collectively as GPU operations. For simplicity, copy operations are not depicted in Figure 4.1.

In CUDA, GPU operations can be ordered by associating them with a stream. Operations in a given

stream are executed in FIFO order, but the order of execution across different streams is determined by the

GPU scheduling policy. Kernels from different streams may execute concurrently or even out of launch-time

order. Kernel executions and copy operations from different streams can also operate concurrently depending

on the GPU hardware. By default, GPU operations from all CPU programs are inserted into the single default

stream. Unless specified otherwise, this is the NULL stream (NVIDIA, 2019b). Programmers can create and

use additional streams to allow for concurrent operations.
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Kernel launches are supposed to be asynchronous with respect to the CPU program:2 when the CUDA

kernel-launch call returns, the CPU can perform additional computation including issuing more GPU

operations. By default, copy operations are synchronous with respect to a CPU program: they do not return

until the copy is complete. Asynchronous copy operations are also available so the CPU program can continue

to perform computations, kernel launches, or copies. Copy operations, whether synchronous or asynchronous,

will not start until all prior kernel launches from the same stream have finished.

To our knowledge, complete details of kernel attributes and policies used by NVIDIA to schedule

GPU operations are not available. The official CUDA documentation only states that operations within a

stream are processed in FIFO order, and that kernels from different streams may run concurrently.3 An

NVIDIA developer presentation (Luitjens, 2014) gives slightly more information: the older Fermi architecture

multiplexed CUDA streams into a single internal queue based on issue order, and in the Kepler architecture,

this was expanded to include multiple internal queues.

Open questions. The NVIDIA documentation says that kernels submitted to different user-defined streams

may execute concurrently, but it does not make clear what the ordering is between blocks of those kernels.

Specifically, it is unclear whether each kernel must wait for the last block of the previous kernel to (a) finish

execution or (b) begin execution, or whether (c) blocks of one kernel can “cut ahead” of blocks of other

kernels, if space permits.

Example 4.1. Figure 4.2 depicts these potential scenarios. In this example, kernel K1 utilizes an entire SM,

and one block each of kernel K2 and K3 together use all threads; assume that kernels are named in order of

submission. The question lies in the timing of the block of K3 relative to the two blocks of K2.

In inset (a), blocks of one kernel must wait until all blocks of the previous kernel have completed. In

inset (b), K3 must wait only until all blocks of K2 have begun execution, rather than finished. Both insets (a)

and (b) depict non-work-conserving scheduling, as K3 is available but does not execute alongside the first

block of K2. One could hope that the scenario in inset (c) matches actual behavior—that a block of K3 could

“cut ahead” of the final block of K2, or else capacity is wasted as those threads are unused for the duration of

2The CUDA documentation uses a narrow definition of “asynchronous” that can be misleading; see Section 3.2.5.1 of the Program-
ming Guide for CUDA version 10.2.89 (NVIDIA, 2019b). We explore the unexpected occurrences of CPU-blocking kernel-launch
commands in Section 4.4.

3For example, this is how streams are described in Sections 9.1.2 and 10.2 of the Best Practices Guide for CUDA version
10.2.89 (NVIDIA, 2019a).
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Figure 4.2: Potential GPU scheduling options.

a block of K2. However, as we shall see in Section 4.2, inset (b) depicts the actual behavior of the NVIDIA

scheduler. ♦

Results such as these indicate that there are many possibilities for scheduling behavior, and the actual

scheduling model may have a large impact on possible platform utilization. Questions to answer include how

work is ordered between user-defined streams, the NULL stream, and prioritized streams. Additionally, these

interactions must be explained for both kernel execution and copy operations.

4.2 Basic Scheduling Rules for NVIDIA GPUs

In this section, we present GPU scheduling rules for NVIDIA GPUs assuming the GPU is accessed only

by CPU tasks that share an address space, using only user-specified streams. (We consider the NULL stream

in Section 4.3. Unless stated otherwise, “stream” should henceforth be taken to mean a user-specified stream.)

We inferred the scheduling rules given here by conducting extensive experiments using CUDA 10.2.89.4 The

experiments presented in this section were performed on an NVIDIA TX2; any discrepancies on other GPUs

are discussed in Section 4.3.3.

We begin by discussing one of these experiments in Section 4.2.1. We use this experiment as a continuing

example to explain various nuances of the rules, which are covered in full in Section 4.2.2. Before continuing,

we note that all code, scripts, and visualization tools developed for these experiments are available online.5

4.2.1 Motivating Experiment

The experiment considered in this section involved running instances of a synthetic benchmark that

launches several kernels. Our synthetic workload allows flexibility in configuring block resource requirements,

4These experiments were originally performed using CUDA 8.0.62, and have also been validated using CUDA 9.
5https://cs.unc.edu/~anderson/diss/tanyadiss/.
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Table 4.1: Details of kernels used in the experiment in Figure 4.3.

Start # Threads Shared Mem.
Kernel Launch Info Time (s) # Blocks per Block per Block Copy In Copy Out

K1 CPU 0, Stream S1 0.0 6 768 0 - -
K2 CPU 0, Stream S1 0.0 2 512 0 - 256MB
K3 CPU 0, Stream S1 0.0 2 1,024 0 256MB 256MB
K4 CPU 1, Stream S2 0.2 4 256 32KB - -
K5 CPU 1, Stream S3 0.4 2 256 32KB - 256MB
K6 CPU 1, Stream S2 2.8 2 512 0 - 256MB

Note that “start times” are defined relative to the end of benchmark initialization.

kernel durations, and copy operations. We have also experimented with a variety of real-world GPU workloads

involving image-processing functions common in autonomous-driving use cases, and to our knowledge, the

scheduling rules presented in this chapter are valid for such workloads as well.

In the experiment considered here, we configured each block of each benchmark kernel to spin for one

second. As detailed in Table 4.1, three kernels, K1, K2, and K3, were launched by a single task to a single

stream, and three additional kernels, K4, K5, and K6, were launched by a second task to two separate streams.

The kernels are numbered by launch time. Copy operations occurred in Stream S1 after K2 and before and

after K3, in Stream S2 after K6, and in Stream S3 after K5.

Figure 4.3 depicts the GPU timeline produced by this experiment. Each rectangle represents a block: the

jth block of kernel Kk is labeled “Kk: j.” The left and right boundaries of each rectangle correspond to that

block’s start and end times, as measured on the GPU using the globaltimer register. The height of each

rectangle is the number of threads used by the block. The y-position of each rectangle indicates the SM upon

which it executed. Arrows below the x-axis indicate kernel launch times. Dashed lines correspond to time

points used in the continuing example covered in Section 4.2.2.

4.2.2 Scheduling Rules

With respect to kernels, blocks are the schedulable entities: the basic job of the GPU scheduler is to

determine which thread blocks can be scheduled at any given time. These scheduling decisions are impacted

by the availability of limited GPU resources that blocks utilize such as GPU shared memory, registers, and

threads. Required resources are determined for the entire kernel when it is launched. All blocks of a given

kernel have the same resource requirements.
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Figure 4.3: Basic GPU scheduling experiment.

We say that a block is assigned to an SM when that block has been scheduled for execution on the SM.

A kernel is dispatched when at least one of its blocks is assigned, and is fully dispatched once all of its blocks

have been assigned. Similarly, we say that a copy operation is assigned to a CE once it has been selected to

be performed by the CE.

Example 4.2. Figure 4.4 provides additional details regarding the kernel launches in Figure 4.3. In Figure 4.4,

we use additional notation to depict copies: Cki denotes an input copy operation of kernel Kk, and Cko

denotes an output copy operation of kernel Kk. Each inset in Figure 4.4 corresponds to the time point in

Figure 4.3 with the same designation (e.g., inset (a) corresponds to the time point labeled “(a)”). We will

repeatedly revisit Figure 4.4 to illustrate individual scheduling rules as they are stated, and then consider the

entire example in full once all rules have been stated. ♦
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Figure 4.4: Detailed state information at various time points in Figure 4.3.

4.2.2.1 General Scheduling Rules

To our knowledge, the actual data structures used by an NVIDIA GPU to schedule copy operations and

kernels are undocumented. From our experiments, we hypothesize that several queues are used: one FIFO

EE queue per address space, one FIFO CE queue that is used to order copy operations for assignment to

the GPU’s CEs, and one FIFO queue per CUDA stream (including the NULL stream, which we consider in
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Section 4.3). We refer to the latter as stream queues. We begin by listing general rules that specify how copy

operations and kernels are moved between queues:

G1 A copy operation or kernel is enqueued on the stream queue for its stream when the associated CUDA

API function (memory transfer or kernel launch) is invoked.

G2 A kernel is enqueued on the EE queue when it reaches the head of its stream queue.

G3 A kernel at the head of the EE queue is dequeued from that queue once it becomes fully dispatched.

G4 A kernel is dequeued from its stream queue once all of its blocks complete execution.

Example 4.2 (continued). In Figure 4.4, there are two CUDA programs executing as CPU tasks τ0 and τ1

on CPUs 0 and 1, respectively, that share an address space. τ0 uses a single stream, S1, and τ1 uses two

streams, S2 and S3. The various queues, two SMs, and single CE are depicted in each inset of Figure 4.4.

The start times in Table 4.1 give the time the kernel, or its input copy operation if one exists, was issued.

Output copy operations, when present, immediately followed kernel completions.

In inset (a), τ0 has issued kernels K1, K2, and K3 and copy operations C2o, C3i, and C3o to stream S1.

τ1 has issued kernels K4 and K5 to streams S2 and S3, respectively, and copy operation C5o to stream S3.

The operations in streams S1 and S3 were enqueued in the order the CUDA commands were executed (Rule

G1). Kernels K1, K4, and K5 are at the heads of their respective stream queues, and have been placed in the

EE queue (Rule G2). K1 is dispatched to the GPU, so it is shaded in its stream queue. Each SM has two

blocks of K1 assigned to it.

In inset (b), the remaining blocks of K1 and K4 have been assigned to the GPU, so both K1 and K4 have

been removed from the EE queue (Rule G3), but remain in their respective stream queues (Rule G4). ♦

4.2.2.2 Non-Preemptive Execution

Ignoring complications considered later in Section 4.3, the kernel at the head of the EE queue will

non-preemptively block later-queued kernels:

X1 Only blocks of the kernel at the head of the EE queue are eligible to be assigned.

Example 4.2 (continued). In Figure 4.4 (a), two blocks of K1 have been assigned to each SM. As explained

in detail below, on each SM, there are enough resources available that two blocks from K4 could execute
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concurrently with the two blocks from K1. However, K4 is not at the head of the EE queue, so its blocks are

not eligible to be assigned (Rule X1). ♦

4.2.2.3 Rules Governing Thread Resources

On all recent NVIDIA GPU architectures (including Kepler, Maxwell, Pascal, and Volta), the total thread

count of all blocks assigned to an SM is limited to 2,048 per SM,6 and the total number of threads each block

can use is limited to 1,024. These resource limits can delay the kernel at the head of the EE queue:

R1 A block of the kernel at the head of the EE queue is eligible to be assigned only if its resource

constraints are met.

R2 A block of the kernel at the head of the EE queue is eligible to be assigned only if there are sufficient

thread resources available on some SM.

Example 4.2 (continued). In Figure 4.4 (a), K1 is at the head of the EE queue, so its blocks are eligible to

be assigned (Rule R1). However, only four blocks of K1 have been assigned. This is because, as seen in

Table 4.1, each block of K1 requires 768 threads, and each SM is limited to use at most 2,048 threads at once.

Thus, only four blocks of K1’s six can be scheduled together, so the remaining two must wait (Rule R2).

In inset (b), these remaining two blocks have been scheduled. K4, next in the EE queue, requires four

blocks of only 256 threads each, so all of its blocks fit on the GPU simultaneously with the remaining two

blocks of K1, and all four blocks of K4 are assigned. ♦

4.2.2.4 Rules Governing Shared-Memory Resources

Another constrained resource is the amount of GPU memory shared by threads in a block. On the TX2,

shared memory usage is limited to 64KB per SM and 48KB per block. Similar to threads, a block being

considered for assignment will not be assigned until all of the shared memory it requires is available.

R3 A block of the kernel at the head of the EE queue is eligible to be assigned only if there are sufficient

shared-memory resources available on some SM.

Example 4.2 (continued). Each block of K4 or K5 requires 32KB of shared memory, so at most two of

these blocks can be assigned concurrently on an SM. In Figure 4.4 (b), two blocks of K4 are assigned to each

6Recall from Section 2.3.1 that on the TX2, each SM has 128 hardware cores available. The (up to) 2,048 threads assigned to blocks
currently executing on an SM are multi-programmed on those cores.
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SM. Even though there are available threads for K5 to be assigned and it is the head of the EE queue at that

time, no block of K5 is assigned until the blocks of K4 complete (Rule R3), as shown in inset (c). ♦

4.2.2.5 Register Resources

Another resource constraint is the size of the register file. On the TX2, each thread can use up to 255

registers, and a block can use up to 32,768 registers (regardless of its thread count). Additionally, each SM

has a limit of 65,536 registers in total. Unfortunately, using synthetic kernels makes it difficult to demonstrate

limits on registers because the NVIDIA compiler optimizes register usage. However, based upon available

documentation (NVIDIA, 2019b), we expect limits on register usage to have exactly the same impact as the

limits on thread and shared-memory resources demonstrated above. Note also that the number of registers

can be limited at compile-time using the maxregcount compiler option. Decreasing the number of registers

used by a kernel makes its blocks easier to schedule at the expense of potentially greater execution time.

4.2.2.6 Copy Operations

Copies are governed by rules similar to those above:

C1 A copy operation is enqueued on the CE queue when it reaches the head of its stream queue.

C2 A copy operation at the head of the CE queue is eligible to be assigned to the CE.

C3 A copy operation at the head of the CE queue is dequeued from the CE queue once the copy is assigned

to the CE on the GPU.

C4 A copy operation is dequeued from its stream queue once the CE has completed the copy.

Example 4.2 (continued). As shown in Figure 4.4 (d), once K2 and K5 complete execution and are dequeued

from S1 and S3, the copies C2o and C5o become the heads of S1 and S3, respectively. C5o and C2o are thus

enqueued on the CE queue (Rule C1). C5o is immediately assigned to the CE (Rule C2), so it is dequeued

from the CE queue (Rule C3). The CE can perform only one copy operation at a time, so C2o remains at the

head of the CE queue until C5o completes. ♦
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4.2.2.7 Full Example

Having presented all of the basic scheduling rules for NVIDIA GPUs, we now consider our example in

its entirety.

Example 4.2 (continued). Inset (a) of Figure 4.4 corresponds to time t = 1.1s in Figure 4.3. The first five

kernels have been launched, and the kernels at the heads of each stream, K1, K4, and K5, have also been

added to the EE queue, in issue order. K1 remains in the EE queue as it is not yet fully dispatched, so no

blocks of K4 are eligible to be assigned.

Inset (b) corresponds to time t = 2.1s. The first four blocks of K1 have finished executing. Both K1 and

K4 are now fully dispatched, so they have been removed from the EE queue, but remain at the heads of their

stream queues. No blocks of K5 are able to be dispatched because their required shared-memory resources

are not available.

Inset (c) corresponds to time t = 3.0s. Upon completion of K1 and K4, both of K5’s blocks are assigned,

and K2 is added to the EE queue and immediately becomes fully dispatched. C2o remains blocked by K2 in

its stream queue due to FIFO stream ordering. C5o is similarly blocked.

Inset (d) corresponds to time t = 3.32s. K2 and K5 both complete execution, enabling C2o and C5o

to be enqueued on the CE queue. C5o is enqueued first, so it is assigned to the CE and removed from the

CE queue. Due to FIFO stream ordering, both C3i and K3 are delayed behind C2o. Upon being issued, K6

immediately moved unhindered through the queues, as K2 and K5 are fully dispatched; C2o, C3i, and C5o

execute concurrently with the blocks of K6.

Inset (e) corresponds to time t = 4.0s. K3 and K6 are both fully dispatched. C3o and C6o are blocked in

their stream queues until K3 and K6 complete, respectively. Thus, the CE and EE queues are empty. ♦

4.2.3 Open Questions, Answered

Recall the three potential GPU-scheduling scenarios discussed in Example 4.1 and depicted in Figure 4.2.

Given the rules presented in this section, we can see that insets (a) and (c) do not depict the correct behavior.

The three kernels in Example 4.1 were submitted to different streams, so K3 need not wait for K2 to complete

execution, unlike in inset (a). Additionally, K3 is blocked in the EE queue until K2 is fully dispatched, unlike

in inset (c). This behavior is properly depicted by inset (b).

65



4.3 Extended GPU Scheduling Rules

The basic rules in Section 4.2 are not the end of the story. In this section, we consider additional features

available to CUDA programmers that can impact scheduling. These include usage of the default (NULL)

stream and stream priorities. We also explore the differences in different NVIDIA GPU architectures and CE

counts, comment on other less commonly used features that can influence scheduling that we do not examine

in detail, and discuss extensions that this work has enabled.

4.3.1 The NULL Stream

Available documentation makes clear that two kernels cannot run concurrently if, between their issuances,

any operations are submitted to the NULL stream (NVIDIA, 2019b). However, this documentation does

not explain how kernel execution order is affected. In an attempt to elucidate this behavior, we conducted

experiments in which interactions between (user-specified) streams and the NULL stream were observed.

We found that these interactions are governed by the following rules, which reduce to rule G2 if the NULL

stream is not used:

N1 A kernel Kk at the head of the NULL stream queue is enqueued on the EE queue when, for each other

stream queue, either that queue is empty or the kernel at its head was launched after Kk.

N2 A kernel Kk at the head of a non-NULL stream queue cannot be enqueued on the EE queue unless the

NULL stream queue is either empty or the kernel at its head was launched after Kk.

Example 4.3. The result of an experiment demonstrating these rules is given in Figure 4.5. The kernels

launched in this experiment are fully specified in Table 4.2 (shared memory and copy operations were not

used, so these are not reported). K2 and K5 were submitted to the NULL stream. K2 did not move to the EE

queue until K1 completed (Rule N1); likewise, K5 did not move to the EE queue until both K3 and K4 had

completed. No other kernel could move to the EE queue while K2 was at the head of the NULL stream queue,

as all but K1 were launched after K2 (Rule N2). Because of the NULL-stream kernels, K6 was unnecessarily

blocked and could not execute concurrently with K1, K3, or K4, so much capacity was lost. ♦

This result demonstrates that usage of the NULL stream is problematic if real-time predictability and

efficient platform utilization are desired.
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Table 4.2: Details of kernels used in the NULL-stream scheduling experiment in Figure 4.5.

Start # Threads
Kernel Launch Info Time (s) Duration (s) # Blocks per Block

K1 Stream S1 0.0 1.0 6 768
K2 NULL Stream 0.2 1.0 1 1,024
K3 Stream S2 0.2 1.0 4 256
K4 Stream S2 0.4 1.0 4 256
K5 NULL Stream 0.6 1.0 1 1,024
K6 Stream S3 0.8 1.0 2 256

Figure 4.5: NULL stream scheduling experiment.

4.3.2 Stream Priorities

We now consider how the usage of prioritized streams impacts the rules defined in Section 4.2.2. CUDA

programmers can prioritize some streams over others and can determine the allowable priority settings by

the API call cudaDeviceGetStreamPriorityRange. On all GPUs we considered, this call returns only

two priority values: −1 (priority-high) and 0 (priority-low). As we show below, a stream with no priority

specified (priority-none) is treated as priority-low.
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The following experiments use the same synthetic benchmarking techniques applied in Section 4.2.2.

After discussing these experiments, we postulate new scheduling rules that specify how stream priorities

affect scheduling.

4.3.2.1 Scheduling of Priority-Low Streams vs. Priority-High Streams

Given that blocks are schedulable entities, the handling of prioritized streams as described in the available

CUDA documentation (NVIDIA, 2019b) is exactly as one might expect. In particular, stream priorities

are considered each time a block finishes execution and a new block can be assigned, with blocks from

priority-high streams always being favored for assignment if their resource requirements are met. Note that

this assignment behavior can potentially lead to the starvation of priority-low streams.

Example 4.4. We conducted an experiment to illustrate this behavior using the kernels defined in Table 4.3.

Figure 4.6 shows the GPU timeline that resulted from this experiment. As seen, K1 was launched first in

a priority-low stream and four of its eight blocks had already been assigned when K2 and K3 were later

launched in two priority-high streams. When the four initially assigned blocks of K1 completed execution,

freeing all SM threads, K2 (launched second) effectively preempted K1, preventing K1’s remaining four

blocks from being assigned. K3 was later dispatched when K2 completed, continuing the “starvation” of K1

until K3 completed. ♦

4.3.2.2 Scheduling of Priority-None Streams vs. Prioritized Streams

The available CUDA documentation lacks clarity with respect to how scheduling is done when both

priority-none and prioritized streams are used. We experimentally investigated this issue and found that

priority-none streams have the same priority as priority-low streams on the TX2.

Example 4.5. Evidence of this can be seen in an experiment we conducted using the kernels defined in

Table 4.4. Figure 4.7 shows the resulting GPU timeline. In this experiment, K2 was launched in a priority-

none stream, K1 and K4 were launched in priority-low streams, and K3 was launched in a priority-high

stream. K1 was launched first and four of its eight blocks were immediately assigned to the GPU. Once

these four blocks completed execution, K3 effectively preempted K1 because K3 was at the head of a

priority-high stream. After K3 executed to completion, K1 resumed execution because K2 and K4 had equal

priority and could not preempt it. When K1 completed, K2 and K4 were dispatched in launch-time order. If
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Table 4.3: Details of kernels used in the prioritized-stream scheduling experiment in Figure 4.6.

Start # Threads
Kernel Launch Info Time (s) Duration (s) # Blocks per Block

K1 Stream S1 (low priority) 0.0 0.5 8 1,024
K2 Stream S2 (high priority) 0.2 0.5 16 1,024
K3 Stream S3 (high priority) 0.5 0.5 16 1,024

Figure 4.6: Experiment showing starvation of a priority-low stream.

priority-none were higher than priority-low, then K2 would have preempted K1; if priority-none were lower

than priority-low, then K4 would have run before K2, despite being released later. ♦

4.3.2.3 Scheduling of Prioritized Streams When Resource Blocking Can Occur

We wondered whether it was possible for kernels in priority-high streams experiencing resource blocking

to be indefinitely delayed by kernels in priority-low streams that “cut ahead” and consume available resources.

Our experimental results suggest this is not possible.

Example 4.6. Evidence of this claim can be seen in an experiment we conducted using the kernels defined in

Table 4.5, which yielded the resulting GPU timeline in Figure 4.8. K1 and K2 were launched to two distinct

priority-low streams. After both were dispatched, 512 threads were available on each SM. Then K3, with
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Table 4.4: Details of kernels used in the prioritized-stream scheduling experiment in Figure 4.7.

Start # Threads
Kernel Launch Info Time (s) Duration (s) # Blocks per Block

K1 Stream S1 (low priority) 0.0 0.5 8 1,024
K2 Stream S2 (unspecified priority) 0.2 0.5 8 1,024
K3 Stream S3 (high priority) 0.3 0.5 8 1,024
K4 Stream S4 (low priority) 1.2 0.5 8 1,024

Figure 4.7: Experiment demonstrating two actual stream priority levels.

one block of 1,024 threads, was launched to a priority-high stream, followed by K4, with one block of 512

threads, launched to another priority-low stream. At this time, neither K1 nor K2 had completed execution,

so the priority-high K3 could not be dispatched due to a lack of available threads. Note that even though

K4 required only 512 threads, it could not be dispatched because K3 was of higher priority. Finally, when

K1 completed, K3 was dispatched because at least 1,024 threads became available on an SM; K4 was then

dispatched because 512 other threads were available and the priority-high K3 no longer blocked it. ♦
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Table 4.5: Details of kernels used in the prioritized-stream scheduling experiment in Figure 4.8.

Start # Threads
Kernel Launch Info Time (s) Duration (s) # Blocks per Block

K1 Stream S1 (low priority) 0.0 1.0 2 768
K2 Stream S2 (low priority) 0.1 1.0 2 768
K3 Stream S3 (high priority) 0.65 0.5 1 1,024
K4 Stream S4 (low priority) 0.7 1.0 1 512

K1: 0

K1: 1

K2: 0

K2: 1

K3: 0

K4: 0

Stream 1 (K1 (low priority))

Stream 2 (K2 (low priority))

Stream 3 (K3 (high priority))

Stream 4 (K4 (low priority))

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Time (seconds)

SM 0

SM 1

Figure 4.8: Experiment with both stream priorities and resource blocking.

4.3.2.4 Additional Scheduling Rules

Based on these experiments, we hypothesize that the TX2’s GPU scheduler includes one additional EE

queue, for priority-high kernels. The original EE queue described in Section 4.2.2 is for priority-low (and

thus priority-none). These queues are subject to these rules:

A1 A kernel can only be enqueued on the EE queue matching the priority of its stream.

A2 A block of a kernel at the head of any EE queue is eligible to be assigned only if all higher-priority EE

queues (priority-high over priority-low) are empty.
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Table 4.6: Details of kernels used in the concurrent-kernel scheduling experiment in Figures 4.9 and 4.10.

Start # Blocks # Blocks # Threads
Kernel Launch Info Time (s) Duration (s) on TX2 on Titan V per Block

K1 Stream S1 0.00 1.0 1 40 512
K2 Stream S2 0.05 1.0 1 40 512
K3 Stream S3 0.10 1.0 1 40 512
K4 Stream S4 0.15 1.0 1 40 512
K5 Stream S5 0.20 1.0 1 40 512
K6 Stream S6 0.25 1.0 1 40 512
K7 Stream S7 0.30 1.0 1 40 512
K8 Stream S8 0.35 1.0 1 40 512

4.3.3 Deviations From These Rules

The experiments discussed so far in this chapter were additionally performed on three discrete GPUs

(recall the GPUs we considered, as listed in Table 2.1 in Section 2.3). We now discuss observed differences

between these four GPUs.

4.3.3.1 Concurrent Kernel Execution Limitations on the TX2

We observed a discrepancy between the TX2 and the discrete GPUs we considered when submitting

more than four kernels to the GPU concurrently. The results of executing the same experiment are depicted

in Figures 4.9 and 4.10 for the Titan V and TX2, respectively. Experiment parameters are given in Table 4.6.

This experiment suggests that when using CUDA version 10, the number of kernels that can execute

concurrently depends on the platform. For the TX2, this number appears to be four; later-submitted kernels

then execute sequentially, which suggests a potential source of synchronization. However, the three discrete

GPUs we considered (the GeForce 980 Ti, GeForce 1070, and Titan V) were each able to support up to 32

concurrent kernels, and did not result in synchronous kernel execution. Note that both the TX2 and GeForce

1070 are both based on the Pascal micro-architecture.

Also, it is worth noting that in the original versions of our experiments (using CUDA 8), we did not

observe such synchronization behavior on the TX2, and were successfully able to execute eight kernels

concurrently. However, Otterness et al. noted significant changes between previous CUDA versions (Otterness

et al., 2016), specifically CUDA 7 and CUDA 8, so such behavior differences between CUDA 8 and CUDA 10

should not come as a surprise.
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Figure 4.9: Experiment with eight concurrent kernels on a Titan V (only two of 80 SMs are shown).
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Figure 4.10: Experiment with eight concurrent kernels on a TX2.
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Table 4.7: Details of kernels used in the copy-engine experiment in Figures 4.11 and 4.12.

Start # Blocks # Blocks
Kernel Launch Info Time (s) Duration (s) on TX2 on 1070 Copy In Copy Out

K1 Stream S1 0.0 1.0 2 15 - 256MB
K2 Stream S1 0.0 1.0 2 15 256MB 256MB
K3 Stream S2 0.2 1.0 2 15 - 256MB
K4 Stream S2 0.2 1.0 2 15 - -
K5 Stream S3 0.8 1.0 2 15 256MB 256MB
K6 Stream S4 1.6 1.0 2 15 256MB 256MB

4.3.3.2 Copy-Engine Count and Concurrent Copies

Another source of discrepancies from the rules is related to the number of CEs available on a given GPU.

Recall from Table 2.1 that the TX2 has a single CE, the 980 Ti and 1070 each have two CEs, and the Titan V

has seven CEs. For GPUs with two CEs, the NVIDIA documentation states that each performs one direction

of copies (host-to-device or device-to-host); the documentation does not make clear how the seven CEs of the

Titan V behave.

Copy ordering on the TX2. We first sought to explore the difference between the single CE on the TX2

and the multiple CEs on the discrete GPUs. Although the copy-operation rules in Section 4.2.2.6 describe the

behavior of copy operations relative to kernel executions, they do not tell the entire story on the TX2.

The experiments shown in Figures 4.11 and 4.12 using the 1070 and the TX2, respectively, differ only

in the number of blocks per kernel, as listed in Table 4.7, and heavily feature copy operations. As shown

in Figure 4.11 for the 1070, the discrete GPUs completely follow the copy-operation rules presented in

Section 4.2.2.6. Therefore, copy-in and copy-out operations occur immediately before and after, respectively,

their associated kernels execute, and kernel execution is not impacted by the presence of copies.

On the TX2, however, copy operations are synchronized into a single CE queue based on submission

order, regardless of when they arrive at the head of their stream queues. Thus, copies in Figure 4.12 occur in

submission order: c1o, c2i, c2o, c3o, c5i, c5o, c6i, and c6o. Thus, K4 cannot begin until after K2 completes

(with c2o and c3o occurring in between), K5 cannot begin until after K4 begins (K4 begins immediately after

c3o, at which point c5i occurs), and K6 cannot begin until after K5 completes (with c5o and c6i occurring in

between).

Concurrent copies with 2 CEs. NVIDIA documentation states that for discrete GPUs with two CEs, one

serves host-to-device copies and the other serves device-to-host copies. Therefore, two copies should be able
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Figure 4.11: Experiment with many copy operations on a 1070 (only two of 15 SMs are shown).

K1: 0

K1: 1

K2: 0

K2: 1

K3: 0

K3: 1

K4: 0

K4: 1

K5: 0

K5: 1

K6: 0

K6: 1

Stream 1 (K1 and K2)

Stream 2 (K3 and K4)

Stream 3 (K5)

Stream 4 (K6)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Time (seconds)

SM 0

SM 1

Figure 4.12: Experiment with many copy operations on a TX2.
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Table 4.8: Details of kernels used in the multiple-copy-engine experiment in Figure 4.13.

Start
Kernel Launch Info Time (s) Duration (s) # Blocks Copy In Copy Out

K1 Stream S1 0.0 1.0 15 - -
K2 Stream S1 0.0 1.0 15 256MB -
K3 Stream S2 0.0 1.0 15 - 256MB
K4 Stream S2 0.0 1.0 15 - -
K5 Stream S3 0.0 1.0 15 - -
K6 Stream S3 0.0 1.0 15 256MB -
K7 Stream S4 0.0 1.0 15 - 256MB
K8 Stream S4 0.0 1.0 15 - -
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Figure 4.13: Experiment with different copy directions on a 1070 (only two of 15 SMs are shown).

to execute concurrently. We explored this in the experiment depicted in Figure 4.13 on the 1070, with kernel

parameters listed in Table 4.8.

In the experiment shown in Figure 4.13, odd streams have two copies separated by a single copy-in (host-

to-device) operation, whereas even streams contain a single copy-out (device-to-host) operation. Thus, if two

copies may execute concurrently, pairs of streams should have the second kernels begin execution concurrently

(indicating that the intermediate copies completed at the same time). This behavior is demonstrated in this
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Figure 4.14: Experiment with different copy directions on a Titan V (only two of 80 SMs are shown).

experiment: K2 and K8 begin execution together, as do K4 and K6. This is because c2i and c7o executed

concurrently, as did c3o and c6i.

Concurrent copies with 7 CEs. Our final copy-related experiment involves the seven CEs of the Titan V.

The documentation does not make clear whether more than one concurrent copy-in or copy-out operation can

occur simultaneously. To answer this question, we can perform the same experiment from Figure 4.13 on

a Titan V, with 80 blocks per kernel instead of 15 (to match the Titan V’s increased SM count). However,

despite the presence of additional CEs, the results are the same as on the 1070, as shown in Figure 4.14.

4.3.4 Other Complications

We now note several less commonly used features that may potentially impact scheduling. These include:

(i) the nvcc compilation option --default-stream per-thread, which enables per-task NULL streams;

(ii) the stream-creation flag cudaStreamNonBlocking, which enables kernels from user-specified streams to

execute concurrently with the NULL stream; (iii) a mechanism introduced with the Pascal GPU architecture

that allows an executing kernel to be preempted at the instruction level; and (iv) a feature called dynamic
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parallelism that allows kernels to dynamically submit extra work by calling other kernel functions inside the

GPU. We conjecture that these features are detrimental to use if real-time predictability is a requirement.

4.3.5 Extensions to this Work

The GPU scheduling rules presented in this chapter served as a foundation for response-time analysis

of GPU-using workloads by Yang et al. (2018a). In their work, Yang et al. leveraged knowledge of GPU

scheduling policies to derive improved response-time bounds for GPU-using workloads represented as DAGs.

Additionally, since the publication of the scheduling rules presented in this chapter, various works have

sought to explain the remaining levels of NVIDIA’s scheduling hierarchy.

At the highest level, the NVIDIA driver selects a channel from a queue called the runlist; each channel

belongs to a single GPU-using application, and each application is mapped to one or more channels.

Associated with each channel is a timeslice length and a priority, which determine the frequency that the

channel appears in the runlist. The runlist mechanism was described by Capodieci et al. (2018) as part of

their work to modify the NVIDIA driver and enable preemptive EDF scheduling on an NVIDIA GPU.

At the next level, the stream scheduler determines which CUDA stream may execute operations on the

GPU. The stream-scheduling rules were presented in this dissertation chapter.

For each stream that is chosen to execute, the thread-block scheduler determines a mapping of blocks

to SMs. Finally, within an SM, each of multiple warp schedulers determines which instructions execute

from which warps at any given moment. Details of the thread-block scheduler and the warp scheduler were

revealed by Sañudo Olmedo et al. (2020). In particular, they detailed the block-to-SM mapping via a series of

expressions derived experimentally and via NVIDIA’s “CUDA Occupancy Calculator” (NVIDIA, 2021), and

showed that the same warp scheduler can execute both integer and floating-point operations simultaneously,

enabling potential throughput improvements for GPU-using workloads.

4.4 Pitfalls When Using NVIDIA GPUs in Real-Time Systems

The rules provided in the prior sections provide only part of the necessary knowledge to use NVIDIA

GPUs in safety-critical systems. As the CUDA API was designed for throughput rather than predictability,

special care must be taken when using NVIDIA GPUs, even if the scheduling rules are clearly under-
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stood. Specifically, there are unexpected sources of delays that can arise due to both explicit and implicit

synchronization, as well as inconsistencies in the NVIDIA documentation, which we detail in this section.

4.4.1 Synchronization-Related Pitfalls

Most developers are familiar with the concept of synchronization in a CPU-only context where two

or more tasks must communicate or coordinate their actions. Synchronization becomes more complicated

when a CPU task must coordinate with programs executed on the GPU. The common case is that the CPU

task must determine when data in GPU memory is safe to access (e.g., copy back to CPU memory). This

is accomplished using GPU synchronization, where the GPU must complete outstanding work and reach a

synchronization point: a point in time when data access can safely occur. There are also other, less common,

cases when GPU synchronization is necessary.

In CUDA there are multiple ways to achieve GPU synchronization. They fall into two broad categories:

explicit synchronization, which is always programmer-requested, and implicit synchronization, which can

occur as a side effect of CUDA API functions intended for purposes other than synchronization. We

have uncovered in our research some unfortunate pitfalls relating to actual GPU synchronization behavior,

especially with respect to blocking. So, while these may not be pitfalls for non-safety-critical applications,

ignoring the effects of certain specific mechanisms for achieving synchronization would be perilous in a

safety-critical system where blocking must be anticipated and accounted for in analysis.

4.4.1.1 Explicit Synchronization

Explicit synchronization refers to synchronization points that the CUDA programmer explicitly requests

using the CUDA API. Explicit synchronization is typically used after a program has launched one or more

asynchronous CUDA kernels or memory-transfer operations and must wait for computations to complete. In

contrast to implicit synchronization, the sole purpose of explicit-synchronization functions is to block the

calling CPU task until the GPU reaches a synchronization point.

The CUDA documentation7 states that explicit synchronization will block the calling task until “all

preceding commands” have completed. For example, if the API function cudaDeviceSynchronize is

invoked, “preceding commands” may encompass all commands issued to the device from all CPU tasks.

7Section 3.2.5.5.3 of the Programming Guide for CUDA version 10.2.89 (NVIDIA, 2019b).
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Figure 4.15: Explicit synchronization due to cudaDeviceSynchronize.

Other explicit-synchronization options, including cudaStreamSynchronize, will only block until preceding

commands from a specified stream have completed.

Example 4.7. Figure 4.15 shows the results of an experiment featuring explicit synchronization. In this

experiment, four CPU tasks shared a single address space, and each task launched one kernel in a separate

user-defined stream. Each kernel consisted of two blocks of 512 threads, and the figure shows that one block

from each kernel was scheduled on each SM. As with experiments in the previous sections, each thread of

each block performed a busy-loop for a set amount of time.

An explicit-synchronization command, cudaDeviceSynchronize, was issued at time (a) by the CPU

task responsible for launching kernel K3. This caused K3’s CPU task to be blocked until the prior-submitted

GPU operations, namely the executions of kernels K1 and K2, had both completed at time (c). Approximately

0.2 seconds after the synchronize completed, the same CPU task launched kernel K3. ♦

This behavior is exactly what one would expect, given the description of explicit synchronization from

official documentation. However, our experiments also uncovered Pitfall P1 for the unwary:

P1 Explicit synchronization does not block future commands issued by other tasks.
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The fact that the launch of K4 by its CPU task was not blocked at time (b) is an example of this pitfall.

Implicit synchronization, which we cover next, presents even more serious pitfalls.

4.4.1.2 Implicit Synchronization

Implicit synchronization occurs as a side effect of CUDA API calls that are otherwise unrelated to

synchronization. For example, implicit GPU synchronization may occur due to freeing GPU memory or

launching a kernel to the default stream. Presumably, this is because some modifications to GPU device state

can only occur while no kernels are executing. The CUDA documentation about implicit synchronization8

states that “two commands from different streams cannot run concurrently if any one of the following

operations is issued in-between them by the host thread:

• a page-locked host memory allocation,

• a device memory allocation,

• a device memory set,

• a memory copy between two addresses to the same device memory,

• any CUDA command to the NULL stream,

• a switch between the L1/shared memory configurations described in Compute Capability 3.x and

Compute Capability 7.x.”

Unlike the relatively straightforward documentation about explicit synchronization, our experiments revealed

that this list includes several operations that do not necessarily cause implicit synchronization, and fails to

include some functions that do. We consider this particularly problematic for real-time systems, where the

ability to accurately model blocking is critical.

P2 Documented sources of implicit synchronization may not occur.

Pitfall P2 became apparent to us when, in all of our experiments, we never observed implicit synchro-

nization as a result of a device-memory operation (allocation, set, or copy) or a page-locked host memory

allocation. Our experiments covered three of the most recent CUDA versions (8.0, 9.0, and 10.2) and three

8Section 3.2.5.5.4 of the Programming Guide for CUDA version 10.2.89 (NVIDIA, 2019b).
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Figure 4.16: Implicit synchronization caused by a NULL-stream kernel.

of the most recent NVIDIA GPU architectures (Maxwell, Pascal, and Volta). This, of course, does not

prove that implicit synchronization can never happen under such circumstances, but it does indicate that the

documentation’s statement that “two commands cannot run concurrently” is not a reliable rule.

The only case (from this list) in which we did observe implicit synchronization was launching GPU

operations in the NULL stream.

Example 4.8. Figure 4.16 shows a similar scenario to the one in Figure 4.15, with one key difference: the

CPU task for K3 did not call cudaDeviceSynchronize before K3 was launched, but instead launched

K3 in the NULL stream. The implicit synchronization, and resulting loss of concurrency, is clearly visible

in the figure. Execution of K3 must wait for the first two kernels to complete, and, in contrast to explicit

synchronization, K4 is also prevented from running concurrently. ♦

Even though this loss of concurrency may be striking, it is notably explicitly documented, and can

be used (or avoided) in a careful design for a real-time task. We found, however, a different source of

implicit synchronization that is a far more problematic pitfall, and is not even listed in the documentation on

synchronization: freeing device memory.
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Figure 4.17: Implicit synchronization causing additional CPU blocking due to cudaFree.

P3 The CUDA documentation neglects to list some functions that cause implicit synchronization.

P4 Some CUDA API functions will block future, unrelated, CUDA tasks on the CPU.

Example 4.9. Figure 4.17 shows the results of an experiment identical to the one in Figure 4.15, but this

time the call to cudaDeviceSynchronize at time (a) was replaced with a call to cudaFree, which is used

to de-allocate memory on the GPU. Pitfalls P3 and P4 can be observed in this plot. The fact that this blocked

the calling CPU thread until all prior GPU work had completed at time (c) indicates that cudaFree created

implicit synchronization. Similar to the NULL-stream behavior, implicit synchronization also prevented

subsequent kernels from starting to execute until cudaFree completed at time (c). We speculate that this

behavior by cudaFree is necessary because alterations to memory-mapping state requires a quiescent

execution environment.

However, the most surprising effect was not that K4 was blocked, but that K4’s task was blocked on the

CPU until time (c), even though it issued an “asynchronous” kernel launch. This reveals a pitfall that can

harm real-time analysis that does not consider the fact that CPU tasks can experience blocking from GPU

operations that are launched from unrelated tasks. ♦
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4.4.2 Best-Practices-Related Pitfalls

One of the primary challenges when designing a real-time task system that uses a GPU is that all possible

blocking must be accounted for in analysis. Therefore, reducing the amount of blocking on both the CPU

and GPU is essential. On the GPU, this requires issuing all CUDA operations to user-defined (non-NULL)

streams, and carefully controlling the use of other API functions, like cudaFree, that cause blocking via

implicit synchronization.

However, when using user-defined streams, concurrency can easily be thwarted by the presence of

unexpected implicit synchronization. This gives rise to the first best-practices-related pitfall.

P5 The suggestion from NVIDIA’s documentation to exploit concurrency through user-defined streams

may be of limited use for improving performance in thread-based tasks.

Even though it may seem like an easy task for a programmer to just specify a user-defined stream

as opposed to the NULL stream, we note that simple mistakes in doing so may be easy to miss. This is

particularly true when using the Async versions of CUDA API functions, such as cudaMemsetAsync; if

no stream parameter is provided, such API functions default to using the NULL stream, and thus result in

implicit synchronization.

P6 Async CUDA functions use the GPU-synchronous NULL stream by default.

The fact that the CUDA documentation indicates that these functions cause implicit synchronization

makes potential programmer errors even harder to notice in cases where synchronization is due to NULL-

stream usage rather than memory operations.

4.4.3 Additional Documentation-Related Pitfalls

Another substantial danger stems from the inaccurate official documentation provided by NVIDIA. While

function signatures and data structures seem to receive accurate (but often sparse) official documentation,

scheduling and synchronization remain under-discussed. In our work to demystify implicit synchronization,

we came across not only missing documentation, but incorrect documentation.

P7 Observed CUDA behavior often diverges from what the documentation states or implies.

P8 CUDA documentation can be contradictory.
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Table 4.9: Observed vs. documented synchronization sources in CUDA.

Observed Behavior Documented Behavior
Source Blocks Other CPU Tasks Implicit Sync. Caller Waits for GPU Implicit Sync. Caller Waits for GPU
cudaDeviceSynchronize No No Yes No Yes
cudaFree Yes Yes Yes No (undoc.) No (impl.)
cudaFreeHost Yes Yes Yes No (undoc.) No (impl.)
cudaMalloc ? No No Yes No (impl.)
cudaMallocHost ? No No Yes No (impl.)
cudaMemcpyAsync D-D No No No Yes No
cudaMemcpyAsync D-H No No No Yes* No
cudaMemcpyAsync H-D No No No Yes* No
cudaMemset (sync.) No Yes No Yes No
cudaMemsetAsync No No No Yes No
cudaStreamSynchronize No No Yes No Yes

For cudaMemcpyAsync we distinguish the direction of copy between device and host: (D-D) internal to GPU memory; (D-H) GPU
memory to CPU memory; (H-D) CPU memory to GPU memory. *The documentation is contradictory for these instances, but the
more detailed option indicates that these functions only cause synchronization if host memory is not page-locked. We were unable to
observe this regardless of whether host memory was page-locked or not.

Example 4.10. As shown in Table 4.9, for example, cudaFree variants were not documented to cause

implicit synchronization. Conversely, the NVIDIA documentation states that cudaMalloc does cause

implicit synchronization, but we were unable to observe such behavior.

In the case of cudaMemcpyAsync, we discovered that the CUDA documentation actively contradicts

itself. Section 3.2.5.1 of the CUDA Programming Guide (NVIDIA, 2019b) states “The following device

operations are asynchronous with respect to the host: . . . Memory copies performed by functions that are

suffixed with Async,” but Section 2 of the CUDA Runtime API documentation (NVIDIA, 2019c) states “For

transfers from device memory to pageable host memory, the function will return only once the copy has

completed.” ♦

All of the pitfalls discussed in this section can be attributed to a single overarching problem: the black-

box nature of current GPU-enabled platforms means that developers do not have a reliable model of GPU

behavior. This highlights what is perhaps the most important pitfall for developing software meant to last:

P9 What we learn about current black-box GPUs may not apply in the future.

Despite the fact that we validated our experimental results on several of the most recent CUDA versions

and GPU architectures, there is no guarantee that our results will hold after future GPU-architecture or

CUDA-version updates. Even though other safety-critical hardware inevitably undergoes changes and

updates, future-proof programs can still be developed against a stable specification. Likewise, the only way to

truly mitigate Pitfall P9 is for GPU manufacturers to release stable, accurate documentation about their GPU
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platforms, along, preferably, with giving developers greater control over GPU scheduling and synchronization.

Only then we can have a reliable GPU model upon which to base real-time analysis and certification. We

hope that work such as ours signals to manufacturers like NVIDIA that greater openness is a desirable feature

when marketing in safety-critical domains.

4.5 CUPiDRT Design

In this section, we introduce CUPiDRT. To do so, we first list the issues we seek to detect in GPU-using

programs, and relate them to the most egregious of the pitfalls listed in Section 4.4. Then, we describe how

we designed CUPiDRT to detect these issues at runtime.

4.5.1 Issues We Detect

The pitfalls we identified in Section 4.4 focus primarily on ways in which GPU-using programs may

behave unexpectedly. However, it is not clear how to rectify or even detect the issues that arise due to

these pitfalls. In fact, the majority of the pitfalls center around errors and ambiguities in NVIDIA’s CUDA

documentation.

In the design of CUPiDRT, we have focused on the most egregious issues that arise when attempting

to perform timing analysis of GPU-using programs. In particular, we are concerned with unexpected

cross-CPU-thread blocking (Pitfall P4) and NULL-stream GPU operations (Pitfall P6).

Issue: Unexpected CPU blocking. Of the pitfalls that arise when using NVIDIA GPUs, Pitfall P4 is perhaps

the most problematic, as it relates to an unexpected source of blocking on the CPU. Such potential blocking

must be taken into account during real-time schedulability analysis, and corresponds to lost system capacity.

Thus, we seek to detect any sources of unexpected CPU blocking due to GPU use.

The two identified sources of this pitfall are the variants of the CUDA API functions cudaMalloc and

cudaFree, which serve to allocate and free GPU memory, respectively. These function calls are necessary

if GPU memory is to be used, and are only problematic while other operations (e.g., kernel launches) are

occurring. Thus, we exclude the setup and cleanup regions of programs from our analysis, as described in

Section 4.5.2. We call the remaining region the analyzed region.

Issue: NULL-stream GPU operations. As identified in Pitfall P6, asynchronous CUDA functions (and

kernel launches) default to using the NULL stream if no stream parameter is provided. For asynchronous
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functions in particular, this can cause further unexpected delays as kernels and other operations must then

execute sequentially (recall the overview of NVIDIA’s GPU scheduling rules in Section 4.2).

We thus also configured CUPiDRT to detect the use of the NULL stream, both in kernel launches and in

other CUDA API functions (e.g., cudaMemcpyAsync). As these operations are typically part of the actual

work of a GPU-using program, we do not distinguish between code regions, and have configured CUPiDRT

to report any detections of NULL stream use, including those during setup and cleanup.

4.5.2 Analyzing GPU-Using Programs

Program analysis can be performed in one of two ways: (1) at compile time, using a static code analyzer,

or (2) at runtime, based on tracing of CUDA API calls. Although static analysis guarantees all issue

occurrences are detected regardless of program inputs and settings, dynamic analysis can be used if the code

path of interest is known. Additionally, as the improper usage we seek to detect is based on individual CUDA

operations rather than a more complex sequence of commands, we chose dynamic analysis for CUPiDRT. We

leave a static-analysis implementation to future work.

CUPiDRT design. CUPiDRT is comprised of a series of scripts to trace the behavior of a CUDA-using

program at runtime, logging all CUDA calls (e.g., cudaMalloc or kernel launches), and then parse the log

file to detect the issues described in Section 4.5.1. For the tracing stage, we utilize the nvprof tracing tool

provided by NVIDIA. When analyzing the trace output, we detect issues corresponding to the following

operations:

• cudaMalloc: Any invocation of cudaMalloc (or a variant) inside the analyzed region.

• cudaFree: Any invocation of cudaFree (or a variant) inside the analyzed region.

• NULL stream kernels: Any kernel submitted to the NULL stream, regardless of location in the program.

• Asynchronous CUDA functions: Any asynchronous function (e.g., cudaMemcpyAsync) called with a

stream parameter of 0 (the NULL stream), regardless of location in the program.

• Other CUDA functions: Any other NULL-stream-using function (e.g., cudaMemset), regardless of

location within the program.
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Using CUPiDRT to analyze a program. There are two steps to use CUPiDRT to analyze a GPU-using

program. First, the analyzed region must be annotated in the program source code. Then, CUPiDRT can

be used to run the GPU-using program; CUPiDRT scripts analyze the tracing output and report any issues

detected. Our implementation is based on CUDA 10.2, and is provided open source online.9

The only source-code modifications necessary to use CUPiDRT are analyzed-region demarcations, for

which we utilize the NVIDIA Tools Extension (NVTX) API. The statements nvtxMarkA("TRACE START")

and nvtxMarkA("TRACE END") must be added at the start and end, respectively, of each analyzed region;

these functions add messages to the trace output without otherwise affecting program functionality.

4.6 CUPiDRT Evaluation

In this section, we present the results of using CUPiDRT to detect issues in ten GPU-using sample

applications provided with OpenCV. Then, we demonstrate the value of remedying these issues via a case

study involving one of the applications.

4.6.1 Experimental Setup

We performed our experiments on a machine with a single Titan V NVIDIA GPU, two eight-core

2.10-GHz Intel CPUs, and 32-GB of DRAM. Each core includes a 32-KB L1 data cache, a 32-KB L1

instruction cache, and a 1-MB L2 cache; all eight cores on a CPU socket share an 11-MB L3 cache. We used

Ubuntu 16.04, CUDA 10.2, the NVIDIA 440.33 driver, and all experiments were run using native Linux

scheduling.

We evaluated the benefits of CUPiDRT by analyzing ten GPU-using sample applications provided as part

of OpenCV (Bradski, 2000) version 3.4, as listed in Table 4.10. These sample applications cover a broad

range of different computer-vision algorithms (recall the overview in Section 2.2.3), including segmentation,

feature extraction, object detection, and optical flow.

4.6.2 Evaluation of Issue Detection via CUPiDRT

We list the issues detected by CUPiDRT for each of the ten applications in Table 4.10. When analyzing

the applications, we used default parameters when possible. For applications that act on videos, we inserted

9https://cs.unc.edu/~anderson/diss/tanyadiss/.
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Table 4.10: Issue occurrences for ten GPU-using OpenCV sample applications.

cudaMalloc/ NULL stream NULL stream Other NULL
OpenCV Sample Description cudaFree calls kernels async functions stream ops
bgfg segm Segmentation 0 3 0 5
farneback optical flow Optical Flow 10 2 0 14
generalized hough Feature Extraction 8 22 8 26
hog Object Detection 64 64 143 157
houghlines Feature Extraction 4 3 0 8
morphology (Erode/Dilate) Morphology 2 2 0 2
morphology (Open/Close) 5 4 0 3
optical flow (Brox) Optical Flow 7 3993 40 43
optical flow (TV-L1) 123 2937 0 262
pyrlk optical flow Optical Flow 23 21 13 26
stereo match Stereo Matching 0 2 0 7
super resolution Super Resolution 26 168 0 74

the nvtxMarkA statements at the beginning and end of the processing loop, as discussed in Section 4.5.2. For

applications that process just one or two images, we added a processing loop and the nvtxMarkA statements.

Note that results for two optical flow sample algorithms are omitted as they duplicate other samples.

4.6.2.1 Allocating and Freeing GPU Memory

We found that eight of the ten applications included calls to cudaMalloc and cudaFree within the

analyzed regions. This is due, in part, to the structure of OpenCV. Sample applications showcase functionality

provided by various “modules,” e.g., the hog sample application utilizes the cudaobjdetect module to

perform GPU-based object detection. Unfortunately, inspection of the code reveals that the vast majority of

the GPU-memory allocations and frees that we observed are within these modules themselves.

Observation 4.1. OpenCV modules, as implemented, are prone to unexpected CPU blocking.

Several of the applications we considered allocated and later freed over twenty regions of GPU memory

when processing an individual video frame or pair of images. In fact, hog allocated 64 memory regions per

video frame, and the TV-L1 algorithm of optical flow allocated over 100 GPU-memory regions.

We expect that the execution times of these applications would be greatly improved by mediating these

issues (recall the discussion of CPU blocking in Section 4.5.1); we explore the benefits of such fixes for the

hog application in Section 4.6.3.
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Unfortunately, for other applications with high GPU-memory allocation and free counts, these operations

occur deep within the module implementations (e.g., involving dynamic pools of GPU memory), and thus

would be extremely challenging to extricate into setup and cleanup code regions.

4.6.2.2 NULL-Stream GPU Operations

The number of NULL-stream operations (both kernels and other operations) are given in the rightmost

three columns in Table 4.10. Unlike the frequent GPU-memory allocations and frees throughout the OpenCV

modules source code, the modules do take a CUDA stream as a parameter. Thus, the presence of issues with

NULL-stream operations is primarily due to how the modules are used, rather than their implementations.

However, taking a stream as a parameter does not guarantee that module-internal functionality always uses it.

Observation 4.2. Even modules that are implemented to take a stream parameter may still internally use the

NULL stream.

Using CUPiDRT, we found that all ten of the applications submitted at least some kernels to the

NULL stream and performed other synchronous NULL-stream operations, and four of the ten submitted

asynchronous operations (e.g., cudaMemcpyAsync) to the NULL stream. Only two of the ten applications

utilized user-defined streams for kernel execution: farneback optical flow submitted only two of its 158

kernels to the NULL stream, and for super resolution, only 168 of its 884 kernels were submitted to the

NULL stream. However, these remaining NULL-stream kernels are the result of inner functionality that does

not use the provided stream parameter.

The hog application performed 143 asynchronous and 157 synchronous copy operations using the NULL

stream; these NULL-stream operations were hard-coded in the module implementation. In the next section,

we explore the benefits of fixing these issues for the hog application.

4.6.3 Case Study: Impact of Issue Remediation

To determine the benefits of remedying the issues detected by CUPiDRT, we performed a case-study exper-

iment using the hog OpenCV sample application. We modified the application to perform all cudaMallocs

before processing the video and all cudaFrees after processing was complete. Additionally, we modified

hog to perform all per-frame kernel executions and other GPU operations in user-defined streams rather than

the NULL stream. After making these changes, we used CUPiDRT to ensure that no further issues remained.
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Figure 4.18: Simplified structure of the hog application.

Recall the description of the HOG-based pedestrian-detection algorithm from Section 2.1.2. We abstract

the functionality of the different algorithm steps, and represent the hog OpenCV sample application as the

graph shown in Figure 4.18, with the five GPU kernel operations labeled A–E. The first level processes the

original image, so the resize operation (A) occurs 12 times; the other four kernels occur 13 times each. Thus,

a total of 64 kernels are submitted to the GPU per video frame.

4.6.3.1 Impact on Execution Times

For the first part of our case study, we sought to measure the impact of issue remediation on the overall

execution time of the hog application. We modified the application to run within a configurable number of

threads, such that one, two, three, or four threads were executing hog simultaneously; this was meant to

simulate a vehicle in which multiple cameras might be processing different video streams simultaneously.

All experiments represent the results of processing 5,000 video frames. For each frame, we used two

calls to clock gettime to measure the elapsed time from just before uploading the image to the GPU (thus,

after reading in the frame from the video file) until just after downloading the resulting detections from the

GPU and aggregating them into detected locations. The program was configured to process video frames as

quickly as possible, rather than at a set frequency, thus maximizing potential cross-thread interference.

The per-frame execution times are depicted as cumulative distribution functions (CDFs) in Figure 4.19.

The corresponding worst- and average-case execution times are also reported in Table 4.11, along with the

90th- and 99th-percentile values.

Observation 4.3. Per-frame execution times increase when multiple threads execute the hog application in

parallel.

This is expected (similar behavior has been observed for other applications in prior work (Otterness et al.,

2017b)) and occurs for both the original hog implementation and our modified version with issues fixed. For
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Table 4.11: Per-frame execution times (in milliseconds) of hog with and without fixing issues.

Configuration avg 90th 99th max
Original x1 10.18 10.29 11.17 12.64
Original x2 17.12 18.71 21.16 24.30
Original x3 24.39 29.32 33.48 45.43
Original x4 32.83 39.77 47.61 63.36
Modified x1 2.84 2.90 2.99 5.93
Modified x2 4.93 5.67 6.16 8.77
Modified x3 5.29 7.68 9.04 14.06
Modified x4 7.36 10.29 13.06 24.27
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Figure 4.19: CDF of hog per-frame execution times with and without fixing issues.

example, the 90th-percentile of the original hog execution times increased from 10.29 milliseconds for one

thread to 39.77 milliseconds with four threads.

Observation 4.4. Per-frame execution times significantly improve after all detected issues are fixed.

This can be observed when comparing curves between the original implementation and our modified

implementation. For instance, the 90th-percentile measurement for the modified implementation with four

threads was 10.29 milliseconds, a 74.1% decrease compared to the original implementation.

It is worth noting that our modified implementation with four threads had a 99th-percentile execution-

time measurement of 13.06 milliseconds, which is not much higher than the worst-case measurement of

12.64 milliseconds for one thread in the original implementation. This, combined with the improvement of
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Table 4.12: Kernel launch times (in microseconds) of hog with and without fixing issues, with percentage
improvements in bold.

Kernel avg 90th 95th 99th max
A (orig.) 44.02 81.62 169.40 346.75 4134.34
A (fixed) 25.22 42.12 54.39 97.91 4352.95
% Decrease 42.71 48.40 67.89 71.76 -5.29
B (orig.) 56.96 178.18 242.89 407.58 8530.10
B (fixed) 17.18 37.71 56.11 109.28 5157.46
% Decrease 69.84 78.84 76.90 73.19 39.54
C (orig.) 91.12 224.56 297.26 462.55 5127.76
C (fixed) 26.91 59.37 84.81 153.05 5128.24
% Decrease 70.47 73.56 71.47 66.91 -0.01
D (orig.) 90.35 229.09 297.46 474.76 5232.71
D (fixed) 26.54 58.92 84.84 150.43 4911.89
% Decrease 70.63 74.28 71.48 68.31 6.13
E (orig.) 88.98 228.64 309.67 490.57 6280.39
E (fixed) 21.94 49.88 69.27 123.16 4592.75
% Decrease 75.34 78.18 77.63 74.89 26.87

the single-threaded configurations, suggests that CUPiDRT can be useful for performance tuning in addition

to ensuring predictable execution for real-time applications; we explore this in more detail later.

4.6.3.2 Impact on CPU Blocking

We can use the time required to launch10 a kernel as a proxy for the CPU blocking time. If CPU

blocking occurs, such as that depicted in Figure 4.17 (Section 4.4.1), we expect to observe multiple peaks in

a histogram of kernel launch times. For example, most launches should take a small amount of time, but

some launches would take longer due to overlapping with CPU-blocking operations, such as cudaFree. We

measured kernel launch times via calls to clock gettime immediately before and after each kernel-launch

CUDA command.

Histograms of kernel launch times for the original hog implementation and our fixed version are depicted

as probability density functions (PDFs) in Figure 4.20 for each of the five kernels in hog. These curves are

normalized, such that the area under the curve sums to one. Note that the x-axis is truncated; the worst-case

values range up to 8.5 milliseconds. Kernel launch times are also reported in Table 4.12.

10Note that this does not include the time to complete execution.

93



0 20 40 60 80 100 120 140
Kernel launch time (microseconds)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
e
n
si

ty

Peak 1

Peak 2

Peak 3

0 20 40 60 80 100 120 140
Kernel launch time (microseconds)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Peak 1

Peak 2

Peak 3 (gone)

Kernel A
Kernel B
Kernel C
Kernel D
Kernel E

hog with issues fixedOriginal hog

Figure 4.20: Distribution of hog kernel launch times before and after fixing issues, with one, two, or four
hog threads executing simultaneously.

Observation 4.5. Fixing detected issues results in many more kernel launches taking the minimum observed

time.

This behavior can be observed by comparing the height of the first peak (occurring around 8 microseconds)

for each kernel between the two plots in Figure 4.20. The increase in the peak height for our modified

implementation indicates that the average-case kernel launch duration is significantly reduced; this is also

evident in Table 4.12.

The increase in the first peak height also suggests that our modifications led to reductions in later peaks.

To observe this, we look at a different region of the PDFs, depicted in Figures 4.21 and 4.22. These plots

depict the first three peaks at around 8, 21, and 165 microseconds, respectively.

Observation 4.6. Fixing issues results in much more predictable kernel launch times.

This can be observed when comparing Figures 4.21 and 4.22. In particular, fixing issues completely

removed the third peak at around 165 microseconds, as shown in Figure 4.22. Furthermore, our modifications

reduced the 99th-percentile launch times for all kernels by up to 74.89%, as shown in Table 4.12.

Unfortunately, our modifications did not always improve the worst-case observed kernel launch times.

Observation 4.7. Worst-case kernel launch times of some kernels are higher after fixing issues.
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Figure 4.21: Zoomed-in distribution of the original hog kernel launch times.
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Figure 4.22: Zoomed-in distribution of hog kernel launch times after fixing issues.

This suggests that some other unexpected behaviors may be occurring. However, the 99th-percentile

results shown in Table 4.12 indicate that these are likely outliers. These outliers do, however, impact the

worst-case per-frame execution times, as worst-case values for the four-thread modified implementation listed

in Table 4.11 are significantly higher than the 99th-percentile execution times.
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4.6.3.3 Case Study Summary

We have observed both per-frame execution times and the distribution of kernel launch times between

the original hog implementation and our modified implementation with all detected issues fixed. We now

summarize the case study as a whole.

Observation 4.8. Using CUPiDRT to ensure all detected issues are resolved improves throughput in addition

to predictability.

Our fixes greatly reduced each of the average, 90th-, 95th-, and 99th-percentile kernel launch times,

as listed in Table 4.12. Furthermore, our modifications resulted in more predictable memory usage; our

modified implementation used 129 MB of GPU memory throughout its runtime, compared to the original

implementation, for which memory usage was 139-147 MB. Combined with the improved per-frame execution

times listed in Table 4.11, we have shown that the issues we have designed CUPiDRT to detect can greatly

hinder both average and worst-case performance and thus predictability.

CUPiDRT can be a valuable tool for the development of systems which require optimizing for either

worst-case or average-case performance. However, despite the benefits we have shown of resolving the issues

detected by CUPiDRT, such efforts can require comprehensive application refactoring.

Observation 4.9. Not all applications are well suited to remedying the issues detected by CUPiDRT.

Fixing issues was fairly straightforward for the hog application. However, we had limited success

using the same techniques with other OpenCV sample applications that used dynamically allocated GPU

memory buffers. For these applications, remedying cudaMalloc and cudaFree uses was prohibitively

challenging, as it would have required massively refactoring the underlying OpenCV modules to avoid using

GPU memory-buffer pools. Further work is necessary to determine how best to fix issues in these cases.

Additionally, our fixes to the hog application reduced the runtime flexibility of the program; e.g., the

choice of grayscale versus full-color image processing cannot be changed after program initialization (as

color scheme impacts GPU memory allocated). However, we consider this to be a reasonable trade-off for

real-time systems, in which inputs and program behavior can reasonably be assumed stable after design time.
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4.7 Chapter Summary

In this chapter, we have presented an in-depth study of the scheduling behavior of NVIDIA GPUs, as

well as the potential pitfalls that may arise when developing CUDA applications for real-time systems. To

combat such difficulties, we presented CUPiDRT, a software tool designed to detect issues in CUDA-enabled

applications. We used CUPiDRT to analyze ten GPU-using OpenCV applications, and showed that all were

subject to at least one of the issues we sought to detect. Although we designed CUPiDRT with a focus on

real-time workloads, our case study experiment demonstrated that fixing all issues detected by CUPiDRT can

result in significant improvements in both throughput and predictability, making it a useful tool for anyone

developing applications that utilize NVIDIA GPUs.
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CHAPTER 5: ENABLING TIME PARTITIONING FOR REAL-TIME
MULTICORE+ACCELERATOR PLATFORMS

In this chapter, we focus our attention on ensuring temporal isolation between multiple components

that require access to the same hardware accelerator that does not allow operations to be preempted; even if

preemption is supported, such overheads are often prohibitively high.

We base our approach on ARINC 653 (Prisaznuk, 2008), which specifies the RTOS design for certifiable

avionics platforms. The fundamental RTOS concept in ARINC 653 is a partition, which encapsulates a set

of software modules and affords them isolation in time and space. Note that we use partition to indicate an

allocation by the OS and component when considering a portion of an application system that requires such

an allocation. Each component executes within a unique partition.

Broadly speaking, time partitioning means that at most one component may access each processing

resource (e.g., a CPU core) at any time, and space partitioning means that components cannot adversely

interfere with each other in accessing non-processing resources, such as memory. Space partitioning on

multicore platforms can be provided by memory-protection functions, e.g., page coloring (Liedtke et al.,

1997; Mueller, 1995). As depicted in Figure 5.1, time partitioning in ARINC 653 is achieved via two-level

scheduling: time slices are allocated to partitions, and for each partition, an in-partition scheduler allocates

time to tasks of the contained component. However, time partitioning is violated if an accelerator access by

one component extends beyond a time-slice boundary. Thus, a non-preemptive access must be postponed if it

may cross a time-slice boundary.

In this chapter, we introduce TimeWall (Time-Isolated Multicore Execution With AcceLerator Locking),

a framework for providing time partitioning on multicore+accelerator platforms. TimeWall consists of a

hierarchical scheduler and a specialized locking protocol, which orchestrates accelerator accesses while

respecting time-slice boundaries. We additionally present an experimental evaluation of TimeWall.

Organization. The remainder of this chapter is organized as follows. In Section 5.1, we describe our system

model and provide additional background on the real-time multiprocessor locking protocol that we extend. In

Section 5.2, we describe the different schedulers and the modified locking protocol that comprise TimeWall.
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Figure 5.1: Five partitions on four cores. Partition 3 executes on two cores; other partitions each execute on
one core. In-partition scheduling is shown for Partition 3.

We discuss the various challenges we encountered in moving from theory to practice in Section 5.3, and

present our experimental evaluation of TimeWall in Section 5.4 before concluding in Section 5.5.

5.1 System Model

We now describe our system, task, and accelerator-request models, as well as the locking protocol we

build upon.

5.1.1 Component Model

We consider a multicore+accelerator platform comprised of m identical CPUs alongside a set of ac-

celerators. We allow different types of accelerators, e.g., GPUs, digital signal processors (DSPs), and

field-programmable gate arrays (FPGAs).

In this chapter, we assume that all system components, and their assigned partition time slices, have been

predetermined. Associated with each component Ω is a set τ of tasks to be scheduled. During a time slice, Ω

has exclusive access to specified sets of CPU cores and accelerators. Note that some accelerators (e.g., GPUs)

can be broken into multiple virtual accelerators (NVIDIA, 2020; Otterness and Anderson, 2021); we leave

such sharing to future work.

5.1.2 Task Model

We assume that component Ω’s task set τ is comprised of n implicit-deadline tasks. In some AI

applications, a task’s utilization may exceed 1.0 (e.g., due to merging the nodes of a cycle into a supernode,

as in Section 2.4.4.2). Such tasks cannot be partitioned onto a single processor without over-utilizing the

processor. Thus, for such tasks to be scheduled, CPU scheduling within a component must be done via
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global scheduling (e.g., G-EDF), considering all jobs of all tasks in Ω together on the CPUs available to Ω,

with consistent deadline tie breaking. Task utilizations exceeding 1.0 also necessitate that some degree of

intra-task parallelism be allowed. Therefore, in this chapter we assume the rp-sporadic task model introduced

in Section 3.1.3.

5.1.3 Request Model

We consider accelerators to be shared resources that can be accessed by at most one job at a given time.1

Such accesses can be managed using a real-time mutual-exclusion locking protocol. A job Ji may issue one

or more requests,R1
i ,R2

i , . . . , to the locking protocol; we useRi to represent an arbitrary request of a job of

task τi. Once Ji is granted access,Ri is said to be satisfied until the job releases the lock. RequestRi is active

from its issuance until Ji releases the lock; an active request is either waiting to acquire the lock or is satisfied.

5.1.4 Global OMLP

As discussed in Section 5.1.2, allowing tasks with utilization exceeding 1.0 precludes partitioned

scheduling, and we therefore require global scheduling (e.g., G-EDF) and a multiprocessor mutual-exclusion

locking protocol. One such protocol is the suspension-based global OMLP (Brandenburg and Anderson,

2010), which has been shown to have optimal priority-inversion blocking (pi-blocking) under suspension-

oblivious analysis, which is the suspension-accounting method usually used under G-EDF.

When used on m processors, the global OMLP ensures O(m) pi-blocking by utilizing a dual-queue

structure, with an m-element FIFO queue fed into by a priority queue, as depicted in Figure 5.2. Using the

global OMLP, when a new request is issued, it is enqueued in the FIFO queue if fewer than m requests are

already active, and in the priority queue otherwise. When the request at the head of the FIFO queue (i.e., the

lock holder) completes, it is dequeued, and the next request (if any) in the FIFO queue becomes satisfied; if

the priority queue is not empty, the highest-priority request is moved from the priority queue to the tail of the

FIFO queue.

Example 5.1. Figure 5.3 depicts six jobs that issue requests to the global OMLP with m = 4. The global

OMLP state shown in Figure 5.2 corresponds to the set of active requests at time 4.5. The first four requests

1Similarly to the division of accelerators into virtual accelerators that could be accessed concurrently by different components,
we leave the exploration of intra-component accelerator sharing for future work. For this work, we assume mutual exclusion for
simplicity.
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Figure 5.2: The global OMLP structure for m = 4 CPUs.
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Figure 5.3: Jobs issuing requests to the global OMLP with m = 4 CPUs.

issued are enqueued directly in the FIFO queue in issuance order; thus,R5 is satisfied beforeR4, even though

J4 has higher priority than J5.

RequestsR6 andR3 are enqueued in the priority queue upon issuance, as the FIFO queue is full. When

J1 releases the lock at time 7, R2 becomes satisfied (i.e., the head of the FIFO queue), and R3 is moved

from the priority queue to the FIFO queue, as J3 has higher priority than J6. Thus,R3 is satisfied beforeR6,

despite being issued later. ♦

The global OMLP relies on the concept of priority inheritance to ensure progress: the lock holder

“inherits” the priority of the highest-priority active job waiting to acquire the lock, if that priority exceeds that

of the lock holder itself.

Example 5.1 (continued). While job J5 holds the lock from time 8 to time 9, it inherits the priority of job

J3, which has the highest priority of any job enqueued in either the FIFO or the priority queue. ♦
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Figure 5.4: Two jobs issuing requests to access the same accelerator.

5.1.5 Accelerator Access Model

We refer to the computations performed while a request is satisfied as its critical section. We assume

that each job of a task τi may make any number of accelerator accesses and that successive accesses to the

same accelerator may be grouped into the critical section of a single request. We denote by Y k,1
i , Y k,2

i , . . . the

accelerator accesses occurring during the critical section of requestRk
i .

Example 5.2. Two request-issuing jobs are depicted in Figure 5.4. Job J2 makes two separate lock requests,

whereas the two accesses by job J1 are grouped into a single request.

RequestR2
2 is active in the interval [5,9): it is blocked by both accesses ofR1

1 from time 5 to time 8 and

then satisfied from time 8 to time 9 whileR2
2’s critical section executes. ♦

5.2 TimeWall Design

Certification procedures tend to evolve slowly over time. Furthermore, avionics certification is typically

stricter than that for automotive applications. Given this reality, our proposal for ensuring time partitioning

on a multicore+accelerator platform is based on the current ARINC 653 time-slicing approach for avionics.

We abstract the idea of time slicing by ensuring that each component Ω is granted exclusive periodic

access to a set ϒ of computing resources (accelerators as well as M unit-speed CPUs, where M ≤ m) by

defining a periodic component reservation (PCR) for Ω (similarly to the Single Time Slot Periodic Partition

model of Mok and Chen (2001)).

The PCR for component Ω is defined as a three-tuple (Θ,Π,ϒ), denoting that Ω receives exclusive access

to the computing resources in ϒ within continuous intervals of Θ time units that begin every Π time units

(Θ≤Π).

Example 5.3. Figure 5.5 shows the first few time slices for four components on a platform with four CPUs

and two GPUs. In this example, Component A is specified by (2,3,{CPU 0,CPU 1,CPU 2,GPU 0}). ♦
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Figure 5.5: A time-sliced schedule. Rectangles represent reservations.

We now introduce TimeWall, a framework to enable time partitioning on multicore+accelerator platforms.

5.2.1 Scheduling Hierarchy

At the core of TimeWall is a two-level scheduling hierarchy. The top-level scheduler is the partition

allocator (PA), which ensures that partitions are scheduled according to their PCRs. The PA is realized using

a table-driven scheduling approach. We assume that the table is determined offline; optimizing the table

creation is outside the scope of this dissertation.

The second-level scheduler is the in-partition scheduler. Conceptually, any multiprocessor scheduler

could be used; our implementation uses G-EDF, but other G-EDF-like schedulers (Erickson and Anderson,

2012) could be applied similarly. In the rest of the chapter, we focus on the allocations within a single

arbitrary component, so we will simply refer to that component’s in-partition scheduler as “the scheduler.”

To realize this scheduling hierarchy, we extended the existing reservation-based scheduling mechanisms

available in LITMUSRT. In our implementation, each reservation is contained within a scheduling envi-

ronment: the PA corresponds to an environment that schedules partition reservations, and each in-partition

scheduler is associated with an environment that schedules task reservations. Using this hierarchical approach,

a job can query the remaining budget for its partition, which is necessary to enforce time partitioning, as

discussed next.

5.2.2 Time Partitioning via Forbidden Zones

We chose the global OMLP to ensure mutually exclusive access to each accelerator. We apply the global

OMLP within a component, treating each accelerator in ϒ as a separate resource protected by a unique global

OMLP lock with an M-element FIFO queue. We leave the exploration of other protocols to future work.
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Figure 5.6: Expanded view of the first time slice of Component A from Figure 5.5. Rectangles represent jobs
of tasks in Component A.

The key challenge of time partitioning accelerators is preventing the continuation of a non-preemptive

accelerator access past the end of a time slice. To prevent such time-slice overruns, we use a variant

of a concept known as a forbidden zone (Holman and Anderson, 2006).2 Defined for each access to a

non-preemptive accelerator, a forbidden zone is the time interval in which the access may not be initiated,

otherwise it may not complete before the end of the component’s time slice. Thus, the length of the forbidden

zone for a given access is the worst-case duration of that access—accelerator usage by other components has

no impact on a given component’s forbidden-zone lengths. Note that the use of a forbidden zone requires that

no accelerator access takes more than Θ time units.

Example 5.3 (continued). Forbidden zones are illustrated in Figure 5.6, which depicts a detailed view of the

execution of Component A from Figure 5.5 within the time interval [0,2). The forbidden zone corresponding

to the final GPU access by a job executing on CPU 2 is shown in grey, prior to the time-slice boundary at

time 2. ♦

The enforcement of forbidden zones in TimeWall is applied at the level of an individual accelerator

access, rather than an entire critical section. To enable this fine-grained enforcement, we augmented the

global OMLP to include an additional “forbidden-zone-check” mechanism in addition to the traditional

“lock” and “unlock” functionality. Prior to initiating an accelerator access Y k,`
i , the job Ji holding the lock

must invoke the forbidden-zone check, which verifies that Y k,`
i is not within its forbidden zone, i.e., that the

time remaining in the time slice is at least the worst-case duration of Y k,`
i . Otherwise, the forbidden-zone

2A similar idea was later applied in a component-based setting (Behnam et al., 2007), but that work focused on uniprocessor CPU
platforms and did not allow for skipping ahead in a forbidden zone, which we discuss later.
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check suspends Ji until the next time slice of its containing component. We call such forbidden-zone-induced

blocking fz-blocking.

Example 5.3 (continued). As shown in Figure 5.6, the last job to execute on CPU 2 accesses GPU 0 twice.

The first GPU access is initiated at time 1.5, before the start of its forbidden zone; this access is allowed to

execute, as it will complete before the end of the time slice, by the definition of the forbidden-zone length.

The second GPU access is fz-blocked, and cannot begin until Component A’s next time slice. CPU execution,

like that on CPU 0, is allowed and is preempted at time 2.0. ♦

5.2.3 Bounding Fz-Blocking

Bounds on additional blocking due to using forbidden zones have been provided in previous work (Hol-

man and Anderson, 2006), assuming that forbidden zones were enforced for each entire critical section. We

now show how to compute zone-based blocking due to per-access forbidden zones. Consider a job Ji that

initiates a lock requestRi with critical-section length B, whereRi is comprised of one or more accesses for an

accelerator A ∈ ϒ. Let BA,Ω
max (resp., KA,Ω

max ) denote the worst-case critical-section length of a lock request (resp.,

worst-case duration of an access) for A by any task in component Ω. Ignoring zone-based blocking, under

the global OMLP,Ri will be blocked for up to X = 2(M−1)BA,Ω
max time units (Brandenburg and Anderson,

2013), i.e., it will finish at most X +B time units after being initiated.

The following lemma bounds the blocking experienced by a lock request when forbidden zones are

enforced for each accelerator access.

Lemma 5.1. The total blocking introduced by the management of non-preemptive accelerator accesses is at

most X + d(X +B)/
(

Θ−KA,Ω
max

)
e ·KA,Ω

max time units for each lock request by a task in Component Ω for an

accelerator A ∈ ϒ.

Proof. In each time slice of length Θ, at least Θ−KA,Ω
max time units are available for job Ji to initiate accesses

to A, as KA,Ω
max is the maximum forbidden-zone duration for any access to A. (Recall that job Ji may not access

other accelerators untilRi completes and the lock is released.)

In executing this work, and while the last access inRi is unfinished, additional blocking of up to KA,Ω
max

time units may be incurred for each time-slice boundary crossed. Thus, we upper bound the number of

such boundaries that may be crossed between the initiation and completion of Ri. The worst case occurs
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when Ri is initiated right before a time-slice boundary, in which case d(X +B)/
(

Θ−KA,Ω
max

)
e boundaries

are crossed.

5.2.4 Performance Optimizations

The delays caused by fz-blocking can be mitigated slightly via two performance improvements, which

we discuss now.

Skipping ahead. If the lock holder is fz-blocked due to an accelerator access in its forbidden zone, we

can allow other requests to “skip ahead” of that access until the beginning of the next time slice. This

corresponds to the Skip Protocol proposed previously (Holman and Anderson, 2006), but requires some

additional machinery due to the separate enforcement of forbidden zones and critical sections. Because

allowing a request to skip ahead reorders the global OMLP’s queues of requests, critical-section lengths rather

than individual access durations are compared to the time remaining in the slice to determine whether skipping

ahead is allowed. A consequence is that individual accesses are not permitted to skip ahead. Additionally,

the priority-inheritance mechanism used by the global OMLP must be modified: while a job is fz-blocked

and another job is allowed to skip ahead, only the skipping-ahead job inherits the highest priority of any

enqueued job (i.e., the fz-blocked job resumes its original scheduling priority until it is no longer fz-blocked).

Example 5.4. Consider the set of active lock requests depicted in Figure 5.7 (note that request and access

subscripts are dropped here, as they are not relevant). Suppose that after Y 1,1 completes, the job becomes

fz-blocked, i.e., that the worst-case duration of Y 1,2 is longer than the time remaining in the time slice.

In this case, a later-enqueued request may be allowed to skip ahead. The next request that can be satisfied

isR5, as its critical-section length is less than the worst-case duration of Y 1,2. Note thatR3 is not eligible,

even though its individual accesses are each of shorter duration than Y 1,2. ♦

Requests that skip ahead do so while another job is fz-blocked, and thus do not introduce any additional

blocking.

Merging accelerator accesses. Each request for accelerator accesses incurs delays due to locking-protocol

overhead as well as pi-blocking. As given by Lemma 5.1, such blocking depends on Bmax, the worst-case

duration of any critical section.

As we allow multiple accelerator accesses within a critical section, a trade-off arises as to whether

to merge successive accesses into a single critical section. If a job Ji acquires the lock for each access
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Figure 5.7: The global OMLP with support for forbidden zones. Request and access widths indicate
worst-case critical-section and access durations, respectively.

individually, the locking-protocol overhead and pi-blocking suffered by Ji are duplicated for each access.

However, if the accesses are merged, then the single critical section has longer duration than if the lock

were separately acquired for each access, increasing the blocking experienced by other jobs. We discuss the

overhead associated with this trade-off for our implementation in Section 5.4.1 and explore the effects of

merging accelerator accesses in more detail via case-study experiments in Section 6.3.

5.3 Theory Meets Practice

In theory, forbidden zones ensure total isolation between accelerator-using components, but does such

isolation occur in practice? To answer this question, we implemented the two-level scheduler and forbidden-

zone-aware global OMLP comprising TimeWall within the 5.4.0-rc7 LITMUSRT kernel (Brandenburg, 2011;

Calandrino et al., 2006) and conducted experiments involving a GPU.3 These experiments led to several

surprises, which we detail throughout this section.

Experimental setup. Our experimental platform contains two eight-core 2.10-GHz Intel Xeon Silver 4110

processors and one NVIDIA Titan V GPU. Each CPU core utilizes a 32-KB L1 instruction cache, a 32-KB

L1 data cache, and a 1-MB L2 cache; all eight CPU cores on a socket share an 11-MB L3 cache. To mitigate

spatial interference between components, we partitioned each L3 cache evenly between components executing

on the corresponding socket. We also disabled hyperthreading and graphics output for all experiments.

Our case study, described in more detail in Section 5.4, featured a GPU-enabled version of the pedestrian-

detection hog application. Recall from the descriptions in Sections 2.1.2 and 4.6.3 that hog utilizes seven

GPU operations: a CPU-to-GPU image copy-in, five GPU kernels, and one final GPU-to-CPU result copy-out.

To avoid notation confusion, we refer here to the five GPU kernels as K1–K5.

3Source code is available at https://cs.unc.edu/~anderson/diss/tanyadiss/.
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Table 5.1: Statistics for durations of the two copies and five kernels comprising the hog case study in
microseconds, as measured on the GPU using nvprof and on the CPU using clock gettime().

Device Statistic Copy-In K1 K2 K3 K4 K5 Copy-Out
GPU max 77 27 42 56 28 49 29

CPU

99th 154 144 138 73 30 64 46
99.5th 157 146 139 74 31 65 47
99.9th 180 154 146 79 45 70 52
99.95th 200 161 148 86 49 76 57
99.99th 1391 1342 163 1265 55 1236 69
max 5247 1393 1388 1332 1286 1317 1300

To provision forbidden zones for the seven GPU operations in hog, we needed the worst-case duration

of each access. Due to the complexity of multicore platforms, the industry standard for WCET analysis

on such platforms is measurement based (Wilhelm, 2020). Thus, for 25,000 video frames, we collected

GPU- and CPU-based GPU-access-duration measurements, using NVIDIA’s nvprof profiling tool and

clock gettime(), respectively. The results are listed in Table 5.1, including the 99th, 99.5th, 99.9th, 99.95th,

and 99.99th CPU percentiles.

Perplexing edge cases. We expected the CPU-measured GPU-access durations to approximately match

what we measured on the GPU (with minor CPU-GPU communication overhead), yet this behavior only

holds up to the 99.95th percentile of CPU measurements. In fact, the worst-case CPU-measured times are

two orders of magnitude higher than those measured on the GPU. What was causing such extreme edge cases,

and why had prior work not noted these cases?

Prior work seems to have obviated edge cases either by only timing GPU accesses on the GPU (Heo

et al., 2020; Mei et al., 2017; Yang et al., 2018b) or by using only a percentile of measured CPU times (Yang

et al., 2018a, 2019; Yao et al., 2020). We can make no such simplification. Provisioning forbidden zones

using lower percentiles would risk GPU accesses crossing time-slice boundaries, violating temporal isolation.

However, as the average- and worst-case diverge, fz-blocking using worst-case measurements becomes

exceedingly conservative, greatly reducing GPU utilization. Only one choice remained: we needed to identify

the cause of the edge cases.
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5.3.1 Investigating Potential Culprits

Prior work identified several potential issues in using GPUs in real-time systems, providing us with a

starting point. After ruling out the pitfalls listed in Chapter 4, we suspected GPU interrupt handling as the

edge-case culprit, as Elliott and Anderson (2012) detailed priority inversions that could occur due to interrupt

processing for CPU-GPU communication in prior kernel and GPU driver versions.

Interrupt processing. In Linux (upon which LITMUSRT is based), interrupts are processed in two steps:

“top halves,” which typically execute immediately and non-preemptively to acknowledge the interrupt, and

“bottom halves,” which handle the interrupt processing itself. Despite recent changes in Linux interrupt han-

dling (Rybczyńska, 2020), bottom halves in LITMUSRT still execute at a lower priority than any LITMUSRT

task, leading to potential priority inversions.

We mitigated edge cases due to top halves by reserving one CPU per socket for top-half handling. To

identify if bottom-half-related priority inversions were causing the edge cases, we used KUTrace (Sites, 2018,

2021), a tracing tool that provides a timeline of all work on the system, including interrupts, syscalls, and

page faults. The trace data surprisingly revealed that interrupts were not at fault; each edge case occurred

entirely in userspace. However, this raised the question: what source could account for a userspace slowdown

of this magnitude?

Power management. The trace data revealed an additional oddity, providing our next clue: just before a

worst-case GPU access completed, all CPUs other than the one awaiting notification of a GPU-operation

completion would exit a low-power state. Thus, we sought to disable power management, including both

low-power states and CPU frequency scaling.

For low-power states, we disabled Linux’s cpuidle mechanism (Brown, 2016). Frequency scaling

proved more challenging, and in fact, we discovered that it is impossible to completely disable frequency

scaling in modern Intel processors. Thus, we implemented a monitor to periodically log CPU frequency. We

correlated these measurements with our trace data, and observed no CPU-frequency changes during edge-case

occurrences. To identify the userspace operations in which the edge cases occurred, we added KUTrace

markers around each CPU-side operation occurring within our GPU-access-duration timing interval; we

found that the edge cases occurred within library functions used to communicate with the GPU.
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Figure 5.8: Illustrations of two edge-case scenarios we observed using KUTrace and nvprof.

CUDA runtime library overhead. NVIDIA provides the CUDA runtime library for communicating

with an NVIDIA GPU. For example, there are CUDA functions to submit a GPU kernel to the GPU

(cudaLaunchKernel) and await its completion (cudaStreamSynchronize).

By aligning a GPU trace using NVIDIA’s nvprof tracing tool with our KUTrace results, we observed

two unexpected scenarios, shown in Figure 5.8. Figure 5.8a illustrates a scenario in which the asynchronous

cudaLaunchKernel took multiple milliseconds; this call typically takes tens of microseconds. In the

other scenario, depicted in Figure 5.8b, the cudaStreamSynchronize call did not return until multiple

milliseconds after the GPU execution had completed.4

Unfortunately, due to the closed-source nature of the NVIDIA ecosystem, discovering the root cause

of these edge cases was exceedingly difficult. Furthermore, we may have observed only one of many

possible edge cases in using such black-box GPUs. Thus, having to deal with edge cases is an unavoidable

consequence of using an NVIDIA GPU. Consequently, to support a robust real-time system, edge-case

mitigation is a necessity.

5.3.2 Mitigating Edge Cases through Budget Enforcement

The edge cases just discussed highlight our dual need to ensure that our provisioned GPU-related

execution times are both respected and reasonable. The classic way of providing such assurance is by

enforcing budgets, and we do that here. However, in the case of GPU operations, budget enforcement is

trickier than for CPU-only tasks.

Our budget-enforcement solution uses a two-pronged approach. To enforce forbidden zones we utilize a

watchdog timer, and provision forbidden zones using worst-case GPU-measured access durations. To handle

4We use the CUDA option cudaDeviceScheduleYield to suspend on the CPU while waiting for the GPU operation to complete,
but we observed the same results by instead spinning via cudaDeviceScheduleSpin.
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budget overruns, we monitor GPU access durations and cancel any additional job processing if a budget

overrun occurs. We provision per-access budgets using 99.95th-percentile CPU-measured access durations.

5.3.2.1 Enforcing Forbidden Zones

The watchdog timer is controlled via a pair of syscalls (as part of the forbidden-zone-aware global

OMLP) for each accelerator access. Note that, like lock/unlock calls, these sycalls are performed by task

code, and therefore forbidden-zone enforcement does rely on an unenforced programming convention.

The first syscall takes two parameters: the access budget and the forbidden-zone length. If the time

remaining in the component’s time slice is less than the budget, the job is suspended until its component’s

next time slice. Otherwise, the timer is set to fire at the start of the forbidden zone (i.e., the time-slice

end minus the forbidden-zone length), and the budget expiration time is set. The second syscall takes no

parameters—it simply cancels the timer (if it has not already fired) after the operation launch has completed;

a GPU operation initiated before its forbidden zone begins will complete before the time-slice boundary.

Example 5.5. Our budget-enforcement mechanisms are illustrated for a single GPU access in Figure 5.9. In

each inset, the budget expires at time tb, the forbidden zone begins at tfz, and the time slice ends at tts.

The “well-behaved” case is depicted in Figure 5.9a. In this example, the first syscall occurs at time (1);

the budget is less than the time remaining in the time slice, so the timer is set to fire at time tfz (calculated as

tts minus the forbidden-zone length), tb is set (calculated as the current time plus the budget), and the access

is allowed to proceed. After the kernel launch completes (time (2)), the watchdog timer is cancelled via the

second syscall. As the access begins before tfz, it is allowed to execute within its forbidden zone. Once the

access completes, the budget is checked (time (3)); this check occurs before time tb, so the budget has not

expired. ♦

If the timer fires, the timer callback function immediately suspends the job, ensuring that the GPU

operation will not be initiated in the current time slice.

Example 5.5 (continued). The scenario depicted in Figure 5.9b corresponds to the edge case in Figure 5.8a.

In this scenario, the first syscall sets the watchdog timer, but an edge case occurs during the kernel launch, so

the timer fires at time tfz before the second syscall occurs. The job is immediately suspended, so the GPU

operation is not submitted in this time slice. ♦
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Figure 5.9: The budget-enforcement mechanisms used in TimeWall, for (a) a “well-behaved” GPU access,
(b) a GPU access for which the watchdog timer fires, and (c) a GPU access that exceeds its budget.

5.3.2.2 Handling Budget Overruns

Unfortunately, it is not simple to immediately kill a misbehaving GPU-using task, as this invali-

dates the CUDA context shared by any other tasks in the same process. Thus, we must wait until the

cudaStreamSynchronize call completes to enforce GPU budgeting. If the access completes after the

budget expires, a SIGSYS signal sent to the application, which must handle the budget overrun.5

Example 5.5 (continued). In Figure 5.9c, the edge case occurs after the GPU operation completes, as in

Figure 5.8b, so temporal isolation of the GPU is not violated. However, the cudaStreamSynchronize call

completes after the access’s budget expires at time tb, so a SIGSYS signal is sent to the application. ♦

In our hog case study, the SIGSYS signal results in stopping all processing for the current video frame,

i.e., the frame is dropped—in the AI use cases that motivate this work, occasionally cancelling work (e.g.,

dropping a video frame) is often deemed as acceptable. The choice of provisioning for GPU-access budgeting

provides an interesting trade-off between job completion and system utilization; provisioning GPU-access

budgeting on a lower percentile enables better utilization of the processors available to the partition at the

cost of a higher number of jobs (i.e., frames) being dropped. We explore this trade-off in Section 5.4.

5Note that, like forbidden-zone enforcement, handling of the SIGSYS signal relies on unenforced programming conventions.
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5.4 Experimental Evaluation

In this section, we present an experimental evaluation of our TimeWall implementation using both synthetic

experiments and a case-study featuring the hog application. All experiments described in this section were

performed on the platform described in Section 5.3.6

5.4.1 Temporal Isolation and the Cost of Enforcement

We first discuss synthetic experiments we performed to verify temporal isolation and to quantify the

overheads associated with forbidden-zone enforcement.

5.4.1.1 Verifying Temporal Isolation

We designed two GPU-using tasks to test temporal isolation. GPU-LIGHT, which accesses the GPU at

the start of each time slice, is affected by any GPU interference: the GPU-LIGHT kernel executes for a given

number of cycles, and if any GPU operations from another component overrun the time-slice boundary, the

GPU-LIGHT task’s response time will increase. GPU-HEAVY, on the other hand, submits GPU kernels near the

end of each time slice, attempting to cause GPU interference.

We validated that our TimeWall implementation achieves temporal isolation and measured any context-

switch costs due to alternating components sharing the GPU. We used two components, each with 16 ms

time slices; we executed one GPU-LIGHT task in the first component, and measured its response time as

we varied the workload in the second component. Our results are shown in Figure 5.10, with the second

component containing (a) nothing, (b) one GPU-LIGHT task, or one GPU-HEAVY task (c) with or (d) without

forbidden-zone enforcement. Note that we disabled forbidden-zone enforcement for GPU-LIGHT tasks, as

each component contains at most one GPU-LIGHT task (so GPU-LIGHT-containing components have no

intra-component GPU contention due) and its kernel completes well before the end of the time slice.

We use the approach of Capodieci et al. (2018) to calculate the theoretical context-switch cost based on

parameters of our Titan V GPU: with a GPU-internal bus bandwidth of 652.8-GB/s and 64-K 4-byte registers

per SM, 128-KB of L1-cache per SM, 4.5-MB of L2 cache, and 80 SMs, it takes around 51.65 µs to store or

load the GPU state.

6Source code and resulting graphs are available at https://cs.unc.edu/~anderson/diss/tanyadiss/.
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Figure 5.10: Comparison of median GPU-LIGHT task execution times in the presence of alternating component
workloads (the middle 50th-percentile percentile varied by less than 3%). GPU-LIGHT tasks were not subject
to forbidden-zone enforcement.

Observation 5.1. Observed GPU-context-switch costs match our theoretical calculation.

Curves (a) and (b) in Figure 5.10 correspond to our GPU-LIGHT task running in isolation and against

another GPU-LIGHT task, respectively; in neither case should GPU operations cross time-slice boundaries.

Demonstrating this, the slopes of these curves are nearly identical, with a near-constant offset ranging

from 98.2 to 99.2 µs. A context switch requires both a store and a load, resulting in a theoretical cost of

about 103.3 µs, which is in line with our measurements.

Observation 5.2. TimeWall enforces temporal isolation between GPU-using components.

The difference between curves (c) and (d) in Figure 5.10 indicates the benefit of our watchdog timer. Ad-

ditionally, as curves (b) and (c) are nearly identical, we can also observe that our forbidden-zone enforcement

reduces any temporal interference to just the cost of GPU context switches.

5.4.1.2 Overhead of Forbidden-Zone Enforcement

We used FeatherTrace (Brandenburg and Anderson, 2007) to measure the overheads7 associated with

enforcing forbidden zones for our TimeWall implementation. We performed a synthetic experiment with 30

7We used 99th-percentile measurements. LITMUSRT was developed for academic research purposes to investigate functionality that
could be fielded in an RTOS for safety-critical contexts. We take the 99th-percentile as representative of achievable worst-case
overheads in a well-honed RTOS.
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GPU-using tasks in a component with M = 5 CPU cores; the overhead for each GPU access was 0.9 µs to

set the watchdog timer, and an additional 1.2 µs if the timer fired.

To consider the trade-off associated with merging multiple GPU accesses into one critical section, we

compare the timer overheads to the lock and unlock calls, for which we observed overhead costs of 0.7 µs

and 4.7 µs, respectively. (The high unlock overhead is expected due to ensuring priority inheritance for the

next lock holder.) These measurements suggest potential benefits of merging a few accesses into one critical

section; e.g., two individual requests incur a total of 12.6 µs overhead (0.7+0.9+4.7 = 6.3 µs each), but

one request that comprises two accesses incurs only 0.7+0.9+0.9+4.7 = 7.2 µs overhead.

5.4.2 Choosing a Time-Slice Length

The overhead and GPU context-switch costs discussed in Section 5.4.1 become increasingly relevant

for shorter time slices. However, long time slices can result in high response times due to long intervals

when jobs are released but not scheduled, e.g., if Θ = 100 ms, Π = 200 ms, and Ti = 25 ms for some task

τi, then four jobs of τi may be released but not scheduled during each time interval that τi’s component

does not execute. To explore the “sweet spot” between these two time-slice-length extremes, we performed

experiments using randomly generated synthetic tasks.

Components and partitions. Our time-slice experiments used two components, scheduled as shown in

Figure 5.11. Components A and B alternately utilized CPUs 1–7 and the GPU. We reserved CPU 0 for

interrupt handling, and the other socket (CPUs 8–15) for non-real-time tasks. We used Intel’s Resource

Directory Technology (via the resctl command) to partition the L3 cache and DRAM between components.

Component A was comprised of GPU-using tasks with Ci = 4 ms; each job spun on the CPU for its

WCET, and accessed the GPU once at a random point in its execution, with Y 1,1
i uniformly chosen from

[0.02,0.04] ms (“short”), [0.2,0.4] ms (“medium”), or [2,4] ms (“long”). For each of these three access-

duration ranges, we generated a task set for Component A by adding randomly generated tasks until we

reached utilization restrictions.8 In Component B, we executed a cache-thrashing workload designed to evict

the contents of the per-core L1 and L2 caches.

We varied Θ and Π while maintaining the ratio Θ/Π = 0.5, and measured the response times of the

tasks in Component A for two minutes. We set Θ to be powers of two from 0.5 ms to 256 ms. To observe

8The feasibility conditions for Ω can be shown to be U ≤Θ/Π ·M and ui ≤Θ/Π ·Pi, assuming per-task WCETs have been inflated
to account for the blocking given by Lemma 5.1.
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Figure 5.11: Reservations for the two components in our time-slice experiments. We measured response
times of tasks in Component A.

the impact of time-slice-aligned job releases, we separately performed experiments in which periods of

tasks in Component A were uniformly chosen to be either 32 ms or 64 ms (“aligned”) or 25 ms or 50 ms

(“unaligned”). We assume periodic tasks for these experiments, so releases being aligned with time slices

means that for Π≥ Ti, a job is released at the start of each time slice; it is possible that multiple jobs may be

released during a time slice, e.g., if Θ = 64 ms and Ti = 32 ms.

Job releases aligned with time slices. The results of our aligned-releases experiments are shown in Fig-

ure 5.12 for each range of GPU-access durations. Note that for a task system to be schedulable, we require

Θ ≥ Y k,`
i , so we do not include response-time curves for long GPU-access durations (up to 4 ms) with

Θ < 4 ms.

Observation 5.3. Extremely short time slices result in unbounded response times.

This can be observed for the 0.5 ms curve in Figure 5.12a. For such short time slices, forbidden zones,

scheduling and locking overhead, and context-switch costs take a larger proportion of the capacity available

to the component. This is even more pronounced for the medium GPU-access durations in Figure 5.12b;

forbidden zones take up to 80% of the 0.5 ms time slices.

Note that although Θ= 1 ms resulted in long response times for short GPU accesses, the overhead was not

high enough to cause unbounded response times. Additionally, the higher response times for Θ = 1 ms with

short GPU accesses compared to medium GPU accesses was likely due to having more tasks in Component A.

Observation 5.4. Extremely long time slices result in prohibitively large response times.

For Θ≥ 64 ms and Ti = 32 or 64 ms, multiple jobs may be released while the component is not scheduled.

This results in high response times in all scenarios depicted in Figure 5.12.

Observation 5.5. The lowest response times occur for Θ >Ci and Π≤ Ti.
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Figure 5.12: Response times of jobs with releases aligned to time slices, for (a) short, (b) medium, and
(c) long GPU accesses, with varying Θ (in milliseconds).
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In all three scenarios, the lowest response times occurred for Θ = 16 ms (Π = 32 ms) and Θ = 8 ms

(Π = 16 ms). Thus, the best reservation choices had budgets greater than the WCET of any task and periods

at most that of any task.

Job releases unaligned with time slices. The results of our unaligned-releases experiments are shown in

Figure 5.13.

Observation 5.6. The lowest response times occur for the same Θ choices regardless of whether job releases

align with time slices.

In these experiments, we observed that Θ = 8 ms also resulted in the lowest response times for tasks

with unaligned releases. This indicates that these time-slice budgets are not artifacts of aligned job releases,

but rather, for our task system parameters, provide the best balance of the negative effects of overhead and

fz-blocking with the amount of time a component is not scheduled.

5.4.3 Case-Study Evaluation

We now present our case-study evaluation of TimeWall using a real workload.

Components and partitions. Our case study used the same partitions depicted in Figure 5.11, with different

workloads running in Components A and B. We again partitioned the DRAM and the L3 cache between

components. Component A was comprised of three hog tasks, each with Ti = 40 ms (corresponding to 25

frames per second) and Pi = 2. Component B contained seven cache-thrashing and GPU-using tasks designed

to evict the contents of the per-core L1 and L2 caches, cause GPU context switches, and stress the watchdog

timer. These tasks had a period of 160 ms and each job accessed the GPU for 5 ms.

The HOG-based pedestrian-detection algorithm. As discussed in Section 5.3, the HOG-based pedestrian-

detection algorithm processes a video frame by copying the image to the GPU, detecting pedestrians at

multiple image-scale levels (we used 13 levels in our experiments), and then copying the results for each

level back from the GPU. Thus, processing each frame takes 78 GPU operations: one copy-in, 64 kernels

(kernels K2–K5 operate on all scale levels, and K1 operates on all but the first), and 13 copy-out operations.

We configured each hog task to process one frame per job.
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Figure 5.13: Response times of jobs with releases unaligned to time slices, for (a) short, (b) medium, and
(c) long GPU accesses, with varying Θ (in milliseconds).
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Figure 5.14: CDFs of hog response times with varying Θ (in milliseconds).

5.4.3.1 Choosing Time-Slice Lengths for hog

We performed experiments similar to those in Figure 5.12 for the hog tasks in Component A, with each

instance processing 5,000 video frames. We aligned job releases with time slices (in practice, real-time

systems typically have harmonic periods), and chose Θ values ranging from 5 ms to 160 ms. The results of

our hog time-slice experiments are depicted in Figure 5.14.

Observation 5.7. The lowest response times for hog occur for Θ = 20 ms.

This matches what we expect from Observation 5.5. The hog tasks have a period of 40 ms, so for

Θ = 20 ms, each task releases a job each time slice of Component A. The worst-case response time we

observed was 16.31 ms, which corresponds to completing a job within the time slice in which it was released.

All remaining experiments discussed in this section thus use Θ = 20 ms.

5.4.3.2 Frame Dropping Due to GPU-Budget Enforcement

The provisioning choice for budgeting GPU accesses greatly impacts the number of frames dropped.

If any of hog’s 78 GPU accesses exceeds its budget, the frame is dropped. We treat each access as an

independent random variable with probability ρ of not exceeding its budget. Thus, ρ78 is the probability that

all 78 accesses for a given frame will not exceed their budgets, and the probability of dropping a frame in

hog is given by 1−ρ78. We choose a value of ρ to provision GPU accesses in hog as described below.

This expected frame-drop rate of 1−ρ78 is plotted as the “Theoretical” curve in Figure 5.15. The other

curves correspond to the observed frame-drop rates for different values of a safety-margin multiplier we apply
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Figure 5.15: Measured frame-drop rates for hog depending on multiplier used for provisioned GPU-access
budgeting values, compared to the theoretical frame-drop rate.

to CPU-based measurements of GPU access times for provisioning budgets. To measure these frame-drop

rates, we provisioned GPU-access budgeting using these different multipliers, and ran three hog tasks for

25,000 jobs each, counting the number of frames dropped.

Observation 5.8. Theoretical frame drop rates increase rapidly when provisioning on less than the 99.9th

percentile.

For 99.9th-percentile measurements, the theoretical frame-drop rate is 7.5%. However, this rises to

32.4% and 54.3% for the 99.5th- and 99th-percentile measurements, respectively.

Observation 5.9. Using a multiplier of 1.0 results in highly conservative budgeting.

This can be seen by comparing the 1.0-multiplier and “Theoretical” curves in Figure 5.15. For example,

provisioning using exactly the 99.9th percentile results in almost a three-times increase in the frame-drop rate

over the expected value.

Observation 5.10. Increasing budget provisioning by a small multiplier results in a sizeable reduction in

frame-drop rates.

Provisioning on the 99.95th percentile with multiplier 1.1 resulted in a 1.6% frame-drop rate, compared

to the expected rate of 3.8%. By using a slightly higher multiplier, we can avoid the outliers occurring for

worst-case GPU-access measurements by using a lower percentile, enabling better platform utilization. Thus,

for the remaining hog experiments in this subsection, we chose a multiplier of 1.1 and to provision budgeting

at the 99.95th percentile.
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5.4.3.3 The Cost of Enforcing Time Partitioning

Next, we sought to understand the trade-offs associated with using TimeWall with a real workload. For

this, we measured the response times of the hog tasks in Component A with no workload in Component B

(i.e., during Component B’s time slices, the CPUs and GPU were idle), and varied the method of enforcing

temporal isolation between GPU-using components. We compared no GPU management (and thus no

guarantee of isolation), employing the global OMLP (but without support for forbidden zones), and using

TimeWall (including forbidden-zone enforcement and CPU budgeting) to ensure temporal isolation.

To also consider the effects of interference between hog tasks, we performed experiments with three or

one hog task executing in Component A. Our results are shown in Figure 5.16. To more clearly observe the

worst-case behavior, we additionally plot the complementary CDF (CCDF), or tail distribution, in Figure 5.17.

Observation 5.11. Using TimeWall results in only a slight increase in average-case response times.

This difference is visible for three hog tasks in Figure 5.16a. This increase is most likely the result of

enforcing forbidden zones. When only the global OMLP is employed, accesses are allowed to begin within

the forbidden zone, which can result in temporal-isolation violations, but increases the amount of work that

may complete within a given time slice.

Observation 5.12. Using TimeWall results in a lower worst-case response time than using the global OMLP.

The worst-case response times for hog using either the global OMLP or TimeWall were 42.9 ms and

19.4 ms, respectively, as shown in Figure 5.17a. This difference is likely due to GPU-access budgeting

employed by TimeWall, which terminates a job when it experiences a GPU-access timing anomaly. Using just

the global OMLP allows for work to continue after a timing anomaly, which could extend a job’s execution

long enough to cross a time-slice boundary (recall that we chose Θ = 20 ms).

Observation 5.13. When GPU accesses are not managed, GPU contention between multiple hog tasks can

greatly increase response times.

This can be observed by comparing the “No GPU management” curves in Figures 5.16 and 5.17. In our

experiments, each hog task was executed as a separate process in Linux with its own CUDA context. When

only a single hog task was present in Component A and GPU accesses were not managed (as in insets (b)),

the average and worst-case response times were 3.9 ms and 11.0 ms, respectively. However, when executing

three hog tasks without using any locking protocol (as in insets (a)), the average and worst-case response
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Figure 5.16: CDFs of hog response times with different GPU-management approaches, with either (a) three
or (b) one hog task(s) in Component A.
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Figure 5.17: CCDFs (tail distributions) of hog response times with different GPU-management approaches,
with either (a) three or (b) one hog task(s) in Component A. Note that the y-axis uses a logarithmic scale.

times were 42.3 ms and 55.9 ms, respectively; almost every job took more than a single time slice, and thus

was delayed an additional 20 ms while Component A was not active. This increase in response times is most

likely due to multiprogramming effects on the GPU (Amert et al., 2017),9 which were not present when only

one hog task executed in Component A.

9Multiprogramming experiments were performed by a coauthor, Nathan Otterness, and thus were not presented as a contribution in
Chapter 4.

123



Table 5.2: Observed response times across 75,000 frames for hog tasks in Component A without or with
other tasks executing in Component B.

A A+B
Observed Maximum Response Time (ms) 19.40 16.54
Observed Average Response Time (ms) 14.81 14.61
Number of Dropped Frames 1212 1238
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Figure 5.18: CDFs of observed response times for the hog tasks in Component A without and with a workload
in Component B.

5.4.3.4 Putting It All Together

We executed the three hog tasks in Component A for a total of 75,000 frames (25,000 each), either alone

or alongside our cache-thrashing and GPU-using workload in Component B, and measured the observed

response time for each frame and the overall number of frames dropped. These values are listed in Table 5.2.

We also plot the cumulative distribution function of the observed response times in Figure 5.18.

Observation 5.14. The hog tasks in Component A were not significantly affected by the presence of tasks

in Component B.

This is supported by comparing the observed-response-time curves in Table 5.2 and rows in Figure 5.18,

as well as the number of frames dropped in Table 5.2.

Observation 5.15. The frame-drop rate of hog matched the expected rate for our budget provisioning choice.

The frame-drop rates given in Table 5.2 were 1.6% and 1.7% when only Component A executed work

and when both components executed work, respectively. This matches our expectation of 1.6% given our

provisioned GPU-access budgets.
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5.5 Chapter Summary

In this chapter, we have presented TimeWall, a time-partitioning approach for real-time systems deployed

on multicore+accelerator platforms. TimeWall utilizes a modified multiprocessor locking protocol to maintain

the invariant that each time-partitioned component always has exclusive access to all processing resources

allocated to it. We discussed the specific challenges associated with realizing a full scheduler implementation

of TimeWall for a multicore+GPU platform, and demonstrated the isolation properties afforded by TimeWall

via experiments on actual hardware involving a synthetic tasks as well as a computer-vision application. In

Chapter 6, we will detail the results of additional experiments that explore the impacts of merging accelerator

accesses in the presence of additional automotive-based workloads.

Acknowledgements. The work presented in this chapter is the result of a collaboration among Tanya Amert,

Sergey Voronov, Zelin (Peter) Tong, and Joshua Bakita. Amert and Voronov contributed the initial design of

TimeWall presented in Section 5.2 and Tong and Bakita performed the bulk of the implementation. In partic-

ular, Voronov provided response-time analysis (not presented in this dissertation) for time-sliced scheduling,

Voronov and Amert provided the fz-blocking analysis in Section 5.2.3, Tong and Bakita implemented the

hierarchical scheduler within LITMUSRT and performed the edge-case explorations discussed in Section 5.3,

and Amert and Tong implemented the forbidden-zone-aware variant of the global OMLP. The experiments

presented in Section 5.4 were designed collaboratively by Amert and Tong, and performed by Tong.
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CHAPTER 6: ADDITIONAL EVALUATIONS

In this chapter, we evaluate the contributions from prior chapters in the presence of real automotive-based

workloads. After introducing the workloads we consider in Section 6.1, we return to the history-versus-

response-time-versus-accuracy trade-off in Section 6.2, in which we measure the observed history distributions

when running our vehicle- and pedestrian-detector-based MOT applications as real-time tasks alongside

other work and varying the MOT intra-task parallelism. We then discuss accuracy, precision, and observed

response times as parallelism changes. In Section 6.3, we present an extended case-study evaluation of

TimeWall. In addition to executing the hog application alongside the competing automotive workloads in

other components, we also explore the impact of merging GPU accesses into single lock requests. Finally, we

conclude in Section 6.4.

6.1 Competing Automotive-Based Workloads

Before discussing our additional experimental evaluations, we first describe the competing automotive

workloads that we used.1

Path planning. Recall from Section 2.1.1 that planning is typically handled at two levels: the global planner

determines a high-level path through a graph-based representation of the scene, and a local planner determines

finer-grained goals along that path. For global planning, we used an RRT-based planner. We considered two

options for local planning, either based on the Pure Pursuit path-tracking algorithm or the Artificial Potential

Field (APF) method. For all planners, we used Python implementations provided online (RuslanAgishev,

2021; Sakai et al., 2018), with modifications to configure them as real-time tasks, as discussed below. None

of the path-planning applications used the GPU.

Lane detection. Recall the description of a lane-detection pipeline from Section 2.1.2 and Figure 2.4.

Following this pipeline, we implemented a lane-detection application in C++ based on the houghlines

OpenCV sample. Unlike the path-planning applications, the OpenCV houghlines sample used the GPU

1Source code is available at https://cs.unc.edu/~anderson/diss/tanyadiss/.
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(and thus was the only source of GPU contention provided by the competing workloads), so we also modified

the necessary OpenCV module’s implementation to remedy the issues detected by CUPiDRT, as listed in

Table 4.10.

Task configurations. We implemented a Python wrapper for a subset of the liblitmus library used with

LITMUSRT, and configured each competing workload to be a real-time task. We chose task periods inspired

by Scenario 2 from Section 3.3.2.1, in which both vehicles and pedestrians are tracked by a camera attached

to a vehicle moving at city-driving speeds. Thus, we assume the vehicle travels at around 30 miles per hour,

or 44 feet per second. For the global-planner task, we selected a period of 5 seconds (corresponding to

re-planning the global path every 220 feet). The local planner determines the more immediate path, so we

selected for it a period of 200 milliseconds, corresponding to approximately every 9 feet. We chose a period

of 200 milliseconds for lane detection as well. For all tasks, we assume implicit deadlines, i.e., that a task’s

relative deadline equals its period.

6.2 Case Study: The History-vs.-Response-Time-vs.-Accuracy Trade-Off

The history-versus-response-time experiments in Section 3.2 indicate that increasing Pi past the minimum

required to ensure that Pi ≥ ui can significantly reduce response-time bounds. However, the experiments in

Section 3.3 showed that the impact on accuracy of increasing Pi depends not only on the absolute value of Pi,

but also the distribution of available historical results.

What remains to be seen is what history distributions can occur in practice, and how this impacts

the accuracy and response times of the MOT application. We now present the results of a case-study

experiment including the three automotive-based applications discussed in Section 6.1 (RRT, Pure Pursuit,

and lane detection) running alongside our deep-learning-based pedestrian and vehicle MOT applications, all

as real-time tasks under G-EDF scheduling using LITMUSRT.2

Experimental setup. We performed our case study on a platform with a four-core 3.50 GHz Intel i5-6600K

processor and one NVIDIA GeForce GTX 980 Ti GPU. Each CPU core has a 32-KB L1 instruction cache, a

32-KB L1 data cache, and a 256-KB L2 cache; all four CPU cores share a 6-MB L3 cache.

2Source code and experiment scripts are available at https://cs.unc.edu/~anderson/diss/tanyadiss/.

127

https://cs.unc.edu/~anderson/diss/tanyadiss/


The deep-learning-based detector used in our MOT application takes around 2 seconds to process a

single image. Therefore, we chose a period of 2 seconds for both the pedestrian- and vehicle-MOT tasks; as a

result, the most recent historical results are not always expected to be available.

To process 300 frames, our experiments ran for approximately 600 seconds, during which we executed

300 jobs of each MOT task, around 120 jobs of the global-planner task, and about 3,000 jobs of each of the

local-planner and lane-detection tasks. We anticipate that the presence of additional tasks in the system will

result in intermittent delays to the MOT tasks, particularly when a job of the global-planner task executes

every 5 seconds, during which there will be jobs of five tasks attempting to utilize four CPU cores.

Distribution of available history. To determine the distribution of available history for the MOT tasks,

we set Pi to one of {2,3,4} and performed tracking of both vehicles and pedestrians for the 300 frames of

Scenario 2. The resulting history distributions are given as tuples in Table 6.1, both when no competing work

was present as well as when both planners and lane detection were executing alongside the MOT tasks.

Observation 6.1. Competing work increases the response times of MOT tasks.

This is expected, and demonstrated by comparing the “No competing work” to the “With competing

work” rows in Table 6.1. In the presence of competing work, the availability of the most recent data (given

by the first element in each tuple) decreases, indicating that interference causes more jobs to have response

times greater than the MOT tasks’ period of Ti = 2 seconds.

Observation 6.2. Vehicle tracking is more prone to interference due to other tasks.

Recall from Section 3.3.2.1 that Scenario 2 features six vehicles and four pedestrians to be tracked.

Therefore, it is expected that vehicle detection and tracking would take more time, and thus be more affected

by interfering workloads. This is indicated by comparing the “Vehicle Tracking” and “Pedestrian Tracking”

columns in Table 6.1 in the presence of competing work, especially for Pi = 2.

Observation 6.3. Increasing intra-task parallelism can increase the availability of more recent history results.

With Pi = 2, the task system may not be able to recover from delays, such as those caused by the

execution of the global-planning task every 5 seconds. With increased parallelism, more jobs of a given

MOT task may execute concurrently, allowing recovery from such delays. This is demonstrated by the higher

availability of the most recent history for Pi = 3 and Pi = 4 compared to Pi = 2 in Table 6.1 in the presence of

competing work.
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Table 6.1: Distributions of available history results, represented as tuples, for MOT tasks without and with
competing workloads present.

MOT Parallelism Vehicle Tracking Pedestrian Tracking

No competing work
Pi = 2 (0.993,0.007) (0.993,0.007)
Pi = 3 (0.990,0.010,0.000) (0.990,0.010,0.000)
Pi = 4 (0.987,0.010,0.003,0.000) (0.987,0.013,0.000,0.000)

With competing work
Pi = 2 (0.702,0.298) (0.903,0.097)
Pi = 3 (0.930,0.067,0.003) (0.980,0.017,0.003)
Pi = 4 (0.963,0.027,0.007,0.003) (0.920,0.067,0.010,0.003)

Similar to the PMFs in Table 3.2, (x,y) indicates that the result of one and two frames prior are available for x and y proportions of
jobs, respectively.

Table 6.2: Results for vehicle and pedestrian tracking in Scenario 2 with MOT tasks in the presence of
competing workloads, alongside selected results from Tables 3.5 and 3.6.

Target Metric Pi = 2 Pi = 3 Pi = 4 PMF 1 PMF 2 PMF H1 PMF H4

Vehicle
A-MOTA 0.838 0.833 0.835 0.833 0.844 0.836 0.833
MOTP 0.682 0.705 0.708 0.704 0.689 0.705 0.547

Pedestrian
A-MOTA 0.697 0.706 0.650 0.697 0.688 0.703 0.723
MOTP 0.756 0.752 0.736 0.729 0.745 0.751 0.663

The best result from Tables 3.5 and 3.6 in each row, as well as any within 1% of the best, are shown in bold.

The history-versus-accuracy trade-off, revisited. Given the results discussed in Section 3.3 and the ob-

served history distributions listed in Table 6.1, we expect that the accuracy and precision for Pi = 4 should

be similar to that of PMF 1 and PMF H1, and that the results for Pi = 2 should be closer to those of PMF 2.

To perform this comparison, we measured both A-MOTA and MOTP when randomly sampling from the

distributions given in Table 6.1. The resulting accuracy and precision scores are reported in Table 6.2; several

results from Tables 3.5 and 3.6 are also copied here.

Observation 6.4. The observed history distributions result in similar accuracy and precision results to

comparable PMFs from Section 3.3.

For Pi = 2, we compare to PMF 2, which is represented as the tuple (0.8,0.2). For vehicle tracking,

Pi = 2 results in A-MOTA and MOTP within 0.7% and 1.0%, respectively, of those when using PMF 2; for

pedestrians, we saw even higher accuracy and precision.

For Pi = 4, we compare to both PMF 1, corresponding to the tuple (0.9,0.09,0.009,0.001), and PMF H1,

indicating sequential execution. As expected, vehicle-tracking accuracy and precision are within 0.1% of that
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Table 6.3: Observed response times (in seconds) of MOT tasks with varying intra-task parallelism.

MOT Parallelism Percentile Vehicle Tracking Pedestrian Tracking

Pi = 2
50th 1.84 1.80
90th 118.20 2.06

Pi = 3
50th 1.80 1.80
90th 1.90 1.86

Pi = 4
50th 1.81 1.82
90th 1.87 1.93

of sequential execution (PMF H1), if not higher. Additionally, although pedestrian-tracking accuracy is 7.3%

lower than that for sequential execution, precision is between that of PMF 1 and PMF H1, as expected.

The complete history-versus-response-time-versus-accuracy trade-off. To facilitate a discussion of the

entire trade-off in full, we additionally measured the response times of MOT tasks when running alongside

competing workloads. Recall from Corollary 3.1 in Section 3.2.1 that response-time bounds do not depend

on Pi, but rather on Pmin; as the RRT task relies on having immediate history (i.e., sequential execution),

we have Pmin = 1. Thus, we instead focus on average-case rather than worst-case behavior. The 50th- and

90th-percentile observed response time measurements are given in Table 6.3.

Observation 6.5. Lower Pi reduces the ability of a task to recover from delays.

For Pi = 2, the 90th-percentile observed response time measurement in Table 6.3 was significantly higher

than the median. The presence of such outliers indicates that the MOT tasks were more susceptible to delays

due to the presence of competing workloads. Recall also that there were more vehicles than pedestrians

present in the scenario, which increases the tracking effort, and thus may have contributed to the higher

measurements for vehicle tracking over pedestrian tracking.

Observation 6.6. Increasing parallelism can improve response times and accuracy.

This observation is supported by the difference between Pi = 2 and Pi = 3 in Tables 6.2 and 6.3. By

increasing parallelism, we observed an increase in precision for tracking both vehicles and pedestrians, and

an accuracy drop of only 0.6% for vehicles (and an increase for pedestrians). Furthermore, we observed a

minor decrease in response times of both vehicle and pedestrian tracking, with more resilience towards delays

due to competing work. Furthermore, our observed accuracy is within 2.3% of that when using one-fourth

the frame rate (i.e., PMF H4), and the precision is better.
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In this section, we have shown that we can extend our evaluation from Section 3.3 to a case study of

real automotive-based workloads, and that we observe similar results. We have also shown that increasing

parallelism may have a positive impact on observed response times, in addition to the benefit to worst-case

response-time bounds demonstrated in Section 3.2. It is our hope that such work provides a foundation for

further exploration of the response-time-versus-accuracy trade-off more broadly within real-time CV-using

systems.

6.3 Case Study: Evaluating Time Partitioning for Automotive Applications

In this section, we present an extended case-study of the temporal isolation provided by TimeWall,

using the hog application alongside other automotive-based workloads.3 Specifically, we divide the set of

applications into two GPU-using perception-based components (one executing hog, the other executing lane

detection) and one motion-planning component (with both the RRT global planner and the APF local planner).

Additionally, we explore the impact of merging accelerator accesses by hog into single lock requests, and

find that such merging is beneficial for GPUs.

Experimental setup. We used the same experimental platform as in Sections 5.3 and 5.4: a machine with

two eight-core 2.10-GHz Intel Xeon Silver 4110 processors and one NVIDIA Titan V GPU. Each CPU core

utilizes a 32-KB L1 instruction cache, a 32-KB L1 data cache, and a 1-MB L2 cache; all eight CPU cores on

a socket share an 11-MB L3 cache. As before, we disabled hyperthreading and graphics output.

We distributed hog and the competing workloads discussed in Section 6.1 into three components, as

depicted in Figure 6.1. CPUs 1–4 were used alternately by Components A and B, which contained two

instances of hog and one instance of the lane detection application, respectively; as both applications make

use of the single GPU, they cannot execute concurrently in different components. We executed the two

path-planning tasks in Component C on CPUs 5–7. Each hog task had a period of 20 ms; the remaining tasks

had periods specified in Section 6.1. We distributed the 11-MB L3 cache between components with 4.4-MB

available to Component A and 3.3-MB available to each of Components B and C.

The impact of merging accesses on GPU-access durations. For the experiments in this section, we ex-

plored the impact on GPU-access times and observed per-frame response times of the hog tasks due to

3Source code and experiment scripts are available at https://cs.unc.edu/~anderson/diss/tanyadiss/.
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Figure 6.1: Reservations for the three components in our extended evaluation experiments.

merging individual accelerator accesses into a single lock request. We considered the three configurations

listed below.

• MERGE-NONE: No accesses were merged together. Processing one frame required 78 lock requests.

• MERGE-MINOR: For each of the 13 image-scale levels, kernels K3–K5 occurred within a single lock

request. Also, every three of the 13 copy-out operations were grouped into lock requests. Thus,

processing one frame involved 1+13×3+ d13/3e= 45 lock requests.

• MERGE-MAJOR: For each scale level, all kernels were grouped into one lock request (K2–K5 for the first

level, K1–K5 for the others). Additionally, all 13 copy-out operations were performed within a single

lock request. Processing one frame using this configuration required 1+13+1 = 15 lock requests.

For each configuration, we executed the two instances of hog for 5,000 frames each in Component A

with no workloads executing in either of Components B or C. In order to measure the CPU-based access

durations, we disabled the watchdog timer and budget checks. The resulting GPU-access-duration timings

are given in Table 6.4 for each of the three configurations.

Observation 6.7. Grouping GPU accesses reduces the durations of later accesses within the same lock

request.

Comparing MERGE-NONE and MERGE-MINOR (for which kernels K3–K5 are merged into one lock request),

we see that kernels K4 and K5 take significantly less time when they occur immediately following K3 without

lock and unlock calls in between. This is even more apparent when considering the median access times.

In all configurations, K2 and one of the copy-outs occurs as the first access of a lock request. However, the

median access duration for these accesses are greatly reduced by merging, further indicating a potentially

significant performance impact due to merging GPU accesses. Possible causes for this effect are frequency
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Table 6.4: GPU-access durations (in microseconds) as measured on the CPU for each of the three access-
merging configurations we considered.

Configuration Statistic Copy-In K1 K2 K3 K4 K5 Copy-Out

MERGE-NONE

50th 139 120 125 150 123 140 20
99th 164 145 146 177 145 171 45
99.5th 170 146 148 182 147 177 46
99.9th 441 150 152 191 150 182 49
99.95th 1355 156 157 193 154 186 53
99.99th 1910 1355 1328 1372 1339 1356 66
max 5270 5590 3828 5613 5579 5608 1285

MERGE-MINOR

50th 139 120 125 151 24 41 16
99th 162 146 146 184 34 65 45
99.5th 168 147 147 186 37 65 47
99.9th 448 153 152 191 48 73 50
99.95th 1344 161 157 202 50 80 52
99.99th 2308 1314 1338 1385 68 134 71
max 7851 5567 5575 5523 2777 5543 1261

MERGE-MAJOR

50th 143 121 25 46 23 40 15
99th 164 144 140 73 31 63 46
99.5th 171 146 145 76 34 64 47
99.9th 240 153 150 90 48 76 51
99.95th 476 165 151 92 50 81 53
99.99th 1865 1350 280 1265 54 1268 61
max 4863 5539 5512 5535 1266 5504 1263

scaling of NVIDIA GPUs or reduced overhead in the CUDA runtime library or NVIDIA driver due to the

clustering of GPU operations; future work is needed to explore these effects more deeply.

The impact of merging accesses on observed response times. The decreased GPU-access durations in

Table 6.4 suggest that merging several GPU accesses together, such as in the MERGE-MAJOR configuration,

should result in lower response times. To verify this, we performed similar experiments to those in Sec-

tion 5.4.3.4. We executed the two hog tasks in Component A for 5,000 frames each, considering each of

the three access-merging configurations. To observe whether we maintain isolation, we additionally varied

whether only Component A executed work, or whether lane detection executed in Component B and global

and local planning were present in Component C; we refer to a scenario as a choice of access-merging

configuration and set of active components. The observed maximum and average response times, as well as

number of frames dropped, are reported in Table 6.5, and a CDF of observed response times for each scenario

is plotted in Figure 6.2.
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Table 6.5: Observed response times across 10,000 frames for hog tasks in Component A with varying
access-merging configurations and active components.

Configuration Metric A A+B A+B+C

MERGE-NONE

Observed Maximum Response Time (ms) 55.76 55.06 49.23
Observed Average Response Time (ms) 31.99 25.03 26.29
Number of Dropped Frames 323 255 262

MERGE-MINOR

Observed Maximum Response Time (ms) 44.94 48.04 42.06
Observed Average Response Time (ms) 14.81 14.84 14.69
Number of Dropped Frames 240 199 182

MERGE-MAJOR

Observed Maximum Response Time (ms) 45.49 42.43 44.57
Observed Average Response Time (ms) 9.51 9.46 9.51
Number of Dropped Frames 130 110 110
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Figure 6.2: CDFs of observed response times for the hog tasks in Component A with varying access-merging
configurations and active components.

Observation 6.8. Merging GPU accesses improves both worst-case and average-case response times.

This result matches our expectations, and is supported by both Table 6.5 and Figure 6.2, when comparing

between the three access-merging configurations.

Observation 6.9. Merging GPU accesses decreases the frame-drop rate.

This can be observed in Table 6.5, and is likely due to the decreased variance in GPU-access durations as

the values decrease.

Observation 6.10. Isolation is preserved when using real automotive-based workloads.

The experiments in Section 5.4.3.4 featured hog tasks running alongside GPU-stressing work in the

alternating component. However, for MERGE-MINOR and MERGE-MAJOR curves in Figure 6.2, the presence of

134



lane detection and path planning tasks in other components did not have any significant impact on response

times of the hog tasks running in Component A.

Observation 6.11. Not merging GPU accesses greatly increases observed response times.

The MERGE-NONE configuration suffered longer response times due to the longer GPU-access durations

listed in Table 6.4. In addition, the per-frame response times were very close to 20 ms, the same as our choice

of Θ. Thus, minor variations in job execution times caused some jobs’ executions to exceed the time-slice

length, resulting in a jump from around 20 ms to around 40 ms (due to a 20 ms time slice of Component B)

in response times for curves [1]–[3] in Figure 6.2.

These variations further resulted in only approximately 40% of the jobs completing in one time slice

when only Component A executed tasks; this number was more than 60% when either Component B or

Components B and C executed tasks. However, it is worth noting that for the fraction of frames in which

hog response times were at least 40 ms if only Component A executed tasks but less than 20 ms otherwise,

the average observed response times were 19.85 ms if Component B also executed tasks, or 19.66 ms if

Components B and C also executed tasks. Thus, we expect that these differences would diminish if we

considered more data points or used slightly longer time slices.

6.4 Chapter Summary

In this chapter, we have presented additional evaluations considering a set of automotive-based competing

workloads, extending the results from prior chapters. For the history-versus-response-time-versus-accuracy

trade-off, originally introduced in Chapter 3, we presented a case-study evaluation in which we ran our

MOT application as a real-time task alongside other competing work. We measured the observed history-age

distribution, and showed that the results we presented in Section 3.3 for synthetically chosen distributions of

available history ages apply for real observed distributions,and that increasing parallelism for a given task

may improve both accuracy and response times. We used similar competing workloads alongside hog tasks

to perform an extended case-study evaluation of TimeWall, originally proposed in Chapter 5. We showed that

the temporal isolation provided by TimeWall holds in the presence of real workloads executing in several

system components, and demonstrated the response-time benefits of merging multiple GPU accesses into a

single lock request while still enforcing per-access forbidden zones.
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CHAPTER 7: CONCLUSION

Despite the increasing prevalence of ADASs, there is still a vast divide between the design considerations

important to CV-application and GPU-hardware developers and the certification standards necessary to

guarantee safety for such systems. In this dissertation, we have addressed three challenges that must be met

for this design disconnect to be mitigated and ADAS certification to become a reality.

First, we have introduced a task model that can enable response-time analysis to be performed for

cycle-containing graph-based workloads, and explored the trade-off that arises between the age of data within

the cycle, the response-time bounds of the workload itself, and the accuracy of its resulting computations.

Second, we considered the disconnect between GPU manufacturers and their focus on throughput versus

the need for predictability when GPUs are used in safety-critical systems. To this end, we detailed the

experimentally derived scheduling rules used by NVIDIA GPUs and discussed our approach to detecting

the resulting pitfalls that occur in their use. Finally, we introduced a framework to ensure that the various

applications needed for an ADAS to operate may be temporally isolated when executing on a single multicore

platform, even in the presence of GPUs and other non-preemptive accelerators.

In the following sections, we summarize the results presented in this dissertation (Section 7.1), discuss

other contributions not included in this dissertation (Section 7.2), again acknowledge the contributions of the

several coauthors who made our results possible (Section 7.3), and conclude with a discussion of several

possible future research directions (Section 7.4).

7.1 Summary of Results

In Chapter 1, we presented the following thesis statement:

Enabling the real-time certification of autonomous-driving applications relies on bridging

the divide between real-time and computer-vision system design. This includes evaluating the

trade-offs between history requirements, accuracy, and response-time bounds of computer-vision
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applications, utilizing knowledge of GPU scheduling policies and best practices for using GPUs

in real-time applications, and enabling temporal isolation on multicore+accelerator platforms.

We now summarize the contributions presented in this dissertation in support of this thesis.

The rp-sporadic task model. Existing real-time task models break down in the presence of high-utilization

cycles in graph-based task systems. The traditional sequential sporadic task model requires cycle utilization to

be at most 1.0. If full intra-task parallelism is allowed, then cycle utilization is not a concern, but precedence

constraints may be violated.

In Chapter 3, we introduced the rp-sporadic task model, which adds a per-task parameter Pi that specifies

the allowed degree of intra-task parallelism; this parameter is applied for each node in a DAG in which

cycles have been replaced by supernodes. If Pi is at most the history age of a given cycle, then precedence

constraints are not violated. Furthermore, as long as the utilization of the supernode (and therefore the cycle)

is at most Pi, then response-time bounds may be computed (assuming the system is not overutilized).

Evaluation of the history-versus-response-time-versus-accuracy trade-off. The rp-sporadic task model

reveals an application-design trade-off, which we also explored in Chapter 3. The utilization of a cycle serves

as a lower bound for the necessary intra-task parallelism of the corresponding supernode. However, the

application design itself may be able to support higher levels of intra-task parallelism without sacrificing too

much accuracy.

We explored the response-time-bound benefits of increasing Pi through a study of synthetically generated

graph-based task systems, and found that increasing the minimum Pi in the task system from 2 to 3 or 4 led

to a reduction of up to 19.5% and 37.6%, respectively, in relative tardiness.

We evaluated the trade-off between history and accuracy using a multi-object tracking application and

the autonomous-driving simulator CARLA. We considered five scenarios, four of which featured city driving

and one that involved highway driving. Given ground-truth object detections, we found that tracking accuracy

was within 1% of the optimal tracking (assuming sequential execution and thus always having the most recent

prior results) as long as the prior results were available 90% of the time, even if the worst-case data age was 4

(corresponding to Pi = 4). These results held in almost every scenario, even when using a deep-learning

based vehicle and pedestrian detector.
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Scheduling rules for NVIDIA GPUs. In Chapter 4, we presented the scheduling rules for NVIDIA GPUs,

which we discovered through the use of micro-benchmarking experiments. We validated these rules across

multiple NVIDIA GPU architectures (Maxwell, Pascal, and Volta) and CUDA versions (8, 9, 10.2). In

addition to basic rules covering user-defined streams, we also explored the impact of using the NULL stream

or prioritized streams, as well as the differences for different GPUs, for example due to the presence of

additional copy engines.

The rules we detailed in Chapter 4 indicate that scheduler for NVIDIA GPUs has predictable FIFO-

oriented properties that are amenable to real-time schedulability analysis if all work is submitted by CPU

tasks that share an address space. Such analysis for GPU-using workloads (Yang et al., 2018a) is discussed in

the next section. Additionally, the rules we presented have been expanded upon by other researchers, e.g., to

explain the mapping between thread-blocks and SMs (Sañudo Olmedo et al., 2020).

Best practices for using NVIDIA GPUs in real-time applications. The GPU scheduling rules we derived

also provided the foundation for a study of the possible pitfalls when using NVIDIA GPUs in real-time

applications, which we discussed in Chapter 4 as well. These pitfalls include those related to explicit and

implicit synchronization as well as missing or contradictory details in the NVIDIA documentation.

We also introduced CUPiDRT, which enables the analysis of a GPU-using program for the presence of

issues related to the most egregious of the pitfalls, specifically those that limit concurrency or can cause

CPU blocking of other GPU-using tasks. We used CUPiDRT to analyze ten GPU-using sample applications

available as part of the CV library OpenCV, and found that all ten applications were subject to the issues we

detected. In addition, we explored the benefits of fixing all issues detected by CUPiDRT for one application,

and found that our modifications resulted in up to a 74.1% reduction in execution times and a 74.9% reduction

in computation-submission times.

A framework for temporal isolation on multicore+accelerator platforms. In Chapter 5, we presented

TimeWall, a time-partitioning approach for real-time systems deployed on multicore+accelerator platforms.

TimeWall’s design was motivated by the need to enable component-wise certification of AI-based embedded

applications in safety-critical settings. It utilizes a modified multiprocessor locking protocol to maintain the

invariant that each time-partitioned component always has exclusive access to all processing resources allo-

cated to it. We discussed the specific challenges associated with realizing an implementation of TimeWall for
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a multicore+GPU platform, and demonstrated the isolation properties afforded by TimeWall via experiments

on actual hardware involving a synthetic tasks as well as a computer-vision application.

Extended evaluations using autonomous-driving workloads. We extended the contributions presented in

prior chapters by presenting the results of extended evaluations in Chapter 6. These evaluations featured

several autonomous-driving-related applications, including a global and local path planner and a lane-detection

algorithm. We showed that the results presented in Chapter 3 for the history-versus-accuracy trade-off hold

when the MOT application is executed as a real-time task. Expanding on the TimeWall framework presented

in Chapter 5, we showed that the temporal isolation holds even with real automotive-based workloads, and

that merging several accelerator accesses into a single lock request can improve both average- and worst-case

observed response times, as well as decreasing the frame-drop rate.

7.2 Other Related Work

In this section, we summarize other research contributions, not presented in this dissertation, of which

the author has been a part.

7.2.1 Response-Time Bounds for GPU-Using Workloads1

The OpenVX API discussed in Section 2.4.4 leaves several key details to be decided for a given

implementation of the specification. One such detail is the available parallelism within a graph. By default, it

is assumed that one entire invocation of a graph must finish before the next may begin. This is an extreme

example of sequential execution; although multiple nodes in a graph may execute concurrently with one

another, such monolithic execution can easily lead to unbounded response times. Prior work by Elliott and

Yang et al. (Elliott et al., 2015; Yang et al., 2015) considered an alternative in which each OpenVX primitive

is treated as a schedulable entity, enabling a coarse-grained scheduling paradigm that reduces response times.

However, this coarse-grained scheduling approach does not allow for intra-task parallelism of individual

graph nodes.

We presented an approach to reclaim this lost parallelism by allowing full intra-task parllelism for nodes

in an OpenVX DAG (Yang et al., 2018a). As a part of allowing such fine-grained scheduling, we subdivide

1This work appeared in the following paper:

Yang, M., Amert, T., Yang, K., Otterness, N., Anderson, J. H., Smith, F. D., and Wang, S. (2018a). Making OpenVX
really ‘Real Time’. In Proceedings of the 39th IEEE Real-Time Systems Symposium, pages 80–93.
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each OpenVX primitive into a series of CPU and GPU nodes. Making use of the GPU scheduling rules

presented in Chapter 4, we additionally proposed response-time analysis for GPU nodes in the graph, enabling

response-time bounds to be computed for CPU and GPU nodes separately. We demonstrated the benefits of

our approach through a case study involving the hog application, in which monolithic and coarse-grained

scheduling precluded the computation of response-time bounds, but fine-grained scheduling enabled bounds

to be computed and resulted in lower observed response times than either previous approach.

7.2.2 Real-Time Locking Protocols

Several contributions have been made towards real-time locking protocols that enable requests to be

made for multiple resources at once. Such nested requests can greatly complicate protocols, and easily lead

to either high overhead (due to protocol logic), high blocking (due to chains of transitive blocking between

requests that share resources), or both. Thus, we sought to develop an approach to reduce overhead, and also

to improve blocking for both nested and non-nested requests.

Decreasing locking-protocol overhead.2 Allowing nested lock requests can greatly increase the amount

of program state necessary to execute a locking protocol. As the number of CPUs available on a platform

increases, this state becomes an increasingly large factor in the high overhead of such locking protocols. We

proposed an approach using lock servers (Nemitz et al., 2018) to execute the lock/unlock logic on specific

processors, ensuring that locking protocols execute cache hot. In our experiments, we showed that our

approach can reduce lock/unlock overhead by up to 86%.

Decreasing blocking for nested requests.3 Locking protocols typically approach the concept of mutual

exclusion as enforcing the invariant that at most one request may access a resource at a time. However, an

alternative approach is to consider which requests may safely be satisfied concurrently. For example, if one

2This work appeared in the following paper:

Nemitz, C. E., Amert, T., and Anderson, J. H. (2018). Using lock servers to scale real-time locking protocols: Chasing
ever-increasing core counts. In Proceedings of the 30th Euromicro Conference on Real-Time Systems, pages 25:1–25:24.
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request must access resources 1 and 2 and another requires resources 3 and 4, such requests do not conflict,

and can safely be satisfied together.

This example provides the key intuition behind the Concurrency Group Locking Protocol (CGLP) (Nemitz

et al., 2019b, 2021). Given a set of requests, some of which may be for multiple resources, we showed how

to transform the problem of determining which requests may be satisfied concurrently into an instance of

the Vertex Coloring Problem (VCP). A solution to the VCP maps directly to subsets of requests that may

be satisfied concurrently. We provided several linear programs that can be used to optimize for various

objectives, e.g., the smallest number of groups or the lowest worst-case blocking. Additionally, we performed

a schedulability study in which we showed that our approach outperforms prior approaches that seek to

minimize contention-sensitive blocking (i.e., blocking only due to other requests for the same resources).

Decreasing blocking for non-nested requests.4 Prior approaches that support nested lock requests have

done so at the expense of non-nested requests; despite requiring only a single resource, such non-nested

requests could still suffer O(m) blocking. Furthermore, prior work has shown that such non-nested requests

are by far the common case (Bacon et al., 1998; Brandenburg and Anderson, 2007). To enable contention-

sensitive blocking for non-nested requests, we developed the fast RW-RNLP (Nemitz et al., 2017, 2019a),

a protocol that provides a fast-path mechanism for such non-nested requests. We performed experiments

using synthetically generated task sets in which we showed that our approach resulted in overhead values

for non-nested requests that were similar to existing protocols that only support non-nested requests, yet for

non-nested requests we achieved significantly lower blocking than existing protocols that support nested

requests. We confirmed these improvements via a large-scale schedulability study comparing two alternative

approaches that we proposed for arbitrating between nested and non-nested requests.

3This work appeared in the following papers:

Nemitz, C. E., Amert, T., Goyal, M., and Anderson, J. H. (2019b). Concurrency groups: A new way to look at real-
time multiprocessor lock nesting. In Proceedings of the 27th International Conference on Real-Time Networks and Systems, pages
187–197.

Nemitz, C. E., Amert, T., Goyal, M., and Anderson, J. H. (2021). Concurrency groups: A new way to look at real-time
multiprocessor lock nesting. Real-Time Systems, 57(1):190–226.

4This work appeared in the following papers:

Nemitz, C. E., Amert, T., and Anderson, J. H. (2017). Real-time multiprocessor locks with nesting: Optimizing the
common case. In Proceedings of the 25th International Conference on Real-Time Networks and Systems, pages 37–46.

Nemitz, C. E., Amert, T., and Anderson, J. H. (2019a). Real-time multiprocessor locks with nesting: Optimizing the
common case. Real-Time Systems, 55(2):296–348.
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7.4 Future Work

We now conclude this dissertation by discussing several possible directions to extend the presented work

in the future.

Higher-level notions of accuracy in autonomous driving. In Section 3.3, accuracy was assessed using

well-established metrics pertaining to CV algorithms, and only done for an individual application. In the
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future, we intend to extend our experimental efforts to consider higher-level notions of accuracy in autonomous

driving, such as missed obstacles and traffic-rule violations. Furthermore, we plan to integrate the usage of

relaxed back-history requirements within the control and decision-making components of CARLA, and to

re-assess the impact of relaxing such requirements in actual driving scenarios. Given successful operation

within CARLA, we then plan to execute our autonomous-driving applications on a real vehicle, such as a

1/10-th scale F1TENTH Autonomous Vehicle System (F1TENTH Foundation, 2021).

Middleware for NVIDIA GPUs. The work presented in Chapter 4 is part of a long-term effort to devise a

formal model for GPU computation. In the future, we intend to investigate whether delays due to the pitfalls

enumerated in Section 4.4 can be eliminated or lessened by introducing middleware capable of intercepting

and reordering or delaying GPU operations. Our hope is that the control afforded by such middleware will

enable us to produce reasonable analytical bounds on blocking and response times, while maintaining high

GPU utilization wherever possible.

Automatically fixing issues in GPU-using programs. Even with better management, certifiable safety in

the face of GPU sharing requires a guarantee that pitfalls including blocking due to GPU synchronization are

controlled, which is only possible if developers of GPU-using software are aware of the consequences and

how to avoid them. In the future, we plan to modify CUPiDRT to use static analysis rather than relying on

NVIDIA’s tracing tools. Static analysis will enable us to report which lines of code represent issues, as well

as ensure a more comprehensive set of detections that does not rely on runtime behavior (e.g., a program may

conditionally allocate or free GPU memory, and runtime behavior may not demonstrate this). We will then

target automatically fixing issues, utilizing CUPiDRT to ensure none remain. This will be a significant effort,

and will require static analysis and compiler techniques.

Extending TimeWall to support virtual accelerators. The initial design of TimeWall proposed in Chap-

ter 5 assumes that only one request may access an entire accelerator at a time. However, some accelerators,

such as GPUs, can be partitioned into several virtual accelerators (Otterness and Anderson, 2021). We plan to

further extend our modified global OMLP, as well as consider other locking-protocol options, in an effort to

enable multiple tasks within a component or multiple components to concurrently access the different virtual

accelerators comprising a single physical one.

Response-time-guided system decomposition into components. TimeWall serves as a necessary first step

towards considering the higher-level question of system and platform decomposition into components and
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partitions, respectively. In the future, we plan to further examine the higher-level issues that arise when

breaking a system into certifiable components, such as how to divide a set of applications into individual

components, and what time slices and which accelerators or virtual accelerators to assign to partitions.
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