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ABSTRACT

Mark (Tianshe) He: Community Detection in Multimodal Networks
(Under the direction of Shankar Bhamidi and Andrew Nobel)

Community detection on networks is a basic, yet powerful and ever-expanding set of methodolo-

gies that is useful in a variety of settings. This dissertation discusses a range of different community

detection on networks with multiple and non-standard modalities. A major focus of analysis is on

the study of networks spanning several layers, which represent relationships such as interactions

over time, different facets of high-dimensional data. These networks may be represented by several

different ways; namely the few-layer (i.e. longitudinal) case as well as the many-layer (time-series

cases). In the first case, we develop a novel application of variational expectation maximization

as an example of the top-down mode of simultaneous community detection and parameter estima-

tion. In the second case, we use a bottom-up strategy of iterative nodal discovery for these longer

time-series, abetted with the assumption of their structural properties. In addition, we explore

significantly self-looping networks, whose features are inseparable from the inherent construction of

spatial networks whose weights are reflective of distance information. These types of networks are

used to model and demarcate geographical regions. We also describe some theoretical properties

and applications of a method for finding communities in bipartite networks that are weighted by

correlations between samples. We discuss different strategies for community detection in each of

these different types of networks, as well as their implications for the broader contributions to the

literature. In addition to the methodologies, we also highlight the types of data wherein these “non-

standard” network structures arise and how they are fitting for the applications of the proposed

methodologies: particularly spatial networks and multilayer networks. We apply the top-down and

bottom-up community detection algorithms to data in the domains of demography, human mobility,

genomics, climate science, psychiatry, politics, and neuroimaging. The expansiveness and diversity

of these data speak to the flexibility and ubiquity of our proposed methods to all forms of relational

data.
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PREFACE

Our data becomes us.

– Prof. Alexandra Chassanoff

We are always, however, brought back to a dissymmetrical necessity to cross from the smooth

to the striated, and from the striated to the smooth. If it is true that itinerant geometry and the

nomadic number of smooth spaces are a constant inspiration to royal science and striated space,

conversely, the metrics of striated spaces (metrons) is indispensable for the translation of the strange

data of a smooth multiplicity. Translating is not a simple act: it is not enough to substitute the

space traversed for the movement; a series of rich and complex operations is necessary. Neither is

translating a secondary act. It is an operation that undoubtedly consists in subjugating, overcoding,

metricizing smooth space, in neutralizing it, but also in giving it a milieu of propagation, extension,

refraction, renewal, and impulse without which it would perhaps die of its own accord: like a mask

without which it could neither breathe nor find a general form of expression. Major science has a

perpetual need for the inspiration of the minor; but the minor would be nothing if it did not confront

and conform to the highest scientific requirements.

–Deleuze and Guattari, A Thousand Plateaus
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CHAPTER 1

Introduction

As more information becomes available in the age of “big data”, methods to gather, process,

and derive meaning from these data have become more relevant and urgent in the face of escalating

global problems. Relational data have become more common in the advent of sophisticated data

gathering mechanisms and more nuanced conceptions of dependency. Statistical network analysis

has become a major field of research and is a useful mode of pattern discovery. Networks represent-

ing social interactions, genes, and ecological webs often model members or agents as nodes (vertices)

and their interaction as edges. General references on statistical modeling of random graphs include

the recent books by Newman et al. (Newman, 2018a) and user manual by Fortunato (Fortunato

and Hric, 2016).

Alongside the study of networks, the field of community detection on networks has grown

considerably in recent times, with a host of methodologies from many different fields including

computer science, physics, and statistics. Broadly put, community detection is an approach used

to divide a set of nodes in a given relational structure into clusters whose members are strongly con-

nected. Many techniques have been proposed for unweighted or binary data including modularity

optimization (Girvan and Newman, 2002; Clauset et al., 2005), stochastic block models (Holland

et al., 1983; Nowicki and Snijders, 2001; Peixoto, 2018; Yan et al., 2014), and extraction methods

(Zhao et al., 2012; Lancichinetti et al., 2011). The three general modes of clustering for networks

in the literature can gnerally be categorized under (1) optimization, (2) statistical inference, and

(3) null model dynamics.

This dissertation is primarily about community detection in different types of weighted net-

works. Ambitiously, the goal of this dissertation is to expand on the frontier of clustering in modern

network-structured data using a constellation of different novel methodologies. Though canonical

methods with associated theoretical postulations are largely focused on simple networks, much data

in recent years possess more complex forms. These models directly map to the variegation of ways
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that data interact and relate with one another, and are particularly synchronous with the rise of

availability in more different types of data, with even more complex configurations of communal

structures amongst them.

We present methods of community detection on networks that represent several facets of real-

world data. Specifically, we focus on the practical problem of discovering interconnected clusters

amongst networks describing processes over differing time periods or modalities, as well as in

networks whoses vertices represent relationships that are “irregular” compared to typical literature

in network science (i.e. spatial points). Our contributions to the field of community detection serve

several different practical functions. These methods fall in the optimization, inference, and null

model categories of the previously mentioned general domains of approaches. The first major part of

this dissertation in Chapter 2 uses variational inference to estimate the memberships and parameters

of a multilayer weighted stochastic block structure with global ambient noise. The second major

part of this dissertation primarily engages in significance testing methodology in Chapters 3-5,

which iteratively uses the measures of significance between observations (nodes) and sets and rejects

the connected nodes until the memberships of the candidate set reaches stability. I use iterative

significance testing in several different ways that hone in on the advantage of its flexibility. I apply

this approach for both the self-loop-accounting community detection methodology in Chapter 3 and

the intertemporal community detection method described in Chapter 4. Iterative testing posits a

candidate set at a given iteration, then constructing a test statistic comparing the weights between

the sets and nodes that potentially border the set. In Chapter 5 I describe another method also

based on iterative testing for clustering bipartite datasets based on correlations between the two

variable sets.

Future work will mostly comprise methodological extensions from all of the chapters. I propose

some extensions for the SBANM in the form of a naive prediction method by means of distance-based

classification to ascertain a cross-validated prediction error. In the clinical analysis of psychosis in

PNC data, the method is clinically impactful because it is response-free (i.e. does not require a

dependent variable) and hence allows for early detection of psychosis . We compare and conflate

(parts of) this approach with other methods and aim to culminate in broader, more general models

and methodologies for multimodal, high-dimensional relational data. Another part of the future

work comprises some investigations into the spatial data that were used in Chapters 3, 4, and 5.
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1.1 Background

I present an overview of related work in this section, starting from the general themes that are

prevalent throughout the literature on networks through various perspectives from differing disci-

plines. In community detection, many methods utilize quality functions such as modularity (Girvan

and Newman, 2002). One of the central techniques in existing methods is modularity optimization

wherein scores of community assignments are optimized. However, a number of problems plague

modularity, most prominently of which inherent bias in estimtion (Bickel and Chen., 2009). As

such, in this dissertation I focus mostly on alternatives to modularity in the form of null model

dynamics and statistical inference modes as mentioned in the last section.

One major class of methods presented below in Chapters 3-5 is based on null models for

networks. Typically, in these schemes one constructs a network model that preserves some aspects

of the observed network (in the context of unweighted networks). The preserved characteristic is

often attributes such as the degree distribution of the network (see Section 1.1.2 for details). A

scrambled networkunder the configuration model (for example) with preserved degree distributions

creates a network with no inherent clustering tendency. The observed network is then compared

with this null model to extract subsets which seem more densely connected within the subset as

compared to the null model. More details on null models are further described in Section 1.1.2.

Another class of methods explicitly use statistical inference for fitting empirical data to networks

(either Bayesian (Peixoto, 2013, 2014, 2017) or frequentist (Newman and Leicht, 2007; Karrer

and Newman, 2011; Bickel and Chen., 2009) models). We use statistical inference for the other

major class of variational inference for stochastic blockstructures presented in Chapter 2 of this

dissertation.

1.1.1 Multimodal and Multilayer Networks

The general subdomain of multilayer network analysis is explored in this dissertation in Chapter

2. In many analyses of weighted networks, relationships are assumed to be of the same type such

as ‘friendship’. However in modern relational data-types, we often have information regarding

relationships of multiple types among members. For example, nodes represented by users in a social

network such as twitter can have edges that represent ‘likes’, ‘follows’, and ‘mentions’. In biological
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data, particles express different aspects of interactions such as physical interactions between proteins

or mitochondria, or co-expressions amongst genes. These questions are especially pertinent in

psychiatric data, wherein the distinct symptomologies are clearly demarcated, and instead rely on

a whole constellation of differing interacting psychopathologies properly diagnose certain conditions.

While static, or unimodal (single-graph) approaches have been developed decades ago first in

the realm of the social sciences, and later many such theoretical models in mathematics (Bollobás,

1980; Bender and Canfield, 1978) and physics (Girvan and Newman, 2002), the literature concerning

weighted, dynamic models is much more recent and require even more sophisticated methods.

Modeling time-dynamic and multimodal networks is an emerging field of interest and its many

broad and flexible domains of application can be described by Holme et al. (Holme, 2015) ,

who outline many scenarios for such model formulations. Of particular interest for clinical and

experimental settings are time-window graphs, which describe time aspects of network evolution,

and difference graphs, which describe differential settings or test conditions of interacting systems.

Included in the discussion of multimodality is Joint analysis of high-dimensional data. Typically

known as multi-view (or multi-modal) analysis, this subject has received considerable attention in

the literature,(Lahat et al., 2015; Meng et al., 2016; Tini et al., 2019; Pucher et al., 2019; McCabe

et al., 2019) Driven by the ongoing development and application of moderate and high-throughput

measurement technologies in fields such as genomics, neuroscience, ecology, and atmospheric sci-

ence, researchers are often faced with the task of analyzing and comparing two or more data sets

derived from a common set of samples. In most cases, different technologies measure different

features, and capture different information about these samples. While data may be analyzed sep-

arately, additionally important insights can be gained from their integrated analysis. These groups

are loosely termed bimodules (Wu et al., 2009), (Patel et al., 2010), and (Pan et al., 2019).

1.1.2 Null Models

A null model in the context of community detection is a random network model which preserves

some aspects of an observed network but without any explicit community structure. Null models

as a strategy for community detection were initially proposed by(Maslov and Sneppen, 2002). A

basic null model for networks is known as the Erdos Renyi model, which supposes a uniform, global

rate of connectivity across vertices. Another common null model used in the context of unweighted
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networks is the configuration model (described in a later section). Once a null model for the

network is established, communities based on the null model are groups of nodes that deviate from

the baseline by being more connected to each other than expected under the null model.

Various functionals are used to measure the deviation of a set or a partition of the entire node

set from the null model. The most popular among these functionals is modularity score (Girvan

and Newman, 2002; Clauset et al., 2005). One can then try to optimize such scores to find the

best partitions. Fosdick et al. introduced a framework for configuration models that accounts for

self loops and used a modularity optimization approach for community detection as an application,

but did not focus on weighted networks whose self loops account for the majority of its weights

(Fosdick et al., 2018). Another null-model based approach is to assess the statistical significance

of the deviation of subsets from what one would expect under the null, correcting these estimates

for false-discovery rates, and then extracting communities that appear to be more significantly

connected than under the null model. Several approaches have implicitly utilized the notion of

deviation against the null partitions, such as likelihood ratios (Yan et al., 2014) or Bayes factors

(Peixoto, 2018), but the class of methods as approached by more recent authors (Palowitch et al.,

2018; Wilson et al., 2014) directly assess the significance against null models like the configuration

model or permutation models (Dewaskar et al., 2020).

1.1.3 Self-Loops and Spatial Networks

Though some existing network models allow self loops, we propose a method in Chapter 3

that explicitly accounts for their effects and integrates them in a iterative testing framework.

Most existing methods that allow for self loops presume that self-loops are somehow similar in

characteristic to the other edges and do not properly account for when self loops are large, as in

the case of the algorithm introduced by Palowitch et al. (Palowitch et al., 2018). Previous work

using tree-based methods do mention self-loops, but few focus explicitly on strongly self looping

networks, where self loops account for over half of the weights. Some authors introduced methods

that uses modularity maximization rescaled by the size of the self loop (Xiang et al., 2015; Cafieri

et al., 2010) . Peixoto’s research on Bayesian stochastic blockmodels allow for self loops (Peixoto,

2017).
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Self-loops are a unique characteristic of, and perhaps inherent to, networks that represent

spatial relationships. Tobler’s first law of geography states that ”everything is related to everything

else, but near things are more related than distant things.” (Tobler, 1970). In a network setting

where spatial distances are embedded within edges, zero-distance relationships (self loops) naturally

induce the largest weights. Substantial work on spatial network analysis of human mobility data

has been done in recent years. Barthelemy et al. (Barthélemy, 2014) conducted a general survey

of spatial network models and dynamic processes on these models. Batty et al. provide a concise

description of network methods specialized to the understanding of cities (Batty, 2013).

Some popular network models for urban and spatial flows are known as gravitation and radiation

models are described in existing work (Ren et al., 2014; Simini et al., 2012; Sarzynska et al., 2015).

Some studies use existing community detection techniques on novel geographical datasets to gain

insight on how inferred communities are similar to or different from existing points of interest and

how they change over time (Huang et al., 2018; Du et al., 2017). These methods on commuting

behavior were used to partition synthetic cities in some work (Fujishima et al., 2019), and also used

to understand the polycentric spatial patterns within cities in others (Zhong et al., 2014). For a

comprehensive bibliography of models utilizing network techniques related to human mobility flow

and their associated data, see the work of Pappalardo et al (Pappalardo et al., 2019).

We explore the ways in which communities may arise out of spatial networks, and in what ways

may the bottom-up approach of iterative significance testing be advantageous for these data. We

describe the novel contributions of our work on these methods in the following section.

1.1.4 Finding Clusters via Significance Testing

Much of the work described in Chapters 3, 4, and 5 of this dissertation will focus on significance

testing-based community detection in networks. The general principle of the methodology follows

the construction of a null model, then a procedure of setting up many hypothesis tests (usually in

some pre-specified sequence of steps), then iteratively rejecting the observations whose relationships

to the active set do not satisfy a significance criterion. This principle was first developed by Wilson,

Nobel, and Bhamidi on a 2014 study of community detection in binary networks.

Wilson et al. use significance testing to find communities in a binary network under the as-

sumptions of the configuration model (Wilson et al., 2014). The configuration model, as mentioned
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earlier, is used as a null model for underlying randomness for a binary network wherein the degree

structure, representative of the influence or “power” structure of each node. The testing procedure

takes an active set B (at iteration step t) and conducts a test of significance between B with all

other nodes u in the network assuming that the configuration model is approximated by a binomial

distribution with parameters based on the ratio of the sums of connected edges between the nodes

amongst the active set and the total sum of degrees in B. This method is known as Extraction of

Statistically Significant Communities (ESSC).

More methods develop this basic premise underlying clustering methodology in different direc-

tions. Palowitch et al. as mentioned earlier, use significance-testing to find significantly connected

communities in weighted networks (Palowitch et al., 2018). The premise of conducting significance

tests between an active set (at a given iteration) is similar the same as that in ESSC, but the impor-

tant distinction is that the method is tailored for weighted graphs. As such, Palowitch and authors

have constructed a weighted (or continuous) configuration model that preserves both expected

strengths (sum of weights) as well as degrees. This method is known as Continuous Configuration

Model Extraction (CCME).

Bodwin et al. used significance testing to find clusters of significantly differential correlations

in datasets with differential conditions (Bodwin et al., 2015). Rather than taking a network-valued

object as an input (such as an adjacency matrix), the method searches over high-dimensional

datasets whose observations are split according to a differential condition. Though networks are not

directly used, the relational nature of the correlations among high-dimensional datasets implictly

reveal network-like structures. The bipartite community detection approach in chapter 5 that

correpsonds to the work of Dewaskar et al. (Dewaskar et al., 2020) use a similar logic.

1.2 Contributions to Community Detection

We outline the contributions to the community detetcion and network analysis literature in

this section. The two “directions” of community detection algorithms described in this dissertation

are:

• Top-down approach where memberships and parameter estimates are all already assigned

initially and membership probabilities are updated until some global criterion is maximized,
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• Bottom-up heuristic where test-sets are small at first gradually increase in size until member-

ships become stable.

Top-down approaches are perhaps more widely used. MOdularity is a pprominent example as

the entire domain of network combinations are sifted through and then an optimum is chosen. The

method of variational inference top estimate stochastic block structures is another example of a top-

down approach. We use a form of variational inference known as hierarchical variational inference

(Ranganath et al., 2016) using hierarchies of memberships in a novel application to networks.

Most existing top-down approaches typically require that all nodes be clustered even if they

do not elicit any group structure and necessitate a priori knowledge of the number of groups. The

bottom-up approach typically avoids these problems and moreover naturally allows for definition

of, and separation between, signal and noise. Some of these approaches, mentioned in the previouss

section, use significance-testing extraction (Wilson et al., 2014; Bodwin et al., 2015; Palowitch et al.,

2018). These extraction methods implicitly assume that there is some inherent structure within

graphs as dictated by their strengths (sums of weights) and degrees (ie configuration model) but

do not assign an explicitly parametric model to these graphs. Furthermore, members not assigned

to communities are called background nodes (ie. (Palowitch et al., 2018; Wilson et al., 2014)) and

are also not statistically modeled.

We note that the iterative testing procedures described by bottom-up is not a priori designed to

start small and then grow in size (Palowitch et al., 2018). However, in the applications described

in this dissertation, the initializing sets are always small or singletons. As such, the analogy in

this context is sensible. The testing-based methods proposed in this document are computationally

efficient amongst networks with many nodes, edges, and layers, as the mechanism for pattern

discovery follow a bottom-up heuristic where initializing sets are small and gradually increase in

size until memberships become stable (Wilson et al., 2014; Bodwin et al., 2015; Palowitch et al.,

2018). . These algorithms contrast with top-down approaches which initially posit membership

estimates for nodes and iteratively update membership probabilties for each community, or block

(Mariadassou et al., 2010; Matias and Miele, 2017). These methods implicitly assume that there

is some inherent structure within graphs as dictated by their strengths (sums of weights), degrees,

and assortativity structure, but did not assign an explicitly parametric model to these graphs.
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Contrasting the algorithmic divide of top-down versus bottom-up, the two overall themes of

the data catered to the methods proposed by this dissertation are:

1. Detection of communities in multilayer networks that represent different points in time or

different modalities

2. Models for irregular networks such as those representing spatial data

The following chapters all reflect one or both of these principles. In Chapters 2, 4 and 5, the

methodologies are tailored for networks of many modalities such as multilayer, bipartite, and time

series. In Chapters 3- 5, the data used are all from records that represent human mobility or

geophysical patterns. Both of these general categories of methods indicate expansions of network-

theoretical methods for more modalities of relational data.

1.2.1 Community Detection in Multilayer and Multimodal Networks

While single-graph approaches have been the focus of most work on network theory (Girvan and

Newman, 2002; Bender and Canfield, 1978), the literature concerning weighted, multimodal net-

works is a more recent emerging field of interest (Menichetti et al., 2014; Holme, 2015). The field of

community detection has, in conjunction, also grown considerably in recent times (Newman, 2018a;

Fortunato and Hric, 2016; Handcock et al., 2007; Salter-Townshend and Murphy, 2013). Many

techniques have been proposed for unweighted (binary) graphs including modularity optimization

(Girvan and Newman, 2002; Clauset et al., 2005), stochastic block models (Holland et al., 1983;

Nowicki and Snijders, 2001; Peixoto, 2018; Yan et al., 2014), and extraction (Zhao et al., 2012;

Lancichinetti et al., 2011). I contribute to the study of multilayer networks primarily through the

lens of stochastic blockmodels in this dissertation.

The stochastic block model (SBM) is a foundational theoretical model for random graphs

(Karrer and Newman, 2011; Peixoto, 2018; Hoff et al., 2002a; Nowicki and Snijders, 2001) and has

also found practical use in community detection (Mariadassou et al., 2010; Newman, 2003). The

model lays out a concise formulation for dependency structures within and across communities in

networks, but does not typically model global characteristics. Though some methods discern but do

not statistically model background (unclustered) nodes (i.e. Chapters 3-5) (Palowitch et al., 2018;
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Wilson et al., 2014; Dewaskar et al., 2020), few existing models explicitly account for community-

wise noise even though it is useful in many applications. We develop a model for multilayer weighted

graphs that explicitly accounts for (1) global noise present between differing communities, and (2)

dependency structure across layers within communities. We refer to this model and its associated

estimation algorithm as the (multivariate Gaussian) Stochastic Block (with) Ambient Noise Model

(SBANM) for the rest of this manuscript.

Initially proposed to describe binary networks (Hoff et al., 2002a; Nowicki and Snijders, 2001),

SBMs have been extended to weighted (Mariadassou et al., 2010)) and multilayer settings (Stanley

et al., 2015; Paul and Chen, 2015; Arroyo et al., 2020), and in particular time series (Matias

and Miele, 2017) where clusters across all time points have the same inter-block parameters, but

varying between-block interactions. These multilayer SBMs typically do not account for correlations

between layers. This notion has also only begun to be explored in the context of multilayer SBMs;

some recent studies or binary networks have accounted for correlations across layers (Mayya and

Reeves, 2019) and noise (Mathews et al., 2019), but typically assume that parameters are already

known.

Our main contribution to community detection on multilayer weighted networks is a novel

method that jointly finds clusters in a multilayer weighted network and also classifies what types of

these clusters, namely (local) signal or (global) noise, these are. We propose a (top-down) method

that discovers, categorizes, and estimates the associated parameters of these communities. We

developed a model as well as its method of inference, which is useful as many existing multilayer

SBM analyses assume known parameters (Wang et al., 2019b; Mayya and Reeves, 2019). In the

primary case study of Chapter 2 (Chapter 2.5.1), we use SBANM to find clusters of diagnostic

subgroups of patients judged by similarity measures of their psychopathology symptoms.

In addition, in Chapter 5 I describe joint work with (primarily done by Miheer Dewaskar) to

discover clusters in bipartite high-dimensional datasets. We are interested in identifying associations

between groups of measured features in two data types in an unsupervised setting that does not

make use of auxiliary information about the samples. In particular, the goal is identifying pairs

from differing features such that the aggregate (standard Pearson) correlation between features in

these features is large.
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1.2.2 Demarcating Regions in Spatial Networks

Another contribution of this dissertation is in developing novel community detection meth-

ods for networks that represent spatial fields. The method in Chapter 3 is tailored specifically to

commuter networks (of human populations) over nodes, which represent spatial points. The high-

lighted application of the Bimodules Search Procedure (BSP), described in Chapter 5, also uses a

method of community detection on bipartite networks to search for clusters that represent spatial

locations. In both of these applications, the spatial information is not explicitly accounted for, but

the composition of strongly self-looping networks presumes an inherently spatial structure.

Representations of self-loops are inseparable to the notion of distance (spatial or otherwise)

in that networks with large self-loops will always be inextricably linked to an implicitly spatial

characterization of relational data. Networks with stronger self-loops than cross-edges demon-

strate Tobler’s “first law of geography” which shows that distal processes that diminish over space.

Weighted values associated with such geographical distances are most prominent where there is zero

distance (i.e. with itself). In the future directions described in Chapter 6, we outline a method

of community detection and analysis of spatial networks that directly takes into account distance

information. The distance network may be spatial or social. We also speculate potential dynamics

of evolution amongst spatial networks across time, drawing on the basic hypotheses on commuting

network formation in Chapter 2.

1.2.3 Finding Clusters in Network Time-Series

Intertemporal community detection similar approach as clustering multilayer networks. Net-

works in time-series may be seen as a subset of, or a qualitatively different (in this case specifically

time-series) multimodal/multilayer networks. Like the SBANM method as described in Chapter 2,

the intertemporal community detection method finds persistent communities across layers. Persis-

tent communities whose memberships are constant across the entire range of time-points and are

perhaps an intrinsic way of describing clusters that span over many time-periods. Such notions

intersect heavily with those in developed for multilayer networks in the previous section. In the lit-

erature, Liu et al. (Liu et al., 2014) identify and describe the notion of persistent communities over

multilayer networks, with the goal of distinguishing between steady-state activity and impermanent
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behavior. Wilson et al. (Wilson et al., 2016) also proposed a score-based method for multilayer

networks with heterogeneous community structure, which captures another class of finding persis-

tent communities across time. On the otehr hand, Stanley et al. and Matias et al. (Stanley et al.,

2015; Matias and Miele, 2017), as mentioned in the previous section 1.2.1, use variational inference

to find multilayer communities, but do not stipulate the persistency requirement i.e. communities

may change memberships across time-slices.

The approach described in Chapter 4 is based on directly extracting members from all the

nodes in the multilayer network system akin to that the methods of significance testing described

in the previous section 1.1.4. The advantages of this method are threefold. Firstly, it is designed for

weighted networks of any parametric distribution. Secondly, like the method described in section

1.1.4 as well as in Wilson et al (Wilson et al., 2016), not all nodes are necessarily clustered and some

are categorized as background nodes, which capture nodes that are not a part of any community.

Thirdly, the method is able to find both “persistent” as well as “heterogeneous” structure. However,

the method only applies to networks whose layers represent serial time-slices.

The intertemporal communities discovered from the method proposed in this dissertation serve

different descriptive functions for different types of clustering behavior. The intertemporal com-

munity detection method described in Chapter 4 looks at weighted networks with registered nodes

structured in time series. The communities describe sets of nodes that are connected with each

other in varying levels across time. The method is primarily catered towards identifying general

directions in the evolution of relationships amongst interconnected nodes. Though the communities

are broadly described as increasing, decreasing, or stable in connectivity, neither inter-graph cor-

relation structures, nor specific parameters are not estimated. Moreover, generative forms of such

evolutionary structures are only identified in a broad sense but also specified parametrically with

means and covariance structures, as well as separation of signal and noise among communities.

The significance-based intertemporal community detection describes and traces general evolu-

tionary patterns in times-series of registered networks without any assumptions in the distributions

of weighted edges, but does not make direct inferences about the parameters governing the rates

of connectivity, contrasting with SBANM as Chapter 2.
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1.2.4 Noise in Networks

The notion of noise is a central motif in both the major thrusts (top-down and bottom-up) of

community detection methods this dissertation. Noise has always been prevalent in the study of

networks but usually relegated to an afterthought partly by design. However, noise as a concept

is present and is all of the following chapters and is a major part of Chapter 2. The separation

between signal and noise is noted as an advantage in all of the methods preented below. As such, a

major contribution of this dissertation is perhaps in the classification and usage of noise in network

models..

A canonical example of a globally noisy network is the Erdos-Renyi model where every edge

is governed by a single probability. The affiliation model is a weighted extension (Allman et al.,

2011) used to describe a “noisy homogeneous network”; a single global parameter θin dictates the

connectivity between all nodes in any community, while another θout controls the connectivity for

all nodes in differing communities. A similar model was posited by Arroyo et al. (Arroyo et al.,

2020) where θin > θout as a baseline for network classification. The weighted SBM and the affiliation

model are both mixture models for random graphs described by (Allman et al., 2011; Ambroise and

Matias, 2010). This class of network models accounts for assortativity (the tendency for nodes who

connect to each other at similar intensities to cluster) and sparsity (when there are much fewer

edges than nodes).

Though there have been many studies on the theoretical properties and empirical usage of

SBMs, there have not been much focused on estimating the noise inherent within SBMs, much less

for multilayer weighted graphs. Extraction-based methods identify background nodes to signify

lack of community membership (Palowitch et al., 2018; Wilson et al., 2014), but these methods

do not attribute any parametric descriptions to these nodes. Some recent work discuss noise in

network models that are oftentimes associated with global (i.e. entire-network) uncertainty that is

uniformly added to all edges (Blevins et al., 2021; Newman, 2018b; Mathews et al., 2019; Young

et al., 2020). However, few have studied structural noise that exists between differing communities

or that serves as some notion of a residual term (i.e. in regression analysis).

We attempt to address these two gaps in the model proposed in Chapter 2. We simplistically

describe the model as follows. In a multilayer graph with Q ground truth communities (indexed
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by q), as well as a single block that is considered noise (labeled NB for noise block), we postulate

a model that is locally unique with parameter θq for all edges within a block indexed at q. Global

noise parameter θNoise describes all interactions between differing blocks as well as NB. This model

is written simplistically as follows, but in more detail in Section 2.2:

θql =


θq if q = l and q is not NB

θNoise if q 6= l or q is NB

. (1.1)

The model combines qualities of the affiliation model (Allman et al., 2011) with the weighted

SBM and extends to multiple layers. Because both the affiliation model and the multilayer SBM are

proven to be identifiable by prior work (Allman et al., 2011; Matias and Miele, 2017), we posit that

SBANM is also identifiable. A brief argument is given in Appendix 2.6.1, but deeper investigation

remains as future work. One major advantage of a global noise term is its parsimony compared to

SBMs. Existing clustering models on multilayer networks, even when accounting for communities

that persist across layers (Liu et al., 2014), still tend toward overparameterization.

A reference or null group is often used in scientific and clinical settings, an example being

the cerebellum as a reference region-of-interest (ROI) in the analysis of brain networks. The

commonality in out-of-clique and baseline modes of communication in the example in the beginning

of Chapter 2 provides an interpretable justification for the empirical realism of this model.

1.3 Outline

We describe the proposed methods in detail starting in Chapter 2, where we introduce a novel

class of stochastic blockmodel for multilayer weighted networks that accounts for the presence of a

global ambient noise governing between-block interactions. We induce a hierarchy of classifications

in weighted multilayer networks by assuming that all but one cluster (block) are governed by

unique local signals, while a single block behaves identically as interactions across differing blocks

(ambient noise). Hierarchical variational inference is employed to jointly detect and typologize

blocks as signal or noise. We call this model for multilayer weighted networks the Stochastic Block

(with) Ambient Noise Model (SBANM) and develop an associated community detection algorithm.
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Then we apply this method to subjects in the Philadelphia Neurodevelopmental Cohort to discover

communities of subjects with similar psychopathological symptoms in relation to psychosis.

In Chapter 3, where we describe a iterative testing method which is an extension of the Con-

tinuous Configuration Model Extraction (CCME) method (Palowitch et al., 2018) that finds com-

munities in networks of regional commuting with strongly self looping nodes. Such networks are

geographically constrained, but the method does not explicitly make use of spatial features. The

method both finds clusters of nodes that are connected in spite of each node posessing predomi-

nantly self-looping weights, as well as members (which we call monads) that serve as single-node

communities.

In Chapter 4, we extend the iterative testing method to temporal networks, and apply it to

a variety of human mobility networks that are also implicitly spatially constrained. We introduce

new modes of false-discovery rate corrections that account for time-dependent significance testing

in networks to support these methods. We identify and interpret the communities that are stably

connected across time as well as those that are dynamic and contextualize these with historical

trajectories of human mobility flow. Furthermore, we also introduce a method based on anomaly

detection that identifies load-imbalanced nodes assuming that they represent carriers of traffic flow

(with finite holding capacity).

In Chapter 5, we describe a method for finding bi-clusters amongst two datasets whose clustered

members are significantly inter-correlated across the two variable-sets. This method applies to sets

of high-dimensional, high-throughput data whose features are correlated across sets. In dealing

with modern data, many modes of data analysis, especially exploratory, necessitates the discovery

of related feature sets within and across both the datasets. The method is implictly network-based,

even if the inputs of the algorithm are not necessarily adjacency matrices but the observations. The

method relies on p-values based on permutation distributions that are correspond to sums of squared

cross-correlations. Though the method is tailored primarily for genomic datasets, we present an

application for identifying zones of related temperature and precipitation in North America.

Finally, in Chapter 6, we describe ongoing and potential directions for future work. This chapter

is split into two subsections. The first section of the final chapter details the ongoing and future

work branching from SBANM. Though not all of the data is yet complete, we describe the integration

of imaging, genomic, and cognitive testing data with the survey data as another facet of multilayer
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modeling. The methodological goal of this project is to capture all these modes of relational data

using multilayer networks and to either (1) classify constellations of symptoms, behaviors, and

biomarkers that signify different forms of psychosis and (2) to develop a risk prediction model

combining data (whether transformed into networks or not) with the psychosis spectrum status as

outcome. In the second part of Chapter 6, we expand on the methodologies of community detection

in the networks, as we have previously described. We propose some ideas for theoretical models of

the methods described in the following chapters. We also propose methodological extensions for

self-looping and temporal networks in previous chapters. Finally, we present ideas for an outline

of a null model for spatial networks in the future works section, which is based on the community

detection methodology for self-looping networks.
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CHAPTER 2

Multivariate Gaussian Blockmodel with Ambient Noise

We describe a model and associated method to find communities with ambient noise in muilti-

layer Gaussian weighted networks1. We posit an example to motivate the representation of the

proposed model to describe patterns in sociality. Suppose there is a social network where nodes

represent members and weights represent social interactions. Members naturally interact in cliques

where rates of communication are roughly similar (i.e. assortative). Across differing communi-

ties, however, rates are assumed to be at a global baseline level. Moreover, interactions among

members who are asocial and do not belong to any community with a unique signal are similarly

modeled as “noise”. Who, in a social clique or scene, are still friends with each other after 10

years? Alternatively, how might the notion of “friendship” be broken down – in what ways may

work relationships (i.e. co-authorships) correlate with social relationships? A schematic figure for

this model compared to SBM is presented in Figure 2.1.

The logic of this model is natural for clinical, psychiatric, and experimental settings. Psy-

chiatric illnesses have multiple causes and symptoms. There are no laboratory tests for these

conditions. Current diagnostic processes only consider the presence of discrete symptoms and can

identify patients who need treatment, but it does not help identify who is at risk for the illness

in question. One such illness is schizophrenia, which is a chronic psychotic disorder that affects

millions worldwide and imposes a substantial societal burden. Identifying individuals who are at

risk for developing this psychotic condition is a clinically significant issue.

In most existing research on networks where nodes represent individuals, edges are known

quantities between them. This assumption cannot be applied to psychiatric network models to

identify communities of individuals with the same diagnosis as psychiatric disorders manifest with

significant heterogeneity. Connections between individuals can be estimated from biological and/or

1This chapter is adapted from a manuscript written in 2021 (He et al., 2021) that was joint work with Professors
Rose Mary Xavier and Jason Xu
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Figure 2.1: Illustrative example of the types of relationships between blocks for the canonical SBM (left)
and SBANM (right). Dashed lines represent the inter-block connectivity among nodes. Large circles represent
distinct communities. Solid thick lines represent the inter-community rates of interaction (transition proba-
bilities if binary). In the canonical case (left), the inter-block transitions are all distinct, as denoted by its
colors. For the multilayer SBANM case (right), the inter-block parameters are all the same (represented by
gray); AN governs the connectivities between blocks and the intra-block connectivity within the block NB
across two layers G1 and G2 with blocks B1, B2, B3 and NB with correlations ρ1, ρ2, ρ3 across G1 and G2 .
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psychosocial data, which can then be used for early identification (Kahn et al., 2015; Clark et al.,

1995; Kendell and Jablensky, 2003). With an increase in availability of multimodal data across pop-

ulations of clinical subjects, multilayer community detection is a natural tool for the classification

of psychiatric illnesses with multifaceted characteristics.

While distinguishing psychosis spectrum will be the primary focus of the proposed methodology,

it is useful to find latent structure in other types networks. We also demonstrate the method on (1)

US congressional voting data and (2) human mobility (bikeshare) data in Sections 2.5.3,2.5.4.We

describe the terminology alongside the Philadephia Neurodevelopmental Cohort data for the main

case study in Section 2.1. We then describe the model and its method of (variational) inference

in Section 2.2, and its specific mechanics in Section 2.3. Model performance is assessed and com-

pared with other methods in Section 5. In Section 2.5.1, we demonstrate the focal case study of

psychopathology symptom data.

2.1 Data, Notation, and Terminology

For a K-layer weighted multigraph with registered n nodes indexed by the set [n] =

{1, 2, ..., n}, let X represent the collection of multilayer weighted graphs with K layers: X =

{X1,X2, ...,XK}. Similarly, suppose X contains Q ground truth communities (blocks) indexed by

q, but such that a single block is considered noise and labeled NB (indexed by qNB). We let

Xij = (X1
ij , X

2
ij , ..., X

K
ij ) represent the vector of edge-weights between edges (i, j) across all layers

k = 1, 2, ...,K. We define a community as Bq ⊂ [n] to denote the nodes that are contained in a

given block indexed by q in X, and we let Xq represent the set of all edges contained in block q

across all K layers:

Xq = {Xij}i,j∈Bq . (2.1)

Moreover, we call the set of edges across different blocks q, l (where q 6= l) interstitial noise (IN),

and label it as:

XIN = {Xij}i∈Bq ,j∈Bl
. (2.2)
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We fix one block indexed as NB as the noise block (previously described in Section ??) where

all weights in the block follow a NK

(
µNB,ΣNB

)
distribution. This block represents a null region

that is devoid of unique signal, but is distributionally governed by the same characteristics as the

interstitial relationships between different blocks. We let XNB represent the set of edges among

members in the “noise block”: XNB = {Xij}i,j∈NB. In the following subsection we describe the

data as introduced in the prior section in the context of the notation. In Section 2.2 we describe

the assumption that classifies this notion of noise.

2.1.1 Mapping Notation to Data

Multilayer networks can represent multimodal, longitudinal, or difference graphs (Menichetti

et al., 2014; Holme, 2015). The data in the Philadelphia Neurodevelopmental Cohort (PNC) (de-

scribed below) is constructed as a multimodal network, while the applications outlined in Appen-

dices 2.5.3 and 2.5.4 are examples of longitudinal graphs. In each application, we write the weighted

graph-system X with K layers and define the index set [n] as the set (of cardinality n) of all nodes.

Every layer has n nodes and each weight Xij between nodes i, j is written as a K− dimensional

vector, and each layer-specific (at k) weight is written as Xk
ij .

With respect to the PNC data, X represents the whole set of anxiety, behavior, and mood psy-

chopathology symptom networks across a given set of subjects. There are three layers Xx,Xy,Xz

indexed by k = {x, y, z}; each represents one of the psychometric evaluation networks representing

each disorder. The sample size n in this context represents the 5136 subjects between the ages

of 11 to 17 (youth) and 1863 between the ages of 18 to 21 (early adult). Each node represents a

subject, and each weighted edge the transformed similarity ratio between two subjects for anxiety,

behavior, and mood symptoms.

A community sample was obtained from the PNC study from the greater Philadelphia area.

Subjects aged 8-21 years were subject to a detailed neuropsychiatric evaluation (Calkins et al., 2014,

2015). This sample is used as the primary case study. Xk
ij is assumed to be generated from clusters

of nodes whose (Fisher) transformed edges follow blockwise multivariate normal distributions. We

use three general categories of disorders to represent each layer:

1. Anxiety (Xx): 44 questions (generalized, social, separation anxiety, etc.)
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2. Behavior (Xy): 22 questions (ADHD, OCD, CDD)

3. Mood (Xz): 10 questions (depression and mania),

then Fisher-transformed to produce the weighted edge in graph Xk in layer k. In these following

sections these categories will simply be referred to as “anxiety”,“behavior”, and “mood”. More

details on pre-processing can be found in Section 2.1.2.

2.1.2 PNC Preprocessing and Network Construction

The PNC has a well-represented sample with mostly European American ancestry but a sub-

stantial portion of African Americans. Roughly 21% met psychosis spectrum criteria, 4% reported

threshold psychosis symptoms, 12% reported subthreshold positive symptoms, 2% exhibited sub-

threshold negative symptoms ((Calkins et al., 2017)). We separately analyze the two age cohorts

youth (with sample size 5136) and early adult (sample size 1863).

Response networks are constructed using a function that gauges similarity as well as positivity

or negativity of responses. This distance function is similar to Hamming distance, but takes into

account the direction of positive or negative agreement and is between -1 and 1 . In a single

graph-layer Xk, a weight Xk
ij between two nodes is derived from indicators hkij,u across U questions

(indexed by u) pertaining to a given set of conditions.

hkij,u =


1 if i, j both answer “yes”

−1 if i, j both answer “no”

0 otherwise

Each hkij,u between two subjects u, v is -1 if both answer no, 1 if both yes, otherwise 0. These values

are then summed and divided by the total number of questions U :

rkij =

∑
u=1,..,U h

k
ij,u

U
.

The weight rkij is 1 if two subjects both answer yes to everything and -1 if they answer no to

everything. The weight rkij is then transformed using a Fisher transformation to produce a value

that approximates an observation in a normal distribution, in layer k: Xk
ij = Fisher(rkij).
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2.2 Model and Inference

SBANM supposes that networks across K layers have the same block structure, while transi-

tion parameters between blocks are fixed at the same global, ambient, level. This model allows

detection of common latent characteristics across layers, as well as differential sub-characteristics

within blocks (represented by multivariate normal distributions). This model also presumes block

structures whose edges are correlated across layers.

Definition 2.1. (Correlated Signal Blocks) For a K−layer (Gaussian) weighted multigraph X =

{X1, ...,XK} where each layer k represents a graph with n registered nodes , let Bq ⊂ [n] represent

a community housing a partition of nodes {i}i∈Bq , then each weighted edge between any node in

block Bq form a multivariate normal distribution with mean K-dimensional vector µq and K ×K-

dimensional covariance matrix Σq:

Σq =



σ2
q,1 ρqσq,1σq,2... ρqσq,1σq,K

ρqσq,2σq,1 σ2
q,2... ρqσq,2σq,K

... ... ...

ρqσq,Kσq,1 ... σ2
q,K


.

If nodes i, j are in the same block, the distribution of their edges follow a multivariate normal

distribution

Xij |{i ∈ Bq, j ∈ Bq} ∼ NK(µq,Σq).

Note that there is a single correlation parameter ρq across all layers for a given block Bq,

implying that Σq is a rank 1 plus rank 2 matrix. This is a deliberate choice to induce parsimony

and interpretability among block relationships across all layers. We assume that the noise block as

has the same characteristics as the interstitial noise; both are drawn from the same distribution

AN (ambient noise). AN is a global noise distribution that governs both IN and NB:

XIN
d
= XNB ∼ NK(µAN ,ΣAN ).

22



Because NB and IN both represent “baseline” levels of connectivity for the network, we assume

that they both have equivalent characteristics as AN . Members of each block Bq interact with other

members in the same block at rates that follow multivariate µq with variance Σq, but interact with

members in differing groups l; l 6= q at baseline rates µIN with variance ΣIN , i.e. background

interactions.

Definition 2.2. (Ambient Noise) Edges in IN between differing blocks and in NB, are charac-

terized by (µAN ,ΣAN ): ΣAN is a K × K diagonal matrix with diagonal (σ2
AN,1, ..., σ

2
AN,K) and

off-diagonal entries of 0:

Xij |{i ∈ Bq, j ∈ Bl} ∼ NK(µAN ,ΣAN ).

For a community Bq ⊂ [n] representing the nodes that are contained in block q in a weighted

multilayer network X,we let Xq represent the set of all edges contained in block Bq across all

K layers as defined in Equation (2.1). Conversely, the set of edges across differing Bq, Bl (i.e.

interstitial noise), are defined as in Equation (2.2).

Definition 2.3. (Stochastic Block (with) Ambient Noise Model (SBANM)) A K−layer (Gaussian)

weighted multigraph X = {X1, ...,XK} with n nodes and Q communities (blocks) indexed by q

with a single block that is considered noise labeled NB (indexed by qNB) with disjoint blocks

{B1, B2, ..., NB, ..., BQ}q:q≤Q such that
⋃
q≤QBq

⋃
NB = [n] is a SBANM if the following conditions

are satisfied.

1. Edges in the same block Bq adhere to (Correlated Signal Blocks) where each edge Xij follows

conditional distribution NK(µq,Σq) given block memberships,

2. Ambient noise AN with NK(µAN ,ΣAN ) governs both IN and NB:

(a) Edges i ∈ Bq and j ∈ Bl (l 6= q) follow a NK(µAN ,ΣAN ) distribution.

(b) One block NB contains members whose edges are generated from a K− dimensional

multivariate normal distribution NK(µAN ,ΣAN ).
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2.2.1 Connection to Existing Models

The weighted SBM and the affiliation model are both cases of the mixture models for random

graphs described by Allman et al. (Allman et al., 2011; Ambroise and Matias, 2010). This general

class of network models accounts for assortativity (the tendency for nodes who connect to each

other at similar intensities to cluster together) and sparsity (when there are much fewer edges than

nodes). In addition to the class of VEM-based inference methods (Mariadassou et al., 2010; Matias

and Miele, 2017; Paul and Chen, 2018) that are extensively referenced in Section 1.2.4, we also note

multigraph SBM inference methods based on spectral decomposition (Wang et al., 2019b; Arroyo

et al., 2020; Mayya and Reeves, 2019). These methods are typically applied to binary networks

and use different sets of methodology or assumptions such as known parameters ((Mayya and

Reeves, 2019)), but are still similar in motivation as to warrant comparison. Some of these existing

methods model edge connectivity of a (potentially multilayer) network as a function of membership

vectors Zi (for node i), connectivity matrix Rk at layer k, and the graph Laplacian (Mayya and

Reeves, 2019; Mathews et al., 2019; Reeves et al., 2019; Arroyo et al., 2020; Wang et al., 2019b).

Typically, the connectivity rate corresponds to Bernoulli probabilities (for binary networks), but

some of these approaches allow for (or posit for future work) extensions to the weighted cases (Wang

et al., 2019b; Mercado et al., 2019; Arroyo et al., 2020). Some work has focused on studying the

correlations or linear combinations of the eigenvectors of Rk, but in most of these cases conditional

independence given labels between layers is assumed for correlated networks (Mayya and Reeves,

2019; Arroyo et al., 2020). A recent trend in these multiplex methods has focused on devising an

optimal aggregation scheme to combine multiple layers and then to use single-graph methods on

the resultant static network (Levin et al., 2019). We consider several special cases for SBANM where

it reduces to existing models.

1. If all ρq were zero (ie. diagonal Σq; no correlations amongst communities) and all the within-

community signals were the same, then SBANM is a multivariate extension of the models posited

by Allman et al. (Allman et al., 2011) or Arroyo et al. (Arroyo Relión et al., 2019).

2. If K = 1, SBANM is a special case of the weighted Gaussian SBM as proposed by Mariadassou

et al. where all inter-block connectivities are fixed at a single rate (Mariadassou et al., 2010).
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3. Wang et al. ((Wang et al., 2019b)) constrain the connectivity matrix to a diagonal, which

would be analogous to SBANM if ambient noise parameter is fixed at zero: θAN := 0.

4. Arroyo et al. (Arroyo et al., 2020) describe the multilayer SBM (Holland et al., 1983) for

binary graphs which “could be easily extended to the weighted cases”. The model assumes

independent block parameters Rk across every layer. If there were parameters θAN such that

Rql,k := θAN (for every q 6= l), then a special case of SBANM (where each ρq := 0) would be

recovered.

SBANM finds a loose connection to mixed-membership blockmodels (MMBM) in that both models

attribute uncertainty to membership designations (Airoldi et al., 2007). However, MMBM doubly

complicates the model parameter landscape with overlapping block combinations, while SBANM

more parsimoniously addresses ambiguous memberships by subsuming their characteristics into an

umbrella ambient noise term that describes the ambiguities in block memberships in the interstitial

noise term IN .

2.2.2 Variational Inference

The proposed model is estimated by variational inference (VI) , which has historically been

used for estimating SBM memberships as well as their parameters (Mariadassou et al., 2010; Paul

and Chen, 2015). VI is an approach to approximate a conditional density of latent variables using

observed information by solving this problem with optimization (Blei et al., 2017; Jaakkola, 2000).

When optimizing the full likelihood is intractable, simpler surrogates of complicated variables are

chosen as to create a simpler objective function. The Kullback-Liebler (KL) Divergence between this

simpler function and the full likelihood are then minimized. For community detection problems,

mean-field (MF) approximations of membership allocations often serve as simpler surrogates of

latent approximands to simplify the likelihood function into a lower bound (typically known as

evidence lower bound : ELBO) (Mariadassou et al., 2010; Salter-Townshend and Murphy, 2013;

Airoldi et al., 2007).

Variational EM (VEM) is the state-of-the-art for SBM estimation and demonstrably more ef-

ficient than other approaches (such as MCMC) (Mariadassou et al., 2010; Nowicki and Snijders,

2001). Daudin et al. introduced using VEM for binary-graph SBMs ((Daudin et al., 2008). Mari-
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adassou et al. used a similar method for detecting communities in a single weighted graph (Mari-

adassou et al., 2010), while Matias et al. also did so for multilayer networks (Matias and Miele,

2017). The estimation algorithm for the proposed model is also rooted in VEM, but we augment

the procedure with signal and noise typologizing different blocks.

Though it enables efficient inference, “typical” MF VI is limited by its assumption of strong

factorization and does not capture posterior dependencies between latent variables arising amongst

multilayered networks. Hierarchical Variational Inference (HVI) provides a natural framework for

the two-layered latent structure for multilayer networks. A natural hierarchy is induced in SBANM

by the assumption that all but one block are under the umbrella of signal, while a single block is

classified as noise. HVI augments variational approximations with priors on its parameters: this

assumption allows joint clustering of blocks and their signal-noise differentiation as the superstruc-

ture.

We use a similar approach to that originally used in Daudin et al. (Daudin et al., 2008). The

latent variable of interest is the membership allocation matrix Z, which is a n × Q matrix where

each row {Zi}i≤n contains Q − 1 zeros and a single 1 that represents membership at that given

entry. We introduce indicator C to determine if a block q is signal or noise NB. C is a vector of

length Q whose values Cq are 0 or 1. The main difference between our’s and previous approaches

is that joint approximate conditional distributions of Z and C are modeled instead of just Z:

RX(Z,C) ≈
∏
i,q

(
m(Zi, τi)× Bern(Cq, Pq)

)
. (2.3)

In Eq. (2.3) RX(Z,C) represents the joint variational distribution of the memberships Z,C. The

exact joint distribution is unknown, but the hierarchical mean field (MF) approximation R(Z,C)

can be used to obtain a factorized estimate for its marginals (Ranganath et al., 2016). We write

the approximate composition of marginals using “×”; m(·) represents the multinomial distribution.

The variational approximations of membership matrix Z is a n × Q-dimensional matrix τ , each

row represents the vector of probabilities that approximates Zi (Mariadassou et al., 2010).

The variational approximation of the indicator Cq at block q is the probability Pq, which

typologizes (and “sits at a higher tier” than) τ . Under variational distribution R, each member i of

a block Bq adheres to multinomial distribution with parameter τiq = E[Ziq]. Pq is the probability
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Figure 2.2: Schematic diagram for the hierarchy of organization for blockstructures with signal/noise
differentiation for blocks as the top layer and the actual blocks as the bottom layer.

of Cq akin to τiq. For each q, Pq is ambient noise with prior probability Ψ. A derivation for Ψ is

given in Section 2.3.5

Definition 2.4. Ψ is the probability of block {Bq}q:q≤Q to be noise block NB:

Ψ := (Q− 1)/Q (2.4)

The hierarchical MF distribution Rhv(Z) as introduced by Ranganathan et al. (Ranganath

et al., 2016) “marginalizes out” the MF parameters in RX(Z,C) and is written as

Rhv(Z) =

∫
RX(Z,C)dC.

Following the methods of estimation proposed in prior work on SBM estimation (Daudin et al., 2008;

Mariadassou et al., 2010; Paul and Chen, 2018), RX(Z, τ ) represents the multinomial variational

distribution wherein each τiq approximates the membership allocations. The integrated Rhv(Z)

represents the distribution in prior work that is not subject to the signal or noise categorizations.

2.2.3 ELBO and Hierarchical ELBO

This section describes the hierarchical ELBO as well as the derivations for these expressions.

Prior VEM-based estimation methods focus on optimizing the Evidence Lower Bound (ELBO)

(Paul and Chen, 2015, 2018; Mariadassou et al., 2010; Daudin et al., 2008). L is the approximately

27



optimal likelihood that minimizes the KL Divergence between R(Z,C) and the posterior frequency

f(Z,C|X). It is the sum of the expected frequency and the entropy H of variational variable Z:

L = ERhv(Z)[log f(Z,X)] +Hhv(R(Z)).

A better bound than the ELBO is derived by introducing the marginal recursive variational approx-

imation S(C|Z), and then exploiting the following inequality with joint MF distribution R(Z,C)

and the (hierarchical) entropy H(Z):

Hhv(R(Z)) ≥ −ER(Z,C) [logR(Z,C)] + ER(Z,C) [logS(C|Z)] . (2.5)

A proof of inequality (2.5) is given as follows (Ranganath et al., 2016) : An inequality can be drawn

between the “ordinary” ELBO L without any hierarchical information and the Hierarchical ELBO

L = ERhv(Z)[log f(Z,X)] +Hhv(R(Z))

≥ ER(Z,C)[log f(Z,X)]− ER(Z,C) [logR(Z,C)] + ER(Z,C) [logS(C|Z)]

:= L′(Hierarchical ELBO ).

The inequality in the above relationship arises from the decomposition of the entropy Hhv of the

hierarchical distribution. The proof of the inequality is based on the proof from Ranganath et al.

(Ranganath et al., 2016) :

Proposition 1.

Hhv(R(Z)) ≥ −ER(Z,C) [logR(Z,C)] + ER(Z,C) [logS(C|Z)] .
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Proof.

Hhv(R(Z)) = −ERhv(Z)[logRhv(Z)]

= −ERhv(Z)

[
logRhv(Z)−KL

(
RC|Z(C|Z);RC|Z(C|Z)

)]
≥ −ERhv(Z)

[
logRhv(Z) + KL

(
RC|Z(C|Z);S(C|Z)

)]
= −ERhv

[
ER(Z)[logRhv(Z)] + logRC|Z(C|Z)− logS(C|Z)

]
= −ER(Z,C)

[
logRhv(Z) + logRC|Z(C|Z)− logS(C|Z)

]
= −ER(Z,C) [logRZ,C(Z,C)− logS(C|Z)]

The jointly factorized MF components of R(Z,C) = R(C)R(Z|C) are written as follows:

R(C) =
∏
q P

Cq
q (1 − Pq)

1−Cq as each Cq is Bernoulli distributed, and R(Z|C) is written simi-

larly to prior variational membership variables (Daudin et al., 2008; Mariadassou et al., 2010),

exponentiated by Cq:

R(Z|C) =
∏
q

∏
i

(
τ
Ziq

iq

)Cq
(∏

i

τ
Ziq

iq

)1−Cq

,

combining to form R(Z,C) = R(Z|C)R(C). Moreover, the recursive variational approximation

S(C|Z), as introduced by Ranganath et al. (Ranganath et al., 2016) estimates the higher-order

memberships C using the basal memberships Z:

S(C|Z) =
∏
q

∏
i

(
ΨCq(1−Ψ)1−Cq

)Ziq

.

The global signal rate Ψ := P(NB) (Definition 2.4) represent the prior probabilties of each group

membership Cq, or the parameters of the initial stationary distribution of Pq (Matias and Miele,

2017).

Definition 2.5. (Evidence Lower Bound (ELBO)) Given observed data X with unknown latent

membership variables Z, the evidence lower bound (ELBO) L is the approximately optimal like-

lihood that minimizes the KL Divergence between the approximate distribution R(Z,C) and the
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posterior frequency f(Z,C|X). It is expressed as follows:

L = ERhv(Z) [log f(Z,X)− logRhv(Z)]

Alternatively, the ELBO can be rewritten as the sum of the expected frequency and the entropy

H of variational variable Z:

L = ERhv(Z)[log f(Z,X)] +Hhv(R(Z)).

We write L′ here as follows:

L′ = ER(Z,C)[log f(Z,X)]− ER(Z,C) [logR(Z,C)] + ER(Z,C) [logS(C|Z)]

The log likelihood portion of the hierarchical ELBO is written as :

ERX
[log(f(X|Z))] =

∑
q

Pq
∑
i

∑
j

τiqτjq

(
1

2
(Xij − µq)TΣ−1

q (Xij − µq)− (2π)K/2(log |Σq|)1/2

)

+
∑
q

(1− Pq)
∑
i

∑
j

τiqτjq

(
1

2
(Xij − µAN )TΣ−1

AN (Xij − µAN )− (2π)K/2(log |ΣAN |1/2
)

+
∑
q

∑
l:l 6=q

∑
i

∑
j

τiqτjl

(
1

2
(Xij − µAN )TΣ−1

AN (Xij − µAN )− (2π)K/2(log |ΣAN |1/2
)
.

The full form of the hierarchical ELBO is the log likelihood part plus the membership proba-

bilities, entropy, and their hierarchical counterparts is shown as follows:

L′ = ERX
[log(f(X|Z))] +

∑
i,q

τiq logαq −
∑
q

∑
i

τiq log τiq−

∑
q

(
Pq logPq+(1− Pq) log(1− Pq)

)
+
∑
i

∑
q

(
Pq log Ψ + (1− Pq) log(1−Ψ)

)
τiq

This is the full expression for the hierarchical ELBO as described in Section 2.2.5.
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2.2.4 Parameter Estimation

In this section we describe the estimation of parameters. First, to ease notation, we introduce

some more terms

f(Xk
ij ,µq,Σq) =

1

2
(Xk

ij − µq)TΣ−1
q (Xk

ij − µq)− (2π)K/2(log |Σq|)1/2 (2.6)

f(Xk
ij ,µAN ,ΣAN ) =

1

2
(Xk

ij − µAN )TΣ−1
AN (Xk

ij − µAN )− (2π)K/2(log |ΣAN |)1/2. (2.7)

Equation (2.6) denotes the density for edges in a signal block
(
µq,Σq

)
at layer k; equation (2.6)

denotes density for edges with noise
(
µAN ,ΣAN

)
. In a graph X with K graph-layers {X1, ...,XK},

each edge between nodes i, j of each layer k has conditional density

log f(X|Z) =
∑

q:Bq 6=NB;q≤Q

∑
k≤K

∑
i,j≤n

τiqτjqf(Xk
ij ,µq,Σq)

+1(Bq = NB)
∑
i,j≤n

τiqτjlf(Xk
ij ,µAN ,ΣAN ) +

∑
q,l≤Q:q 6=l

∑
i,j≤n

τiqτjlf(Xk
ij ,µAN ,ΣAN ). (2.8)

The log likelihood portion of the ELBO, log(f(X|Z)), written above in Equation (2.8) is comprised

of three parts: unique signals for every q (top), the noise block NB (bottom left), and the interstitial

noise IN (bottom right). AN is the global ambient noise whose parameters govern the interstitial

noise as well as noise block as in Definition 2.2. The probability of block Bq “being signal” is

demarcated by Pq. Given variational variables τ ,P, the expected likelihood is

ERX
[log(f(X|Z))] =

∑
q:q≤Q

P(Bq 6= NB)τiqτjlf(Xk
ij ,µq,Σq)

+P(Bq = NB)
∑
i,j:i 6=j

τiqτjlf(Xk
ij ,µAN ,ΣAN ) +

∑
q,l≤Q:q 6=l

∑
i,j≤n

τiqτjlf(Xk
ij ,µAN ,ΣAN ).

The ER(Z,C)[log f(Z)] term restores to the same form as earlier work on SBMs (Mariadassou et al.,

2010; Daudin et al., 2008):

ER(Z,C)[log f(Z)] =
∑
i,q

τiq logαq, (2.9)
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where as in prior work (Daudin et al., 2008; Mariadassou et al., 2010), the variables αq represent

the membership probabilities of Ziq and sum to 1:

αq = P(i ∈ Bq) = P(Ziq = 1). (2.10)

Here we show that the term for ER(Z,C)[log f(Z)] as written in Eq. (2.9) is the same as in prior

studies such as Daudin et al. (Daudin et al., 2008)

Proposition 2.

ER(Z,C)[log f(Z)] =
∑
i,q

τiq logαq

Proof.

ER(Z,C)[log f(Z)] =
∑
i

∑
q

(
Pqτiq logαq + (1− Pq)τiq logαq

)
=
∑
q

(Pq + (1− Pq))
(∑

i

τiq logαq

)
=
∑
i,q

τiq logαq.

Note for the rest of the manuscript we use to
∑

i,q(·) to signifiy the double summation across

all i ≤ n and q ≤ Q. Since the expected log frequency of the membership vectors Z reduces to that

in canonical SBMs. The joint density is written as:

ER(Z,C)[log f(X,Z)] = ER(Z,C)[log f(X|Z)] +
∑
i,q

τiq logαq. (2.11)

Model parameters can be partitioned into ΘSignal and ΘNoise in addition to global parameters α,Ψ.

We write the entire set of model parameters as

Θ = {α,Ψ,ΘNoise,ΘSignal}. (2.12)

ΘSignal = {µq,Σq}q:1≤q≤Q;Bq 6=NB represents the model parameters that are unique to each block

Bq (not including NB), and also there is one fixed label qNB that indexes the noise block NB.
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ΘNoise = {µAN ,ΣAN} represents the noise parameters that govern both interstitial noise IN and

noise block NB. For NB, each correlation between layers is set at zero.

2.2.5 Decomposition of the Hierarchical ELBO

The estimation procedure optimizes the hierarchical ELBO. The hierarchical ELBO L′ (details

in Appendix 2.2.3) can be decomposed as

L′ =ER(Z,C) log f(X,Z) + ER(Z,C)[logR(C,Z)] + ER(Z,C)[logS(C|Z)]. (2.13)

The first term ER(Z,C) log f(X,Z) which represents the observed joint densities of X and Z is written

in Eq. (2.11). ER(Z,C)[logR(C,Z)] represents the joint distribution of the two-tiered variational

variables and is written as:

ER(Z,C)[logR(Z,C)] =
∑
i,q

τiq log τiq +
∑
q

(
Pq logPq + (1− Pq) log(1− Pq)

)
.

The third term ER(Z,C)[logS(C|Z)] described by Ranganath et al. as the ‘recursive variational

approximation’ (Ranganath et al., 2016) for R(·), is written as

ER(Z,C) logS(C|Z)) =
∑
i,q

(
Pq log Ψ + (1− Pq) log(1−Ψ)

)
τiq.

Combining these elements together, the hierarchical ELBO can be rewritten as:

L′ =ER(Z,C)[log f(X|Z)] +
∑
i,q

(
τiq logαq + τiq log τiq +

(
Pq log Ψ + (1− Pq) log(1−Ψ)

)
τiq

)

+
∑
q

(
Pq logPq + (1− Pq) log(1− Pq)

)
.

The hierarchical ELBO written in full can be found in Section 2.2.3. Derivations for all of these

terms can be found in the following sections.
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2.3 Estimation Algorithm

We summarize the targets of inference here to set up the language for the rest of the section.

We distinguish variational and model parameters: variational parameters τq and Pq (for q : q ≤ Q)

approximate the membership allocations, while model parameters describe the parametric qualities

of the blocks. Within the set of model parameters, we further distinguish local and global parame-

ters. Local parameters are Σq, and membership probabilties αq for each q. Global parameters are

Ψ,ΘNoise. We use VEM to estimate variational parameters in the E-step and model parameters in

the M-step, alternating these steps until the differences in τ become miniscule. Operationally, the

E-step and M-step are implemented in a an alternating fashion until the membership variables τ

reach some criterion of convergence.

2.3.1 E-Step

The E-Step of the algorithm estimates the variational variables which represent block member-

ships Ziq of the nodes i as well as Cq which are analogous to the “memberships of memberships”.

First we describe the estimation procedure for the variational approximations τiq, next we describe

the estimation of signal-noise differentiation probabilities Pq. This two-step procedure differs from

prior work because of an additional hierarchical estimation step of the higher-level variational

variables Pq.

To estimate the membership vectors, a iterative fixed-point approach is used to estimate τiq,

wherein the derivative for each τiq is taken based on model parameters and τjl,

log(τiq) ∝ log(αq) +
∑
k≤K

∑
j≤n

τjl

(
Pqf(Xk

ij ,µq,Σq) + (1− Pq)f(Xk
ij ,µAN ,ΣAN )

+
∑

l≤Q;l 6=q
f(Xk

ij ,µAN ,ΣAN )

)
− 1 + Pq log Ψ + (1− Pq) log(1−Ψ).

After exponentiating, the fixed-point equation can feasibly be solved after the iterating the system

until relative stability. This is the same approach as most existing literature (Daudin et al., 2008;

Mariadassou et al., 2010). Pq are calculated as follows:
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P̂q = 1−
(

1 +

[
exp

(∑
k≤K

∑
i,j≤n

τiqτjq

(
f(Xk

ij ,µq,Σq)− f(Xk
ij ,µAN ,ΣAN )) + log

(
1−Ψ

Ψ

)))]−1)−1

. (2.14)

Calculations for each of these terms are provided below. This section gives derivations for every

step of the Variational EM algorithm. First we describe optimizing membership probabilities in

the E-Step. We find optimal values for each τiq by solving this following equation:

∂

∂τiq
L = log(αq) +

∑
k≤K

∑
j≤n

τjl

(
Pqf(Xk

ij ,µq,Σq) + (1− Pq)f(Xk
ij ,µAN ,ΣAN )

+
∑

l≤Q:l 6=q
f(Xk

ij ,µAN ,ΣAN )

)
− log(τiq)− 1 + Pq log Ψ + (1− Pq) log(1−Ψ)

:=0,

rearranging τiq we solve this equation using a fixed point iteration procedure.

Following estimation of the membership probabilities, the noise probabilities are also estimated

in the E-step. Variational variables Pq that serve as the “soft” versions of Cq can be approxi-

mated by estimating the probability of block q being a “signal” block or noise block. The terms

ER(Z,C) log f(X|Z),E[logR(C)], E[logS(C|Z)] in L′ are dependent on C. Practically, because we

need to normalize for Nq, which is 1 − Pq, that variable is more simple (if not the only possible

tractable option).

∂

∂Nq
L′ = ∂

∂Nq
ER(Z,C)[log f(X|Z)]− logNq + log(1−Nq)− (log Ψ + log(1−Ψ))

∑
i

τiq

:=0

where the first term is f(·) is the portion of the multivariate normal density:

∑
k

∑
i,j

τiqτjq

(
f(Xk

ij ,µq,Σq)− f(Xk
ij ,µAN ,ΣAN ) + log

(
1−Ψ

Ψ

))
= log

(
Nq

1−Nq

)
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So then, after rearranging:

N̂q =

(
1 +

[
exp

(∑
k,i,j

τiqτjq

(
f(Xk

ij ,µq,Σq)− f(Xk
ij ,µAN ,ΣAN )) + log

(
1−Ψ

Ψ

)))]−1)−1

.

Then the final Nq estimates are made after normalizing all N̂q such that they sum to one. Finally,

the Pq estimates are made by subtracting Nq from 1.

2.3.2 Stochastic Variational Inference

To speed up computation, we apply stochastic variational inference (SVI) to calculate the

membership parameters τiq and Pq. We subsample nodes at each step of the E-step in variational

EM. Calculating τiq,t and Pq,t comprise two stochastic sub-steps of the E-step at iteration step t;

we label their SVI estimates as τ̂iq,t and P̂q,t. At each t, we sample a set of nodes M = {i1, ..., im}

of size m and their associated edges from graph layers X1, ...,XK . Let τmiq,t represent the randomly

subsampled graph at iteration step t.

1. (Calculating τmiq,t) Partial updating step for τ∗iq,t at time t wherein the subsampled member-

ships i, j ∈M are found:

τ∗iq,t ∝ exp

(
log(αq) +

∑
k≤K

∑
j,l∈M

τjl,t−1

(
Pqf(Xk

ij ,µq,Σq) + (1− Pq)f(Xk
ij ,µAN ,ΣAN )

+
∑
l:l 6=q

f(Xk
ij ,µAN ,ΣAN )

)
− 1 + Pq log Ψ + (1− Pq) log(1−Ψ)

)
.

The update step averages the newly calculated τ∗iq,t with the previous value

τ̂iq,t = δtτ
∗
iq,t + (1− δt)τ̂iq,t−1.

2. (Calculating Pq,t) The signal probability Pq is calculated in (2.14) but with the same sub-

sampled replacements as done in the previous calculation of τ . For each time point the new

noise probability p∗q,t is calculated and averaged with the previous noise probability at time
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t− 1. The update step is

P̂q,t = δtP
∗
q,t + (1− δt)P̂q,t−1.

To apply stochastic variational inference, we first define the time-variable step size δt to retain

some memory from previous iteration. A time-varying δt ∈ (0, 1) is selected to satisfy the convexity

assumption of (1)
∑

t δt = ∞ and (2)
∑

t δ
2
t < ∞ as outlined in (Hoffman et al., 2012), for some

κ ∈ (.5, 1)

δt = (t+ 1)−κ.

However, this criteria needs to be changed when the stochastically sampled variables represent

memberships. Empirically, the samples converge at a fast rate when the initial “burn in” steps are

subsampled, with subsample sizes increasing with each successive step. If subsampling does not

take place, a potentially major impediment may arise from the slow computation speed in early

steps where initialized estimates are not near the optimal values. As such, the step sizes are set as

such:

δt = min

(
a+

(
t

t+ 1

)κ
n, n

)
.

a and κ are constants. a governs the smallest subsample size and κ > 1 governs the rate of increase

for subsample size at each step size, with the maximum possible subsample size n. A larger a means

a larger starting subsample, and a larger κ means a faster rate of increase in subsample size.

Empirically, for a wide range of simulations, an effective choice for a is between 100 to 200

(depending on network size) and for κ is 2. These values are chosen to ensure computational

efficiency in addition to accuracy: computation times for initial values are much slower if the

parameter estimates are far from the optimal values which maximize the ELBO, so smaller sample

sizes in earlier iterations will economize computation by producing more local minima, while later

iterations will yield more globally accurate estimates (Hoffman et al., 2012).
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2.3.3 M-Step

Similar to its estimation estimates in Daudin et al. (Daudin et al., 2008), αq are estimated

as follows using Lagrangian multipliers: α̂q =
∑

i,q τiq/n. The closed-form estimate for the local

parameters for the mean vector µq for each block q from the M-step is

µ̂q =

∑
i,j τiqτjqXij∑
i,j τiqτjq

Pq + µAN (1− Pq).

In the above, and all subsequent expressions in this subsection, the derivations are located in

Appendix 2.3.4. Similarly to mean calculations, the variance calculations (along diagonals) are

Σ̂q =

∑
i,j τiqτjq(Xij − µq)2∑

i,j τiqτjq
Pq + ΣAN (1− Pq).

The cross-term for two layers h, k is written as:

Σ̂hk,q =

∑
i,j τiqτjq(X

k
ij − µq,k)(Xh

ij − µq,h)∑
i,j τiqτjq

Pq.

The element-wise correlations at iteration t across layers h, k (h 6= k) are then calculated, and the

maximum (if K > 2) of these values is taken as the putative correlation (across all layers) for block

q

ρ̂q = max
h,k

Σ̂q
hk√

Σ̂h
q Σ̂k

q

.

If K = 2 then no maximum needs to be taken. This is an operational step of the optimization

and does not necessarily yield closed-form estimates. However, we note that this value is identical

to the mutual coherence of estimated correlation matrix and serves as a summary statistic of the

estimates for correlations that is consistent with the approximation of the optimization problem we

solve with VEM (Tropp, 2006). Theoretical properties of these relationships should be explored in

future work.
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To calculate the global parameters, the global noise probability term Ψ defined previously is

µ̂AN = Ψ

∑
j,i

∑
l,q:q 6=l τiqτjlXij∑

j,i

∑
l,q:q 6=l τiqτjl

+ (1−Ψ)

∑
j,i

∑
q τiqτjq(1− Pq)Xij∑

j,i

∑
q τiqτjq(1− Pq)

. (2.15)

The covariance term for global noise, as stated earlier, is zero. The variance of global parameters

is similarly calculated as:

Σ̂AN = Ψ

∑
j,i

∑
l,q:q 6=l τiqτjl(Xij − µAN )2∑
j,i

∑
l,q:q 6=l τiqτjl

+ (1−Ψ)

∑
j,i

∑
q τiqτjl(1− Pq)(Xij − µAN )2∑
j,i

∑
q τiqτjq(1− Pq)

,

Derivations for these expressions are in Section 2.3.5.

2.3.4 Derivation of Signal Terms for M-Step

The closed-form estimate of the parameter for the mean vector µq for each block q from the

M-step is

µ̂q =

∑
i,j τiqτjqXij∑
i,j τiqτjq

Pq +

∑
i,j τiqτjqµAN∑
i,j τiqτjq

· (1− Pq)

=

∑
i,j τiqτjqXij∑
i,j τiqτjq

Pq + µAN (1− Pq)

Assuming convergence of Pq to either 0 or 1 within the context of the variational iterations,

the theoretical value of

µq =


∑

i,j τiqτjqXij∑
i,j τiqτjq

if q is Signal: Pq = 1

µAN if q is Noise: Pq = 0

Similarly to mean calculations, the variance calculations (along diagonals) are :

Σ̂q =

∑
i,j τiqτjq(Xij − µq)2∑

i,j τiqτjq
· Pq + ΣAN · (1− Pq)

=


∑

i,j τiqτjq(Xij − µq)2
/∑

i,j τiqτjq if q is Signal: Pq = 1

ΣAN if q is Noise: Pq = 0
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The cross-term for two layers h, k is written as:

Σ̂hk,q =

∑
i,j τiqτjq(Xk,ij − µq,k)(Xh

ij − µq,h)∑
i,j τiqτjq

· Pq + 0 · (1− Pq)

=

∑
i,j τiqτjq(X

k
ij − µq,k)((Xh

ij − µq,h)∑
i,j τiqτjq

· Pq

The element-wise correlations at iteration t across layers h, k (h 6= k) are then calculated as

ρ̂q
h,k =

Σ̂q
hk√

Σ̂h
q Σ̂q

k

.

Finally, the putative correlation (across all layers) for block q is

ρ̂q = max
h,k

ρ̂q
h,k.

2.3.5 Derivation for Noise Terms in M-Step

To calculate the global parameters (2.3.3), the global noise probability term Ψ defined previ-

ously is

µ̂AN = ERX(Z,C)

[
µAN

]
= P(Bqnot NB)ER(Z,C)

[
µAN

∣∣Bq is not NB
]

+ P(Bq = NB)ER(Z,C)

[
µAN

∣∣ {Bq = NB}
]
; q : 1 ≤ q ≤ Q

= Ψ

∑
j,i

∑
l,q:q 6=l τiqτjlXij∑

j,i

∑
l,q:q 6=l τiqτjl

+ (1−Ψ)

∑
j,i

∑
q τiqτjq(1− Pq)Xij∑

j,i

∑
q τiqτjq(1− Pq)

,

Σ̂AN can also be calculated in a similar way. We describe the derivation of Ψ that was first defined

in Definition 2.4: let {NB} represent the event that there exists a Noise Block in the multilayer
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graph system. The we write the indicator for this event as 1(NB) with probability P(NB).

Ψ = P(Bq 6= NB; ∀q : q ≤ Q)

= P(Cq = 1;∀q : q ≤ Q)

= 1− P(Global average rate of q s.t. Cq = 0;∀q : q ≤ Q)

= 1− 1/Q

= (Q− 1)/Q

2.4 Empirical Performance of Synthetic Experiments

In this section we describe the simulation studies to demonstrate the accuracy and efficacy

of the proposed method. We design three different experiments for assessing several criterion to

evaluate the efficacy of our model.

1. Experiments on many synthetic networks of differing parameters and block sizes to assess

membership and parameter recovery, as well as computation time

2. Experiments on many synthetic networks of the same parameters and block sizes to assess

parameter recovery

3. Simulate a single multilayer network and run under multiple Q to assess a method based on

Integrated Complete Likelihood (ICL) to determine the optimal block sizes

We considered networks of two and three-layers with sizes n = 200 to 500. The complexity of the

estimation algorithm scales non-linearly with nodes and layers, but is more efficient and parsimo-

nious compared to existing methods described in the following Section 2.4.4. Computation time

for simulations are feasible in networks of several thousand nodes and is suitable for the primary

case study, of which the sample size number around 5000.

First, we simulate many small to medium networks with differing underlying memberships and

parameters. We then run the SBANM algorithm on these networks to demonstrate that the method

is able to recover simulated memberships and parameters. We also assess the computation times of

various simulations and compare them to existing methods. Secondly, we generate many synthetic

networks with the same parameters and memberships and apply SBANM to systematically recover

41



the parameters under more controlled conditions. Finally, we simulate a single small network and

run the algorithm under several different settings for the estimate of blocks Q and validate the

model selection procedure.

2.4.1 Experimental Procedure

The goal of these experiments is to demonstrate that the proposed method can faithfully recover

generated memberships and parameters in a time-efficient manner. As described above, we use

two simulation schemes to evaluate membership and parameter recovery (then perform another

experiment to assess optimal number of blocks in Section 2.4.5). In all of the experiments outlined

above, blockwise parameters for every network are first randomly generated for every layer, then

observations (edges) are simulated from multinormal distributions governed by these parameters.

Each network has distribution NK(µAN ,ΣAN ) governing both noise block NB and interstitial noise

IN . SBANM is then applied to these networks and membership (as well as parameter) recovery is

assessed. Simulations are all drawn from differing parameters to demonstrate that the method is

effective for a variety of settings different parameter values.

After the ground-truth parameters are generated, we proceed to the second data-generating

step. For each mean-covariance pair corresponding to a block, we generate multivariate Gaussian

distributions with a sample size of nq(nq−1)/2, then we convert these multivariate data to weighted

edges. Finally, a sample of the AN distribution with size

nIN := (n− 1)/2−
∑
q:q≤Q

nq(nq − 1)/2

is generated for all nIN interstitial edges between differing blocks.

In all of the experiments, the algorithm is initialized by applying spectral clustering on the sum

graph X̃ across all K layers, such that each entry in a single flattened graph X̃ is X̃ij =
∑

k≤K X
k
ij .

Another option is drawing that every τiq is drawn from a uniform distribution, then normalized.

Matias et al. propose averaging the graphs and then running k-means over the averages (Matias

and Miele, 2017). We initialize by first averaging the layers to X̃ij , then by using spectral clustering

(Rohe et al., 2011), which approximates the community structure in a single network quickly and

reliably.
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2.4.2 Recovery Under Differing Parameters (First Experiment)

In the first experiment, we fix Gaussian priors and generate different multinormal distributions

from these hyperparameters, such that every network has different parameters. We generate bi-

variate networks of size 500 and trivariate networks of size 200 with block sizes between 3 and 5.

Block-memberships are generated from a multinomial distribution.

Synthetic data are generated from a two-step procedure. In the first step, Gaussian parameters

are randomly generated using fixed priors. In the second step, multivariate Gaussian distributions

are generated from the parameters obtained in the first step. The number of blocks Q is first

randomly generated. Means and variances of each block, as well as the global mean and variance

for the ambient noise, are then independently generated from normal distribution (ie. Gaussian

prior), and a positive correlation coefficient is sampled from a uniform distribution between 0 and

1. The first block of each network is designated as NB and its mean and variance follow those of

AN . Group sizes nq for each block are generated from multinomial distributions that were drawn

from Dirichlet priors. In order to induce separability of blocks during simulations, we only select

the networks whose blocks’ minimum Bhattacharya distances are above a certain threshold.

We denote exact recovery as whether the SBANM algorithm is able to correctly impute and place

all the block memberships of the network that was generated based on the multinormal simulation

scheme in Section 2.4.1 (Abbe, 2017). Exact recovery rates of the algorithm (for memberships) were

fairly accurate. Results show that bivariate simulations induces nearly a 100% (49/50) recovery

rate; and 75% (37/50) for the trivariate simulations. In the triavriate case, the imperfect recoveries

do recover most of the parameters and memberships as shown by existing metrics for community

detection in Table 2.1. We note the sensitivity of the recovery rates to the increase in dimensions

(or layers); and hints at some parallels with the curse of dimensionality for community detection

in multilayer networks (Ertöz et al., 2003), or perhaps due to small sample size of the networks

(n = 200). Increasing dimensions tends to induce more probable mixtures between blocks that are

close together.

Parameter estimates are also reasonably retrieved from the SBANM algorithm, both in absolute

and relative terms. Mean errors are centered around zero as to not show any systemic bias; absolute

percentage differences between ground truths and their estimates hover around 10-25%; some of
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the discrepancies may arise from small ground truth values or imperfectly matching memberships.

More details can be found in Figure 2.3.

We describe the simulation scheme of the first experiment. The means for each unique block

for every network are randomly generated from a Gaussian distribution centered around 0 and 2

respectively for the first and second layers. After the parameters are generated, the observations

are simulated from multinormal distributions governed by these parameters. Each network has

AN governing both a single block NB and interstitial noise IN that is centered around (-1,0). We

repeat this procedure for trivariate networks of n = 200 nodes, wherein the Gaussian priors for

each (signal) block have means of -2, 0, and 2 respectively for the first, second, and third layers.

In order to ensure the separability of blocks during simulations, we only select the networks whose

blocks’ minimum Bhattacharya distances are above a certain threshold. We calculate the minimum

Bhattacharya distances between blocks across 500 simulated networks, and then select the networks

with the largest 10% of the minimum Bhattacharya distances to filter out the networks whose blocks

are ‘far enough away’ from each other; we run 50 instances of the SBANM algorithm for both the

bivariate (n = 500) and the trivariate case (n = 200).

Results: Fifty runs of the algorithm were performed for both the bivariate and trivariate net-

works with differing parameters. 500 networks were generated as described in the previous section,

then networks with the highest 10% of the minimum Bhattacharya Distances between clusters’

parameters are retained.

Though this experiment is primarily focused on membership recovery, parameter estimation

remains as a byproduct. Across many simulations with a variety of parameters, there does not

seem to be much systemic bias in the estimates as empirical means of differences between estimated

and true parameters are centered around 0. Median percentage differences, across all estimated

parameters, between the estimates and true values are between 20 to 25% for bivariate, and 10-20%

for trivariate networks. Histograms for the mean and variance parameters (each distinct parameter

is treated like an observation) show essentially matching distributions between estimates and ground

truth parameters for means (2.3).

A slight discrepancy between distributions for variance parameters (σ2
q,k for k = 1, 2, 3) among

trivariate networks. This slight bias may be related again to the curse of dimensionality and, while
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does not seem to elicit too severe a problem in the clustering results, may be investigated in future

endeavors.

Percentage differences between the estimated and ground-truth parameters also show moder-

ately accurate recovery in both bivariate and trivariate networks. The lowest 25% quartiles for all

parameters are between 0 and 3 percent and show that these estimates are very close to the ground

truths. Conflated with the relatively higher mean and median differences, the low 1st quartiles

show that accuracy for parameter runs seem to occur along a binary: either estimates are very

close to their targets, or they are fairly far off. Some of the high percentage differences may arise

from small ground-truth values, which are divided to calculate percentage differences. Others may

arise from the mismatches in clustering memberships. However, this limitation mostly arises in the

trivariate case, as there is a near-perfect recovery rate for the bivariate simulations.

2.4.3 Parameter Recovery Under Same Parameters (Second Experiment)

In the second experiment, 100 three-layer networks were generated from a fixed set of param-

eters as well as memberships (n = 300). This experiment with fixed parameters is performed in

addition to the first experiment in order to better assess the accuracy of parameter estimates under

more controlled conditions. Results show consistently accurate estimates for most of the mean,

variance, and correlation parameters (Figure 2.4). Moreover, all memberships were 100% recov-

ered. True parameters are shown in Figure 2.4, and described in more detail in Appendix ??. The

variances for most of the estimates were within 3-5% of the true values, but the estimated variance

for ambient noise ΣAN appears to be biased. These types of biases are typical of variational ap-

proaches and could be a weakness in VEM for estimating covariance matrices (Mariadassou et al.,

2010). Further investigation of this discrepancy may be pursued in future work.

The first experiment was conducted primarily to demonstrated membership recovery under

a variety of different parameters and block sizes. The purpose of the second experiment, which

runs the algorithm under a set of fixed parameters, is to show that the method recovers param-

eters effectively. The fixed parameters were generated through simulation with fixed Gaussian

distributions with prior means 10,15, and 20 and prior variance parameters of 5. The first entries

of each layer correspond to the noise block with fixed means at 5, 10 and 15. The means are:

µX,q = (5, 11.98, 11.55, 10.39), µY,q = (10, 16.86, 16.49, 14.81), µZ,q = (15, 16.69, 21.25, 21.08). The
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Histograms of True and Estimated Parameters
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Figure 2.3: Histograms of ground truth (red) and estimate (blue) parameter values for the 2-layer and
3-layer networks compared to the estimated parameters from the algorithm. Parameters across layers are
all plotted together. Dashed lines demarcate the empirical means of these estimated and ground truth
parameters. For ground truths (red), these empirical means are .75 for µk,q (bivariate, top left), 1.98 for
µk,q (trivariate, top right), 4.01 for σ2

k,q (bivariate, bottom left), 3.10 for σ2
k,q (trivariate, bottom right). For

estimates of parameters, they are .58 for µk,q (bivariate, top left), 1.84 for µk,q (trivariate, top right), 5.51
for σ2

k,q (bivariate, bottom left), 5.58 for σ2
k,q (trivariate, bottom right).
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Boxplots of Estimated Parameters

µk,q Σk,qq

X
Y

Z

ρq

Figure 2.4: Boxplots for repeated estimates of simulations (second type). We ran the algorithm applied
to 100 randomly generated networks with the same ground truth parameters and fixed sample sizes. Each
boxplot represents the summary of 100 individual estimates corresponding to 100 runs. The red bands
represent the ground truth parameters for measn, variances, and correlations.
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variances are ΣX,q = ( 7.88, 13.11, 0.31, 1.16), ΣY,q= ( 7.32, 7.67, 4.89, 1.03), ΣZ,q =(6.69, 4.15,

0.06, 4.36). The correlations are ρq = (0.00, 0.40, 0.15, 0.34), and the true group sizes are 76 nodes

for the first block (NB), 97 for the second, 93 for the third, and 34 for the fourth.

Results: We generated 100 networks following these exact specifications and ran SBANM on all

of them. In Figure 2.4 in the main text, each boxplot comprises a set of 100 estimates for each

parameter values. The first row shows those for the first layer (written as X), the second Y, the

third Z, and the fourth for correlations between the three layers. The red band shows the true

parameter values as listed above.

2.4.4 Comparison with Other Methods

We compared the proposed SBANM method with spectral clustering as well as the dynsbm pro-

posed by Matias et al. (Matias and Miele, 2017) using the results of the first experiment (Section

2.4.2). We applied spectral clustering ‘naively’ as in the initialization scheme where all layers are

summed and collapsed into a single network because this is an intuitive simple and fast method

for multilayer community detection. When we compare to the method with dynsbm, we assume

two interpretations of their clustering results. Because dynsbm imputes different block member-

ships for every layer, we convert these into cross-layer persistent community labels by (1) taking

the most frequent occurrence of the clustered membership across all layers and (2) treating each

block-combination across layers as a unique configuration for the definition of a new block. This

need to interpret the results of dynsbm already reveals an implicit advantage of the SBANM method

in its inherent parsimony of clusters and interpretability of blocks across layers for certain fitting

data-types and scientific questions.

We evaluated ARI (Adjusted Rand Index) and NMI (Normalized Mutual Information) scores

(Wilson et al., 2014; Palowitch et al., 2018; Matias and Miele, 2017). for the three methods with the

50 simulations for both bivariate and trivariate networks and have found that SBANM outperforms

competing methods in every setting. In the bivariate case, because nearly all simulations yielded

perfect recovery, the NMI and ARI are both very close to 1. In the trivariate case, the high NMIs and

ARIs suggest effective partial recovery of the memberships if some of the network block structures

are not perfectly recovered. We note that none of the competing methods perfectly recover the

block structures for the multigraph systems. We also note that spectral clustering in the bivariate
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case outperforms dynsbm, but not in the trivariate case; suggesting a potential sensitivity of spectral

clustering to the curse of dimensionality.

Method Comparison

Bivariate (50 Runs)

Method NMI ARI

Mean SD Mean SD

SBANM 1.00 0.02 1.00 0.01
Spectral 0.80 0.27 0.84 0.24
dynsbm (unique config.) 0.62 0.25 0.67 0.25
dynsbm (most freq.) 0.68 0.25 0.71 0.25

Trivariate (50 Runs)

NMI ARI

Mean SD Mean SD

0.87 0.26 0.87 0.27
0.65 0.31 0.69 0.29
0.75 0.21 0.80 0.21
0.70 0.16 0.77 0.18

Table 2.1: Comparison of different methods for membership recovery using the ARI and NMI measures.
dynsbm (unique config.) refers to the interpretation of the method when every unique configuration of blocks
across layers are treated as a unique block. dynsbm (most freq.) treats the block with the most frequent
occurence of memberships across all layers as the cross-layer block.

Computing times were higher in dynsbm compared to SBANM (for spectral clustering, computing

time is nearly instant) in both bivariate and trivariate cases. The mean time for trivariate cases

is 144 (SD 548) seconds, compared to 160 (125) on average for dynsbm. Though SBANM computing

times have fairly high variance, it is comparable in time to that of dynsbm in the trivariate cases.

The time differential is much larger in larger bivariate networks. The mean time was 330 (328)

seconds for SBANM and on average 859 (88) seconds for a few samples of dynsbm. The time difference

in computation suggests that SBANM may better handle larger-size graphs than existing methods.

Fitting larger networks when n > 5000 are feasible for SBANM, but not for dynsbm.

2.4.5 Choice of Number of Blocks (Third Experiment)

Model selection in the SBM clustering context usually refers to selection of the number of a

priori blocks before VEM estimation as it is the only ‘free’ parameter in the specification step of

the algorithm. Existing approaches (Daudin et al., 2008; Mariadassou et al., 2010; Matias and

Miele, 2017) consider the integrated complete likelihood (ICL) for assessing block model clustering

performance. For this experiment we fix n at the ground-truth Q and apply the method for a range

of Q̂ (as the estimate for number of blocks). Simulation results show that the usage of ICLs caps at

the correct ground truth value and verify that this metric is suitable for evaluation of the method

(Figure 2.5.

Model selection in the SBM clustering context usually refers to selection of the number of a

priori blocks before VEM estimation as it is the only ‘free’ parameter in the specification step of
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the algorithm. Existing approaches (Daudin et al., 2008; Mariadassou et al., 2010; Matias and

Miele, 2017) consider the integrated complete likelihood (ICL) for assessing block model clustering

performance. Matias et al. write the ICL for multilayer graphs in the following way (adapted to

match the notation of this study)

ICL(Q) = log f(X,Z)− 1

2
Q(Q− 1) log(n(K − 1))− pen(n,K,Θ) (2.16)

to translate the terminology, Θ corresponds to the total set of transition parameters in the SBM,

where Θ := ΘSignal
⋃

ΘNoise (Matias and Miele, 2017). The penalty parameter pen(·) is chosen

dependent on the distributions of the networks; the ‘Gaussian homoscedastic’ case in Matias et al.

is derived to be

pen(n,K,Θ) = Q · log

(
n(n− 1)K

2

)
+
Q(Q− 1)

2
K · log

(
n(n− 1)

2

)
.

Though the authors made the assumptions that the variances are constant for all blocks, we assume

that the models are similar enough to SBANM such that the evaluation criterion is applicable to our

case. For this portion of the simulation experiment we fix n at 200 and the ground-truth Q at 5.

However, we apply the method for a range of hypothesized block numbers Q̂ (as the estimate for

number of blocks) from 2 to 7. Simulation results show that the usage of ICLs caps at Q̂ = 5, the

correct ground truth value (Figure 2.5).

Results: We used a single instance of a trivariate network with 200 nodes from the simulations

generated in the first experiment. ICLs for five runs of the algorithm were calculated. Each run

presupposed a different selection of Q from 2 to 7. The ground-truth value of Q is 5 and Figure

2.5 showed that the ground-truth Q captured the highest ICL.

For large-network simulations, single instances of networks with n = 1000 and 2000 are gen-

erated for Q = 4 and 5. Results yielded exact recovery for memberships and within 5% errors for

parameters.
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Figure 2.5: ICLs for simulation study for three-layer network of 200 nodes with a ground-truth Q of 5,
which maps to the maximum ICL that was found by the method of estimation.

2.5 Case Studies

After validating the method on simulations and real-world datasets, we apply SBANM to three

different case studies from disparate domains.

2.5.1 Case Study: PNC Psychopathology Networks

We apply SBANM to the PNC data which constitutes the primary case study of this chapter.

We use networks constructed from anxiety, behavior, and mood psychopathologies as described in

Section 2.1, and then validate the discovered communities from clinical diagnoses for each disorder

as well as typical development (TD) and psychosis. We let Xx represent the layer of symptom

response networks for anxiety, Xy for behavior, and Xz for mood disorders. Correspondingly,

we let
(
µx,µy,µz

)
q:q≤Q represent the means of the edge-connections for each block representing

anxiety, behavior, and mood with corresponding standard deviations
(
σx,σy,σz

)
q:q≤Q.

Not much prior work has approached the study of psychiatric networks by constructing net-

works of individuals as nodes and their similarity as edges. The goal of introducing ambient noise

to psychopathology symptom networks is to identify groups of people who have similar clinical char-

acteristics and facilitating early identification of individuals who could be at high risk. Existing

classification studies on psychosis typically require input from (“training on”) already-diagnosed

subjects, or psychosis specific symptoms. These methods usually use methods such as logistic re-

gression (Cannon et al., 2016). However, we aim to classify anxiety, mood, and behavior symptoms

to identify who is at risk for psychosis without the use of psychosis labels in a sample of youth aged
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8-21 years, a developmental period prior to the onset of psychotic disorders. Unsupervised analysis

is clinically useful in early identification.

We ran the method on youth and early adult data under several different specifications for

range of Q. We applied the method to multilayer networks constructed from 5136 youth and 1863

early adult subjects. In each of these runs the SBANM algorithm has separated the population into

distinct groups with varying block sizes. Table 2.2 shows that highly correlated blocks and NB are

discovered with mostly ample separation in terms of Bhattacharya distances as well as post-hoc

significance testing (Table 2.6 in Section 2.1.2).

Parameter Estimates
Block n ρq µx σx µy σy µz σz d(N) d(S1) d(S2) d(S3) d(S4)

Youth: 3 Groups
• NB 408 0 -0.8 0.3 -0.5 0.4 -0.5 0.3 0.0 3.2 0.5
• S1 2552 0.30 -1.1 0.3 -1.0 0.5 -1.4 0.2 3.2 0.0 1.7
• S2 2176 0.51 -0.6 0.3 -0.5 0.4 -0.0 0.3 0.5 1.7 0.0

Youth: 4 Groups
• NB 247 0 -0.8 0.4 -0.6 0.5 -0.3 0.4 0.0 1.7 0.4 3.9
• S1 2552 0.30 -1.1 0.3 -1.0 0.5 -1.4 0.2 1.7 0.0 0.7 3.8
• S2 852 0.51 -0.7 0.3 -0.2 0.2 -0.4 0.1 0.4 0.7 0.0 1.5
• S3 1485 0.71 -0.6 0.3 -0.6 0.4 0.1 0.3 3.9 3.8 1.5 0.0

Parameter Estimates
Block n ρq µx σx µy σy µz σz d(N) d(S1) d(S2) d(S3) d(S4)

Early Adult: 4 Groups
• NB 48 0 -0.2 0.1 -0.1 0.2 -0.2 0.7 0.0 2.3 0.4 2.2
• S1 1495 0.49 -0.9 0.3 -0.7 0.5 -0.6 0.5 2.3 0.0 0.7 2.3
• S2 39 0.56 -0.2 0.1 0.1 0.1 -0.4 0.5 0.4 0.7 0.0 1.4
• S3 281 0.64 -0.1 0.1 -0.1 0.1 -0.4 0.5 2.2 2.3 1.4 0.0

Early Adult: 5 Groups
• NB 128 0 -0.6 0.4 -0.4 0.5 -0.4 0.4 0.0 74.4 0.5 1.8 0.9
• S1 2 0.04 -1.5 0.0 -1.9 0.0 0.4 0.0 74.4 0.0 79.6 125 141
• S2 338 0.55 -0.2 0.2 -0.1 0.1 -0.3 0.2 0.5 79.6 0.0 4.6 1.9
• S3 792 0.61 -0.9 0.5 -0.7 0.5 -1.4 0.2 1.8 125 4.6 0.0 4.2
• S4 603 0.74 -0.7 0.3 -0.5 0.4 0.1 0.4 0.9 141 1.9 4.2 0.0

Table 2.2: Estimated parameters between blocks in youth and early adult subjects, as well as Bhattacharya
distances between the blocks. Mean rates for anxiety response networks are represented by µx, behavior µy,
and mood µz. Associated standard deviations are also shown.

We used the ICL procedure outlined in Section 2.4.5 to select optimal Q. For youth, the ICL

highest for the results when Q = 3; for the early adults, Q = 4. In both youth and early adults,

ICLs suggest that the more parsimonious selections are preferable. In the remainder of this section

we mostly focus on the results of these selections of Q, unless there are results specific to the

suboptimal-Q model. However, we also note results across model specifications: for example, in

youth the same 2552-member cluster is persistent in both settings for Q (3 and 4) (Table 2.2). These

results show the persistence of the constellation of symptom agreements across mood, behavior,

and anxiety layers.

In general, these results demonstrate the ability of SBANM to integrate anxiety, mood, and

behavior symptoms to differentiate groups that signal differential behaviors. Table 2.3 shows the

average proportions of subjects who met the criteria of positive symptoms for clinical diagnoses of

the anxiety, mood, and behavior disorders as well as psychosis and typically development (TD).
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The leftmost columns after block labels and sizes are positive indicators for anxiety, behavior, and

mood disorders. They are distinct from symptom data in that each indicator is a binary ‘yes’

or ‘no’ for each subject and identified clinically. In nearly all the clustering results, the rates of

psychosis spectrum is clearly differentiated among differing clusters. Among youth subjects, S1

correspond to a group that has relatively low incidence of psychosis (13%). However, NB and S2

in youth (Table 2.3, left) exhibit similar rates of psychosis spectrum and TD, but with differing

anxiety, mood, and behavior symptoms. A table with more selections of Q is found in Table 2.5 in

Appendix 2.5.2.

In youth subjects, the S1 group (in yellow) appears to be have the highest rates of typically

developing (TD) youth (Table 2.3) and can be interpreted as a relatively normal group. Because

it models all between-block interactions, NB may be interpreted as a group that straddles those

who exhibit psychosis spectrum symptoms and those who do not. Because this sample that is part

symptomatic and part “control” with absence of symptoms, NB may be interpreted a number of

different ways in its contrast with correlated signal blocks. Uncorrelated symptoms across all layers

potentially signal groups that tend towards psychosis through more individuated channels in NB.

In early adult subjects, NB maps to the group with the highest rates of psychosis, as well as the

lowest rates of TD subjects.

Psychopathological Symptom Groupings
Block n Anx Beh Mood TD Psy

Youth: 3 Groups

• NB 408 52 71 14 10 36
• S1 2552 37 30 1 44 13
• S2 2176 64 55 27 13 44

Block n Anx Beh Mood TD Psy
Early Adult: 4 Groups

• NB 48 56 52 40 23 56
• S1 1495 59 28 23 28 19
• S2 39 31 33 5 44 31
• S3 281 25 10 7 60 21

Table 2.3: Mean summary statistics for psychiatric diagnoses for youth (left) and early adult (right). The
following columns details symptoms of anxiety, behavior, and mood disorders. The ‘Psy’ column gives the
average of whether the respondants have overall diagnoses for psychosis.

The results of clustering demonstrates the ability of SBANM to integrate anxiety, mood, and

behavior symptoms to differentiate groups that signal differential, multimodal behaviors. In the

results, psychosis rates are clearly differentiated and those in NB are consistently higher. The

differential clustering results for youth hints at latent neurodevelopmental pathways for onset of

psychosis. Onset of psychosis is characterized by presence of active psychotic symptoms and occurs

during early adulthood. It is also better understood as a continuum with patients reporting propor-
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tionally more depression, anxiety, and behavior disorders symptoms prior to the onset of psychosis

(Cupo et al., 2021). As symptoms segregate with growth and development psychopathology symp-

tom relationships become statistically independent. Clustered subjects with higher correlations ρq

correspond to the pre-psychotic states of more interconnected pathways, while subjects with inde-

pendent psychopathologies exhibit more sublimation of psychosis. That these categories emerged

without any supervision demonstrates the efficacy of the method to discern risk of developing psy-

chosis. Results also did not show any strong differentiation in demographic characteristics (Table

2.4 in Section 2.5.2).

2.5.2 Additional Posthoc PNC Analyses

Hypothesis tests between different imputed blocks in PNC psychopathological networks (post-

processed) and diagnostic categories showed significant differences between all the different clusters.

In EA, though the diagnostic comparisons (right) are not all significantly different from each other,

the signal (correlated) blocks are all signififcantly different from the noise block NB at the signifi-

cance level of 0.05.

Demographic characteristics of the clustered subjects are shown in Table 2.4. Rates of patients

who are African American, Hispanic, or female are roughly even across the board for most clusters

for both youth and early adult under different Q specifications. Regression Z-scores (with respect

to psychosis) of demographic factors do not appear to be significant for any cluster.

In EA subjects, NB appears to have higher rates of psychosis on average. When Q is 4, NB

actually maps to the group with the highest rates of psychosis, as well as the lowest rates of TD

subjects. When Q = 5, however, S3 appears to map to a more typical group (with 50% TD and 7%

psychosis). This cluster (for early adults) mirrors the S1 group found in youth results; and does

not seem to appear when Q is set to 4. In youth subjetcs, S1 has the highest rates of TD. This

observation holds for both 3 and 4 groups, as the groups are identical (Table 2.5 in Section 2.5.2),

further demonstrating that the clusters are consistent across different Q.

2.5.3 Analysis of US Congressional Voting

The focus of the study is on the PNC data. However, we also show the model’s generality by

applying the method to political and human mobility data. We use SBANM to find latent patterns
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Block n Age Env %AA %L %F
MP: 4 Gps

• N 247 15 -1 33 6 55
• S1 2552 14 14 27 5 49
• S2 852 15 -14 41 6 51
• S3 1485 15 -2 34 7 57

MP: 3 Gps

• N 408 15 -17 41 6 45
• S1 2552 14 14 27 5 49
• S2 2176 15 -4 35 7 57

AP: 5 Gps

• N 128 19 -10 35 7 53
• S1 2 19 54 0 0 50
• S2 338 19 -21 39 7 59
• S3 792 19 -3 34 6 59
• S4 603 19 -9 37 8 61

AP: 4 Gps

• N 48 19 -28 38 10 52
• S1 1495 19 -6 35 7 59
• S2 39 19 -41 46 8 56
• S3 281 20 -13 37 5 65

Table 2.4: Demographic Characteristics of PNC Results. The columns represent respectively: age, envi-
ronmental factors (Z-scores multiplied by 100), % African American, % Hispanic (Latinx), and % Female.

Psychopathology Symptoms
Block n Anx Beh Mood TD Psy

Youth: 3 Groups

• NB 408 52 71 14 10 36
• S1 2552 37 30 1 44 13
• S2 2176 64 55 27 13 44

Youth: 4 Groups

• NB 247 56 50 30 7 44
• S1 2552 37 30 1 44 13
• S2 852 61 72 18 9 39
• S3 1485 64 51 29 15 44

Psychopathology Symptoms
Block n Anx Beh Mood TD Psy

Early Adult: 4 Groups

• NB 48 56 52 40 23 56
• S1 1495 59 28 23 28 19
• S2 39 31 33 5 44 31
• S3 281 25 10 7 60 21

Early Adult: 5 Groups

• NB 128 61 44 45 9 25
• S1 2 0 0 100 0 0
• S2 338 51 28 16 33 29
• S3 792 41 15 1 50 7
• S4 603 69 37 44 15 33

Table 2.5: (Full) Mean summary statistics for psychiatric diagnoses. The following columns details symp-
toms of anxiety, behavior, and mood disorders. The ‘Psy’ column gives the average of whether the respon-
dants have overall diagnoses for psychosis.
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Edge Comparison for Youth (3 Gps)

Bq Comp. Xx Xy Xz

NB- S1 0.00(**) 0.00(**) 0.00(**)
S1-S2 0.00(**) 0.00(**) 0.00(**)
NB-S2 0.00(**) 0.00(**) 0.00(**)

Diagnosis Comparison for Youth (3 Gps)

%Anx %Beh %Mood %TD %Psy

0.00(**) 0.00(**) 0.00(**) 0.00(**) 0.00(**)
0.00(**) 0.00(**) 0.00(**) 0.09 0.00(**)
0.00(**) 0.00(**) 0.00(**) 0.00(**) 0.00(**)

Edge Comparison for EA (4 Gps)

Bq Comp. Xx Xy Xz

NB-S1 0.00(**) 0.00(**) 0.00(**)
NB-S2 0.00(**) 0.00(**) 0.00(**)
NB-S3 0.00(**) 0.00(**) 0.00(**)
S1-S2 0.00(**) 0.00(**) 0.00(**)
S1-S3 0.00(**) 0.00(**) 0.00(**)
S2-S3 0.00(**) 0.00(**) 0.25

Diagnosis Comparison for EA (4 Gps)

%Anx %Beh %Mood %TD %Psy

0.85 6e-4(**) 0.01 0.57 0.00(**)
0.03 0.12 5e-4(**) 0.07 0.03
0.00(**) 0.00(**) 0.00(**) 0.00 (**) 0.00(**)
9e-4(**) 0.59 0.02 0.05 0.11
0.00(**) 0.00(**) 0.00(**) 0.00(**) 0.60
0.59 2e-4(**) 0.84 0.07 0.22

Table 2.6: Hypothesis tests for the clustered blocks in Youth subjects along two different criteria. In the
first assessment (left), edges in the weighted network for each layer are treated as a i.i.d sample and compared
to other edges using t-tests. In the second assessment, proportions of positive clinical diagnoses are tested
across different imputed blocks. Let Xx represent the network of symptom response similarities for anxiety,
Xy for behavior, and Xz for mood disorders.

in longitudinal US congressional co-voting data to analyze the static as well as dynamic patterns

in co-voting amongst US congressional districts, historically a fruitful domain of network analysis

(Cho et al., 2011). We also find clusters in longitudinal aggregations of bikeshare networks, whose

stations are represented by nodes. Analysis of zones amongst urban mobility services is elucidating

for discovering latent patterns within human geography and demographic trends (He et al., 2020a;

Carlen et al., 2019; Cazabet et al., 2017a).

In the voteview data, each layer represents interactions among each congressional session.

(X,Y) represents the 100th and 115th sessions of congress, respectively. n represents the number

of congressional seats that are common to all three sessions (new or relabeled seats that were added

since the first session are not included) Only two layers are used for this application of SBANM to the

Divvy data, and (X,Y) in this case represents the normalized, aggregated trips between 2014-2016

and 2016-2018 respectively. The sample size n = 547 describes the total number of stations and

each edge weight represents aggregate trips between stations.

We use congressional voting records from Voteview to uncover patterns in US congressional

voting patterns that may yield more nuanced political groups than party labels (i.e. Democrat,

Republican) over time. We use a similar pre-processing step as done for the PNC data to assign

measures for co-voting similarities between seats in the US House of Representatives during the

100th, and 115th sessions. Voting similarities between representatives in Congress are represented

as weighted edges between nodes (representing members). Each layer corresponds to a different
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congressional session. We apply the proposed model to data from the Divvy bikeshare system in

Chicago called to show the ways that demarcating zones of bikeshare trips change across different

years. Trip data for Divvy are publicly available on their respective websites (Divvy, 2019).

The overarching motivation for this application is belied by the assumption that political par-

ties change over time and do not necessarily capture the political “tribes” in the US House of

Representatives in the past and the present. Prior work use co-voting patterns in the congress and

senate in the United States to demonstrate applications of multilayer SBMs by representing district

representatives (or senators) as nodes and their covoting similarities as edges (Wilson et al., 2019;

Cho et al., 2011). Though most congressional seats have fixed political parties that are represen-

tative of their political alignments, parties are assemblages of many constituents with issues that

often fragment or congeal (ie polarize) over time. As such, it is useful to trace and segment the

groups that either vote with each other persistently, or change drastically following some significant

demographic shift. Clustering different political ‘tribes’ by their similarities in voting is important

for studying and forecasting patterns in US politics. It particular, it may be of interest to look

for certain “swing” districts that yield more signal for political analysts to study, compared to the

ambient levels of connectivity in politically non-contentious districts.

We procure voting data from Voteview (Lewis et al., 2020). We use data from all congressional

line items from the 100th (1987-89), and 115th (2017-19) sessions, excluding consensus votes where

all votes were ‘yes’ or ‘no’. These sessions sample distinct decadal political milieus in the United

States across 30 years and serve as snapshots indicating long-term changes in the political inclina-

tions of congressional districts. Though the number of these districts total 435 presently, differing

seats often appear and vanish due to redistricting, and we use the seats that were common to both

sessions. The resulting network size n is 393.

We use similarity measures similar to that which was applied to PNC survey data for voting

records. Between two district seats, which are represented by nodes i and j, the total votes in

agreement (both yes or both no) are summed, then subtracted by the total disagreeing votes and

divided by the total votes cast. We convert this correlation-like value, which is between -1 and 1, to

a statistic that approximates to a normal distribution by applying the same Fisher transformation

used in Section 2.1. Like in other studies (Wilson et al., 2019), consensus votes that have either

100% “yes” or 100 % “no” are omitted.
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We ran the algorithm over a range of values for estimated block numbers Q, as was done in

Section 2.4.1. As the block sizes increase, the ICL also increases, until Q := 3 which is where it

appears to attain a maximum. We display the clustering results for 3 blocks are shown in Figure

Figure 2.6: Block selection for US congressional voting data based on the method; 3 blocks yields the
greatest ICL.

2.6. In addition to the block sizes and estimated correlations, we show the average percentage of

Republican party membership (%R) in the 100th and 115th sessions. The results show capture

distinct shifts in party membership across the years: NB appears to capture the moderate niche

of the congress.

Memberships, Parameters, and Party Affiliation

Block n µX,q µY,q ρq %R(100th) %R(115th) Notable People

NB 9 0.02 0.31 0.00 36 67 Nancy Pelosi (1)

S1 233 0.71 0.36 0.09 4 50 Beto O’Rourke(2), Paul Ryan(2)

S2 151 0.55 0.45 0.04 99 68 Dick Cheney(1), Liz Cheney(2)

Table 2.7: Clustering results for congressional voting data in the 100th and 115th sessions. In addition to
the means and correlations of the (normalized) similarity networks, mean (Republican) party membership
rates and notable people in each block are given.

Nine members in NB vote at the same rate with each other as with any other cluster; The

interpretation of this block as moderate is supported by membership of moderate Democrat politi-

cians such as Nancy Pelosi who occupied the seat during empirically verified by the fact that more

than half of the block is Republicans in the 115th session. Moreover, NB yields the same rate as

every other block votes at the same rate with a different block.

The two biggest political enclaves are large bipartisan party that is half Democrat and half

Republican in 2015 but was almost entirely Democrat in 1987 (S1), and another group that was

58



almost entirely Republican in 1987 but only about 2/3 Republican in more recent times. The

asymmetry in the blocks S1 and S2 is perhaps of note; one can view possibly S2 as analogous to S1,

but more likely the block is capturing an uneven relationship where there is no Democratic equiv-

alent to the Republican block S2 which shows entrenchment of voting ideology along geographical

(district-wise) lines. These dynamics may be due to fundamental differences in voting patterns

between the two parties. Results reveal the large drop-off in the Democrats’ political dominance in

the 100th session. Instead of capturing static (same-period) blocks, SBANM is able to capture some

of the largest differential movements between the 1980s and 2015.

2.5.4 Human Mobility Data Analysis

The SBANM method is applicable to human mobility patterns which is represented by bikeshare

data. Bikeshare networks have been argued to trace the latent patterns within human mobility

in urban systems (Cazabet et al., 2017a). He et al. (He et al., 2020a) and others have modeled

bikeshare stations as nodes and aggregate trips as edges (Carlen et al., 2019), and then gath-

ered conclusions about the patterns of human mobility within these bike-sharing constraints. In

particular, prior work have analyzed differences in time-of-day patterns, functional differences (ie

work-to-home and home-to-home trips), as well as long-term usage between neighborhoods. Carlen

et al. have proposed a time-dependent SBM for (binary) paths between bikeshare stations (Carlen

et al., 2019). We convert trip data from the public records of the Divvy bikeshare system into time-

series networks where each edge represents trips and each node represents stations. We write these

network time-series as {Gs}1≤s≤S , where S is the aggregate weekly time-points between January

2014 to June 2016 , and {Gt}1≤t≤T for T as the aggregate weekly time-points between July 2016 to

December 2018, as was done a previous analysis of the Divvy system as conducted in He at al. (He

et al., 2020b). New stations as well as stations that were removed during this time are omitted,

such that the total number of stations (n = 547) is consistent across time.

We sum all of the edges across all time points for distinct time-periods S and T The two

graphs X and Y represent /differential layers across two temporal regimes. We use the number of

aggregated trips across each time-regime X and Y to represent edge-weights. The edge-weights are

then transformed by dividing each value by the respective strengths (sum of weights) to procure a

ratio between 0 and 1. The ratio is then converted into an approximately normal value by the logit
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transformation. Because of this transformation, mean values are negative and between -10 and -20.

Estimated statistics (Figure 2.7) are reconverted using the inverse logit transform, then multiplied

by the total graphwise sum-of-strengths, to convey a normalized mean rate of trips across stations

within the same community.

Parameter Estimates
n µX µY ρq• NB 4 1.22 0.37 0

• S1 216 8.48 4.78 0.67
• S2 3 17.1 0.21 0.00
• S3 295 0.29 0.26 0.87

Figure 2.7: Communities found across 2 time-periods in the Divvy Bikeshare networks in Chicago, with
associated (normalized) estimates for (normalized) mean rates of trips within the cluster in each time period,
as well as correlations.

Results show distinct geographical patterns (Figure 2.7). The red cluster is the largest (at

295 nodes) and represents a distinct baseline group for both time periods with activity that persist

across time. The high inter-block correlation of .87 in this block suggests persistent trip interactions

across time. The blue cluster represents a smaller (216 nodes) but a more persistent area of activity:

it has higher means for both the first and second layers than that of S1 for both time-regimes, and

also has a high correlation rate. Because this area is closer to more affluent areas around the lake

with more parklike amenities (such as the lakefront bike path), this block signifies zones with higher

trip activity across both time periods.

Smaller groups NB and S2 concentrate around the northern part of the city and have very

different estimated means that signal drastic change in usage over time. Indeed, the green block
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S2 has the highest first-layer mean µX but the lowest second layer mean µY . That the correlation

in this block across layers is zero furthermore suggests a disjointingly decreased usage over the two

time periods. NB is represented by the grey-black cluster in the northwest part of the city and

has the same parameters of ridership as riders traversing across different blocks; which offers an

interpretation to the large, but not infeasible, distance between stations (members) in this block.

These discovered clusters have interpretable results and suggests tha viability of the method to

human mobility data, after the appropriate transformations.

2.6 Discussion

We have introduced a novel method that is motivated by real-world clinical problems and that

offers a data-driven approach for grouping subject psychopathologies. This method may predicate

deeper understanding or even discovery of psychosis and schizophrenia based on the principles

of statistical network theory. We demonstrated the relative efficacy and accuracy of this model

compared to existing methods.

Network data in recent years come in more complex forms, which map to the multitude of ways

that data relate with one another. They are particularly synchronous with the rise of availability in

more different types of data, with even more complex configurations of community structures. Our

primary contribution in this research was to introduce the notion of structured noise to weighted

SBMs. Other work has explored cases where between-block transitions are all uniquely param-

eterized (Matias and Miele, 2017), but they do not account for correlations between layers nor

do they separate signal from noise. The proposed model is more parsimonious and reveals more

interpretable results in clinical and experimental settings. More details on this parsimony can be

found in Section 2.6.2. In practice, NB does not represent a control group but rather a dynamic

cluster that reflect the noisiest interactions.

2.6.1 Identifiability and Connection to Prior Models

In the introduction, we reference the affiliation model in Section 1.2.4 as an example of prior

work describing global noise on networks. On a single weighted network, a simple parametric model

known as the affiliation model described in Allman et al. (Allman et al., 2011) is formulated as
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follows with piecewise global fixed rates:

µql = (1− pql)δ0 + pqlFql
(
θin1q=l + θout1q 6=l

)
; 1 ≤ q, l ≤ Q

where probability pql is the sparsity parameter, continuous distribution Fql(θql) with parameter θql

and δ0 is a dirac mass at zero, and with probability

pql = α1q=l + β1q 6=l; .

One can conceive of the weighted stochastic blockmodel as a special case of the general form of

mixture models for random graphs described in (Allman et al., 2011). For graph X where each

weighted edge is Xij between nodes i, j:

∀q, l ∈ {1, ..., Q} Xij |{ZiqZjl = 1} ∼ pqlf(·, θql) + (1− pql)δ0(·),

where pql serves as the sparsity parameter between 0 and 1, which represents the proportion of .

f(·, θql) represents the parametric family of distributions at specified in group-interactions q and

l. The conditional distribution of Xij is a mixture of the Dirac distribution at zero representing

non-present edges. The proposed SBANM model can also be viewed as an instance of the generalized

model above. It is a mixture of the affiliation model and the weighted multilayer SBM. Matias et

al. (Matias and Miele, 2017) discuss identifiability of block parameters in multilayer SBMs. The

authors cite (Allman et al., 2011) in setting the conditions for identifiability for weighted SBMs over

multiple layers. Since the affiliation model is also proven to be identifiable (Allman et al., 2009), we

posit that SBANM should also be identifiable, but leave more detailed justifictaions in future work.

2.6.2 Parsimony Compared to Other Models

SBANM is a parsimonious compared to most other models. If inter-block interactions (Bq 6= Bl)

are all unique, as in some models (Matias and Miele, 2017; Mariadassou et al., 2010) then this lends

to overparametrization, especially at high dimensions (≈ K × Q(Q−1)
2 parameters). The number

of parameters may be reasonable for binary and Poisson-distributed multilayer networks, but will

quickly inflate in the multivariate Gaussian case. SBANM yields 2KQ + Q − 1 + 2K parameters
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comprising the 2KQ mean and (diagonal elements of) variance parameters {(µq,Σq)}q:q≤Q , Q− 1

correlation parameters {ρq}q:q≤Q,q 6=qNB
, and 2K noise parameters (µAN ,ΣAN ). As Q becomes

large, the number of parameters increases quadratically in the canonical weighted SBM but linearly

in SBANM. As K becomes large, also, the rate of increase for parameters in the proposed method

is smaller than that in existing methods. This advantage is demonstrated in computing time

comparisons in Section 2.4.4.

2.6.3 Conclusion

We have demonstrated that the method is able to uncover latent, non-trivial patterns in psy-

chiatry (as well as voting and human mobility in Appendices 2.5.3,2.5.4). The application to

psychopathology data reflects an ongoing discourse around nosology where psychiatric disorders

are treated as discrete entities as opposed to multifaceted pathological configurations (van Praag,

2000). Etiologically, the proposed methodology reinforces the multidimensional nature of psychi-

atric disorders.

Despite its advantages, there remain limitations with SBANM. The issue of computation time

persistently plagues SBM estimation using VEM. The algorithm slows when K or Q is large.

However, in practice it outperforms existing methods. Moreover, usage of stochastic VI has sped

up computation time such that previously infeasible sample sizes are made possible. Future work

may further explore subsampling methods induce faster computation times.

Ambient noise in networks dovetail the notion of overlapping communities and in particular,

SBMs. A class of community detection methods adhere to a bottom-up heuristic where sets gradu-

ally increase in size until memberships become stable; and naturally allows for separation between

signal and noise. Many of these approaches implicitly assume inherent structure but do not assign

an explicitly parametric model to signal or noise (Wilson et al., 2014; Bodwin et al., 2015; Palowitch

et al., 2018). Members not assigned to communities are called background nodes are identified but

not statistically modeled. Uncertainty and ambiguity in block-memberships may be represented by

either noise or overlapping blocks. MMBMs have been useful in modeling real-world data, but in

multilayer graphs, overlaps in high dimensions lead to more problems of parameter identifiablity

(or altogether avoided (Liu et al., 2018)), and ambient noise serves to assuage the “curse of di-

mensionality”. We refer the reader to the work of Latouche et al. and Airoldi et al. (Latouche
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et al., 2011; Airoldi et al., 2007) for background on MMBMs, and leave the connection between

representing noisy signals via overlapping memberships and global ambient noise to future work.

Theoretical properties of the model relating to dimensional sensitivities may also be explored.
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CHAPTER 3

Community Detection in Weighted Self-Looping Networks

Geographic regions map to social, cultural, and economic structures that enable us to make

sense of the world. 1 Demarcation of these regions allows institutional responses to shared problems

by creating territorial administrations. These regions are useful at different scales and are created

for varying purposes (e.g. cities, places, watersheds, economic regions)(Jones and Paasi, 2013; Paasi,

2013; Pike, 2013). In the United States, metropolitan regions are conceived as collections of counties

or equivalent areas (sub-state political units) and are used for different statistical, governance and

planning purposes. Yet recent work suggests that these metropolitan regions have coalesced and

that megaregions spanning multiple states to more effectively project and plan for future growth

(Hagler, 2009). At the same time, many urbanized areas are often sub-county regions (Isserman,

2005).

We present a method for inferring geographic regions systematically from the underlying data

using community detection methods in network science. One of the key contributions of this ap-

proach is to identify multiple overlapping regions at different scales in the same statistical inference

framework. We also extend the notion of community to identify nodal regions where peripheral

connections are overwhelmed by connections to the core. We also extend community detection

methods to include self-loops that have traditionally been implicit or ignored in other community

detection work, but are of great importance in commuting networks. The results of these methods

identify unusual regions that neither CBSA nor megaregions identify and allow a more nuanced

approach to studying and governing metropolitan areas and labor markets (Wheeler, 2013). In

summary, our methods are able to differentiate between various types of communities that we

classify into three major types:

1This chapter is adapted from a manuscript written in 2020 (He et al., 2020b) that was joint work with Shankar
Bhamidi and Nikhil Kaza
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1. Monads: Nodes preferentially attached to themselves in the sense that the self-looping

proportions of these nodes are significantly stronger than the baseline self-looping proportions

across the entire network.

2. Nodal communities: Peripheral nodes more strongly connected to some core nodes rather

than among themselves, after accounting for the baseline self-loops.

3. Non-nodal communities: Clusters of nodes that are strongly connected to one another.

(See Fig. 3.1).
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Figure 3.1: Conceptual diagrams representing a) Overlapping non-nodal communities b) Nodal communi-
ties (trees) c) monads. The different colors represent different clusters/regions

Networks are used to model the relational structures between individual units of an observed

system. A multitude of data structures may be conceived of as networks in the biological, physical,

and social sciences. Over the last few years, owing to the explosion in data from a host of areas

including social networks, information networks such as the Internet, and biochemical networks such

as gene regulatory systems, there has been a concerted inter-disciplinary approach to understanding

these data (Newman, 2018a, 2003; Boccaletti et al., 2006; Durrett, 2007; van der Hofstad, 2016).

Due to the inherently relational nature of the commuting data, network methods offer a fitting

approach for identifying clusters amongst interconnected regions.

3.1 Layout and Contributions

The contributions of this section are twofold: firstly, this section uniquely addresses the non-

standard format of a network with strong self-looping tendencies. Such a network is specifically

tailored to describe the idiosyncracies of commuting behavior between geographical points (U.S.
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counties) Secondly, this study is among the first to define single nodes as clusters (monads), and also

differentiates these clusters from tightly connected communities (cliques) as well as hub-like clusters

wherein members are all preferentially connected to a central node, but ncessarily to each others.

These categorizations are intricately related to the structure of a strong self-looping network.

Following this section, we first provide some domain background in geographical region demar-

cation and describe some other approaches for clustering regions. We then describe the data for

the specific application of demarcating clusters of counties using US commuting activity in sec-

tion 3. In section 4, we describe the proposed null model, which accounts for strongly self-looping

edge-weights. In section 5, we describe the practical implementation of the community detection

algorithm as well as the steps before and after the algorithm implementation such as initialization,

differentiation between types of clusters, and filtering of (highly)) overlapping clusters. In section

6, we describe the results of the clustered counties. Finally, in Section 7, we discuss the results of

the clustered regions and their implications and relationship to existing delineations.

3.2 Related Work in Region Demarcation

Both CBSA and megaregions implicitly or explicitly rely on the notion of cores. In the case

of the former, cores are counties. In the case of the latter, cores are CBSAs. The core-based

approach to identifying urban regions has a history dating back to 1950s. Key to this approach is

the identification of a core and its connections with the hinterland (nodal communities) (Nystuen

and Dacey, 1961). This core-based approach ignores the emerging polycentric structure that has

come to dominate regions around the world (Fowler et al., 2018). Since the 1980s, however, further

studies have shown that most commuting flows in urban systems are lateral (i.e. between different

parts of suburbs and hinterland) rather than core-centered (Plane, 1981). Methods have been

proposed to account for these peripheral commuting patterns and used to delineate regions (Tong

and Plane, 2014). In our approach, we eschew the a priori identification of cores and instead

rely on entire commuting networks, thereby capturing important peripheral connections as well as

polynodal and diffuse regions. We identify the core-centered regions in a posthoc analysis.

Non-unique membership is another problem that is not acknowledged in other approaches.

Regional delineations tend to partition a set of geographic jfobjects instead of treating them as
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members in multiple agglomerations. Especially in densely urbanized regions, many counties have

large numbers of commuters to different cities that are relatively close to one another (Han and

Goetz, 2019; Kim et al., 2017). Often, delineations (such as OMB) tend to assign counties to one

region by breaking membership ties rather than acknowledging connections with multiple regions.

It is useful to relax the unique membership condition between an object and the agglomeration to

which it belongs.

The other major issue that has received less attention in the literature, both in the context

of regional demarcation as well as in the area of network science, is the idea of self-connection.

Many agglomeration delineations in both network science and regional science have focused on

the connection between two nodes/counties. However, commuting networks have significant self-

loops (i.e. commuters within a county): 56% of the total commuters in 2010 in the US commuted

within the county where they resided. Ignoring this large commuting pattern skews the results of

agglomerations. Since some nodes may be preferentially attached to themselves (measured by the

weight of the self-loop), they should be treated as their own agglomerations (see Section 3.5.4).

Community detection methods have been applied to commuting networks to identify regions

but traditionally do not account for the above critiques. For example, Nelson and Rae ignore

commuting within a node and focus only on commuting between nodes (Nelson and Rae, 2016).

They also rely on a community detection algorithm that partitions the entire node set rather

than identifying statistically significant connections and clusters. Our proposed approach identifies

overlapping communities. Unlike their approach, which starts with census tracts, we start with

counties because it is easier to fashion institutions for collections of political boundaries (counties)

rather than statistical boundaries (census tracts).

3.3 Data Description

We downloaded our data from the US Census Bureau’s Local Origin Destination Employment

Statistics (LODES). This dataset contains commuter data between census tracts for all of the

continental United States in the year 2010, which we then aggregated to the county level. The data

are stored as an undirected and weighted network with self-loops such that each node represents a

county and the weight on each edge represents the number of commuters between the connected
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counties. Edges with fewer than 100 commuters are removed from the network. Commuters who

travel more than 100km (distance between population weighted centroids) are also ignored to

remove the effect of telecommuters or super commuters similar to (Nelson and Rae, 2016). The

resulting network contains 3,091 nodes and 17,632 edges. Los Angeles County has the largest

number of commuters to itself (∼ 3.1 million), while Los Angeles County to Orange County in

California is the largest non self-loop edge (∼ 0.6 million). As stated earlier, about 56% of the

commuters are commuting within the county. As such, this network can be described as a strongly

self-looping network.

3.4 Null Model

The Configuration Model, first introduced by Bollobas and Bender (Bollobás, 1980; Bender

and Canfield, 1978), is a probability measure on a family of multigraphs that preserves the degree

sequence. The input to the model is an observed graph from which we extract the degree sequence,

namely a list consisting of the vertices and their corresponding degrees. The model then constructs

a random graph as follows: start with the degrees of nodes with du denoting the degree of vertex

u; associate every vertex u with du “stubs”. One then performs a uniform matching on these

stubs to form full edges, thus resulting in a random graph with the prescribed degree sequence but

without any other inherent clustering tendency. The relative proclivity of each node to form ties is

determined purely upon its degree.

Many of the aforementioned community detection methods utilize the configuration model as

the null model (Lancichinetti et al., 2011; Fosdick et al., 2018; Newman, 2006; Girvan and Newman,

2002). We significantly extend the methodology developed by Palowitch et al. (Palowitch et al.,

2018) for weighted network data by developing a new null model for weighted networks with

self-loops. The outcome of the methodology reveals both significantly connected communities,

monads, as well as nodal communities in the context of regional commuting flows (see Fig. 3.1).

3.4.1 Notation

We denote an undirected weighted network on n nodes by the triple G = ([n],A,W), where

[n] := {1, 2, . . . , n} is the set of n labeled nodes; A = (Auv) is an n×n square, symmetric adjacency
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matrix with Auv = 1 if there is an edge between u and v, and Auv = 0 otherwise. Since we are

interested in networks with self-loops, we assume Auu ≡ 1 for all u ∈ [n]. Though conventionally

the self-loop edge is defined as Auu = 2, we define it to be 1 as this convention makes the algebra

simple when defining the null model. We let W = (Wuv) be another symmetric matrix representing

(non-negative) weights on edges with Wuv denoting the weight between u, v ∈ [n] with Wuv ≡ 0 if

there is no edge between u and v. We let du =
∑

v∈[n],v 6=uAuv denote the degree of a vertex, which

specifically is the total number of edges connecting to u ignoring self-loops. The total strength of

a node u is defined as: su =
∑

v∈[n]Wuv. We let dT =
∑

u∈[n] du and sT =
∑

u∈[n] su denote the

total degree and weight of the network, respectively. We define %u to be the propensity of the node

to connect to itself by

%u :=
Wuu

su
, u ∈ [n].

We define the baseline propensity of the self-loop ratio for the entire network to be:

p =

∑
u∈[n]Wuu

sT
. (3.1)

We let d = (d1, . . . , dn) and vs. = (s1, . . . , sn) denote the degrees and strengths of nodes in [n]

, respectively.

3.4.2 Continuous Configuration Model Extraction

Significance-based testing was directly pursued in the context of unweighted networks in (Wilson

et al., 2014) and weighted networks in (Palowitch et al., 2018). We extend the significance testing

based approach developed by Palowitch et al. (Palowitch et al., 2018) in scope and application by

adjusting for self-loops. Palowitch et al. (Palowitch et al., 2018) developed a method that used a

weighted configuration model as a null model that preserved the expected degrees and strengths

of any given node u with its actual respective strengths and degrees. The assumptions of the

configuration model are as follows:

E(D(u)) = du, E(S(u)) = su (3.2)

We refer to this method as CCME.
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We start by describing the null model for weighted networks with self-loops that will serve as

a comparative model for an observed weighted network G = ([n],A,W). The model is indexed

by a family of parameters θ = (d, vs., κSL, κnSL, a, b) where d, vs. are, as before, the degree and

weight sequences of the observed network, respectively, κSL, κnSL > 0 are parameters that control

the variance of self-loop and non self-loop edge distribution in the null model and a, b > 0 are

parameters constrained by the relation a/(a+ b) = p where p is, as in (3.1), the global self-looping

tendency of the observed graph. The concentration parameters a, b of the beta distribution with

mean p represent the sparseness and tail shapes (tendencies towards zero or one) of the self-looping

probability.

Implicitly, we fix two distributions FSL and FnSL on R+ with mean one and variance κSL

and κnSL respectively. Using the above ingredients we construct a random weighted graph G =

([n], Â,Ŵ) as follows:

(i) Network topology: By design Âuu = 1 for all u ∈ [n]. For all u 6= v we let

(.Âuv = 1) =
dudv
dT

. (3.3)

(ii) Self-loop edges: For self-loop edges, we generate edge strengths as follows: First for each

vertex u ∈ [n] (independently across vertices), we generate its self-loop propensity %̂u ∼

Beta(a, b) (i.e. a Beta distribution). Next we generate ξuu from distribution FSL (independent

of %̂u). Then, we model

Ŵuu := %̂usuξuu. (3.4)

(iii) Non self-loop edges: For u 6= v generate edge strengths as follows: first if Âuv = 0 from

step (i) then let Ŵuv = 0. If Âuv = 1 then let ξuv ∼ FnSL, and let

Ŵuv = (1− %̂u)quvξuv. (3.5)

where each quv represents the following ratio of strengths and degrees of u and v:

quv =
susv
sT

/
dudv
dT

, (3.6)
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Writing D(u) and S(u) for the degree and strength of vertex u in the associated random graph,

it is easy to check that

E(D(u)) = du, E(S(u)) = su, E(Ŵuu) = psu. (3.7)

The weight matrix and adjacency matrix represent inherently different, though correlated, modes

of relation. For example, in a social network one can imagine two individuals having similar degrees

but very different rates of interaction with the individuals they are connected to. In the context

of the commuting data, Mesa County, CO and Los Angeles County, CA have similar degree but

very different strengths. Thus part of the aim of this chapter was to develop a baseline null model

that would preserve both degrees and strengths as well as a baseline level of self-loopiness and then

compare an empirically observed network against this null model to extract regions of significantly

higher connectivity after accounting for this baseline connectivity.

We note that in (3.7), the first two conditions are identical to that of the ‘ordinary’ CCME

method, but the third which preserves the ratios of expected self-loops is novel. The model preserves

(on average) the degrees and strengths of the observed graph without any other specific notion of

clustering. Each vertex has no particular preferential self-looping proclivity other then the average

tendency p of the entire network. We refer to this model as CCME with self-loop adjustment

(CCME-SL).

3.4.3 Parameter Specifications

Palowitch et.al (Palowitch et al., 2018) use a method-of-moments estimator to specify parame-

ters for CCME. We use this method to learn the parameters from the observed graph. We specify

two types of variables to describe the uncertainty arising out of the strengths of the nodes’ connec-

tion propensities.

Recall that we denote κSL as the variance of the self-looping edge weight distribution (with

distribution FSL) and κnSL as the variance of the non-self-looping edge weight distribution (with

distribution FnSL). Both of these variables have mean one to ensure the preservation of the strengths

and degrees for the configuration null model and to ensure identifiability.

For variance parameters, The method-of-moments estimates for κSL and κnSL are as follows:
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κ̂SL =

∑
u∈[n](Wuu − psu)2 −∑u∈[n] s

2
uσ̂

2
p∑

u∈[n] s
2
u

(
σ̂2
p + p2

) (3.8)

κ̂nSL =

∑
u∈[n]

∑
v 6=u(Wuv − (1− p)quv)2 − σ̂2

p

∑
u∈[n]

∑
v 6=u q

2
uv

(σ̂2
p + (1− p)2)

∑
u∈[n]

∑
v 6=u q

2
uv

, (3.9)

where σ̂2
p represents the estimated variance of %u using empirical method-of-moments, quv rep-

resents the ratio of strengths to degrees as described in (3.6).

σ̂2
p := Var(%̂u) =

1

n− 1

∑
u∈[n]

(
Wuu

su
− p
)2

. (3.10)

κ̂nSL represents the variation in relative weights between two edges when we know that the

strengths (total sum of weights) are the same. κ̂SL represents the variation within a single self-

directed edge. These estimates account for the inherent variability of the edge weights of an

empirically observed network. The eventual proposed score function (Section 3.5.2) used to judge

the significance of the internal connectivity structure of a community (or any subset of nodes)

can use this variability metric in its calibration of significance. Details on the derivations of these

parameters can be found in the following sections.

3.4.4 Beta Random Variable to Model Self Looping Proportion

We specify %u as adhering to a Beta(a, b) distribution independent across u ∈ [n] with mean

p and with variance equal to σ̂p
2, the sample variance of {%u : u ∈ [n]}. The beta distribution

is supported on [0, 1]. We designate the proportion of self-looping commuters in each node as

comprised of the averages of decisions to either commute in-county or out-of-county by a host of

commuters. The empirical distribution of %̂u closely matches the simulated values of %u, except

for a few nodes that are at the upper or lower end of the distribution. We note that for a beta

distribution,

E(%u) =
a

a+ b
= p; Var(%u) =

ab

(a+ b)2(a+ b+ 1)
:= σ2

p (3.11)
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We use p and σ̂2
p (3.10) to determine a and b and, from (3.11), express their estimates as

â =
−p(p2 − p+ σ̂2

p)

σ̂2
p

; b̂ =
(p− 1)(p2 − p+ σ̂2

p)

σ̂2
p

. (3.12)

3.4.5 Variance of ξuu: κSL

Note that

Var(ξuu%u) = Var(ξuu)Var(%u) + Var(ξuu)(E[%u])2 + (E[ξuu])2Var(%u)

= κSL(σ2
p + p2) + σ2

p

as the two variables are assumed to be independent. The sample variance of Wuu may be decom-

posed in the following way:

1

n

∑
u∈[n]

Var(Wuu) =
1

n

∑
u∈[n]

s2
uVar(ξuu%u)

=
1

n

∑
u∈[n]

s2
u

(
κSL(σ2

p + p2) + σ2
p)
)

=
1

n

∑
u∈[n]

s2
uκSL

(
σ2
p + p2

)
+

1

n

∑
u∈[n]

s2
uσ

2
p

We derive another calculation of the sample standard deviation of self looping weights using a

method of moments estimator.

1

n

∑
u∈[n]

Var(Wuu) ≈ 1

n

∑
u∈[n]

(Wuu − psu)2

From the above two equations, we derive the following approximation
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1

n

∑
u∈[n]

(Wuu − psu)2 ≈ κSL
1

n

∑
u∈[n]

s2
u

(
σ2
p + p2

)
+

1

n

∑
u∈[n]

s2
uσ

2
p

=⇒ κSL
∑
u∈[n]

s2
u

(
σ2
p + p2

)
≈
∑
u∈[n]

(Wuu − psu)2 −
∑
u∈[n]

s2
uσ

2
p

Rearranging the above equation and replacing unknown parameters by their estimates, we derive

the estimate for κ̂SL

κ̂SL =

∑
u∈[n](Wuu − psu)2 −∑u∈[n] s

2
uσ

2
p∑

u∈[n] s
2
u

(
σ̂2
p + p2

)
3.4.6 Variance of Wuv

The properties of the weighted configuration model stipulate that the expectation of an edge

weight given that there exist an edge, by equation 3.5, is:

E[Wuv|1(Auv)] = (1− p)quv

quv in the above equation is defined in the main body of the chapter in equation 3.6. We

calculate the variance of Wuv by decomposing it into two terms I and II using the following

identity

Var(Wuv) = E[Var(Wuv|Auv)] + Var(E[Wuv|Auv])

= I + II (3.13)

To calculate I, we note that,

Var(Wuv|Auv) = q2
uvVar((1− %u)ξuv|Auv)

Therefore, calculating I first necessitates calculating the conditional variance of (1 − %u)ξuv,

given that there exists an edge, under an expectation. As shorthand, we define the operation
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VarA(·) := Var(·|Auv) and EA(·) := EA[·|Auv].

1

q2
uv

E[Var(Wuv|Auv)1(Auv)] =E[Var((1− %u)ξuv|Auv)1(Auv)]

=E[(VarA(1− %u)VarA(ξuv)

+ VarA(1− %u)EA[ξuv]
2 + VarA(1− ξuv)EA[1− %u]2)1(Auv)]

=E[(VarA(%u)κnSL + VarA(%u) + κnSL(1− p)2)1(Auv)]

=E[(σ2
pκnSL + σ2

p + κnSL(1− p)2)1(Auv)]

=E[((σ2
p + (1− p)2)κnSL + σ2

p)1(Auv)] (3.14)

Since relation 3.14 holds for all Auv, it becomes apparent that

Var(Wuv|Auv) = q2
uv((σ

2
p + (1− p)2)κnSL + σ2

p) (3.15)

Using equation 3.15, the calculation of I becomes straightforward:

I = E[Var(Wuv|Auv)]

= q2
uvE[(σ2

p + (1− p)2)κnSL + σ2
p)1(Auv)]

= q2
uv · (σ2

p + (1− p)2)κnSL + σ2
p) · P(Auv). (3.16)

The calculation of II , similarly, is as follows:

II = Var(E[Wuv|Auv])

= Var(quv(1− p)1(Auv))

= (1− p)2q2
uvVar(1(Auv))

= (1− p)2q2
uvP(Auv)(1− P(Auv)). (3.17)
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Putting the two equations 3.16 and 3.17 together, we are able to solve for the variance of Wuv

from equation 3.13, and substituting the expression for P(Auv) from equation 3.3,

Var(Wuv) = E[Var(Wuv|Auv)] + Var(E[Wuv|Auv])

= q2
uv · (σ2

p + (1− p)2) · κnSL + σ2
p) · P(Auv) + q2

uvP(Auv)(1− P(Auv)))

= q2
uvP(Auv)((σ

2
p + (1− p)2) · κnSL + σ2

p + 1− P(Auv))

= ruv

(
(σ2
p + (1− p)2) · κnSL + σ2

p + 1− dudv
dT

)

where

ruv =
( susvsT

)2

dudv
dT

= q2
uvP(Auv). (3.18)

3.4.7 Variance of ξuv: κnSL

Now we construct a similar method of moments estimator for κnSL as was done for κSL.

However, we also make use of the expression for the conditional variance of Wuv given the existence

of an edge in equation 3.15.

∑
u∈[n]

∑
v 6=u

E[(Wuv − E[Wuv])
2|Auv] ≈

∑
u∈[n]

∑
v 6=u

Var(Wuv|Auv)

=
∑
u∈[n]

∑
v 6=u

((σ2
p + (1− p)2)κnSL + σ2

pq
2
uv)

= (σ2
p + (1− p)2)κnSL

∑
u∈[n]

∑
v 6=u

q2
uv + σ2

p

∑
u∈[n]

∑
v 6=u

q2
uv

After solving for κnSL in the above equation and substituting unknown variables with their

estimates, then changing the approximation to an equation, we derive the estimate κ̂nSL for κnSL,

thus obtaining the estimate as given in equation 3.8:

κ̂nSL =

∑
u∈[n]

∑
v 6=u(Wuv − (1− p)quv)2 − σ̂p2∑

u∈[n]

∑
v 6=u q

2
uv

(σ̂p
2 + (1− p)2)

∑
u∈[n]

∑
v 6=u q

2
uv
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3.4.8 Central Limit Theorem for S(u,B,G) in set B

In this section we detail the calculation of the expectation and variance of the relative strength

S(u,B,G) of a given node-set B used in iterative testing, described in the body of the text in

Section 3.5.2.

S(u,B,G) =
∑

v 6=u,v∈B
(1− %u)quvξuv

=
∑

v 6=u,v∈B
(1− %u)

susv
sT
dudv
dT

ξuv

Taking the expectation of each ξuv gives the following expression for the strength of the node

set

E[S(u,B,G)] = (1− p)
∑

v 6=u,v∈B

dudv
dT

susv
sT
dudv
dT

= (1− p)
∑

v 6=u,v∈B

susv
sT

= su

(1− p)
∑

v 6=u,v∈B

sv
sT


We have found, in Section 3.4.6, that the variance of a given Wuv is expressed as:

Var(Wuv) = ruv

(
(σ2
p + (1− p)2)κnSL + σ2

p + 1− dudv
dT

)

Adding the variance terms together in set B yields:

Var(S(u,B,G)) =
∑

u6=v,u∈B
Var(Wuv)

=
∑
u∈B

ruv

(
(σ2
p + (1− p)2)κnSL + σ2

p + 1− dudv
dT

)

Then given that B is ‘typical’ and that du and B are sufficiently large, that S(u,B,G) is

approximately normal. For µ(u,B) = E[S(u,B,G)] and σ(u,B)2 = Var(S(u,B,G))
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S(u,B,G)− µ(u,B)

σ(u,B)
=⇒ N (0, 1) (3.19)

Hence in each step of iterative testing in the update step of CCME, the normal p-value is used to

iteratively reject insignificant nodes in a candidate community. Assumptions for and proofs of this

Central Limit Theorem can be found in (Palowitch et al., 2018).

3.5 Community Detection Algorithm

The CCME-SL algorithm is split into three general phases: initialization, update, and filtering.

These steps compose the general procedure of iterative testing. Significant communities are groups

of nodes with cross-edges that deviate considerably from the expected values under a null model.

Significant communities are determined by repeatedly applying an iterative search algorithm that

starts with a seed set B0 and finds all nodes with edges connecting to the seed set. The edge-weights

are then summed as a test statistic which is evaluated against the expected values of the sums of

the weights in the set under the null model (described in Section 3.4.8) with respect to each node

in the starting seed set B0, imputing a p-value for each node.

Each p-value from the candidate set is rejected if it is significant after being corrected by

the Benjamini-Hochberg correction. The nodes with p-values that are significant in the present

iteration are used as the initial seed sets for the next iteration. The final set B is extracted when

the node-set becomes stable: when at some iteration step k, Bk = Bk+1. Nodes in the final set

have a stronger affiliation with each other and have fewer edge connections with all other nodes

outside the set.

In this section, we describe each of the phases of CCME-SL in detail. We also describe the hub

and monad detection steps as post-community detection phases of the method.

3.5.1 Initialization

We initialize (step 1) sets B0 by setting counties with high commuting volume as seed nodes

(which represent counties). We select nodes that have above 20,000 self-commuters as seed nodes.

We select these nodes because they are proxies for relative population centers where commuter

traffic radiates outwards to more peripheral connections upon each iteration. We then find all
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nodes which are connected to each seed node. The seed node and its connected nodes are used as

the initializing sets B0. The seeds are largely irrelevant to the final outcome: the final outcomes

reveal similar outcomes regardless of what the initial nodes selected are, so long as a majority of

the high-volume nodes are included (see Fig. 4 in Supporting Information). However, because the

initial seed nodes are fixed using the above heuristic, the algorithm converges to the same resulting

clusters under the same parameters α and τ .

3.5.2 Update

Stable communities are found using an iterative node-set updating scheme based on the p-value

of the connectivity between a single node u ∈ [n] and a candidate (testing) set B ∈ [n]. We denote

S(u,B,G) as the connectivity of a single node to the set of nodes which is hypothesized to be a

community:

S(u,B,G) =
∑
v∈B

Wuv.

When the observed value S(u,B,G) significantly exceeds the expected sum of weights under

the null model, then there is evidence to support the claim that there is some additional structure

undergirding the set of nodes than that which is posited by the null model. The null model

attributes connectivity between sets of nodes as dependent only on the strengths and degrees of

the aggregations of the nodes themselves.

The p-value representing the significance of a node-set is given by:

p(u,B,G) = P(S(u,B,G) > S(u,B,G)).

In the above equation G is observed but G is random with a distribution given by the null model P

and with each B representing the candidate set to be tested. When the observed value of S(u,B,G)

is much larger than the expected value, expressed as S(u,B,G), the p-value is low. Low p-values

are rejected in an iterative fashion so as to allow the formation of node-sets with edges that are

consistently significantly connected to each other. We define these sets as communities.
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The iterative method is described as follows: for each u ∈ [n], given a set B (or denoted by

Bk at kth iteration), we find all counties that are connected to the present set, then p-values are

imputed for members of the candidate set B and repeatedly tested until the set becomes stable

upon sequential iterations:

(i) Calculate p-values p = p(u,B,G). P-values are calculated using a normal approximation for

the distribution of S(u,B,G). Details on this part of the procedure are given in Section 3.4.8

(ii) Obtain threshold τ(p) using a Benjamini-Hochberg multiple testing procedure (Benjamini

and Hochberg, 1995). The procedure is used for sets of p-values that are obtained through

multiple hypothesis testing. The rejection method ensures that the expected number of falsely

rejected hypotheses divided by the total number of rejected hypotheses ( false discovery rate,

or FDR) has a maximum percentage of α. A false discovery rate threshold α of 0.05 is common

in many applications, but for community detection we find empirically that such a threshold

should be lower to avoid excess overlaps.

(iii) The next set reached by the iteration is defined as B′ = {u : p(u,B,G) ≤ τ(p)}

The above steps are iterated with B′ replacing B until we reach a fixed point. We set α = 0.01

at each step of iterative testing to perform community detection. The threshold can be made higher

or lower, and such adjustments do not change the results drastically (see Supporting Information

for details), but the threshold of .01 appears to be optimal for maximizing coverage and minimizing

overlaps.

3.5.3 Filtering

After obtaining M stable communities Cj , where j = 1, ...,M , we remove redundant node-sets

that have a high proportion of overlap with other sets. Redundancy in clusters is evaluated using

the Jaccard similarity index. A Jaccard similarity index of two sets is defined as the ratio of the size

of common elements between the two sets over the total distinct elements, or concisely expressed

as J(A,B) = |A⋂B|/|A⋃B| for two sets A,B (Jaccard, 1901).

We evaluate Jaccard similarities for each pair of found communities Ci, Cj . If the Jaccard

index J(Ci, Cj) is above a given pre-set threshold τ , then the clusters are redundant and we select
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a preferred cluster by calculating the average weight per connection between nodes. We use a

simple formula for a given stable node-set C:

K(C) =

∑
v∈C,v 6=u

∑
u∈CWuv

|C| .

K(C) roughly measures the average sum of weights among cross-edges per node within a

candidate set C. Given that two sets Ci, Cj have Jaccard overlaps larger than τ , a higher K(Ci)

compared to K(Cj) signifies more interconnectivity between nodes in Ci and thus it is kept in the

final set of communities while Cj is removed. We set the τ parameter to be 0.80 when implementing

the method on commuting networks.

3.5.4 Detection of Monads

One unique feature of geographical commuting networks is that a non-trivial proportion of the

total commuting volume is not found in edges across vertices because most residents commutes

within their counties. We define the degree of monadicity of a given node as the following:

Iu := Wuu − psu.

Assuming the observed graph originated from the null model, the variable Iu measures two things.

Firstly, Iu measures how much larger %u is for a given u than the global mean self-looping tendency

p. Secondly, Iu measures how much larger the latent ξuu component of Ŵuu is than its expected

value of one ( recall that self-loop weights are modeled as Ŵuu = %̂uξuusu from (3.4)).

The exact form of the variance of Iu is difficult to calculate, but we use a simulation method

to approximate a p-value for Iu. We first determine estimates for a, b from the mean and variance

of %u under the null model. Given p and the sample standard deviation σ̂2
p, we find estimates for

a, b from (3.12). We use these estimated parameters to simulate a measurement of how extreme

the Îu of a given node is, compared to that of a measurement assuming random generation from a

beta(â, b̂) distribution. If the the actual value Iu is large, as measured by whether it is above the

α-th quantile of the simulated values, then the node is deemed significant because it consistently

exceeds what would be expected if %u were randomly generated from a distribution of the same
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parameters. Such a simulation-based method to approximate p-values is commonly used (Ewens,

2003).

The process of finding significant monads may be concisely described by the following pro-

cedures. First, we simulate %̃u from beta(â, b̂) for every node (county). We then obtain the

empirical distributions of how monadic a given node is by computing the empirical distribution

of Îu = Wuu − %̃usu. Following this step, we consider Iu = Wuu − psu. If Iu is in the 1 − αth

tail of the distribution Îu then the node is monadic at this instance of simulation. We repeat the

procedure 10,000 times and the nodes that are monadic all of the 10,000 trials are conclusively

classified as monads. In practice, we set α equal to .05 for this test. The resultant group of nodes

are significantly monadic at the 5% significance level.

3.5.5 Differentiating Nodal Communities from Non-Nodal Communities

In the post-processing phase, we identify nodal communities within the communities detected

by using the local clustering coefficient as defined by Opshal et al. (Opsahl and Panzarasa, 2009)

for weighted networks. For an unweighted network, the local clustering coefficient of a node u is

the ratio of the number of present ties over the total number of possible ties between the node’s

neighbors. A community will have a low clustering coefficient if there is a single hub-like node that

is connected to all its peripheral nodes, but its peripheral nodes do not connect to each other. A

node in a complete graph has a coefficient of 1.

For a weighted network, Opsahl et al. define the minimum clustering coefficient of a particular

node u in a set C using triplets and triangles of nodes (Opsahl and Panzarasa, 2009). A triplet

δ(u, v, w) is defined as a set of three nodes that share at least one edge with another node in the

set. A closed triangle ∆(u, v, w) is a set of three nodes whose nodes all connect to both other nodes

in the set. One may visually conceive of a triplet as a loosely connected set of three vertices which

may have a missing edge, and a closed triangle as a clique of three vertices with three edges.

Using triplets and closed triangles, Opsahl et al. (Opsahl and Panzarasa, 2009) define the

minimum clustering coefficient of node u in the set C as

m(u,C) =
∑

v,y:∆(u,v,y)∈C

min(Wuv,Wvy)

/ ∑
v,y:δ(u,v,y)∈C

min(Wuv,Wvy).
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The ratio m(u,C) is the ratio of the sum of all closed triangles to triplets associated with u. If the

sum of the minimum values of triangles is how compared to those of all triplets within a cluster,

then that implies the presence of a dominant node that projects high edge weights across many

peripheral nodes. A low clustering coefficient signifies that communities are bound together by a

common node, while a high m(u,C) signifies that the nodes are all connected to each other.

We determine the overall clustering coefficient of a community by

mtotal(C) =
∑
v∈C

(1−m(v, C))sv(C)∑
u∈C su(C)

. (3.20)

mtotal(C) is constructed to capture how tree-like the highest-weight nodes are in a given cluster

C. The lower m(u,C) is, the more tree-like the node is. 1−m(u,C) weighted by the strengths of

nodes in a given cluster assigns a value of how tree-like and strong a node is. Summing these values

gives an overall measure of the monocentricity of a cluster, as the strongest nodes tend to have

the smallest m(u,C). The empirical distribution of mtotal(C) is bimodal (see Fig. 2 in Supporting

Information) with a split around 0.4. We use this value to identify nodal communities.

3.5.6 Methods to Compare Communities with Other Delineations

We compare our results with other existing delineations (in particular OMB’s Metropolitan

areas) by using the Fuzzy Rand Index (FRI) (Chakraborty et al., 2017). The Fuzzy Rand Index

is a metric that measures the similarity of two covers, C1 and C2. A cover C is the assignment of

vertices of a graph into k groups, where a vertex may belong to more than one group. Counties

that are not assigned to any community will belong to their own group, a group of counties that

do not belong to any community. Let V represent the set of vertices and C represent a cover of V .

Each element v ∈ V is characterized by its membership vector, C(v), which describes the degree

of membership between a vertex and each group. A membership vector is subject to the following

constraints: C(v) = {C1(v), C2(v), ..., Ck(v)} ∈ [0, 1]k, where Ci(v) is the degree of membership of

v in the ith community, Ci, and
∑

i∈1,...,k Ci(u) = 1. The norm of C(u) − C(v) in a cover with k

communities will be defined to be ||C(u)− C(v)|| = ∑i∈1,...,k |Ci(u)− Ci(v)|/2. For some cover C,

the similarity measure between two nodes u, v is defined as EC(u, v) = 1 − ||C(u) − C(v)||. The

84



distance measure between two covers, C1 and C2 of a network V is defined as:

d(C1, C2) =

∑
u,v∈V |EC1(u, v)− EC2(u, v)|

k(k − 1)/2
.

Likewise, the similarity measure between two covers is 1− d(C1, C2).

3.6 Results

We use the term ‘clusters’ to refer to all sets of counties that we obtain from the detection

procedures, ‘communities’ to refer to clusters that contain more than one county, and ‘nodal com-

munities’ to refer to clusters that have strong nodal centers with little lateral commuting. We use

the term ‘monads’ to refer to those counties that are strongly connected to themselves.

From the total 3,091 US counties, we find a total of 182 significant clusters. Of these clusters,

14 are nodal communities, 78 are non-nodal communities, and 90 are monads. Together they

cover 90.3 % of the population of commuters (93% intra-county, 87% inter-county). The method

simultaneously delineates both small (such as monads and dyads) and large clusters consisting of

hundreds of counties. For example, Santa Barbara and San Luis Obispo counties in California are

strongly connected to one another and are separate from other clusters. Of the regions identified,

99 are monadic or dyadic counties. 68 of these clusters are medium sized, comprising between

2 and 50 counties. In 20 other instances, CCME-SL identifies clusters consisting of 50 or more

counties that span several states. These tend to be polycentric regions centered around multiple

large cities such as Philadelphia, Washington DC, and Baltimore (see Fig. 3.2). Out of the 182

total clusters, the average size of a cluster is 24 counties, with a standard deviation of 59. The

median size, however, is only 2, signifying that the majority of imputed clusters are monads. When

only considering communities, the average size is 49, with a standard deviation of 78. The median

size of communities is 15, suggesting that the distribution of community sizes is right-skewed (see

Table ??). In general, many of the counties belong to overlapping clusters, with some belonging to

as many as six different clusters (see Fig. 3.3).
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Figure 3.2: Resulting communities from the CCME-SL algorithm. Communities (non-nodal) (left), nodal
clusters (middle), and monads (right)

3.6.1 Comparison with Other Community Detection Methods

We compare the results found by CCME-SL with several other widely used methods. We exam-

ine the results imputed by modularity maximization (Louvain) and the degree-corrected stochastic

blockmodel (DC-SBM). The Louvain method naturally finds the optimal number of partitions,

while the DC-SBM needs a pre-specified number of partitions. In the Louvain, DC-SBM, and ex-

pert judgment (OMB) methods, regions are non-overlapping, while CCME-SL is the only method

that demarcates in a way that allows counties to have multiple memberships (see Fig. 3.6). A

number of other techniques implicitly allow for self loops. CCME-SL was largely motivated by

the need to address settings where self-loops account for a significant proportion of the weight

emanating from a vertex.

The Louvain method imputes an optimal number of around 350 communities (see Fig. 3.6,

bottom left) and approximately maps commuting patterns to regions roughly similar in size to

(large) CBSAs. We fit DC-SBMs under two different specifications for number of blocks: 100,

which maps approximately to the number of clusters found by CCME-SL, and 350, which are the

optimally clustered sets found by modularity maximization. We visualize these clusters alongside

pre-defined MSA delineations and megaregions (see Fig. 3.6).
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Figure 3.3: Heatmap of frequencies of each county to appear in any cluster (community, nodal cluster, or
monad)

Compared to DC-SBM and modularity methods, CCME-SL is capable of capturing overlapping

communities and finds much more variation in community sizes (though less so in weights). Counties

that are influential for several regions, like Harris County in Texas, are strictly partitioned by DC-

SBM and Louvain, but yield components in both ‘coastal’ and ‘inland’ counties in communities

found by CCME-SL. Communities imputed by DC-SBM are highly dependent on the pre-specified

number of blocks chosen. Los Angeles County is a single block under DC-SBM when 100 counties

are chosen, but is subsumed by a much larger block when 350 blocks are chosen.

DC-SBM was implemented by means of regularized spherical spectral clustering (Qin and Rohe,

2013), which has been shown to be consistent with DC-SBM in the package randnet. The modularity

algorithm was implemented using the package igraph.
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Figure 3.4: Example of a tightly connected community in the Bay Area in Northern California

3.7 Discussion

We summarize our findings in this section and offer interpretations in relation to the economic

geography of the US. We highlight how and why our findings are different from typical delineations

and reconcile these findings with the introduced method and its novel incorporation of self-loops

in a null model within a weighted network.

CCME-SL produces clusters that vary greatly in size. The most populous MSAs house similar

counties as their corresponding communities (see Fig. 3.5). However, communities can also be

as large as megaregions, although they tend to capture counties in different ways. Megaregions

capture cities that are in close proximity and which have large overall commuting volumes,but

communities capture sets of counties that are closely linked by commuting, even when there are

no cities and the gross commuting volume is not large. In the South and Central parts of the US,

counties tend to be small and rural yet tightly interconnected. Such aggregations have not been

depicted in existing official regional delineations and may be a novel contribution of the method in

this study.

3.7.1 Methodological Contributions to Region Demarcation

Though detection of monads may be antithetical to typical notions of community in network

theory, they are very important in this particular application. This research highlights the role

of self loops in commuting networks and is broadly applicable to human mobility networks with
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Figure 3.5: Comparison of MSAs of New York City Region, major Texas cities, and Minneapolis (left)
with their associated communities (right) in fairly populous regions

spatial constraints. As described in (Clauset et al., 2009), most network data arising from nature

adhere to power laws, and commuting flows are no exception. This study shows that power laws

in spatial settings are intricately linked to self-referential behavior. Many studies have described

human populations adhering to heavy-tailed distributions such as the Zipf Law (Newman, 2005;

Barabási and Albert, 1999), but this study is among the first to indicate how regional delineations

can account for such phenomena.

Strongly self-commuting counties that are identified as monads are also classified as clusters.

Monads are found using tests of similar hypotheses evaluating how unlikely the size of the total

commuting activity in a given geographical unit is compared to a scenario where commuting activity

was generated at random subject to constraints arising from the weighted configuration model. The

null hypothesis for monadicity parallels the null hypothesis for community connectivity in evaluating

whether a test node is significantly more strongly connected to other nodes, or itself, than expected.
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CCME-SL

Degree-Corrected Stochastic Blockmodel (100 Blocks (L), 350 Blocks (R))

Modularity Algorithm (Louvain) MSA and Megaregions

Figure 3.6: Comparison of clusters from of CCME-SL (top) with DC-SBM (middle row, 100 blocks (left),
350 blocks (right)) , Modularity (bottom left) , and MSAs and megaregions (bottom right)
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CCME-SL is mostly unsupervised. There are only two tuning parameters controlling the al-

gorithm, α and τ . α tunes the significance of the nodes’ connectivity in relation to its associated

community, and τ tunes the threshold of Jaccard distance to filter overlapping clusters. Different

values of α and τ are used for both communities and monads, the results of which are shown in

the Supporting Information. We set the α = 0.01 and τ = 0.80 for communities and α = 0.05 for

monads because monads cover nearly all the major US metropolitan areas. Though they don’t dif-

fer much from those presented in Section 3.6, communities induced by different thresholds promote

discovery of more tightly linked or more significantly monadic clusters.

Nelson and Rae use a multi-step routine to tune parameters for modularity-based methods,

filtering out unwanted ‘outlier’ nodes and validating visual heuristics (Nelson and Rae, 2016).

Compared to this approach, our method is more parsimonious and statistically interpretable.

3.7.2 Comparisons with Other Community Detection Methods

In Section 3.6.1, we compared the CCME-SL algorithm with several other standard community

detection techniques, including the existing OMB demarcations. The primary advantage of CCME-

SL is that it accounts for overlapping memberships for each node. Another advantage of CCME-SL

is that the regions demarcated are more defensible because the model accounts for self-loops, which

are important in the commuting network. Finally, the simplicity of CCME-SL is a practical ad-

vantage compared to other models, especially DC-SBM, which requires that the optimal clustering

parameters be determined through cross-validation.

Though other techniques implicitly account for self-loops, the self-loops oftentimes cause dis-

tortions that create problems in identifying regions. Fig. 3.6 shows that Louvain and DC-SBM

yield smaller communities that are all roughly balanced in number of nodes per community. Sizes

of regions are highly contingent on their populations and commuting volumes. CCME-SL, on the

other hand, yields clusters that are highly variable in size, commensurate with the highly variable

populations. The sizes and characteristics of the clusters (monads and communities) imputed by

CCME-SL thus appear to be less constrained than the other three methods shown in Fig. 3.6. We

posit that the differences between clusters from CCME-SL and other approaches are at least partly

due to the extremely strong self-looping weights in high-strength nodes (populous counties).
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Many algorithms return different results under different initialization scenarios when the like-

lihoods of partition functions are multimodal and thus give rise to a number of near-optimal parti-

tions (Good et al., 2010; Peel et al., 2017). Though this is a common problem in modularity-based

approaches with random seedings, CCME-SL is not strongly affected by this issue for two different

reasons. First, the method of initialization using the heuristics of starting at nodes with self-loops

larger than 20,000 described in Section 3.5.1 produces the same results upon every run of the algo-

rithm. Second, even if initialization was randomized and subject to different initialization criteria

(while still retaining most of the population-center counties), the results do not look very different

(see Fig. 4 in Supporting Information). In other applications of CCME-SL, wherein the data do

not have interpretable initial seeds, more runs would be required and analysis of sets of partitions

would be necessary (Peixoto, 2017).

The number of communities is very important in community detection and its determination

is a difficult problem in the field. For example, in DC-SBM the number can be determined by

model selection or by cross validation. Under CCME-SL, the number of detected communities is

determined by just one sample. This would be just one of the near-optimal states of the assumed

model, as there would be other optimal states with different numbers of communities. Although the

proposed method finds generally similar communities under a range of parameters and initializations

(Figs. 3,4 in Supporting Information), these validations do not allow for the discovery of some

exact optimal objective. As such, we reiterate the point that CCME-SL should be viewed as

an exploratory method that could give rise to more rigorous modes for proposing novel OMB-

designated regions based on the structure of a commuting network.

Traditional delineations of geographic regions have relied on agglomerations of smaller ge-

ographies, historical and political boundaries, separating edges and central foci. The boundary

characterization is important not only for scientific purposes of tracking and tracing the historical

evolution of urban systems, but also for administrative purposes of allocating infrastructure invest-

ments and formulating economic development strategies. Boundaries of metropolitan areas in the

United States are artifacts of these delineation definitions, yet are central to tracking demographic

and economic changes, funding allocations, determination of fair market rents, housing subsidies

that depend on area median income and a host of other federal and state programs, even when the

agencies caution their use for non-statistical purposes. These delineations are central but invisible
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to the lives of many. In this chapter, we provide a robust method of accounting for the membership

of a single place in multiple regions.

The main methodological contribution of this chapter is its introduction of a community ex-

traction method for a network with strongly self-looping characteristics. The application of the

method on US commuting data suggests a way of conceiving delineations of economic geography

that differs from existing approaches. CCME-SL accounts for intra-county commuting patterns

and produces drastically different results when compared to other community detection methods

as well as CBSA-based approaches. Furthermore, allowing regions to overlap allows us to create

institutional structures and policies that are tailored not only to singular geographical entities, but

also to multitudinous identities interacting across space and place.
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CHAPTER 4

Intertemporal Community Detection in Human Mobility Networks

Much research has been done in recent years in the analysis of real world networks. One

particular area of active interest is in intertemporal community detection1. A majority of the

research on community detection in networks has dealt with static networks (Girvan and Newman,

2002). However, many real-world networks exhibit dynamic properties, such as human mobility

networks in urban systems. These networks include commuting patterns over time (Patuelli et al.,

2010), location based social networks (Assem et al., 2016), taxicab travel patterns (Liu et al.,

2015) and cell phone call records (Reades et al., 2009). Understanding the structures of these

networks reveals underlying trends in human mobility and provides important information for the

management of urban infrastructure.

There are many human mobility patterns that can be represented as networks with high tempo-

ral resolution because of the presence of origin and destination locations and time stamps associated

with the trips. For example, bikeshare systems are rich and remarkably comprehensive in tracking

mobility patterns within a city. By 2019, over 2000 cities have created bikeshare systems around

the world. In 2018, according to the National Association of City Transportation Officials, 36.5

million trips were completed in over 100 cities in the United States using these systems. Many of

these systems have stations where users can rent the bikes and deposit them at another station

at the end of the trip. These stations allow the system operator to track the precise origins and

destinations of individual trips by time-of-day and day-of- week. Travel by automobile can be

modeled as networks: in particular, taxicabs in cities are regulated and therefore location and time

data of these cab pickup and dropoff locations are often reported to the regulators. The increased

usage of often less-regulated ridesharing services (Uber, Lyft etc.) have reduced taxi trips in the

last few years. Much research has been done on network analyses (Austwick et al., 2013; Cazabet

1This chapter is adapted from a manuscript written in 2020 (He et al., 2020a), joint work with Professors Shankar
Bhamidi and Nikhil Kaza
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et al., 2017b; Zhan et al., 2016; Tong et al., 2017), but most do not fully take into account the

dependencies induced by the network structures and temporal trends. Many of these studies have

also focused mostly on demand estimation (Zhou, 2015; Faghih-Imani and Eluru, 2015).

In this chapter, we develop a method to identify clusters of significantly connected nodes in

a time-series of weighted networks. Identification of such clusters allows us to understand the

nature of geographical, economic and cultural relationships, when networks are representative of

urban systems. Identifying trajectories of connectivity in clusters across time may reveal structural

changes within the mobility patterns in these systems. We develop an intertemporal community

detection method to analyze the structure of long-term trends in time-series of networks to un-

derstand global and local trends. In particular, we attempt to determine whether such trends are

uniformly distributed across the networks, or whether certain communities exhibit countervailing

trends in interconnectivity when compared with others. We aim to identify and partition the nodes

that are part of communities which exhibit locally specific trends.

The objective of the community detection method in this study is to find groups of nodes

that are consistently connected across time and exhibit increasing, decreasing, or stable trends in

connectivity. Our methodological framework rests on the assumption of a baseline null model that

preserves the functionals of the observed network, then extracting subsets of vertices that exhibit

significant deviations in connectivity contrasted with the null model. We use a weighted configura-

tion model as posited in (Palowitch et al., 2018; He et al., 2020b). We extend the framework and

introduce additional steps to find consistent patterns of connectivities among clusters across time.

Analysis of time-varying weighted graphs allows us to gain more insight into the nature of

the city as a complex accumulation of micro-level spatial activity patterns. While this method of

intertemporal community detection is developed for data structured like mobility systems, it can

be adapted for any type of time-series network data with registered nodes (such as inter county

commuting patterns, internet traffic, etc.).

4.1 Layout and Contributions

The primary contribution of this chapter is in proposing a novel community detection method

in human mobility networks. Though much work has been done on community detection in single
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(static) networks, in the realm of time-varying networks there are still many open avenues in

the realm of clustering. When the time-series are structured in mid-to-high frequencies, many

existing methods of multilayer community detection run into identifiability issues, particularly those

using model-based approaches (Matias and Miele, 2017). By presuming simplified trajectories of

connectivity to increasing, decreasing, and neutral and by using iterative testing techniques , the

method is a fast, reliable, and parsimonious way to discover overlapping clusters in high complex

interrelational datasets.

In this chapter, we first describe the procurement and preprocessing of bikeshare and taxicab

data in section 4.2. We then describe the methodology in the following section 4.3, starting from the

description of the configuration null model at a single time-slice in subsection 4.3.1, then progressing

to describe the time-varying FDR correction of the significance between bordering nodes to sets from

sections 4.3.3 to 4.3.5. We then describe the testing for significance of the trends of connectivities

in section 4.3.6 and finally describe the initializing and overlap-filteirng steps. In the following

section 4.5 , we describe the resultant clusters and discuss their potential interpretations in section

4.6. In section 4.4 we detail additional methodology for estimating foregone trips within bikeshare

networks due to load imbalance.

4.2 Data and Network Construction

We apply intertemporal community detection to data from two bikeshare systems and a taxicab

trips. Bikeshare trip data for Divvy (Chicago) and Citibike (New York) are publicly available

on their respective websites (Divvy, 2019; Citibike, 2019). The two bikeshare systems provide

contrasting cases. Divvy ridership increased steadily between 2014-2016 from 2.7 to 3.6 million, but

overall ridership declined slightly from 3.8 million trips in 2017 to ∼3.6 million in 2018 (Greenfield,

2018). The Citibike system, on the other hand, has consistently increased in usage from 14 million

in 2016 to 16 million in 2017 and 18 million in 2018 (Citibike, 2019).

The publicly available datasets include trip start and stop times for each trip between stations.

In our analyses, we focus on the time period between July 2016 and June 2018. We omit all stations

that were newly introduced or removed within this period. There remained 547 nodes (7.4 million

trips) in Chicago and 583 nodes (8.4 million trips) in New York in the dataset used for this study.
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One common problem in bikeshare systems is the issue of supply-demand mismatch in ridership.

A station in a high-activity area of a large city is often empty or full at certain times of the day

(Gast et al., 2015; Xie and Wang, 2018; Pendem, 2019; Freund et al., 2018; Faghih-Imani, 2014;

Zhou, 2015). A full or empty station prevents an otherwise possible trip. Load rebalancing is

a well-studied problem for bikeshare systems in order to solve the inefficiencies associated with

queuing between bikes in stations with finite numbers of slots for bikes at each station. Real-

time data on station status rebalancing exist for New York and Chicago (Divvy, 2019). However,

historical station inventory data is only available for New York City (Open BUS, 2019) and not

Chicago. Thus, for the New York bikeshare system, we find communities with and without demand

adjustment (see section 4.4 for details on the method).

The taxicab data for New York is from the Taxicab and Limousine Commission (NYC Taxi

and Limousine Commission, 2020). We use data from January 2017 to 2019 because trips from

the ridehailing apps (such as Uber, Jio) are only included since 2017 in the data. There are 263

pick-up/dropoff zones, which cover all the five boroughs of New York, and the dataset includes over

453 million trips between these zones.

From these datasets, we construct the observed time-series of networks as {Gt}1≤t≤T . In

all these datasets, we aggregate the trips between a pair of nodes for each week. The weekly

aggregation smooths the diurnal variations and keeps the time-series long enough for time-domain

analysis. Thus, each time t corresponds to a week, where T is the total number of time periods.

The indicator Auv,t represents the presence of any trips at time t between u and v. We use the

number of trips between two nodes at week t as the edge weight Wuv,t. In network Gt the degree

of node u is defined as degu,t =
∑

v:v 6=uAuv,t and strengths are defined as Su,t =
∑

v:v 6=uWuv,t at

each time-unit t across total time T (He et al., 2020b). We de the index set [n] = {1, 2, ..., n} as

the set of all nodes u, which represent stations in bikeshare systems and pick-up/dropoff zones for

taxicab networks.

4.3 Detecting Intertemporal Communities

In this section, we describe a method to extract statistically significant communities across time

(He et al., 2020b; Palowitch et al., 2018) based on iterative testing of node-set connectivities. We
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use a similar approach but account for and classify the types of time dependency. We posit that

trends across time are generally increasing, decreasing or stable and account for these types of time

dependence. To this end, we adjust connectivities to time-decay and find trends using equivalence

testing (Schuirmann, 1987; Dixon and Pechmann, 2008).

4.3.1 Intertemporal Configuration Null Model

We use a similar epistemological heuristic as in (Palowitch et al., 2018; He et al., 2020b) in

positing a baseline model that preserves the characteristics of the observed network,then extracting

subsets of vertices that exhibit significant deviations in connectivity contrasted with the null model.

The framework of the method posits a baseline model is extracted from a time-series of registered

networks, which are then iteratively subjected to hypothesis tests for trends and local deviance.

We detect significant communities across the time-series of networks if the trend and variation

components are significantly different from those of the baseline model. These communities signal

subsections of the network that are either strongly interconnected at either the beginning or end

of the time-period, or consistently connected throughout the entire time period.

The intertemporal null model for a given node set B (as in (Palowitch et al., 2018; He et al.,

2020b)) is defined to determine if it is significantly interconnected across all time-points according

to the hypothesized trend. We search for communities that are

• decreasing if its nodes are significantly connected at time t = 1, but not necessarily signifi-

cantly connected as t becomes larger (later time period), such that nodes that are significantly

connected in the beginning, but not at the end, are identified.

• increasing if its nodes are significantly connected at later times (when t approaches T ), but

not necessarily significantly connected when t is early.

• stable (or neutral) if its nodes are significantly connected across all time points.

If vertices are not connected at all time points, then they are not clustered and left in the “back-

ground”. Like in (Palowitch et al., 2018), vertices can belong to more than one cluster. Within

B, a time-series of relative connectivity may be decomposed into trend and variation components.

Trend denotes the presence of a constant time-trend in the relative connectivity amongst nodes in
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set B. Variation denotes the aspects of the node-set connectivity that do not vary systematically

across time.

4.3.2 Null Model for Node-Set Connectivity

The estimate for each edge weight Wuv,t at time t is a simple extension of the model used in

(Palowitch et al., 2018), which is the null model for a single graph.

Ŵuv,t =


ξuv,t(

su,tsv,t
sT,t

)
/

(
du,tdv,t
dT,t

) if u 6= v

0 if u = v

(4.1)

Each Ŵuv,t is a weighted edge on a random time-varying graph Gt, where each u has fixed

degrees du,t and strengths su,t. Each graph Gt at time t has total degrees dT,t =
∑

v dv,t and total

strengths sT,t =
∑

v sv,t. Random variables ξuv,t with mean 1 and variance κt are constructed so as

to satisfy the weighted configuration model used in the work of Palowitch et al. (He et al., 2020b;

Palowitch et al., 2018). The analogous node-set connectivity S(u,B,Gt) (as in (Palowitch et al.,

2018)), is

S(u,B,Gt) =
∑

v 6=u,v∈B
Wuv,t. (4.2)

This value measures how each node u at connects with the set of nodes B at time point t. Each

score S(u,B,Gt) is fixed across a given node u and set B, but is different for every time-step t. A

central limit theorem is used in (Palowitch et al., 2018; He et al., 2020b) to approximate S(u,B,Gt)

as a normal distribution with means and variances

E[S(u,B,Gt)] =
∑
v∈B

su,tsv,t
sT,t

; (4.3)

Var(S(u,B,Gt)) =
∑
v∈B

(
su,tsv,t
sT,t

)2

du,tdv,t
dT,t

(
κt −

du,tdv,t
dT,t

+ 1

)
. (4.4)

A p-value is derived from the above statistics in order to gauge the probability of the node-set

connecitivity as significantly deviant from what it would be under the null model. P-values are
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derived from the normalized test statistic Zt(v,B), defined below:

Zt(v,B) =
S(v,B,Gt)− E[S(v,B,Gt)]√

Var(S(v,B,Gt))
, t = 1, ..., T . (4.5)

Zt(v,B) is posited to follow a N(0, 1) distribution and values that significantly exceed the distri-

bution under the null model are identified to be significantly connected. sets of nodes that are all

significantly connected, statistic Zt(v,B) is computed for every node v ∈ [n] at time t. Signifi-

cantly connected nodes are extracted with respect to a given set B in order to identify sets of nodes

wherein every member is significantly connected to each other in the set. Significance in this case

is determined by p-values which are calculated as follows:

p(u,B,Gt) = P(S(u,B,Gt) > S(u,B,Gt)). (4.6)

Nodes with respect to B are augmented by false-discovery-rate corrrections and selected based

on a pre-specified signifiance threshold α, which conventionally is equal to or below 0.05 (95 % sig-

nificance). In practice, these p-values are iteratively computed several times until the membership

of the set converges. Detailed derivations of these values can be found in the text of (Palowitch

et al., 2018).

4.3.3 Identifying Nodes that are Significantly Bordering Across Time

We use iterative testing to identify nodes that are significantly connected to their neighbors

through time. Methods developed in previous literature (Palowitch et al., 2018; He et al., 2020b)

have applied this method to a fixed graph G. We use the same method of deriving significance of

the probability that v is significantly connected to u in set B as in those methods.

Our proposed method relies on an iterative procedure starting at iteration step k = 1, then

repeated until the results do not change. The objective is to find sets B such that for each v ∈ B,

v is significantly connected to u across all time points 1, .., T . At a given step k > 1, for fixed time

t, for a set of nodes Bk,t and a bordering node u, the score of node-set connectivity is determined

by (4.2):

S(u,Bk,t, Gt) =
∑

v 6=u,v∈Bk,t

Wuv,t. (4.7)
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After the normalizing calculation (4.5) is performed, a p-value for each v ∈ Bk,t is then determined

as in (4.6)

For each time point t, the p-value p(u,Bk,t, Gt) is then corrected for false-discovery rate cor-

rection as in (Wilson et al., 2014). The non-significant nodes are rejected and the set of significant

nodes is retained. Additional steps to find significant nodes are described in the following sections

4.3.4 - 4.3.5 to account for time-decay in significant bordering nodes and describe the testing of

trends in 4.3.6.

4.3.4 Time-Decay Adjusted False Discovery Rate Correction

To identify significantly interconnected nodes for a given time t, an augmented version of the

Benjamini-Hochberg (Benjamini and Hochberg, 1995) procedure is used. The BH procedure is

used in (Palowitch et al., 2018; He et al., 2020b) , but the difference in this approach is that the

FDR-adjusted p-value p∗u is multiplied by decay term at, contingent on if the communities are

hypothesized to be increasing, decreasing, or stable in connectivity over time. For a fixed time t,

iteration step k, and set Bk,t, we find all the nodes that are significantly connected to Bk,t across

all time t = 1, ..., T after calculating the p-value as in (4.6). The output set at iteration K and

time t is written as Mk(Bk), described in more detail in later sections in equation (4.10).

We define at is an exponential decay term to adjust for the shifting time-window of significance.

It is defined as:

at :=



(
1− exp

(
− t−1

T

))
a+

0 if trend is increasing(
exp

(
− t−1

T

)
− a−0

)/
(1− a−0 ) if trend is decreasing

1 if trend is neutral.

(4.8)

The terms a+
0 and a−0 are defined such that at is 0 at time 1 and 1 at time T if the trend is

increasing, and 1 at time 1 and 0 at time T if the trend is decreasing:

a+
0 := 1− exp

(
−T − 1

T

)
; a−0 := exp

(
−T − 1

T

)
.
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If the trend is posited to be decreasing, then the algorithm allows more permissive selection of

‘significantly’ bordering nodes when time t is early, but is more penalizing when t approaches T .

When t is 1, then at is equal to zero. In this case, all p∗u are zero and will automatically be counted

as significant if u borders Bk,t. When t is T , then at is 1, so the FDR correction is identical to

BH. The threshold for the maximum allowable p-value increases as t decreases so that negligible

connections (when t is early) that become stronger (when t is late) are deemed significant.

Conversely, when the trend is posited to be decreasing, the same kind of adjustment is made

in reverse because the multiplier is subtracted by one. Because the multiplier to the adjusted p-

value is always less than 1, the procedure is always less conservative than the Benjamini-Hochberg

method and allows nodes that otherwise would not be significant at a given time-period be deemed

as“significant” based on their potential to be significant given their trajectory. If the trend is

posited to be neutral, then we use the ordinary BH rejection procedure.

4.3.5 Bonferroni Interval for Bordering Frequencies

The previous section 4.3.4 details significance testing for the collections of nodes Bk,t at each

time period. To determine whether the collections of nodes are significantly connected to u at all

times, we apply a second testing step using Bonferroni Correction. This correction is applied to

the frequencies of nodes whose p-values have been deemed significant by the BH correction (in the

previous section). The product of Bonferroni confidence intervals is used to define the significance

of the neighboring frequency at iteration step k, for each Bk,t across all time t = 1, ..., T . For a set

Bk,t, we define mt(Bk,t) as the set of nodes that are found to be ‘significantly bordering’ described

by Section 4.3.4:

mt(Bk,t) = #{u: u is significantly bordering Bk,t at time t}.

A large value of mt(Bk,t) for all t signifies a large collection of nodes that significantly border Bk,t

and results in a false discovery interval that is close to T , and hence v must border Bk,t for nearly

all time T for it to be significant. Conversely, if mt(Bk,t) is small, then the required frequency for

v to be significant is not as high. During this step, we assume away dependency between Bk,t.
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We define FDIα,k to be the threshold for false discovery interval of all significantly adjacent

nodes to node Bk,t

FDIα,k =
∏

t=1,...,T

(
1− α

mt(Bk,t)

)
· T

where 1− α/mt(Bk,t) is the Bonferroni confidence level at each time point . The product of these

intervals cross all time multiplied by the total time T gives the threshold of significantly bordering

nodes across all time.

B|t=1

u1,t=1

u2,t=1

u3,t=1

u4,t=1

B|t=2

u1,t=2

u2,t=2

u3,t=2

u4,t=2

Figure 4.1: Example of set B at times t = 1, 2. u1 is significantly connected when t = 1, but not when
t = 2. So for arbitrary iteration step k, let Bk = B, then mt(Bk,t) is m1(B1,k) = Bk

⋃{u1, u2, u3, u4} at
t = 1 , but m2(B2,k) = Bk

⋃{u2, u3, u4} at t = 2.

Now we define the B0
k as the combined list of all the nodes in any Bk,t: B

0
k =

⋃
t=1,...,T Bk,t. For

each v ∈ B0
k, we define the bordering frequency Nv(Bk) as the counts of v which are significantly

bordering Bk,t across all time t. A significant Nv(Bk) suggests that v is more frequently bordered

across time than other nodes. Each v significantly borders all Bk,t if

FDIα,k < Nv(Bk,t) (4.9)

that is, if Bk,t borders v enough times across t for it to be significant overall in the time-period

1, ..., T (Dunn, 1959). Finally, we take the union of all nodes v that satisfy the “significantly

neighboring” criteria (4.9) and denote the set Mk(Bk)

Mk(Bk) =
⋃
v∈B0

k

{v : FDIα,k < Nv(Bk)}. (4.10)
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The resulting set Mk(Bk) represents the nodes that are significantly connected across time,

given the appropriate time-window adjustments. We then check if the trends are actually as

hypothesized.

4.3.6 Significance Testing for Trends

We define the sum of Zt(v,B) in (4.5) as Z(B) to gauge the significance of the time-trend of a

cluster.

Z(B) =

{∑
v∈B

Zt(v,B)

}
1≤t≤T

:= V(B) +
∑
v∈B

βv,Bt, (4.11)

Moreover, for a given community B that is significantly connected across time t = 1, ..., T , we write

the vector of node-set connectivity Z(B) as the sum of trend and variation components, where

βu,Bt represents the trend component which is linearly dependent on time and V(B) represents

the variation component that is stationary across time.

The previous sections describe discovery of node-sets that are significantly connected across

time, this section details testing for their trends. If the trends are posited to be positive or negative,

then one-sided t-tests are used, respectively with null hypotheses H0,+ : βv,B ≤ 0 and H0,− : βv,B ≥

0. If the the trend is posited to be negligible (stable), then the two sided test:

H0 :βv,B 6= 0; H1 : βv,B = 0

is used. The hypothesis is flipped (compared to the positive or negative tests) in order to test if

the trend is equal to zero. We invoke equivalence testing methods ((Dixon and Pechmann, 2008))

to determine significance in relation to a pre-selected symmetric interval [−U,U ] about zero.

Given an set Bk at iteration k, we first find all nodes v∗ that are significantly bordering across

time as described in Section 4.3.3 and label these nodes as Mk(Bk) as in (4.10). We then assess

the significance of the trends of each of the nodes v ∈Mk(Bk) in relation to set Bk. Calculation of
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trend employs test statistic for node-set connectivity S(u,Bk, Gt):

Z(v,Bk) =

{
S(v,Bk, Gt)− E[S(v,Bk,Gt)]

Var(S(v,Bk,Gt))

}
1≤t≤T

. (4.12)

Using Bk and Mk(Bk), we then find the time trend βv,Bk
for each v ∈ Mk(Bk). We assume

that intertemporal communities have trends that are increasing, decreasing, or neutral. We use the

equivalence testing method to assess trend significance (Schuirmann, 1987; Dixon and Pechmann,

2008) . Even if a trend is significant, its impact may be negligible and should be assumed to be

“zero”. A bounding energy barrier U > 0 is chosen to control the size of the desired time-trends.

A positive U is chosen as a lower bound for a positive trend, −U is used as a upper bound for a

negative trend. A symmetric bounding interval of [−U,U ] about zero is used for a neutral trend.

Hypothesis tests are conducted for the time trend for set Bk (at iteration k) and node v.

Significances of trend βv,B (assuming fixedB := Bk at iteration k) are calculated using the difference

of the estimates with the upper bounds U (if positive) and lower bound −U (if negative). T-tests

for these differences βv,B −U or βv,B +U are then performed to assess significance while excluding

very small trends. To determine whether a node-set has a significantly negligible (neutral) trend,

we utilize the approach outlined by Dixon et al. (Dixon and Pechmann, 2008) and use two one-sided

tests to determine if βv,B is significantly outside the interval [−U,U ]. Details on the test statistics

can be found in the following section 4.3.7.

4.3.7 Testing for Increasing and Decreasing Trends among Node-Sets

For the time trend expressed w.r.t. t given a set B, node v, we test for hypotheses for trend

about a symmetric interval [−U,U ] close to zero. These hypotheses test for a null hypothesis of

zero in equivalence testing. The null hypotheses are written as follows:

H0,+ : β+
v,B ≤ U H1,+ : β+

v,B > U, (4.13)

H0,− : β−v,B ≥ −U H1,− : β−v,B < −U. (4.14)

We calculate the significance of βv,B using the difference of the estimates as well as the (pre-

specified) upper and lower bounds of the trend. In order to filter out the trends that are negligible,
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we perform a t-test for the regression statistic subtracted by the upper or lower bound U , divided

by the standard error of the estimate, s(βv,B). Defining such a bound allows us to exclude the

very small but still significant trends and only find clusters that are increasing or decreasing with

considerable magnitude.

tupper(v,B) =
β̂+
vB − U
s(β+

vB)
, tlower(v,B) = − β̂

−
vB − (−U)

s(β−vB)

The corresponding p-values of tupper and tlower, respectively, with significance α/2 (for one-sided

tests) and with degrees of freedom n− 2, represent the trend of connectivity of node v in relation

to set B. Typical of ordinary least squares, the degrees of freedom are discounted by the slope and

intercept terms.

P-values of the similarity of neutral trends to U are obtained by taking the maximum of the

p-values associated with the t-statistics tneutral,a and tneutral,b, respectively, with significance α and

degrees of freedom n− 2.

To determine the t-statistic of a negligible trend, we utilize the approach outlined in (Dixon

and Pechmann, 2008). To test for whether a trend is negligible, the typical hypothesis test for a

regression coefficient is inverted and split instead into two one-sided tests.

H0,a : βv,B ≥ U, H1,a : βv,B < U, (4.15)

H0,b : βv,B ≤ −U, H1,b : βv,B > −U.

Dixon et al. ((Dixon and Pechmann, 2008)) used the following pair of t-statistics to test for

these hypotheses:

tneutral,a =
β̂uv − (−U)

s(βuv)
; tneutral,b =

U − β̂uv
s(βuv)

and obtained the corresponding p-values for the probability of the alternative hypothesis by taking

the maximum of the p-values associated with the t-statistics tneutral,a and tneutral,b, respectively,

with significance α and with degrees of freedom n− 2.

106



To initialize the iterative search procedure, all individual nodes u ∈ 1, ..., n. We calculate

M0(u) for all B0(u) = u following the procedures from 4.3.3 at iterative step k = 0. Within M0(u),

we calculate each normalized Wuv,t|Auv,t by the following equation for all v that are significantly

connected to u across all time T :

Zt(u, v) =
Wuv,t − E[Wuv,t|Auv,t]

Var(Wuv,t|Auv,t)

where

E[Wuv,t|Auv,t] =

su,tsv,t
sT,t

du,tdv,t
dT,t

; Var(Wuv,t|Auv,t) =

 su,tsv,t
sT,t

du,tdv,t
dT,t

2

κt

Next, we find the linear trends of each Zt(u, v) across time t = 1, ..., T and take the nodes with

trends that are either significantly positive or negative. We write Z(u, v) as the vectorized time

series of Zt(u, v). The trend is calculated as the coefficient with time t = 1, ..., T from ordinary least

squares (OLS), between nodes u and v. β̂uv is determined to be significantly increasing, decreasing,

or stable (neutral) using the method described in the following section 4.3.6, but only using a single

node v in place of a set B. If βuv is significant at the α level (in OLS), then denote the nodes v

that are significantly connected and increasing or decreasing with initializing node u as v∗∗. We

construct an initializing set B1 with these nodes {u, v∗∗} for step k = 1.

4.3.8 Iteration and Overlap Filtering Steps

After the procedures for selecting nodes that are both significant in connectivity (Section 4.3.3)

and trend βv,B depending on the posited direction of trajectory (Section 4.3.6), we derive p-values

from the t-statistic of the time-trend . The nodes whose trends are significant after incorporating

the FDR correction with significance level α, are retained.

We update the set Bk+1 with the inclusion of the new nodes v that are both significantly

connected to Bk across all time t and have a significant trend according to the trend hypothesis.

The procedure is repeated until the set becomes stable such that Bk = Bk+1 for all candidate sets.

In all the applications used in this study, this process takes 3 to 5 iterations.
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After stable sets are found from the iteration steps, they are filtered by their Jaccard overlaps

(Palowitch et al., 2018; He et al., 2020b). We use an overlap threshold of 0.50 to remove clusters

with over 50% overlap; more details on this procedure can be found in prior work (Palowitch et al.,

2018). After filtering by Jaccard overlaps, communities of size 3 or less are removed, as dyadic or

triadic relationships between nodes may be too localized to be meaningful in a larger scale.

4.3.9 Effect of Normalizing Edges

Modeling network time-series using the weighted configuration model places edge-weights in a

relative scale when they are normalized by their expectations and variances, which are functions

of global κt. Global κt is shown to be highly seasonal (fig. 4.2) in the Divvy system in Chicago

but less so for the NYC taxicab and Citibike data. The variances in the taxicab data experience

a sudden increase in the middle of 2017 and thereafter consistently increase through time. The

high seasonality of κt in Chicago and the effects of its removal by normalization are apparent in

figure 4.4. Scaling edge weights is especially useful in time-series networks where seasonal effects

dominate much of the variation (in the Divvy data) or the trend (in NYC taxicab data).

Global Variance κt (Divvy; Citibike; NYC Taxicab)

Figure 4.2: Global variance parameter κt from 2016 to 2018 for the Divvy system in Chicago (left), the
Citibike system in New York City (center), and κt for NYC taxicab networks (right) from 2017 to 2018

4.4 Corrections for Forgone Trips Due to Load Imbalance

We use the term load imbalances to refer to the issue of supply-demand mismatch,which is a

common problem in bikeshare systems where nodes represent stations (which hold bikes) and edges

represent the trips between these stations. A station in a high-activity area of a large system is

often empty or full during peak hours (Gast et al., 2015; Xie and Wang, 2018; Pendem, 2019). A

108



full or empty station prevents an otherwise possible trip we thus describe methods (also based on

significance testing) of correcting for these empirical inefficiencies in order to assess the true rates

of network flow without capacity constraints. We first describe the corrections if there exists load

rebalancing data.

We estimate the functionals P(Ẽu,Y ) by taking the average rate at which a station is empty i.e.

yields no available bikes. P(Ẽu,Y ) are calculated as the ratio of the time-intervals that a station is

empty to the total intervals during peak-times (i.e. when users could plausibly check out or return

bikes). The ratio represents the probability of a station being empty when a user accesses it. A

high ratio signifies that the station is usually empty, and so it is more frequently load-imbalanced

due to high usage, hence more weight should be proportionally accounted for to estimate the trips

that could have been taken if the system was perfectly balanced.

Let Ẽu,Y be the event that a typical trip in year Y from or to station u is foregone owing to

load imbalance and let P(Ẽu,Y ) be its associated probability. P(Ẽu,Y ) is approximated as:

P(Ẽu,Y ) ≈ #{intervals when u is empty in year Y }
#{total intervals in station u in year Y } . (4.16)

Observed demand Wuv,t for each edge between stations u, v during time-index t (weeks in this

analysis) are then converted to estimated demand W̃uv,t as follows:

W̃uv,t = Wuv,t(1 + P(Ẽu,Y ))(1 + P(Ẽv,Y )), t ∈ Y.

We refer to the time-series of graphs comprised of these demand-corrected (DC) weights as

{G̃t}1≤t≤T . For this study, we assume that this probability is constant over the year. Seasonal

effects may be influential in this calculation but will be deferred to future research. We assume

that a full station induces a negligible impact on load imbalance compared to empty stations. Each

probability is calculated as the proportion of time-intervals that the station is empty. We construct

networks of estimated demand to correct for trips that could not have taken place due to full or

empty stations and find communities within these networks to more accurately find communities

of trip demand in a human mobility network (Faghih-Imani and Eluru, 2015; Liu et al., 2016).
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4.4.1 Forgone Trip Corrections Without Rebalancing Data

Though real-time data on station status (e.g. number of open slots) exist and are available

online (Divvy, 2019), we do not have access to the historical load rebalancing data and as such we

need to estimate the probability of foregone trips. To determine the presence of these forgone trips

induced by full or empty stations, we look for anomalous gaps in usage of stations on the days that

it is heavily utilized. We refer to these gaps due to forgone trips as load imbalance. We describe

a simple significance-testing based method that corrects the counts of trips between stations (edge

weights) in each graph Gt for week t in each year Y . We have omitted the results of this analysis

of the Divvy System in Chicago, though results from this study can be made available on request.

Let Ẽu,Y be the event that a typical trip in year Y from or to station u is foregone owing to

load imbalance, we write P(Ẽu,Y ) as its associated probability. For this chapter, we assume that

this probability is constant over the year. Seasonal effects may be influential in this calculation but

will be deferred to future research.

Sums-of-trips Wuv,t, or observed demand, for each edge between stations u, v during time-index

t (weeks in this analysis) are then converted to estimated demand W̃uv,t as follows

W̃uv,t = Wuv,t(1 + P(Ẽu,Y ))(1 + P(Ẽv,Y )), t ∈ Y

We refer to the time-series of graphs comprised of these demand-corrected weights as {G̃t}1≤t≤T .

We now describe how to estimate the functionals P(Ẽu,Y ).

4.4.2 Calculating Significant Gaps in Station Activity

A time interval for station u is an interval between any two consecutive events (arrivals or

departures). We first formulate a methodology to judge if a time interval is anomalous or not. We

call such an unnaturally long time interval a gap. Gaps may occur because of load imbalance or

random events not related to load imbalance. We posit that the probability of the occurrence of a

foregone trip is:
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P(Ẽu,Y ) ≈ #{gaps in station u in year Y due to load imbalance}
#{intervals between trips in station u in year Y } . (4.17)

We assume that typical waiting times (in seconds) between consecutive events (start and end

of trips) at a station u on day d, wu,d follows an exponential distribution with mean δu,d (Gast

et al., 2015). Note that the cardinality of waiting times is equivalent to the strengths Su,d, or

sum-of-trips, of station u on day d subtracted by 1. We filter out the first and last 10% of trips

that occurred during day d are censored to filter out the longer gaps during the early and late

times of the day, hence only restricting the times s to non-dormant hours, so let S∗u,d − 1 represent

the number of trips excluding the first and last 10% of trips. We count the number of anomalies

per day assuming that high-activity stations are rebalancing at least several times a day (Pendem,

2019). To determine anomalies in durations between activity, we first define waiting-times. Let

θ1,u,d < θ2,u,d < ... < θS∗
u,u,d denote the time points of consecutive activity on day d at station u

after removing the upper and lower 10% of trip-times.

Let S∗u,d represent the collection of intervals {[θi,u,d, θi−1,u,d]} and let wi,u,d = θi,u,d − θi−1,u,d

denote the length of these corresponding intervals. We define the sample mean δ̄u,d as

δ̄u,d =
1

S∗u,d − 1

S∗
u,d∑
i=1

wi,u,d.

Let Iu,d be the number of time-intervals wu,u,d ∈ S∗u,d whose lengths are significantly greater

than δu,d under significance level α after being corrected by the Benjamini-Hochberg false-discovery

rate rejection procedure (Benjamini and Hochberg, 1995). This procedure will be described in the

later section 4.3.4 and will be used in the community detection algorithm. Precisely:

Iu,d = #{wi,u,d : wi,u,d > δ̄u,d at α, FDR corrected across wi,u,d ∈ S∗u,d}.

Iu,d represents the estimated number of gaps in waiting-times. These values may represent

gaps due to either load imbalance or typical events such as a break in usage during lunch, or an
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adverse weather event. We assume that these typical events are different from load imbalance. We

do not have data on events that could have led to these gaps caused by typical events. However,

we can determine a summary measure of the gaps that occurred when the station is operating in

excess, which we define as the condition when the number of trips is significantly greater than the

number of slots in the stations. We can also determine the total sum of the gaps that may be

due to random, typical, conditions when the station is not operating in excess. We posit that the

difference of the gaps under these two conditions provides a reasonable approximation of the gaps

owing to load imbalance.

4.4.3 Finding Stations with Excess Demand

We define Cu,Y as the carrying capacity, or number of slots, in a station u in year Y . Typically,

carrying capacities of stations are updated once per year. If Cu,Y of a station (in and outflows) are

exceeded significantly at a given day d by the total trips (daily strengths) Su,d, then we consider

the possibility of a overfilled or empty station may influence the decisions of a potential user. We

define excess demand Du∗,d in stations u∗ where {u∗ : Su∗,d ≥ Cu∗,Y } as:

Du∗,d = (Su∗,d − Cu∗,Y ) ∼ Poi(λd) (4.18)

We assume that the counts of excess demand on day d at station u adheres to a Poisson

distribution across all stations u ∈ [n] on day d. Functionals related to the total number of trips

between periods of times are conventionally modeled as Poisson (Gast et al., 2015). Let λd be the

typical network-level excess level of demand in day d and let λ̄d be its sample mean:

λ̄d =
1

n

n∑
u=1

Du,d.

To determine whether station u is operating in excess on a given day d in year Y , we use the

Benjamini-Hochberg false-discovery rate correction ( section 4.3.4) to find the stations that are

significantly over capacity on day d. We evaluate the p-value of excess demand Du,d at station u
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by testing every u ∈ [n] on day d against the sample mean λ̄d under a Poisson distribution under

fixed significance α.

We introduce a binary random variable Qu,d to denote if a station is significantly in excess. Let

the value of Qu,d = 1 if Du,d is judged to be significantly anomalous from λ̄d under significance level

α with false discovery rate correction across stations u∗ with excess demand above 0, otherwise,

let Qu,d = 0. Note that Qu,d is zero for all u such that {u : Su,d < Cu,Y }, but it is zero for some

stations u∗ such that {u∗ : Su∗,d ≥ Cu∗,Y }.

4.4.4 Estimating Foregone Trips

Gaps may be due to typical baseline events or to load imbalance. On a given day, a station

may be visited above or below its average rate of activity due to chance. However, if the station

significantly exceeds demand (number of trips far exceed the number of slots) on such a day, then

there is more reason to believe that the gaps in waiting-times between usage are plausibly related

to load imbalance.We approximate the gaps using methods described in the previous sections.

Let ĝEu,Y denote the total approximated number of gaps in activity in station u over year Y

on the days d when the station is operating in excess (i.e. Qu,d). We assume that the indicator

for station u for a gap is independent of the fact that the station is over capacity on day d. The

estimated counts of gaps when the station is operating in excess is expressed as:

ĝEu,Y =
∑
d∈Y

Iu,dQu,d

Recall that 1−Qu,d denotes the judgement by the FDR procedure of a non-anomalous demand

on day d. Let ĝbu,Y denote the sum of the number of gaps on days when the excess demand of

station u is not significantly anomalous with respect to Poi(λ̄d). Here 1−Qu,d = 1 representative

of a typical day with baseline anomalies. These counts are estimated as:

ĝbu,Y =
∑
d∈Y

Iu,d(1−Qu,d)
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Here ĝbu,Y represents the natural number of anomalous gaps from the days not distorted by too

much activity in a station that would give rise to full or empty stations. In contrast, gEu,Y represents

an estimate of anomalous intervals (gaps) in stations owing to excess demand. We assume load

imbalance can only occur when there is excess demand, and gaps due to excess demand comprise

baseline and baseline gaps. We remove the baseline gaps from gaps owing to excess demand by

subtracting ĝbu,Y from gEu,Y to refine the estimate of gaps induced by load imbalance. Because

load imbalance can only decrease the efficiency of the system by reducing the number of trips, the

demand-correction probability can only be increased and the numerator of (4.17) is:

#{gaps due to load imbalance in station u in year Y } ≈
(
ĝEu,Y − ĝbu,Y

)+
(4.19)

The probability of a forgone trip (4.17) can be estimated by

P(Ẽu,Y ) ≈
(
ĝEu,Y − ĝbu,Y

)+∑
d∈Y (S∗u,d − 1)

(4.20)

where the denominator, which represents the total number of time-intervals in all days across

year Y , can be represented by the sum of trips (daily strengths excluding first and last 10% of trips)

of station u in each day d. We use these probabilities to construct a demand-corrected time-series

of graphs {G̃t}1≤t≤T and find communities in these networks in addition to the uncorrected graphs.

4.5 Results

We report results for a range of values for tuning parameters α and U for observed demand

{Gt}1≤t≤T . In the Divvy Network, we fix α at 0.05 and U = 0.007 as well as 0.009 because

these settings capture clusters of moderate sizes across all trend categories and also show distinct

geographical divisions. Under these tuning parameters, we find five clusters with decreasing con-

nectivities over time and five clusters with increasing connectivities. We find only one cluster with

a stable trend at the 0.05 significance level.

There is a stark division in trends between the northern and southern parts of the city (fig.

4.3). At the 5% significance level, clusters with significantly decreasing trends are mostly found in

the southern and western parts of the city, while clusters with significantly increasing trends are
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mostly found in the northern and central parts of the city. Interestingly, the decreasing clusters

map to a nearly concentric outer ring around the central part of the city, while the increasing

clusters stretch from the Loop northwards along the shore of Lake Michigan. One stable cluster is

located in the Loop.

It is useful to focus on one community to illustrate the effect of edge normalization (see section

4.3.3). In figure 4.4, while the raw edge weights show a stable trend, the normalization Z(B)

shows an increasing trend. Thus, the collection of five stations in the Lincoln Park neighborhood

in Chicago is classified as a cluster with an increasing time trend rather than a stable one.

The geographical domain that the taxicab network covers is much larger than the bikeshare

network, which only spans Manhattan and Brooklyn. In two settings of U , clusters are decreasing

in connectivity across much of the Bronx, Queens, and much of Brooklyn. Clusters are consistently

increasing in eastern parts of Queens. One cluster appears to consistently link Staten Island to

southern Brooklyn for both values of U . Clusters are stable around the denser parts of the city,

as is the case in Upper Manhattan when U is 0.01 and in Upper and Lower Manhattan, Central

Brooklyn, and Astoria in Queens when U is 0.02.

4.5.1 Effect of Demand Correction

We apply the intertemporal community detection algorithm to the demand-corrected (DC)

time-series networks {G̃t}1≤t≤T with weights W̃uv,t in the Citibike system. We use the same signif-

icance α = 0.05 and set barrier U to 0.007 and 0.009 as in observed trip networks in NYC and the

Divvy system in Chicago. The obtained communities retain similar geographical characteristics as

those in uncorrected graphs, but with some key differences.

When U is set at 0.007, the decreasing and increasing clusters in the demand-corrected net-

works are localized in approximately similar geographical regions as in non-corrected networks.

Increasing clusters are mostly located in Upper and Lower Manhattan as well as Southern Brook-

lyn. Decreasing clusters are present in some small areas throughout Manhattan but pervasively

cover swathes of northern Brooklyn around the Williamsburg region. Stable clusters mostly span

Midtown Manhattan but also extend to northern Manhattan and parts of Brooklyn.

When U is increased to 0.009, the increasing and decreasing clusters shrink in size and number

and the stable clusters expand. Increasing clusters are more visibly located in Upper and Lower
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Observed Demand in the Divvy System in Chicago
↓ ↑ →

α
=
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5
,U
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nB=9 nB= 6 nB=1
¯|B| = 5 ¯|B| = 5 ¯|B| = 4
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¯|B| = 5 ¯|B| = 5 ¯|B| = 6

1

Figure 4.3: Intertemporal communities of increasing or decreasing trends amongst Divvy stations in 2016-
2018 under varying significance levels and bounding parameters U using the network time-series {Gt} un-
corrected for load-imbalance. nB represents the number of found communities and ¯|B| represent the mean
size of communities.

116



Sum of Edge Weights in Sample Community

Figure 4.4: top: Total trips in a community in networks Gt with increasing normalized connectivity over
time comprising 5 stations around the Lincoln Park Neighborhood in Chicago. bottom: Map of stations in
B.
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Observed Demand in the Citibike System in NYC
↓ ↑ →
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1

Figure 4.5: Intertemporal Communities of increasing (↑), decreasing (↓), and stable (→) trends amongst
stations in years 2016-2018 under varying significance levels and bounding parameters U in the uncorrected
networks Gt. nB represents the number of found communities and ¯|B| represents the mean size of commu-
nities.
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Taxicab Trips in New York
↓ ↑ →

U
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Figure 4.6: Intertemporal Communities of increasing, decreasing, and stable trends in taxicab networks
amongst zones in years 2017-2018 in New York City under varying significance levels and bounding param-
eters U . nB represents the number of found communities and ¯|B| represents the mean size of communities
rounded to the nearest integer.
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Manhattan (similar to the clusters in the graphs of observed demand) at the higher threshold.

Decreasing clusters are interspersed throughout the city but large coherent areas are more clearly

located around northern Brooklyn, also as in the observed graphs Gt. The stable graphs, however,

are much larger and cover much more ground in Lower Manhattan (fig. 4.7) .

4.6 Discussion

In the Citibike, Divvy, and NYC taxicab systems, we observe a trade-off between increasing or

decreasing clusters and stable clusters depending on the choice of U . If U is larger, then there is

“more room” for a trend to be classified as stable, but less so for increasing or decreasing trends.

Discovery of more increasing and decreasing clusters when U is increased suggests that these clusters

are increasing or decreasing in connectivity at different rates from the other clusters. When U is

large, increasing and decreasing clusters vanish but more stable clusters persist.

The interaction between α and U is not entirely linear or monotonic. Though a decrease in α

may correspond to an increase in U , a lower α implies that the nodes are more connected at each

time-instance and does not necessarily mean that the trend is higher. Figures 4.5 and 4.7 show

that in both Gt and G̃t, clusters appear as U becomes larger and α stays the same. Such behavior

may be attributed to FDR correction. A lower barrier U may yield more significantly connected

nodes but with weaker trends. The sensitivity of community detection to the choice of parameter is

an important issue (Austwick et al., 2013). We compare the extracted communities under different

tuning parameters U and α.

In results from the observed network Gt in Chicago, the choices of α and U produce generally

similar results over a range of values (fig. 4.3). Shifting U from .007 to .009 induces discovery of

more increasing and decreasing clusters, but the bound is too tight for any significant sets to be

found under the hypothesis tests in (4.15).

Our analysis is exploratory in nature and only summarizes the trajectories of network structures

in time but not their underlying causes. While this work is focused on methodological aspects of

temporal community detection, results suggest that it might be useful to think about the causal

mechanisms that underlie the different types of clusters in the bikeshare networks. The geographical

patterns of the cluster map to different neighborhood characteristics.
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Estimated Demand in Citibike System in New York
↓ ↑ →
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Figure 4.7: Intertemporal Communities of increasing, decreasing, and neutral trends amongst Citibike
stations in years 2016-2018 in New York City under varying significance levels and bounding parameters U
in the demand-corrected networks G̃t. nB represents the number of found communities and ¯|B| represents
the mean size of communities rounded to the nearest integer.
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At the same fixed parameters for U and α, clusters in NYC are more numerous and less geo-

graphically spread out than Chicago, possibly because the city is much denser and more populous.

Moreover, the seasons are milder, which induces less variation in trends. Figure 4.2 shows that the

global variance parameter κt of the Divvy system is highly seasonal, unlike that of the Citibike

system. Several areas appear to be persistently decreasing in both demand-corrected and observed

networks.

The edge-normalizing step of the community detection algorithm (section 4.3.9) makes such

station-specific adjustments affect the whole network, thereby affecting the entire system. Regard-

less, similarities persist in clusters in both DC and uncorrected graphs. The demand corrected

(DC) networks G̃t when U is 0.007 and 0.009 yield similar decreasing clusters to those of the un-

corrected networks Gt. Demand-adjustment makes a considerable difference in some clusters in the

Citibike system. Adjusting for demand-correction thus reveals stronger, more cohesive increasing

trends within the ridership and suggests that observed trips do not adequately capture the latent

increasing signals that are distorted by load imbalances from empty stations.

Because the proposed method is for exploratory purposes, these summarizing claims should be

verified in a more rigorous way in future research. Furthermore, the choice of U varies by appli-

cation. We use an ad-hoc scheme to select U whose resultant neutral clusters yield approximately

the same amount of nodes as the increasing and decreasing clusters combined.

However, because most of the results we present include two different values of U in order to

show the differences in results due to adjusting the parameters , the results in this study may not

strictly adhere to this criteria. However, results from Fig. 4.3, Fig. 4.5 and 4.7 all approximately

follow ths heuristic when U = .009, though they may have different α’s. Different applications

of intertemporal community detection may call for different criteria for tuning parameters. For

example, setting U to be small so as to not allow discovery of any neutral clusters (i.e. Fig. 4.3,

U = .007) may also be a suitable option. In future work, more principled approaches for setting

tuning parameters utilizing cross-validations may be investigated.

4.6.1 Future Work

In both Chicago and New York City, there may be several explanations for the underlying

signals that cause the clusters to decrease in connectivity. Further work may examine what these
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signals are and how these signals may function. One explanation may be that decreasing trends

are symptoms of displacement, destabilizing steady ridership among long-term inhabitants in gen-

trifying neighborhoods. Another may be differential rates of attention given to load rebalancing in

stations in different neighborhoods with varying resources. Causal analysis of these phenomena are

outside the scope of this study, but our exploratory results are useful in initializing conversations

about changes in mobility patterns within and between neighborhoods. Future work may analyze

the relationship between the discovered communities and factors such as new construction, bike

lanes, weather, incomes, and demographic characteristics.

The methods devised in this study can be applied to a variety of data in network time-series

format, particularly human mobility networks. The method can be applied to bikeshare networks

in other cities, or may be applied to other networks of transportation in urban systems. Future

work may elaborate on the theoretical properties of intertemporal community detection. The null

model described in section 4.3.1 may also have further use in statistical inference or in forecasting

future patterns. Another extension would be to account directly for the spatiotemporal aspects of

trips in the methodology.

Our work currently relies on historic station inventory data for the analysis of the Citibike

system. We do not have access to historical inventory data for Chicago and thus are not able to

estimate demand. Though similarities between corrected and non-corrected networks in the NYC

bikeshare system shows that there may be some use in using only non-corrected data in Chicago,

there are limitations in drawing conclusions for demarcations of functional mobility zones using

only observed demand. We propose a method in 4.4.1, but further estimation of demand without

historical station inventory data should be explored in future work in conjunction with community

detection.

We proposed a novel method to cluster networks representing bikeshare systems that vary

across time. Our community detection method combines usage of a configuration null model with

a trend model to describe the expected trajectory of the graph evolutions. We use a significance-

testing methodology to assess whether nodes are anomalously connected to each other within and

across time-periods. By using the proposed method, we are able to filter some of the system-wide

seasonal effects and map geographically coherent communities of latent human mobility signals

in the bikeshare stations in Chicago and New York and the taxicab network in New York. The
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methods used in this chapter may be applied to other situations where it is important to study the

evolution of structures within networks.

124



CHAPTER 5

Bimodules Clustering for Bipartite Correlation Networks

With the development of high throughput data in fields such as genomics, neuroscience, and

atmospheric science, researchers often need to compare two or more data sets derived from a com-

mon set of samples1. In most cases, different technologies measure different features and capture

different information about the samples. While data arising from different settings may be sep-

arately analyzed, additional and potentially fundamental insights can sometimes be gained from

the joint (or integrated) analysis of the data sets. Multi-modal analysis has received considerable

attention in present literature (Lahat et al., 2015; Meng et al., 2016; Tini et al., 2019; Pucher et al.,

2019; McCabe et al., 2019) .

We develop a new method to search for correlated groups of bipartite variables. We first define

the groups of variables (called bimodules) that need to be discovered. A bimodule is a minimal

group of variables from the two data types such that variables of the two types within this group

are correlated with each other in aggregate, but no variable within this group is strongly correlated

with variables of the other type outside the group.

Firstly, even though there are many groups of variables compared to the total variable dimen-

sion, BSP adaptively searches this space by iteratively updating the variable groups, guided by the

results of many hypothesis-tests at each step. We use analytical approximations to quickly compute

the p-values for these tests. Secondly, BSP directly analyzes the primary data rather than only

the correlation matrices. Therefore, the method is statistically motivated and “borrows strength”

from the interactions between variables of the same type during the search algorithm. Accounting

for these interactions in the algorithm thus make the method implictly network-analytical, even if

the inputs of the algorithm are not necessarily adjacency matrices, but directly the observations.

Simulation studies suggest that false discoveries under BSP are controlled.

1This chapter is adapted from a manuscript from 2020 (Dewaskar et al., 2020), this was joint work with Miheer
Dewaskar (primary author), Andrew Nobel, and Michael Love
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BSP relies on permutation-based p-values for test statistics equal to sums of squared cross-

correlations. These p-values are approximated using tail probabilities of gamma distributions that

are fit using the estimates of the permutation moments’ test statistic. BSP moment estimates

depend on the eigenvalues of the intra-correlation matrices between two data types, and as a result

the significance of observed cross-correlations accounts for the correlations within each data type.

5.1 Layout and Contributions

We first give an abridged background on the theory and methodogical details of the search

procedure, then discuss the novel application of this method to climate data. The contributions

to this method is in its novel application to climactic time-series data. Furthermore, embedded

in this application is the novel conception of gridded temperature and precipitation time-series as

bipartite networks. Because the overall sample size of these climate networks is much smaller than

in genomic data due to aggregation of resolution, more computationally intensive approaches may

be used for identifying optimal parameters such as the false discovery rate based on edge-error

estimates. We are able to repeat computations described in section to make more robust inferences

about optimal choices of significance parameters.

This chapter will proceed as follows: we first describe prior approaches that are similar in

motivation or application to BSP in the following section 5.2. We then set up the notation and

establish the setting for the data in section 5.3. We then define the theoretical bimodule object

in section 5.3.1 and its empirical (sample) counterpart in section 5.4 and its associated search

procedure. Within this section, we start by describing the distribution for the null model, then

describing the iterative hypothesis test procedure and its associated algorithm, then detailing the

initialization and selection of tuning parameter α. Following this, we move onto the application of

the method to temperature and precipitation data in North America procured from the Climactic

Research Unit (CRU) in Section 5.5. We first describe the data and preprocessing in section 5.5.1,

then the method application and results in Section 5.5.2. Finally, we describe the results on the

genomic analysis in Section 5.6.
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5.2 Prior Work on Bimodules

Since bimodules are defined in terms of cross-correlations, it is natural to investigate them in

the context of the bipartite cross-correlation network. Such a network is formed by connecting pairs

of cross-correlated features with an edge having a weight equal to the square of their (sample or

population) correlation. CONDOR (Platig et al., 2016) identifies bimodules by applying community

detection to an unweighted bipartite graph obtained by thresholding the sample cross-correlations.

One could, in principle, extend this approach by leveraging other community detected methods

(Beckett, 2016; Barber, 2007; Liu and Murata, 2010; Costa and Hansen, 2014; Pesantez-Cabrera

and Kalyanaraman, 2016) for weighted and unweighted bipartite networks.

The approach taken here is network based, but differs from community-detection based ap-

proaches such as CONDOR. While stable population bimodules can be defined in terms of the

population cross-correlation network, the sample cross-correlation network is not a sufficient statis-

tic for stable sample bimodules, which depend on (and account for) intra-correlations between

features of the same type. (Huang et al., 2009) also identify groups of associated genes and SNPs

by adapting bipartite clique mining, however they work with a tri-partite network derived from

progeny strain data. We conduct a comparative study with CONDOR as a competing method de-

scribed in Section 5.6.1. Other approaches such as sparse Canonical Correlation Analysis (sCCA)

as proposed by (Parkhomenko et al., 2009) and Group eQTL (GeQTL) (Cheng et al., 2015) are

similar in principle to the proposed method. However, these approachs require pre-specifying the

number of clusters and require that every feature be a member of some cluster and also do not

distinguish between inter- and intra-correlations, and moreover use different clustering dynamics

from iterative testing and thus yield results that are inherently different.

5.3 Notation and Setup

Suppose there are two high-dimensional datasets measuring information on the same n in-

dividuals. The measurements of the first type are represented by n × p matrix X with n rows

(observations) and p columns (samples). Those of the second type are represented by a n × q

matrix Y. In both X and Y, the ith row of the matrices measuring the (same) ith individual, and

the columns corresponding to measured variables. We denote the indices of variables of the two
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data types by S corresponding to X and T corresponding to Y:

S = {s1, s2, . . . , sp} , T = {t1, t2, . . . , tq}

We assume that the rows of of the joint matrix [X,Y] are independent copies of a jointly random

vector

(X,Y) = (Xs1 , . . . , Xsp , Yt1 , . . . Ytq) ∈ Rp+q.

We assume spherical symmetry in one of X or Y. Such an assumption is useful for fast approxi-

mations of p-value computations involved in the hypothesis tests. These approximations have been

show to work well for gene-expression data.

5.3.1 Bimodules

For each s ∈ S, let Xs denote the column of X corresponding to the variable s, and for each

t ∈ T define Yt similarly. For any s ∈ S and t ∈ T let ρ(s, t) denotes the unknown population

correlation between the random variables Xs and Yt, and let r(s, t) denote the observed sample

correlation between the columns Xs and Yt. Finally if A ⊆ S and B ⊆ T , let

ρ2(A,B)
.
=

∑
s∈A,t∈B

ρ2(s, t), and

r2(A,B)
.
=

∑
s∈A,t∈B

r2(s, t).

For singleton sets, we omit the surrounding brackets. Hence for s ∈ S we write ρ2(s,B) instead of

ρ2({s}, B).

The broad aim is to find pairs of sets (A,B), where A ⊆ S and B ⊆ T , so that variables in A

and B are all correlated with each other, but with no other variables. Specifically, elements in sets

A and B are correlated with each other in an aggregate sense, but no variable in the remainder

set T \B is correlated with those in A, and similarly no variable in S \ A is correlated with those

in B. We will call such a pair (A,B) a bimodule. Rigorously, we define a theoretical (population)

bimodule as:

Definition 5.1. (A,B) of non-empty sets A ⊆ S and B ⊆ T is a stable population bimodule if
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1. A = {s ∈ S | ρ2(s,B) > 0} and

2. B = {t ∈ T | ρ2(A, t) > 0}.

A represents exactly the set of features in S that are correlated in aggregate with the features

in B, while B is exactly the set of features in T that are correlated in aggregate with the features

in A. For the rest of the chapter, we refer to For theoretical purposes, we model bimodules in the

context of the population network of cross-correlations.

Definition 5.2. The population cross-correlation network Gp is the weighted bipartite network

with vertex set S ∪ T , edge set Ep = {(s, t) ∈ S × T | ρ(s, t) 6= 0}, and weights ρ(s, t) between -1

and 1 .

The following lemma shows that bimodules are closely related to the connected components of

Gp.

Lemma 1. A pair (A,B) of non empty sets with A ⊆ S and B ⊆ T is a population bimodule if

and only if A ∪B is a union of non-trivial connected components of Gp.

Proof. For any subsets F ⊆ S and G ⊆ T , we note that ρ2(F,G) > 0 if and only if some pair

(s, t) ∈ F ×G has ρ(s, t) 6= 0. Therefore, condition 1 of definition 5.1 says that every s ∈ A has at

least one neighbor in B under Gp, and A is exactly the set of all such neighbors of B.

Similarly condition 2 of definition 5.1 states that every t ∈ B has at least one neighbor in B

under Gp, and A is exactly the set of all such neighbors. Both these conditions are satisfied only

when A ∪B is the union of some non-trivial connected components of Gp.

As the lemma shows, stable population bimodules depend only on the edges of Gp; they do not

depend on the edge weights, or on correlations between features of the same type. As we will see

below, the situation for sample bimodules is substantially different.

5.4 Sample Bimodules and Search Procedure

We define a sample bimodule as an estimated bimodule that is inferred from observed data.

In practice, the population cross-correlation matrix (ρ(s, t))s∈S,t∈T is unknown, We use the sample

cross-correlation matrix (r(s, t))s∈S,t∈T . Since sample correlations are almost always non-zero, for
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s ∈ S and B ⊆ T , the condition ρ2(s,B) > 0 there must be replaced with r2(s,B) > τs,B, for some

threshold τs,B > 0. Analogously, for A ⊆ S and t ∈ T , the condition ρ2(A, t) > 0 must be replaced

with r2(A, t) > τA,s, for some τA,s > 0. We will choose the thresholds

{τs,B}s∈S,B⊆T ∪ {τA,t}A⊆S,t∈T

using principles from multiple hypothesis testing.

We now define the null distribution and the p-values for the iterative hypothesis testing scheme

used to cluster bimodules.

Definition 5.3. For a set of given observed data matrices [X,Y] with dimensions n× p and n× q

respectively, and for permutation matrices P1, P2 ∈ {0, 1}n×n chosen independently and uniformly

at random, the permutation null distribution is the distribution of the data matrix

[X̃, Ỹ]
.
= [P1X, P2Y]

The permutation null distribution is obtained by randomly permuting the rows of X, then

independently doing the same kind of reordering for rows of Y. The permutation distribution

depends on the observed data matrix [X,Y]. Such an operation preserves the sample-correlation

between any two variables within S or within T , but it nullifies the sample-correlation between any

variable from S and any variable from T (i.e. makes to zero). The for s ∈ S and t ∈ T , let r̃(s, t)

denote the sample-correlation within the vectors X̃s and Ỹt. The latter statement is justified by a

lemma from (Zhou et al., 2013). We first define the use this permutation null distribution to define

p-values.

Lemma 2. Suppose the data matrix [X̃, Ỹ] has the permutation null distribution obtained from the

matrix [X,Y]. Then for any s ∈ S and t ∈ T , Er̃(s, t) = 0, where the expectation is taken with

respect to the permutation null distribution.

Definition 5.4. Suppose the data matrix [X̃, Ỹ] has the permutation null distribution obtained

from the observed data matrix [X,Y]. For A ⊆ S and B ⊆ T define

p(A,B)
.
= P(r̃2(A,B) ≥ r2(A,B)) (5.1)
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where r̃2(A,B)
.
=
∑

s∈A,t∈B r̃
2(s, t), and the probability is computed over the permutation null

distribution.

The p-value p(A,B) is the probability that aggregate cross-correlation from variables within

A and B under the permutation null distribution, r̃2(A,B), exceeds its observed value r2(A,B).

A low value of p(A,B) provides evidence in favor of the hypothesis that ρ2(A,B) 6= 0. Since the

permutation distribution preserves the correlations within variables from A and within variables

from B, p(A,B) accounts for the presence of these correlations while assessing the significance of

r2(A,B). The p-value can be computed by a Monte Carlo simulation draswing from several random

permutations of the data matrix.

We now define sample bimodules wherein conditions on the population correlation ρ are re-

placed with the corresponding hypothesis test using aforementioned p-values, carried out using the

Benjamini-Yekutieli multiple testing procedure.

Definition 5.5. (Sample Bimodule) Fix an α ∈ (0, 1). A pair (A,B) of non-empty subsets A ⊆ S

and B ⊆ T is a sample bimodule at level α if

1. A = {s ∈ S | p(s,B) ≤ τα(p·,B)}, and

2. B = {t ∈ T | p(A, t) ≤ τα(pA,·)},

where p·,B = (p(s,B))s∈S and pA,· = (p(A, t))t∈T .

We use the following procedure to find empirical bimodules.

Initialize: Select a singleton set A0 = {s} ⊆ S and let B0 = ∅.

Repeat for k = 1, . . . , kmax:

– For each t ∈ T compute the p-value p(Ak−1, t) and let p← (p(Ak−1, t))t∈T .

– Let Bk = {t ∈ T | p(Ak−1, t) ≤ τα(p)} be the set of t ∈ T rejected by the Benjamini-

Yekutieli procedure.

– For each s ∈ S compute the p-value p(s,Bk) and let p← (p(s,Bk))s∈S .

– Let Ak = {s ∈ S | p(s,Bk) ≤ τα(p)} be the set of s ∈ S rejected by the Benjamini-

Yekutieli procedure.
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– Stop if (Ak, Bk) = (Ak−1, Bk−1).

Output: (Ak, Bk) if both sets are non-empty and (Ak, Bk) = (Ak−1, Bk−1).

If BSP terminates at a non-empty fixed point then its output is a stable bimodule at level α.

However, BSP is not guaranteed to terminate in a finite number of steps: there may be a convergent

set or a cycling of results as the procedure operates in a deterministic manner. As such, we stop

the iterative search after a fixed number of steps, determined by parameter kmax in algorithm.

5.4.1 Initialization

We initialize the BSP with each singleton pair (s, ∅) for s ∈ S, and each singleton pair (∅, t) for

t ∈ T .

The constant α ∈ (0, 1) is the only free parameter of BSP. While α controls the false discovery

rate at each step of the search procedure, this does not guarantee control of the false discovery

rate of the stable bimodules, or the false associations (i.e. (s, t) such that ρ(s, t) = 0) within the

stable bimodules. In general, BSP will find fewer and smaller bimodules when α is small, and find

more numerous and larger bimodules when α is large. In practice, we employ a permutation based

procedure to select α from a fixed grid of values.

Simulations and theoretical calculations suggest that singleton bimodules at a given level α ∈

(0, 1) can occur even in completely random data if |S| and |T | are large enough. We eliminate

bimodules that fail to be significant – bimodules (A,B) with p(A,B) > α
|S||T | . The latter threshold

is chosen using Bonferroni correction over all pairs in S × T to minimize the chance that singleton

bimodules are detected in completely random data.

The BSP search procedure may find the same bimodule starting from multiple initializations; we

deem these bimodules as equivalent. When there are many bimodules with substantial overlap, we

assess the effective number of distinct bimodules and select this number of representative bimodules

for subsequent analysis.

5.4.2 Choice of α

To select the false discovery parameter α, we estimate the fraction of erroneous essential edges

among bimodules at level α. This edge error estimate is calculated by considering the fraction of
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essential edges from bimodules that are spurious, when BSP(α) is run on a dataset in which half

of the variables of each type are permuted. We describe this half-permuted dataset in the next

section.

Comparing results between the original and permuted data allows us to empirically assess

the false discoveries by BSP when there are no cross-correlations between variable sets S and T .

However, the associations between at least some variables from S and T (in fact, these are the

ones that we want to find), and need an estimate on the proportion of false discoveries under such

conditions. For this, starting with our original data D = (X,Y,C), we generate a half-permuted

dataset as follows:

1. Randomly select half the features, Ŝ ⊆ S and T̂ ⊆ T , from each data type.

2. Randomly permute the rows of the submatrix of X that corresponding to the columns Ŝ, and

call the resulting matrix X̃. In other words, the rows corresponding to the columns S \ Ŝ

are the same in X and X̃, and the rows corresponding to features in Ŝ have been permuted

XŜ = P1XŜ .

We call this the half-permuted data HS=̇(X̃,Y,C). Note that the “half-permutation” in step 2

removes the effect of inter-correlation between (variables in) Sp and T , and the intra-correlations

between Sp and S \ Sp. However, intra-correlations within Sp, S\Sp and T are retained.

5.4.3 False discovery rate based on half-permutation

Let B = {(A1, B1), (A2, B2) . . . (AK , BK)} be a collection of bimodules obtained from BSP(α)

on the permuted dataset after filtering for overlaps, and suppose Sp ⊆ S and Tp ⊆ T are subsets

that have been permuted (Sp or Tp may be empty sets). Using this we define the edge-error estimate

edge-error(B) =
1

K

K∑
i=1

|essential-edges(Ai, Bi) ∩ Sp × T ∪ S × Tp|
|essential-edges(Ai, Bi|

(5.2)

The above edge-error estimate should be used as follows. First, generate multiple instances of

the half-permuted dataset. Next choose a grid, for example {0.01, 0.02, ..., 0.05}, and for each α

from the grid, run BSP(α) over the each of the half-permuted datasets and calculate the average

edge-error over each of these bimodules. Then we choose an α from the grid that has edge-error
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smaller than a pre-specified threshold like 0.05. Usually smaller values of α tend to have smaller

edge error. Hence we choose largest value of α with a small enough edge-error. The above edge-

error estimate may be variable. The false discovery rate estimates are used to select the value of

α ∈ (0, 1) used for BSP.

5.5 Application to Clustering of Temperature and Precipitation in North America

The relationship between temperature and precipitation over North America has been well

documented (Madden and Williams, 1978; Berg et al., 2015; Adler et al., 2008; Livneh and Hoerling,

2016; Hao et al., 2018) and is of agricultural importance. We applied BSP to find pairs of geographic

regions such that summer temperature in the first region is significantly correlated with summer

precipitation in the second region one year later. We will refer to such region pairs as T-P bimodules.

T-P bimodules reflect mesoscale analysis of region specific climactic patterns, which can be useful

for predicting impact of climactic changes on practical outcomes like agricultural output.

5.5.1 Data Description and Processing

The Climactic Research Unit (CRU TS version 4.01) data (Harris et al., 2014) contains daily

gridded global measurements of temperature (T) and precipitation (P) levels over land at a resolu-

tion of .5o× .5o (360 pixels by 720 pixels) from 1901 to 2016. We reduced the resolution of the data

to 2.5o×2.5o (72 by 144 pixels) by summing over an aggregating grid of the reduced resolution, and

restricted the resulting data to 427 pixels that corresponded to the latitude-longitude pairs within

North America. For each available year and each pixel/location we summed temperature (T) and

precipitation (P) over the Summer months of June, July, and August. Each of the resulting time

series was centered and scaled to have zero mean and unit variance. The data matrix X, reflecting

temperature, has 115 rows containing the annual summer-aggregated temperatures from 1901 to

2015 for each of the 427 locations. The data matrix Y, reflecting precipitation, has 115 rows con-

taining the annual summer-aggregated precipitation from 1902 to 2016 (lagged by one year from

temperature) for each of the 427 locations. Analysis of precipitation versus summer temperatures

lagged by 2 years, and temperatures from different seasons (Winter T; Summer P of the same
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year) in the same year did not yield any significant bimodules after applying the FDR selection

procedure.

5.5.2 Application of Search Procedure and Diagnostics

We ran BSP on the data with false discovery parameter α = 0.045. (The selected α was the

largest value in {0.01, 0.015, 0.02, . . . 0.05} having edge-error estimate under 0.1 based on 100 half-

permuted datasets, see Section The edge-error estimates generally increases as α increases as shown

in the following figure 5.1.
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Figure 5.1: False discovery rates (FDR) for BSP results for the relationship between temperature (T) and
precipitation(P) at significance levels ranging from 0.01 to 0.010. The largest value to be under the cutoff
threshold at 0.10 is at 0.045

Our analysis does not directly take into consideration spatial data, but rather searches unsu-

pervisedly for clusters of maximal correlations between related spatial processes, and then returns

results that show the cross-variable spatial relationships across temperature and precipitation.

Though temperature and precipitation are known to be spatially and temporally autocorrelated,

and hence not completely indepedent, we assume that these effects are negligible compared to the

true interactions between temperature and precipitation. Typical procedures in the analysis of

spatially correlated processes make use of using correlograms and variograms to assess their depen-
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dency (Legendre and Legendre, 2012). More detailed approaches to precisely parse out inter- and

intra-correlations in T and P may be approached in future work.

BSP found five distinct bimodules, while the effective number of bimodules was three. After

the filtering step, the two bimodules illustrated in Figure 5.2 and another bimodule with 80 tem-

perature pixels and 5 precipitation pixels remained. We further omitted the latter bimodule since

its precipitation pixels were same as those of bimodule B in Figure 5.2, but its temperature pixels

were not geographically congruous.

CRU: T(JJA)-P(JJA, offset), 1901-2016, α = .045

Figure 5.2: Bimodules of summer temperature and precipitation in North America from CRU observations
from 1901-2016. The left bimodule (A) contains 149 temperature locations (pixels) and 6 precipitation
locations. The right bimodule contains 53 temperature and 5 precipitation locations.

Temperature pixels in the two bimodules are situated distally from the precipitation pixels,

but the temperature and precipitation pixels within a bimodule are form blocks of a contiguous

geographical regions. Note that BSP did not use any location information while searching for these

bimodules. However, the localization might also be because pixel nearby are correlated; though

BSP typically accounts for these within-variable effects because of exchangeability in the data.

We assume that these effects are not purely due to spatial dependence and instead from common

sources of spatial origin.

The locations from the bimodules occupy large geographical areas on the map. The precipi-

tation pixels from the bimodule on the left in Fig. 5.2 form a vertical stretch around the Eastern

edge of the GP correlated with temperature pixels in large areas of land in the Pacific Northwest,

Alaska, and Mexico. In the second bimodule Fig. 5.2 (right) precipitation pixels in the southern
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Great Plains around Oklahoma is strongly correlated with temperature pixels in the Northwestern

Great Plains. A an anomalously hot summer Oregon in one year in the Northwest suggests an

anomalously rainy growing season in the following year in the Southern Great Plains. Pixel-wise

positive correlations are confirmed in the following table 5.1

A

P Pixel Mean SD

1 0.28 0.07
2 0.27 0.06
3 0.28 0.08
4 0.27 0.08
5 0.31 0.06
6 0.30 0.08

B

P Pixel Mean SD

1 0.31 0.04
2 0.35 0.03
3 0.29 0.04

Table 5.1: Average correlations per precipitation (P ) pixel. for two bimodules A and B for climactic data
(temperature and precipitation) in North America. Each entry yields a mean and standard deviation of the
correlations each P pixel within the bimodule with every T pixel in the same bimodule. Results show all of
the correlations are, at least on average, strongly positive.

The coastal proximity in all the temperature clusters suggest influences of oscillations in sea

surface temperatures. Aforementioned patterns from both bimodules map to locations of agricul-

tural productivity, such as in Oklahoma and Missouri (figure 5.2). The bimodules found by BSP

only consider the magnitudes of correlations between the temperature and precipitation pixels.

Upon further analysis of these bimodules we see that the significantly correlated temperature and

precipitation pixels are positively correlated in the Great Plains region. These results agree with

findings on concurrent T-P correlations in the Great Plains (Zhao and Khalil, 1993; Berg et al.,

2015; Wang et al., 2019a) . Our findings demonstrate the utility of BSP in finding insights into

remote correlations between precipitation and temperature in North America. Further research

may build on these exploratory findings and create a model for the purpose of forecasting that can

better predict growing-season precipitation in agriculturally productive regions around the world.

5.6 Application to Genomics (GTEX)

We describe results obtained from the application of bimodules to the problem of expression

quantitative trait loci (eQTL) analysis. This application was primarily undertaken by Miheer
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Dewaskar; more details can be found in the full article concerning this study (Dewaskar et al.,

2020). The NIH funded GTEx Project has collected and created a large eQTL database containing

genotype and expression data from postmortem tissues of human donors. A unique feature of this

database is that it contains expression data from many tissues. We applied BSP and CONDOR to

p = 556304 SNPs and q = 26054 thyroid expression measurements from n = 574 individuals.

We applied BSP to the thyroid eQTL data with false discovery parameter α = 0.03 selected

to keep the edge-error under 0.05 (Section 5.4.2). The search was initialized from singleton sets

of all genes and half of the available SNPs, chosen at random. The effective number of bimodules

was 3304 (using the Jaccard overlap method described in 3. The selected bimodules had SNP sets

ranging in size from 1 to 1000 (median 1), and gene sets ranging in size from 1 to 100 (median 7).

5.6.1 Trans and Cis-eQTL Analysis

In order to assess potential biological utility of bimodules found by BSP, we compared the

SNP-gene pairs in bimodules to those found by standard cis- and trans-eQTL analysis, studied the

locations of the SNPs, and examined the gene sets for enrichment of known functional categories.

Bimodules produced by CONDOR are similar to the SNP-gene pairs identified by cis- and trans-

eQTL analysis. Table 5.2 compares these eQTL pairs with those found in bimodules identified

by BSP. Cis-eQTL analysis considers only local SNP-gene pairs (improving detection power by

reducing multiple testing), while trans-eQTL analysis and BSP do not use any information about

locations of the SNPs and genes. Half of the pairs identified by cis-eQTL analysis and most of the

pairs identified by trans-eQTL analysis appear in at least one bimodule.

Bimodules capture sub-networks of SNP-gene associations rather than individual eQTLs, and as

such individual SNP-gene pairs in a bimodule need not be eQTLs. Table 5.2 shows that a significant

fraction of BSP bimodules are not connected by either cis- or trans-eQTLs. The discovery of such

bimodules suggests that the sub-networks identified by BSP cannot be found by standard eQTL

analysis, and that these sub-networks can provide new insights and hypotheses for further study. To

identify potentially new eQTLs using BSP, we examine bimodule connectivity under the combined

set of cis- and trans-eQTLs. Around 300 local edges (i.e. the SNP is located within 1MB of the

gene transcription start site) and 8.8K distal edges do not meet the correlation thresholds for cis-

and trans-eQTL analysis, respectively, and should be investigated in future research.
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distance type % eQTLs found among bimodules

trans analysis 84%
cis analysis 51%

Table 5.2: Comparison of BSP and standard eQTL analysis. A gene-SNP pair is said to be found among
a collection bimodules if the gene and SNP are both part of some common bimodule.

5.6.2 Genomic locations and Ontology

We studied the chromosomal location and proximity of SNPs and genes from bimodules found

by BSP and CONDOR. While CONDOR uses genomic locations as part of the cis-eQTL analysis,

BSP does not make use of location information. Genetic control of expression is often enriched

in a region local to the gene (Consortium et al., 2017). All CONDOR clusters and almost all

bimodules, have at least one local SNP-gene pair, wherein the SNP is located within 1MB of the

gene transcription start site. All SNPs and all but two (Chr. 8 and 9) of the genes from CONDOR

clusters were located on Chromosome 6. The SNPs and genes from the bimodules were distributed

across all 23 chromosomes:

The Gene Ontology (GO) database contains a curated collection of gene sets that are known to

be associated with different biological functions (Consortium, 2014; Botstein et al., 2000; Rhee et al.,

2008). The topGO (Alexa and Rahnenfuhrer, 2018) package determines placement of each sets in

enriched GO sets. For each of the 145 “large” gene sets( >8) bimodules, we used topGO to assess

the biological processes of B. We retained results with significant BH q-values (α = .05). Of the

145 gene sets considered, 18 had significant overlap with one or more biological process. We further

refine the enrichment results using text analysis in the quanteda package (Benoit et al., 2018). The

most significant GO terms for BSP are be found in the following table. In bimodule (indexed) 1, for

example, many of the ontologies associated with the discovery appear to relate antigen processing

to the discovered genes; in bimodule 3, detection of chemical stimulus; in bimodule 11, regulation

of cellular processes; ion response in bimodule 14. The repeated occurrences of these enrichments

speak to the power of discovering biologically relevant results using BSP.
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Bimodule Ontologies

1 antigen(9), immune(9), processing(8), presentation (8), response(8)

6 regulation(11), viral(10), entry(7), response (6)

9 regulation(10) , biosynthetic(8) , process(6)

11 regulation(10) , biosynthetic(8) , process(6)

14 ion(10) , response(9) , cellular(9)

Table 5.3: Text analysis of of the gene ontology results for resulting bimodules. The ontology keywords
with greater than 5 occurences were filtered. The analysis was conduected using the R package quanteda.
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CHAPTER 6

Future Work

In this chapter, we discuss potential avenues of future work. The two primary directions in

future work are the multivariate normal weighted stochastic blockmodel and a null model for spatial

networks. We also discuss potential technical extensions to the intertemporal community detection

method described in chapter 3. These future directions tie together several common themes form

the previous sections. Notably the presence of a global background set of unclustered nodes and

network representations of spatial relationships.

There are two broad parts of this chapter that describe ongoing as well as future work. In

the first part (Section 6.1) we highlight the more immediate “ongoing” work that represents the

next step of the applications of SBANM in Chapter 2. In this first section, I outline a naive method

for prediction based on Mahalanobis distances in order to assess prediction error. In the following

sections, I describe future directions in self-looping networks outlined in Chapter 3 in Section 6.2

and also intertemporal community detection described in Chapter 4 in Section 6.3. In Section 6.4,

we describe a detailed extension of the null model for self-looping networks described in Chapter 2

for spatial networks.

6.1 Ongoing Extensions to SBANM

The development of SBANM opens up a bevy of methodological avenues. One immediate next

step is to expand the study of PNC data to neuroimaging and genomics data. Such work is currently

in progress for the PNC study to identify potentially jointly model neural and genetic influences

in addition to symptoms. Another direction is in assessing significance or predictive power of the

imputed clusters. More generally, these in-group and out-of-group interactions are related to mixed

effects models for multimodal weighted networks that may serve as another perspective in the study

longitudinal analysis of networks (Snijders, 2005).
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We propose a simple extension of the SBANM method to assess prediction errors. This extension

has been implemented on data, but its methdological and theoretical justifications should be further

explored in future work.

6.1.1 Cross Validation

We describe an algorithm of cross validation (CV) to assess prediction error. This algorithm

itself may be used for other community detection methods, particularly variational inference-based

ones that may naturally allow for Mahalanobis distances to be factored into the clustering mecha-

nism.

1. For n samples split into n/2 sets for training and test set

2. Apply SBANM on the training set Xtrain and obtain Θtrain =
(
µq,Σq

)
q:q≤Q for fixed Q blocks

(one being noise), obtain the memberships s Ztrain

3. For every observation Xtest
i in the test set :

(a) For every member j, find the distance between group q between the edge (i, j)

(b) Find the group q that has the closest Mahalanobis Distance for every member-edge j,

tabulate all (i, j) across ntest groups with the smallest distances.

(c) Initialize membership vector τ̂i with the proportion of tabulated minimum -distance

memberships across all other edges

(d) Apply one round of the E-Step of SBANM to determine the memberships Ztest, given the

already-estimated parameters Θtrain.

4. Compare the memberships Ztest to the estimated Ztrain and assess CV prediction error for

memberships

5. Repeat the above steps but reverse the roles of training and test set

6.1.2 Cross Validation Results

We assess the cross-validation error for the early adult segment of the PNC data. the sample

consists of 1863 subjects. Earlier tests found that the optimal selection for Q was 4 for this sample.
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For simplicity , we only focus on the noise block NB as it is the one that is most easily identifiable

across different runs, which are specifically labeled in the model estimation algorithm. We use a

Jaccard score to assess the match between the cross validation hold-out sets and the true value. The

ground truth in this case does not exist, but we refer to the true value as the imputed memberships

from a run of the algorithm in the training set. Note that the training set and test set are applied

twice, and flipped. In future work we will conduct a simulation study to evaluate this method with

the presence of ground truth.

The Jaccard score is defined as the ratio of the cardinality total intersecting members from two

sets A and B, which is similarly defined in Chapter 4. a higher score signifies higher agreement.

We use the Jaccard score between the predicted and true (as assessed form the other symmetric

experiment). To contrast against the symmetric Jaccard index, we also use the one-sided predictive

error which is the ratio of the overlap Otest = Apred,test
⋂
Atrue,test to the true test set Atrue,test, the

prediction rate only measures if the true members are recovered, and does not take into account

the false positives.

Pred% =
|Otest|
|Atrue,test| .

The symmetric Jaccard score Jaccard(Atrue,test, Apred,test), as defined in Chapter 3, on the other

hand, accounts for false positives as well as true recoveries:

Trial TrainTrue TestTrue TestPred Overlap Jaccard Pred%

1a 30 29 39 24 .55 .83
1b 29 30 56 28 .48 .93

2a 2 5 9 4 .40 .80
2b 5 2 20 0 0 0

3a 4 4 12 3 .23 .75
3b 4 4 13 4 .31 1

4a 3 8 14 1 .50 .12
4b 8 3 43 1 .20 .33

5a 6 7 30 6 .19 .86
5b 7 6 16 1 .50 .17

Table 6.1: Estimates and ground truths of each half-sample CV split for SBANM applied to PNC early adults

The prediction rates do seem to indicate that most of the true members in NB are found,

however, there seems to be a lot of false positives.
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6.1.3 Group Sizes of Each Run

Here I provide the most basic summary statistics of each half-run. The sizes of each NB are

all very small compared to the total sample size (1863). Moreover, a major “control” group of

around 700-800 S1 is also consistently found. CV errors for these groups should also be assessed in

following work. In general, however, these results appear to be promising in the consistent discovery

of similar clusters across evenly-split training/test sets for the SBANM algorithm.

Trial 1

ρq(a) | Gps(a) | ρq(b) | Gps(b) |
NB 0 30 0 29
S1 49 751 51 754
S2 62 148 70 147
S3 100 2 81 2

Trial 2

ρq(a) | Gps(a) | ρq(b) | Gps(b) |
NB 0 2 0 5
S1 40 69 11 83
S2 52 775 49 731
S3 64 85 50 113

Trial 3

ρq(a) | Gps(a) | ρq(b) | Gps(b) |
NB 0 4 0 4
S1 50 762 50 749
S2 41 67 19 73
S3 57 98 57 106

Trial 4

ρq(a) | Gps(a) | ρq(b) | Gps(b) |
NB 0 3 0 8
S1 46 757 47 699
S2 25 52 55 217
S3 53 119 83 8

Trial 5

ρq(a) | Gps(a) | ρq(b) | Gps(b) |
NB 0 6 0 7
S1 51 752 51 764
S2 52 45 18 76
S3 60 128 57 85

Table 6.2: Clustering characteristics of training-sets for the 5 trials shown above.a) and (b) respectively
represent the flipped training sets (which serves as the test set in a subsequent analysis) that comprise half
of the total sample. ρq for (a) and (a) are the estimated correlations (times 100). Each ρq for every block
designated NB are set to zero. |Gps(a)| and |Gps(b)| denote the estimated block sizes for each block.

6.2 Limitations and Further Research in Self-Looping Networks

Several limitations arise from the proposed CCME-SL method and application described in

Chapter 3. Though mostly unsupervised, there are several tuning parameters that must be specified,

such as the overlap parameter and the α threshold for the p-value. Sensitivity analysis (see Fig.

3 in Supporting Information) over a range of p-values and overlap thresholds demonstrates that

results do not change much when tuning parameters are tweaked. The post-processing step for

determining the nodal communities does not capture the extent of the monocentricity that arises
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from areas that we expect to exhibit these properties, such as Multnomah County (Portland) and

Hennepin County (Minneapolis).

Two major issues that we plan to explore in future work are:

1. Resolution limit: In future work we plan to explore the notion of resolution limit in the

context of CCME and its judgement of significant communities. In brief, consider the simpler

setting of unweighted networks. In an unweighted network the null model corresponding to an

empirically observed network is created by placing an edge between two vertices u and v with

a probability proportional to dudv/dT . For two sets A and B with degrees d(A) and d(B),

d(A) × d(B) � dT will cause the null model to find any presence of an edge between these

sets to be “surprising” and cause A and B to be merged into the same community. This is a

well-known issue with algorithms underpinned by a null model, as is the case for modularity

detection. Similar issues must also arise with CCME-like algorithms. One method to address

this would be to incorporate a resolution parameter γ as in the context of the unweighted case,

which we now briefly describe (and refer the reader to work in (Reichardt and Bornholdt,

2006) or (Fortunato, 2010, Section 6.C) for more details). In the unweighted case, the natural

null model is the configuration model which preserves degrees. This model implies that the

null random graph model gives the probability of the existence of an edge between two vertices

u and v as in (3.3). To accommodate for and deal with the issue of the resolution limit, the

reference model can be modified so that

P(Ãuv = 1) = γ
dudv
dT

As one increases γ ↑ ∞, this implies that we expect non-trivial connectivity between nodes

and thus connectivity within subsets to pass “higher bars” before being judged significant.

We are exploring similar ideas in the context of the weighted case, including connections

between modifications of the reference null model and the corresponding Markov stability of

diffusion processes on the null models (Lambiotte et al., 2008).

2. Spatial null models: In current work we are developing null models which also take into

account the spatial component i.e. null models that directly include the spatial component
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and preserve various functionals such as the degree and the strength. We hope that this

new approach will give more accurate results, mitigating issues like that of CCME-SL finding

connections between neighboring counties surprising purely because of the resolution limit,

since CCME-SL does not directly incorporate the notion that in spatial systems “neighboring

counties have a higher propensity to connect”.

Several fruitful directions of further research emerge from this study of commuting regions.

This study documents the influence of self loops in spatial networks describing complex patterns

arising from the collective behavior of many individuals. As network data in these realms become

increasingly available, we expect the emergence of more methods accounting for self-looping behav-

ior in networks. We plan to extend the methodology proposed in this study to directed networks so

as to model the orientation of commuter flows. A further extension of the method described in this

study is to use a temporal model to measure change in communities across time. Another avenue

is to investigate the characteristics of power-law distribution of populations that are embedded

within the commuting networks and how distributional characteristics of power laws interplay in

community detection.

This research extends such a methodology to a more general setting of spatial networks that

characterizes collective behaviors. Such networks often represent agglomerations of particles that

are influenced by both core and peripheral elements. The method of community detection in net-

works with self-loops may be applied to a variety of spatially-constrained human mobility networks

which naturally exhibit significant self-looping characteristics, such as human migration behaviors.

This method may find applications in other domains as well. In neuroimaging, one such appli-

cation may be in analyzing the epicenter-spreading proliferation of biomarkers such as tau, which is

significantly linked to Alzheimer’s Disease. Research has revealed that tau develops along a trajec-

tory of concentric spatial accumulation that aggregates at a seed region. Mapping such behavior in

brain networks may find a suitable implemention in community detection on strongly self-looping

graphs.
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6.3 Future Work in Intertemporal Community Extraction

We aim to expand on the work in intertemporal community detection as outlined in Chapter

5. An immediatre next step would be to design and implement a simulation study to assess model

performance, and to deternine how to select the optiimal energy barrier U . One other further

direction is in more rigorously accounting for the false discovery rate control and accounting for

the temporal dependence catering to a variety of situations, such as clusters with varying rates

of change in connectivity across time. Presently, the time-series clustering method accounts for

repeated counts of significance as well as postulated directions or connectivity trajectory. Future

explorations may (1) account for vector autoregressive models or (2) test for changepoints for

differing trends in connectivity.

6.4 Spatial Null Model

In future work, we propose a spatial null model to describe Hubs and Cliques in networks that

representing spatial relationships. This model may be viewed as an extension of some hypotheses

regarding network structure in the discussion of the CCME-SL in Chapter 3. Present literature

describe ‘latent position models’ using probability models in the following form ((Hoff et al., 2002b).

P(Auv = 1) = σ exp

(−dist(u, v)

ρ

)
(6.1)

For some parameters φ, τ and latent variables zi, zj . Some prior work has been focused on latent

position network models (Hoff et al., 2002a). Define zuv as the distance between two nodes u and

v. Although zuv can actually be any sort of latent graph underlying the primary graph.

We propose a rough outline of a spatial null model on a single weighted graph X whose weights

are described as Xuv between nodes u, v. Moreover, there is an underlying adjacency matrix A

whose entries are 0 or 1 and describe the presence of an edge Auv between two nodes. In addition,

between two nodes u, v we use dist(u, v) for encoding their geographical distance. The global

resolution parameter may be calculated in another grid search or by heuristic assumption i.e.

τ = 1 or τ = 1/sT . One way of determining τ is through a grid search that minimizies the sum

mean squared error for each estimate.
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We posit two different null models that reflect two different “viewpoints” for an observer that

is located at some spatial point that is represented by a node. These null models may be used in a

variety of ways: we propose that they can be used to detect different types of communities arising

from networks that represent spatially relational structures.

We expand on the postulation in chapter 3 that spatial networks observe inherently two different

types of clustering formations: hub-spoke structures, wherein most nodes in a given cluster connect

strongly to a central node, and clique-like communities wehre all nodes are connected to each

other. We prospectively propose a method based on variational inference for the detection and

classification of these different types of communities.

6.4.1 Local Null Model

The assumption of the local null model is that the network driven by same-location point

processes (self loops), that radiate outwards. Observer at u knows:

1. distance dist(u, v) between u and v

2. value of weight Xuu at point u, because the weight at the immediate point can be observed

3. total strength Su of node u, implying, since that, since the observer also knows every edge

Auv and degree deg(u), they also know the average weight

4. sample variance κ of the weights Xuv; intuitively overall “neighborhood” variation (surround-

ing u) is known to the viewer, though they do not know the individual components.

Because the position of the observer is localized, they do not know the (1) binary edge Auv for all

v that is connected to u, (2) exact weight Xuv for v 6= u, (3) frequency f(Xuv) of weight Xuv.

In the local model, one has a ‘general idea’ of the weight structure across the entire spatial

domain by presupposing knowlege of Su. This assumption is analogously used in the configuration

model: total weights across each node are fixed parameters. To use an analogy as a motivating

example : suppose a node represents a traveler who has just moved into a new city represented by

a network of neighborhoods. They generally know what and where a neighborhood is like, and they

know where their neighborhood is , but they are not totally sure where their neighborhood connects

to another neighborhood, even though know all bordering neighborhoods. Another analogy for the
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above heuristics is: one is standing in a subway, they know what train schedule is in the given

station, and they know the scale (represented by Su) as well as pace, or complexity, of the station

within the context of the system (represented by κu). However, where trains are coming and going

in other stations, the observer does not know.

We treat the conditional expectation Eu[Xuv|u, v] as a random variable with some arbitary

distribution specific to u with (1) mean µu and (2) variance σ2
u. The best approximate guess for

each weight Xuv is its conditional expectation given the distance, thus the estimate for all weights

Xuv from node u is Yu multiplied by a spatial decay term that decreases with distance. Such a

term, at its simplest, can be represented by an exponential covariance function. The expected value

of a weight given point u is, for local scaling parameters ρu unique to each node and for global

resolution parameter τ :

Eu[Xuv|u] =
µv
τ

exp

(
− dist(u, v)

ρu

)
(6.2)

The variance of weight Xuv connecting two points u, v is similarly constructed and is evocative of

the Matern covariance used often in spatial statistics, implying stationarity. Now we calculate the

parameters and probabilities using the constraints. Prior work has used the weighted configuration

model in spatial null models (Ruzzenenti et al., 2012) , but have not taken into account any

constraints based on variances using existing work on Gaussian process covariance functions.

1. Preserves conditional expected strength

As in configuration model, preserve the strengths, or sum of weights. For S∗u = Su −Wuu as

the strength excluding self loop:

Eu[Ŝ∗u|u] = Su −Wuu

for weights centered around a point u, we assume that all points have the same expectation

scaled by distance except for the point u itself, which is known as the “observer” is standing

directly above that point.

E[Ŝ∗u|u] ∝ µu · g(Area(u), ρu)
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where g(·) is some arbitrary continuous function that is composed of the area surrounding

point u and the global resolution parameter ρ.

2. Preserves sum of conditional variances

Define κ as the known sample variance of the system, multiplied by n. The value is known,

intuitively, (despite the sum of its parts being treated as “unknown”) because the observer

has a general idea of the size and complexity of the spatial system (i.e. the total activity of

the train station), but not the details of its individual parts. We set the constraint

∑
v:v∼u

Var(Xuv|u) ≈
∑
v:v∼u

(Xuv − E[Xuv|u])2 := κu

Such a condition presumes that the spatial spread of variances is proportional to the sample

variance, given the knowledge of Xuv from being centered at u.

Since the observer is presumed to know the strength as well as the degrees of u, as well as the

self-loop, so one choice for the estimate of µu given u, Eu[Xuv|u] is µ̂u = Su −Xuu/(deg(u) − 1).

Therefore, the fitted value for each weight between u, v, if the observer is located at u, is

X̂uv =


µ̂u
τ exp

(
− dist(u,v)

ρu

)
if u 6= v

Xuu if u = v

.

6.4.2 Global Model

Assumptions for the global model are identical to those of the local spatial model but the key

difference is that the probability between edges u and v must be estimated using global assumptions.

The observer at u does not have any local knowledge of u but instead knows the global estimates

for probabilities and expected edges. Like in the local model: the observer takes as given: distance

dist(u, v) between u and v, total strength Su and degree deg(u), of node u sample variance κ of the

weights Xuv. However, they do not know the (1) edge connection Auv, (2) value of weight

Xuu at point u, (3) exact weight Xuv for v 6= u, (4) frequency f(Xuv) of weight Xuv.

The primary difference between the local and global model is that in the global model, the

estimated probability of edge connection is instead a function of τglobal and ρglobal. The fitted value
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for each edge Xuv is then the expected value under the global null distribution, observed from the

vantage point of u: Eu[Xuv] = Eu[Xuv|Auv] · P(Auv).

6.4.3 Testing for Hubness and Cliqueness

I outline a plan to use variational EM to alternate between estimation of the model parameters

for both the local and global parameters in future work. The descriptions here are exploratory and

outline potential steps that we may take. The variational parameters are the sets of nodes B(k)

(at a given iteration k), obtained by iterative testing in a similar way as outlined in the previous

chapters. The model parameters are the global and local parameters µuv, ρuv for each node u, v and

entire-network parameters τ for both the global and local null models. We estimate the probability

of a candidate set B (at iteration k) being a Hub (H), or a Clique C. We represent this probability

of node u being a hub as variational parameter Pu, which converges to zero or one. For a given

set B, we construct a test statistic Du(B) that represents the difference between hubness and

cliqueness:

Du(B) = H(u,B)− C(u,B)

for B = {Candidate set, inclusive of u}, and B− = {Candidate set, not inclusive of u}

H(u,B) =
∑
v:v∈B

Xuv

C(u,B) =
∑

w:w∈B−

∑
v:v∈B−

Xwv

But for “spoke” u, it is either in a hub with probability 1−Pu or a part of a polycentric clique

with probability Pu, so the test statistic is

S(u,B) = PDu (B)C(u,B) + (1− PDu (B))H(u,B)

In the E-step, the memberships are estimated by performing iterative testing on the statistic

S(u,B). At each iterative step k, a candidate set B(k) is performed with its edge between all nodes
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in the network:

p(u,B) = P(S(u,B) > S(u,B,G)).

where G represents the random graph under the null model. The p-value is calculated as some ap-

proximation of the difference between the cliqueness C(u,B) and hubness H(u,B), whose statistics

are respectively estimated from the global and local models:

ES(u,B) = PDu EC(u,B) + (1− PDu )EH(u,B).

Each conditional expectation term inside the summation can be calculated, with respect to

global and local assumptions. This is iterated, alternating with the M-step wherein the local and

global parameters µ̂global
uv and µ̂u (as well as associated variances) are estimated, until membership

variables and hubness probabilities Pu become stable. To calculate the variational variable Pu

which represents the probability that set B is a hub but not a clique.

PDu (B) = P(Du(B) > EDu(B)).

These calculations are then performed for each seed set in a similar way as the iterative testing

schemes in the previous chapters. These outlined steps will be fleshed out in future work.
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