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ABSTRACT

Kayla W. Kilpatrick: Causal Inference In Cluster-Randomized Trials and Observational Studies
With Partial Interference

(Under the direction of Michael G. Hudgens)

Vaccine effects or other health-related treatments are important to the field of public health.

Causal effects can go beyond simple association to determine whether a treatment is effective

in reducing a disease, for example. In infectious diseases, one person’s treatment may affect

another individual’s outcome. This is known as interference. Causal inference with interference

can be a powerful tool in the benefits of vaccines or other treatments. This work considers

methods for drawing inference about causal effects in cluster-randomized trials and observational

studies in the presence of interference.

Cluster-randomized trials are often conducted to assess vaccine effects. Defining estimands

of interest before conducting a trial is integral to the alignment between a study’s objectives and

the data to be collected and analyzed. The first paper considers estimands and estimators for

overall, indirect, and total vaccine effects in trials where clusters of individuals are randomized

to vaccine or control. The scenario is considered where individuals self-select whether to

participate in the trial and the outcome of interest is measured on all individuals in each cluster.

Unlike the overall, indirect, and total effects, the direct effect of vaccination is shown in general

not to be estimable without further assumptions, such as no unmeasured confounding. An

illustrative example motivated by a cluster-randomized typhoid vaccine trial is provided.

In the setting of observational studies with partial interference, inverse probability weighted

estimators have previously been developed. Unfortunately, these estimators are not well suited

for studies with large clusters. Therefore, in the second paper, the parametric g-formula is

extended to allow for partial interference. G-formula estimators are proposed of overall effects,
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spillover effects when treated, and spillover effects when untreated. The proposed estimators

can accommodate large clusters and do not suffer from the g-null paradox that may occur in the

absence of interference. The large sample properties of the proposed estimators are derived, and

simulation studies are presented demonstrating the finite-sample performance of the proposed

estimators. The Demographic and Health Survey from the Democratic Republic of the Congo is

then analyzed using the proposed g-formula estimators to assess the overall and spillover effects

of bed net use on malaria.

In the third paper, g-estimation is extended to the case of partial interference where different

treatment policies are of interest. This partial interference setting means that individuals within a

cluster may interfere with one another, but they cannot interfere with individuals in other clusters.

In this setting, prior work has focused on inverse probability weighting and the parametric

g-formula. However, inverse probability weighting does not handle large cluster sizes well.

The parametric g-formula relies upon a correctly specified outcome model. G-estimation is

able to handle larger clusters and is not subject to the g-null paradox, providing an alternative

method for this setting. Additionally, g-estimation is doubly robust and is thus more robust to

model misspecification than the parametric g-formula. G-estimators of overall effects, spillover

effects when treated, and spillover effects when untreated are considered. The large sample

properties of the proposed estimators are derived using estimating equation theory. A set of

simulation studies are presented to demonstrate the finite-sample performance of the proposed

estimators. The 2013-14 Demographic and Health Survey in the Democratic Republic of the

Congo is analyzed to determine the causal effect of bed net use on malaria.
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CHAPTER 1: LITERATURE REVIEW

1.1 Introduction to Causal Inference

Causal inference was developed in order to go beyond associations found in general

statistical inference and make causal claims. Neyman [1935] started the potential outcomes

framework, which was later developed more by Rubin [1974]. In this framework, potential,

or counterfactual, outcomes are all possible outcomes for a particular study. Some of these

potential outcomes are not observable.

To elucidate this idea, let there be i = 1, . . . , n individuals in a study with a binary

treatment A. Let Ai = 1 indicate that individual i received treatment and let Ai = 0 indicate that

individual i did not receive treatment. For simplicity, let there be a binary outcome Y , where

Yi = 1 indicates that individual i experienced the outcome of interest and Yi = 0 indicates

that individual i did not experience the outcome of interest. Define the potential outcome for

individual i as Y a
i ; Y a=1

i indicates the outcome for individual i that would have been observed if,

possibly counter to fact, individual i received treatment. Similarly, Y a=0
i indicates the outcome

for individual i that would have been observed if, possibly counter to fact, individual i did

not receive treatment. The causal effect of treatment versus no treatment can be written as

Y a=1
i − Y a=0

i . Under causal consistency, discussed by Cole and Frangakis [2009], the observed

outcome can be written in terms of the potential outcomes: Y = Y a=1A + Y a=0(1 − A). If

individual i receives treatment, then Yi = Y a=1
i and Y a=0

i is unobserved since an individual

cannot both receive and not receive treatment. This idea is called the fundamental problem of

causal inference [Holland, 1986]: since both potential outcomes cannot be observed on the same

unit, it is impossible to observe the effect of the treatment on that unit. The treatment effect

must therefore be estimated from observed data.
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Rubin [1980] detailed the stable unit treatment value assumption (SUTVA), which is fre-

quently used in causal inference framework. This assumption states that there is no interference

between units, meaning that the treatment status of one individual does not affect the the out-

come of another individual [Cox, 1958]. Under this framework, there is only one version of

treatment and one version of control.

Randomized controlled trials (RCTs) are the gold standard in research since randomization

enables the comparison of the treated and untreated groups. In RCTs, when the randomization

is done properly, association is causation [Hernán and Robins, 2006]. However, it is not

always possible to conduct a randomized trial and observational data must be used. Since

treated and untreated are generally not comparable in the observed population, association is

no longer causation [Hernán and Robins, 2006]. Two common methods for causal inference in

observational studies are the parametric G-formula and inverse probability weighting (IPW).

A less commonly used method is g-estimation, perhaps due to a lack of off-the-shelf software

[Vansteelandt and Joffe, 2014]. The parametric G-formula consists of the g-computation

algorithm introduced by Robins [1986] and outcome regression. This method is based on

standardization [Hernán and Robins, 2006]. IPW essentially creates a pseudo population

where each individual in the study appears twice: once as treated, once as untreated. This is

accomplished by weighting the population with the inverse of the conditional probability of

receiving the treatment status that each person received [Hernán and Robins, 2006]. Horvitz

and Thompson [1952] were the first to create these IPW type estimators. A downfall of the IPW

method is that when these weights are small, the estimator becomes very large and difficult to

calculate.

A common assumption in observational studies is that the potential outcomes are indepen-

dent of treatment given a set of measured covariates. Let L represent the measured covariates.

This assumption can be written as Y a ⊥ A|L and is often called conditional exchangeability

[Hernán and Robins, 2006]. Since the potential outcomes are only independent of treatment

given L, this assumption means that all possible confounders (covariates that affect both the
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outcome and treatment) must be in L. In other words, there are no unmeasured confounders.

Another assumption that is commonly used is positivity. In words, positivity says that there

must be at least one individual for each treatment status for every combination of observed L

[Westreich and Cole, 2010]. In math, this can be represented as P (A = a|L) > 0 for a ∈ (0, 1)

when f(L) 6= 0.

Generally, causal effects can be defined in terms of a contrast function g(x, y) where

g(x, x) = 0. One such causal contrast is the causal risk difference, which can be defined as

E[Y a=1] − E[Y a=0]. In order to be a causal effect, the causal contrast must be defined over

the same set of units [Rubin, 1974, Frangakis and Rubin, 2002]. A unit could be defined as

an individual or a cluster for example. Additionally, in order to be a causal effect, the causal

contrast must be in terms of the same outcome under different counterfactual scenarios.

1.2 Causal Inference with Interference

When an individual’s treatment status may affect another individual’s outcome, this is

known as “interference” between individuals [Cox, 1958]. In the context of infectious diseases,

one individual’s vaccination status could affect whether or not another individual gets infected.

In the presence of interference, Halloran and Struchiner [1991] define the direct, indirect, total,

and overall effects of treatment. The direct effect of treatment is the effect of treatment that is

not attributable to interference. The indirect effect of treatment is typically thought of as the

effect of treatment on those who did not receive the treatment, but indirect effects can also be

defined in individuals who received treatment. If this effect exists, it is solely due to interference.

The total effect is the effect of receiving treatment, as well as the effect of others receiving

treatment. Finally, the overall effect is the effect of treatment among all individuals for different

counterfactual scenarios. Halloran and Struchiner [1995] define these treatment effects in terms

of potential outcomes.

When individuals within groups can interfere with each other but not with individuals

in other groups, this is known as “partial interference,” as described by Sobel [2006]. This

3



assumption may be reasonable if the groups of individuals are sufficiently separated by distance

or time. If individuals are able to interfere with all other individuals, this is known as general

interference. Interference can make the definition of causal estimands difficult. Previously,

without interference, there were two potential outcomes that an individual could experience

for a binary treatment. With interference, a particular individual can experience much more

than two potential outcomes based on the possible treatments that the surrounding individuals

receive.

Hudgens and Halloran [2008] proposed estimands of the direct, indirect, total, and overall

effects of treatment in a two-stage randomized trial. In these trials, clusters are assigned to a

treatment allocation program with the individuals within those clusters subsequently assigned

to treatment or control based on the allocation program of their cluster. Under this study

design, Hudgens and Halloran [2008] obtain unbiased estimates of the estimands, as well as

the variance of the estimators. However, it is not always possible to run a randomized trial.

Tchetgen Tchetgen and VanderWeele [2012] developed IPW estimators in observational data

where interference may be present. Perez-Heydrich et al. [2014] developed asymptotic variance

estimators when the propensity score is modeled using M-estimation theory from Stefanski

and Boos [2002]. Liu et al. [2019] proposed doubly robust estimators for causal inference with

partial interference.

Causal inference with interference is not only studied in the context of infectious diseases.

For example, causal inference has been studied in spatial analyses [Zigler et al., 2012, Graham

et al., 2013], medical imaging [Luo et al., 2012], criminology [Verbitsky-Savitz and Raudenbush,

2012], econometrics [Sobel, 2006, Manski, 2013, Arpino and Mattei, 2016], political science

[Bowers et al., 2013, Keele and Titiunik, 2015], and social media and network analysis [Ugander

et al., 2013, VanderWeele and An, 2013, Toulis and Kao, 2013, Kramer et al., 2014, Eckles

et al., 2016, Athey et al., 2018]. These are just a few examples of papers in different fields that

use causal inference with interference, but this demonstrates that it is a popular area of study

with many interesting problems to solve.
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1.3 Cluster-Randomized Trials

Cluster-randomized trials are often conducted when randomizing at the individual level is

not feasible or practical [Halloran et al., 2010]. In these trials, individuals are placed into groups

depending on particular characteristics, such as a school or residential neighborhood. These

groups are then randomized to treatment or control. Cluster-randomized trials allow for the

estimation of the treatment’s overall impact on a population, which is especially useful when

treatments may have indirect effects [Hayes et al., 2000]. In some cluster-randomized vaccine

trials, such as those described in Moulton et al. [2001], Diallo et al. [2019], Sur et al. [2009b],

the control is also a vaccine. This helps ensure blinding in the study, allowing for clusters to be

comparable.

Recently, the International Council on Harmonization (ICH) has published a draft addendum

to the E9 guidelines that describes the need to carefully define estimands in clinical trials

and provides guidance on possible estimands of interest [for Harmonisation of Technical

Requirements for Pharmaceuticals for Human Use., 2019]. This addendum is currently in the

process of being revised and finalized. Defining the estimands of interest before conducting a

trial helps align the goals of the trial and the data and reduces the chances of using questionable

assumptions when analyzing the data [Mehrotra et al., 2016]. There have been papers published

that provide examples of estimands of interest in clinical trials; e.g., see Leuchs et al. [2015],

Koch and Wiener [2016], Permutt [2016], Phillips et al. [2017].

There have been several papers that describe estimands in cluster-randomized trials. For

example, Wu et al. [2014] provide estimands for matched-pair cluster-randomized trials. As

previously mentioned, Hudgens and Halloran [2008] provide estimands of different treatment

effects in two-stage randomized trials. When individuals can be categorized as always-takers,

compliers, and never-takers in clustered encouragement designs, Frangakis et al. [2002] provide

estimands of interest. Kang and Keele [2018] discuss cluster-randomized trials with noncompli-

ance where individuals are categorized into the three principal strata as Frangakis et al. [2002],

as well as the case where there are only two principal strata when there are no always-takers.
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However, the study considered in Kang and Keele [2018] does not have blinding, so the treat-

ment effects of interest, the total and indirect effects, cannot be identified. Due to the lack of

blinding, some individuals’ principal strata membership is unknown. However, these papers

have not considered the causal estimands in cluster-randomized trials with partial interference

where individuals are able to choose whether or not to participate in the trial. Chapter 2 of this

document concerns itself with such estimands.

While cluster-randomized trials can be useful in certain situations, there are some disadvan-

tages to this trial design. Because individual outcomes within a given cluster may be correlated,

clustering must be taken into account as ignoring the correlation within the clusters can result

in anti-conservative inference [Bennett et al., 2002]. Because intervention coverage and effect

magnitude may vary across populations, cluster-randomized trials may not be generalizable

[Hayes et al., 2000]. The disadvantages of cluster-randomized trials mean that it is vital to

properly define and incorporate clusters into the design and analysis stages of a trial [Hayes

et al., 2000, Campbell et al., 2004]. To aid in this process, the CONSORT guidelines have been

extended to cluster-randomized trials [Campbell et al., 2004]. There can also be imbalances

in covariates between clusters, but there are methods that can address this problem. Moulton

[2004] describes a trial design method for constrained randomization based on covariates that

may be related to the trial outcome. Clusters can also be matched to minimize the chance

imbalance of covariates. However, this does not always result in perfect balance. Wu et al.

[2014] provide a method to correct for covariate imbalances between clustered pairs while still

providing causal estimands that are relevant to public health policies. When cluster-randomized

trials are not optimal for conducting a study, observational studies can be useful. Chapters 3 and

4 propose causal estimands for observational studies with partial interference.

1.4 Parametric G-Formula

As mentioned above, the parametric G-formula is based on standardization and combines

the g-computation algorithm of Robins [1986] with parametric outcome regression [Hernán and
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Robins, 2006]. This method provides an alternative way to estimate causal effects other than

using the IPW method. The IPW estimator can perform poorly when the weights are small (such

as when the positivity assumption is violated), but the parametric G-formula does not suffer from

such issues [Westreich et al., 2012]. The parametric G-formula in the case of no interference

can be written as E[Y a] =
∫
E[Y |A = a,L = l]dFL(l). The estimator corresponding to this

estimand can be written as

Ê[Y a] =

∫
Ê[Y |A = a,L = l]dF̂L(l)

or if the distribution of L is empirically estimated,

Ê[Y a] =
1

n

n∑
i=1

Ê[Yi|Ai = ai,Li]

where Ê[Yi|Ai = ai,Li] can be estimated with an outcome regression model. For a binary

outcome Y , a logistic regression could be performed to obtain these estimates. The parametric

G-formula has been used to adjust for time-varying confounders in time to event data [Taubman

et al., 2009, Young et al., 2011, Westreich et al., 2012, Cole et al., 2013, Garcia-Aymerich

et al., 2014, Keil et al., 2014]. When the parametric components are correctly specified, the

parametric G-formula estimator is more efficient than the IPW estimator for this setting [Young

et al., 2011]. Common parameters of interest are the risk ratio [Taubman et al., 2009, Cole et al.,

2013, Garcia-Aymerich et al., 2014] or the hazard ratio [Westreich et al., 2012, Keil et al., 2014].

These parameters typically answer the question of what happens when everyone is treated versus

when everyone is not treated.

Unfortunately, the parametric G-formula can suffer from the “g-null paradox.” Under this

paradox, the necessary parametric models may not be possible to correctly specify under the

null hypothesis. This results in the rejection of the null hypothesis in large samples, even if

the null hypothesis is true [Robins, 1986, Taubman et al., 2009, Cole et al., 2013]. Another
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downfall of the parametric G-formula, as well as any of the other g-methods that use parametric

models, is that model misspecification can result in bias [Taubman et al., 2009].

1.5 G-Estimation

G-estimation was proposed for structural nested models in Robins [1989, 1992]. G-

estimation allows for time-varying confounding and assumes no unmeasured confounders

[Sterne and Tilling, 2002]. Typically, logistic regression models are fit for a range of possible

values of ψ, the parameter of interest, where exp(−ψ0) is the ratio of the survival time for a

continuously exposed person to the survival time for someone who was never exposed, with ψ0

denoting the g-estimate [Sterne and Tilling, 2002]. G-estimation can use information about the

exposure distribution a priori [Vansteelandt and Joffe, 2014].

For structural nested mean models, additive rank preservation within the levels of the

covariates is important in g-estimation. Additive rank preservation means that the effect of

treatment is the same on the additive scale on the outcome for all individuals in the population

of interest. A simple structural nested mean model that assumes the average causal effect across

strata of L is the following:

E[Y a − Y a=0|A = a, L] = β1a

The additive rank preservation is incorporated with the use of another model:

Y A
i − Y a=0

i = ψ1a

such that ψ1 = β1. This is equivalent to Y a=0
i = Y a

i − ψ1a, or Y a=0
i = Y − ψ1A with causal

consistency. If this model is correctly specified and ψ1 known, then Y a=0
i could be calculated

for all individuals. However, ψ1 is typically not known and is the target of inference. For each

individual,

H(ψ†) = Y − ψ†A
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is computed for all possible values of ψ†, usually over a grid search. For example, separate

logistic regression models logitP [A = 1|H(ψ†), L] = α0 + α1H(ψ†) + α2L can be fit and

the value of H(ψ†) with α̂1 ≈ 0 is the counterfactual value of Y a=0
i . The corresponding

value of ψ† is then the estimate of the true value of ψ1. For this setting, there is a closed

form solution: ψ̂1 =
∑
i Yi(Ai−Ê[Ai|Li])∑
i Ai(Ai−Ê[Ai|Li])

, or in estimating equation formatting, the solution to∑
iHi(ψ

†)(Ai − Ê[Ai|Li]) = 0. 95% confidence intervals can be constructed by obtaining a

subset of the ψ† where p > 0.05 for Wald tests. Alternative tests such as the score or likelihood

ratio test could be used instead. Note that g-estimation assumes that conditional exchangeability

holds.

When there is effect modification so the average causal effect is not the same for everyone,

a two-parameter structural nested mean model can be used:

E[Y a − Y a=0|L] = β1a+ β2aV

where V consists of the components of L that are the effect modifiers. The rank preserving

model is then Y a
i − Y a=0

i = ψ1a + ψ2aV and we let H(ψ) = Y − ψ1A − ψ2AV . A logistic

model logitP [A = 1|H(ψ†), L] = α0 + α1H(ψ†) + α2H(ψ†)V + α3L can be fit and the goal

is to find the combination of values for ψ†1, ψ
†
2 where H(ψ†) ⊥ A|L, or where α̂1 = α̂2 = 0.

Generally, there is not a closed form solution to this and numerical search algorithms, such as

Nelder-Mead Simplex), need to be used.

Greenland et al. [2008] showed that using g-estimation on randomization status generalizes

the intent-to-treat (ITT) analysis when there may be noncompliance in a randomized trial.

Ten Have et al. [2007] extended g-estimation to the case of a linear rank preserving model

approach with mediation. They found that the method performed well when the assumptions

were met, but when the structural interaction assumptions were not met, this method performed

poorly. Robins et al. [1992] used g-estimation to estimates parameters of a structural nested

failure time model. Witteman et al. [1998] extended g-estimation for time-dependent covariates

9



to allow for censoring by competing risks. G-estimation can be used to compare counterfactual

failure times when always exposed versus never exposed.

While there is not much in the way of off-the-shelf software for g-estimation, this method

can be more flexible and perform better than other methods [Vansteelandt and Joffe, 2014].

Continuous exposures or binary exposures that are correlated with covariates are handled better

with g-estimation than with IPW. Additionally, g-estimation performs better than IPW when

the positivity assumption may be violated [Vansteelandt and Joffe, 2014]. Compared to the

parametric G-formula, g-estimation does not suffer from the g-null paradox [Vansteelandt and

Joffe, 2014].

1.6 Motivating Examples

1.6.1 Typhoid Fever

While typhoid fever is not common in the United States, it affects many other countries,

particularly developing countries. Crump and Mintz [2010] reported approximately 22 million

cases of typhoid fever in the year 2000. Since typhoid fever can be transmitted via contaminated

water and food, non-vaccine methods of preventing typhoid include improving sanitation and

increasing the presence of safe food and water. As of 2010, there were two available typhoid

vaccines in the United States [Crump and Mintz, 2010].

The Vi polysaccharide vaccine was used in the cluster-randomized trial described by Sur

et al. [2009b]. This was a phase 4 effectiveness trial that took place in Kolkata, India between

2004 to 2006. Individuals were grouped into a total of 80 geographical clusters based on a

census of the population in two wards (administrative units). The clusters were randomized

so that 40 clusters were assigned to the Vi vaccine and 40 were assigned to the control, which

was an inactivated hepatitis A vaccine. Individuals within those clusters were able to choose

whether or not to receive the vaccine to which their cluster was assigned. Sur et al. [2009b]

found significant overall, total, and indirect effects of the Vi vaccine. However, this study did

not use causal methods and therefore cannot make causal conclusions. We intend to introduce
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causal estimand notation to cluster-randomized trials in the context of the Sur et al. [2009b]

trial. Assuming partial interference, we can make causal statements about the overall, total, and

indirect effects of the Vi vaccine.

1.6.2 Malaria in the Democratic Republic of the Congo

According to the world malaria report for 2018 from the World Health Organization (WHO),

there were approximately 219 million cases of malaria worldwide in 2017, with the majority

of cases in the WHO African Region [Organization, 2018]. The Democratic Republic of the

Congo (DRC) was the country with the second largest percentage of malaria cases and was

among three countries with the highest estimated increase in malaria cases. Worldwide, there

were approximately 435,000 deaths from malaria in 2017 with 61% of these deaths in children

younger than 5 years old [Organization, 2018]. The United States alone contributed $3.1 billion

to global control and elimination of malaria. The global burden of malaria is high, so finding

methods to reduce malaria cases is vital.

There were 624 million insecticide-treated mosquito nets (ITNs) delivered worldwide

between 2015 and 2017 according to the WHO [Organization, 2018]. In Africa in 2017,

approximately half of the population used ITNs, but ITN coverage has not increased since 2016.

The goal of the research using the 2013-14 DRC Demographic and Health Survey (DHS) is to

investigate the cases of malaria in those who use bed nets, those who do not use bed nets, and

the entire population as bed net coverage changes.

The 2013-14 Demographic and Health Survey was the second DHS survey in the DRC and

took place from November 2013 to February 2014. This was a nationally representative survey

intended to gather information about fertility, maternal and child health, sexually transmitted

infections, mosquito net usage, malaria, and other health information [Min, 2014]. There were

536 clusters across 26 new provinces (formerly 11 provinces) in the survey. Before combining

clusters, the average number of individuals per cluster is approximately 179 with a standard

deviation of approximately 30. Children between the ages of 6 to 59 months were tested for

11



malaria. Blood smear tests and rapid diagnostic tests were used to test for malaria. Before

combining clusters, there were approximately 16 children on average with a standard deviation

of approximately 5 who tested positive for malaria for both types of tests.

1.7 Summary and Proposed Research

Accounting for the possible presence of interference can allow for the calculation of different

treatment effects. This is particularly important for public health policies as there will likely be

a mixture of individuals who will and will not choose to receive treatment, such as a vaccine.

The proposed methods in this dissertation focus on effects beyond the traditional causal effects

defined by comparing the average outcome when all individuals receive treatment versus when

all individuals do not receive treatment. Estimators are proposed for both cluster-randomized

trials and observational data.

In Chapter 2, estimands for the overall, indirect, and total effects of vaccination are defined

for cluster-randomized trials. As there is currently a movement in the literature for clinical

trials to carefully define estimands of interest, the estimands in this chapter can be helpful for

investigators when designing and analyzing a cluster-randomized trial. The motivating example

for this chapter is a cluster-randomized vaccine trial for a Vi polysaccharide (typhoid) vaccine

[Sur et al., 2009b]. In this trial, individuals within clusters chose whether or not to participate.

The overall, indirect, and total effects of vaccination can be defined within different subgroups

of individuals. The proposed methods are applied to simulated data that match exactly the

cluster level summary statistics from the motivating example.

In Chapter 3, the G-formula is extended to the case of partial interference when the scientific

question of interest is the efficacy of different treatment policies. This may be more relevant to

public health policies as there will likely be individuals in the population who do and do not

receive treatment. The estimands of interest are shown to be identifiable from observational data.

The proposed estimators are shown to be consistent and asymptotically normal using estimation

equation theory. The finite-sample performance of the proposed estimators is demonstrated with
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simulations. Finally, the proposed estimators is applied to the 2013-14 DRC Demographic and

Health Survey to investigate the causal effect of bed net use on malaria.

In Chapter 4, g-estimation is extended to the case of partial interference. The estimands of

interest are shown to be identifiable from observed data. The proposed estimators are shown

to be consistent and asymptotically normal using estimation equation theory. The proposed

estimator is evaluated in simulations and illustrated using the DRC bed net data set.
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CHAPTER 2: ESTIMANDS AND INFERENCE IN CLUSTER-RANDOMIZED VAC-
CINE TRIALS

2.1 Introduction

Vaccines are integral to combating a variety of infectious diseases. Quantifying a vaccine’s

effects is vital to determining its benefits, which can then guide public health policies aimed at

reducing the burden of disease. Cluster-randomized trials are often conducted to quantify the

effects of a treatment or intervention such as a vaccine. In cluster-randomized trials, individuals

are grouped together based on certain characteristics (e.g., neighborhood of residence), and the

entire cluster is randomized to treatment or control. The process of randomization ensures that

the treatment and control groups are exchangeable. Cluster-randomization is useful when it is

impractical or infeasible to randomize at the individual level [Halloran et al., 2010]. Comparisons

between randomized clusters can be used to assess the overall impact of an intervention on the

population, which is particularly important in settings where an intervention may have indirect

(or spillover) effects [Hayes et al., 2000]. For example, in the infectious disease setting, whether

one individual is vaccinated could affect the outcome of another individual. Moulton et al.

[2001] describe a cluster-randomized trial in the White Mountain Apache Reservation and the

Navajo Nation wherein approximately 9000 infants within 38 clusters were randomized by

cluster to the vaccine of interest (Streptococcus pneumoniae conjugate vaccine) or control (a

meningococcal C conjugate vaccine). Diallo et al. [2019] present a cluster-randomized trial of

an inactivated influenza vaccine in Senegal in which approximately 7800 enrolled, age-eligible

children within 20 clusters were randomized by cluster to the influenza vaccine or control (an

inactivated polio vaccine). Sur et al. [2009b] describe a cluster-randomized trial of a typhoid
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vaccine in India, with approximately 38000 individuals within 80 clusters randomized by cluster

to the typhoid vaccine or control (hepatitis A vaccine).

Because the cluster-randomized trial is a common study design for evaluating vaccine

effects, it is important to carefully define the estimands, i.e., parameters of interest, in these

trials. Careful definition of the effects of interest prior to the study can aid in study planning

and can ensure that the study’s goals are achieved [Leuchs et al., 2015]. Recently, there has

been increased interest in defining estimands in clinical trials. The International Council on

Harmonization (ICH) has published an addendum to the E9 guidelines detailing the use of

estimands in clinical trials [for Harmonisation of Technical Requirements for Pharmaceuti-

cals for Human Use., 2019]. This addendum aims to describe the necessity of defining the target

estimand before the design and analysis of trials to avoid misalignment of the trial goals and

the data, as well as to ensure that estimation of the estimand is possible without relying upon

dubious assumptions [Mehrotra et al., 2016].

Leuchs et al. [2015], Koch and Wiener [2016], Permutt [2016], and Phillips et al. [2017]

discuss examples of estimands of interest in regulatory clinical trials. Target estimands specif-

ically for cluster-randomized trials have been previously considered for certain designs. Wu

et al. [2014] consider estimands for matched-pair cluster-randomized trials. Hudgens and

Halloran [2008] consider estimands of the direct, indirect, total, and overall effects of treatment

assuming a two-stage randomization scheme. In this design, clusters are randomly assigned to

a treatment allocation program, and individuals within the clusters are randomly assigned to

treatment based on the cluster-level assignment. In some cluster-randomized trials, individuals

may not comply with their randomization assignment or may choose not to participate in the

study [Moulton et al., 2001, Sur et al., 2009b,a, PATH, .]. Frangakis et al. [2002] consider

clustered encouragement designs, which allow noncompliance, where individuals belong to one

of three principal strata: always-takers, compliers, and never-takers. Kang and Keele [2018]

also consider cluster-randomized trials with noncompliance. Like Frangakis et al. [2002], they

consider the setting where there are the three principal strata mentioned above, and also the
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special case where there are no always-takers. Even for this special case, they show the total and

indirect (spillover) effects are not identified because principal strata membership is unknown for

some individuals.

In this paper, we consider cluster-randomized vaccine trials where individuals choose

whether or not to participate in the trial. As illustrated by the examples described above, it is

common in cluster-randomized vaccine trials for the control to be another vaccine which is

not expected to affect the outcome of interest. For simplicity, below the control vaccine will

sometimes be referred to just as a control. Here we consider the particular case where a control

vaccine is employed and individuals are blinded, i.e., unaware whether their cluster is randomly

assigned to the vaccine of interest or to the control vaccine. In this setting, it is reasonable to

assume individual participation behavior is unaffected by randomization, such that there are only

two principal strata: always participators and never participators. Thus, our setting is similar

to the special case considered by Kang and Keele [2018]. However, because it is assumed an

individual will participate or not in the trial regardless of randomization assignment, principal

strata membership is known for all individuals; this allows for identification and estimation of

overall, total and indirect effects.

Sur et al. [2009b] provides a motivating example of a cluster-randomized vaccine trial

where individuals self-select whether to participate. In this trial, clusters of individuals were

randomized to either a typhoid vaccine or a control vaccine (for hepatitis A). The presence of a

control allowed study blinding, so individuals in the clusters did not know which assignment

their cluster received. While some individuals chose not to participate in the trial, outcome data

was collected on all individuals. This allows inference about different effects of the vaccine, as

described below.

The outline of the remainder of this paper is as follows. In Section 2.2, notation, estimands,

estimators, and effects of interest are described. In Section 2.3, the Sur et al. [2009b] cluster-

randomized typhoid vaccine trial is considered. Finally, Section 2.4 concludes with a discussion.
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2.2 Methods

2.2.1 Notation and Potential Outcomes

Consider a cluster-randomized vaccine trial with n clusters (or groups) of individuals where

each cluster is randomly assigned to vaccine or control. For i = 1, . . . , n, let Ai = 1 if cluster i

is assigned to vaccine and Ai = 0 otherwise. Let Y a=1
i denote the potential outcome if cluster i

is assigned vaccine, and let Y a=0
i denote the potential outcome if cluster i is assigned control.

For example, Y a=1
i could denote the proportion of individuals in cluster i who would develop

typhoid within one year after randomization if, possibly counter to fact, cluster i were assigned

to vaccine. For now, we leave the particular outcome associated with Y a
i unspecified. Different

specifications of Y a
i will correspond to different vaccine effects, as described below. Let Yi

denote the observed outcome for cluster i, such that Yi = Y a=1
i Ai + Y a=0

i (1− Ai). Below, the

subscript i is sometimes dropped for notational convenience.

In cluster-randomized vaccine trials, one individual’s vaccination status may affect another

individual’s outcome, that is, there may be “interference” between individuals [Cox, 1958]. For

instance, if one individual receives a typhoid vaccine, this could affect whether or not another

individual develops typhoid. Throughout this paper, it is assumed that there is no interference

between individuals in different clusters, i.e., there is “partial interference” [Sobel, 2006]. Under

this assumption, the outcome Yi for cluster i depends only on the treatment assigned to cluster i.

No assumption is made regarding the form of interference within clusters.

2.2.2 Estimands and Estimators

Vaccine effects, i.e., the causal effects of vaccination, can be defined by contrasts in the

expected values of the potential outcomes Y a=1 and Y a=0. Assuming the n clusters in the

trial are randomly sampled from an infinite super-population of clusters, the average treatment
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(vaccine) effect is generally defined by

θ = E[Y a=1]− E[Y a=0] (2.1)

where E[X] denotes the expected value of X in the super-population of clusters. In words,

(2.1) is the difference in the average outcome in the super-population when a cluster receives

a = 1 compared to when a cluster receives a = 0. Alternatively, the n clusters could be

considered the finite population of interest and E[X] defined instead to be n−1
∑n

i=1Xi. The

super-population perspective is adopted in this paper, but similar considerations to those provided

here apply if the finite population approach is utilized instead. Likewise, estimands other than

(2.1) could be considered. For example, for binary Y , the risk ratio E[Y a=1]/E[Y a=0] =

Pr[Y a=1 = 1]/Pr[Y a=0 = 1] might be of greater interest than the risk difference (2.1). For

instance, Y might be an indicator of whether or not at least one individual in a cluster gets

infected [Bjune et al., 1991, Halloran et al., 2002]. More generally, causal effects can by

defined by g(E[Y a=1], E[Y a=0]) for some contrast function g(x, y) where g(x, x) = 0; e.g.,

g(x, y) = x − y corresponds to (2.1). Below, estimands of the form (2.1) are described, but

similar considerations apply for other contrasts.

A few aspects of defining causal effects bear mentioning. First, causal effects are typically

defined by contrasts in expected values of the potential outcomes over the same set of units

[Rubin, 1974, Frangakis and Rubin, 2002]. In many settings, the unit is defined to be an

individual; for example, a unit could be a participant in a randomized controlled trial. Here,

we consider the clusters to be the units since randomization is at the cluster level. Note that

contrasts in average potential outcomes between different sets of units do not have a causal

interpretation. For example, suppose a cluster-randomized vaccine trial is conducted in schools,

where students within the same school constitute the clusters. A comparison of the average

Y a=1 among clusters (schools) in rural areas to the average Y a=0 among clusters in urban areas

is not a causal effect. Also note that causal effects are contrasts in the expected value of the

same outcome under different counterfactual scenarios. Contrasts in different outcomes are not
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causal effects. For example, a comparison of the average incidence of typhoid when clusters

receive vaccine with the average incidence of cholera when clusters receive control would not

be a causal effect. We will revisit this point below when discussing direct effects.

The average treatment effect can be estimated by the difference in sample means:

θ̂ =
1

n1

n∑
i=1

YiI(Ai = 1)− 1

n0

n∑
i=1

YiI(Ai = 0) (2.2)

where na =
∑n

i=1 I(Ai = a) for a = 0, 1. This estimator is consistent and unbiased under

commonly used randomization schemes, such as a completely randomized experiment where the

number of clusters assigned vaccine (treatment) is fixed [Miratrix et al., 2013, Imbens and Rubin,

2015, Athey et al., 2018]. The standard error of θ̂ can be estimated and 95% Wald confidence

intervals can be constructed in the usual manner for the difference in means. Equivalently, (2.2)

can be obtained by computing the least squares estimate of the slope parameter of simple linear

regression of Y on A. A generally more precise estimator can be obtained by regressing Y

on A and Z where Z is some vector of baseline covariates. For simplicity, only estimators of

the form (2.2) are considered below; see Tsiatis et al. [2008] for further discussion on using

baseline covariates to improve efficiency. Note also that (2.2) utilizes only cluster level data

and thus avoids the complexities associated with inference based on statistics constructed using

individual level data, which require accounting for possible within-cluster correlation (e.g.,

using mixed effects models or generalized estimating equations).

2.2.3 Overall, Indirect, and Total Effects

In this section, the general approach above is used to define estimands and estimators of the

overall, indirect, and total effects. The outcome of interest will depend on the context of the

vaccine trial, such as the infection or pathogen of interest, the target population, and so forth.

Here, the outcome of interest is generically referred to as disease.

The overall effect compares the average disease outcome among all individuals when a

cluster is assigned vaccine versus when a cluster is assigned control. This quantity may be
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the most relevant to public health policy because all individuals within clusters are used in the

comparison. As it is likely that populations of interest will include a mixture of individuals who

would and who would not choose to be vaccinated, the overall effect may be valuable for public

health officials and policy makers in assessing the overall impact of a vaccine at the population

level.

The overall effect estimand and estimator can be defined in terms of individual level

outcomes as follows. Let mi denote the number of individuals in cluster i. For individual j

in cluster i, let Yij = 1 if individual j develops disease, and let Yij = 0 otherwise. Let Y a=1
ij

indicate the outcome that would have been observed for individual j if cluster i is randomized to

vaccine, and define Y a=0
ij analogously for control, such that Yij = Y a=1

ij Ai + Y a=0
ij (1−Ai). For

the overall effect, the estimand (2.1) can be expressed in terms of individual potential outcomes

by defining Y a=1
i =

∑mi
j=1 Y

a=1
ij /mi, and Y a=0

i =
∑mi

j=1 Y
a=0
ij /mi for cluster i. The overall

effect estimator can likewise be expressed in terms of the observed individual-level outcomes

by letting Yi =
∑mi

j=1 Yij/mi.

The indirect effect quantifies the effect of vaccination on individuals who chose not to

participate in the trial and, therefore, have no chance of receiving the vaccine. This effect is

defined as a contrast in the average outcomes among non-participants when their cluster does

or does not receive vaccine [Halloran and Struchiner, 1991]. Because the indirect effect is

defined only among individuals who never receive the vaccine, this effect (if present) is solely

due to interference. Thus, indirect effects are a type of spillover or peer effect [Sobel, 2006].

Quantifying indirect effects may be of interest from a public health policy perspective because

vaccinating some, but not all, individuals within a cluster can still provide benefits to those who

are unable or choose not to be vaccinated.

Like the overall effect, the indirect effect estimand and estimator can be defined in terms of

individual level outcomes. To do so, first define the potential outcome Sa=1
ij where Sa=1

ij = 1

if individual j in cluster i would choose to participate in the trial if, possibly counter to fact,

cluster i were randomized to vaccine and Sa=1
ij = 0 otherwise. Define Sa=0

ij analogously.
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Denote the observed participation outcome for individual j in cluster i by Sij , such that

Sij = Sa=1
ij Ai+Sa=0

ij (1−Ai). Assume Sa=1
ij = Sa=0

ij , i.e., an individual’s decision to participate

is not affected by whether their cluster is assigned vaccine or control. This assumption may

be reasonable in cluster-randomized trials where individuals are blinded, such as the typhoid

vaccine trial described in Section 2.3, because in such settings, randomization is not expected

to have an effect on an individual’s decision to participate in the trial. As mentioned in the

Introduction, Frangakis and Rubin [2002] and Kang and Keele [2018] utilize the principal

stratification framework when considering non-compliance in cluster-randomized trials. Under

the assumption Sa=1
ij = Sa=0

ij , all individuals belong to one of two principal strata: always

participators, i.e., individuals where Sa=1
ij = Sa=0

ij = 1; and never participators, i.e., individuals

where Sa=1
ij = Sa=0

ij = 0. Fortunately, unlike the setting considered by Kang and Keele, here

the principal strata membership of each individual can be inferred directly from the observed

data because Sij = Sa=1
ij = Sa=0

ij .

The indirect effect is the effect of vaccine in the non-participator principal stratum. The

indirect effect has the general form (2.1), with Y a=1
i now defined to be

{∑mi
j=1 Y

a=1
ij I(Sa=1

ij =

0)
}
/
{∑mi

j=1 I(Sa=1
ij = 0)

}
and Y a=0

i defined to be
{∑mi

j=1 Y
a=0
ij I(Sa=0

ij = 0)
}
/
{∑mi

j=1 I(Sa=0
ij

= 0)
}

. This estimand compares the average disease outcome among non-participators when

a cluster is assigned vaccine versus when a cluster is assigned control. Similarly, the in-

direct effect estimator can be expressed by (2.2) with Yi defined to be
{∑mi

j=1 YijI(Sij =

0)
}
/
{∑mi

j=1 I(Sij = 0)
}

.

The total effect measures the effect of treatment in the always participator principal stratum.

Because always participators receive the vaccine if and only if their cluster is assigned vaccine,

the total effect encompasses both the individual effect of receiving the vaccine as well as the

effect of other individuals in the cluster being vaccinated. The total effect estimand and estimator

have the same form as the indirect effect estimand and estimator described above, but with

Sa=1
ij = 0 replaced by Sa=1

ij = 1, Sa=0
ij = 0 replaced by Sa=0

ij = 1, and Sij = 0 replaced by

Sij = 1. The total effect quantifies the difference in the average disease outcome among always
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participators when a cluster is assigned vaccine versus when a cluster is assigned control. The

total effect is often the effect of primary interest in this type of trial. An illustration of the

overall, indirect, and total effects is given in Figure 2.1.

There are a few special cases of note. In the scenario where all individuals in the population

are willing to participate in trials (i.e., there are no non-participators), the indirect effect is

not well-defined, and the total and overall effects are equivalent. In some trials, only a subset

of individuals may be eligible to be randomized for vaccination. For example, in Sur et al.

[2009b], individuals were eligible if they were at least two years of age, were not pregnant or

lactating, and did not have an elevated temperature when the vaccine was given. Indirect effects,

analogous to that defined above for non-participators, can be defined and estimated in these

individuals if their outcome of interest is measured.

Figure 2.1: Cluster counterfactual comparisons. The left circle represents a cluster if, possibly
counter to fact, assigned to vaccine (A = 1). The right circle represents a cluster if, possibly
counter to fact, assigned to control (A = 0). Within each circle, S indicates which individuals
chose to participate in the study (S = 1 indicates participation, S = 0 otherwise). The overall,
indirect, and total effects are contrasts in average potential outcomes over different sets of
individuals within the clusters.
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2.2.4 Direct Effect

The overall, indirect, and total effects each describe an effect of treatment (vaccination)

which is at least partially due to interference, if present. The effect of treatment that is not

attributable to interference may also be of interest. Such an effect is sometimes referred to as a

direct effect. This section describes why it is not possible in general to estimate the direct effect

of vaccination in a cluster-randomized trial with self-selection of participation without additional

assumptions, such as no unmeasured confounding. Informally, the direct effect compares the

average outcome when an individual is vaccinated to the average outcome when an individual

is not vaccinated, holding fixed the proportion of other individuals vaccinatedHalloran and

Struchiner [1991]. Several formal definitions of the direct effect estimand have been proposed;

e.g., see Hudgens and Halloran [2008], VanderWeele and Tchetgen Tchetgen [2011], Liu et al.

[2016], Eck et al. [2018] and Sävje et al. [2018].

To develop intuition behind the lack of identifiability of the direct effect, consider the

following naive approach. Suppose the proportion of vaccinated individuals with disease is

compared to the proportion of unvaccinated individuals with disease in clusters assigned to

vaccine by

1

n1

n∑
i=1

∑mi
j=1 YijI(Sij = 1)∑mi
j=1 I(Sij = 1)

I(Ai = 1)− 1

n1

n∑
i=1

∑mi
j=1 YijI(Sij = 0)∑mi
j=1 I(Sij = 0)

I(Ai = 1). (2.3)

By the law of large numbers, (2.3) converges to

E[Y a=1]− E[Ỹ a=1] (2.4)

where Y a=1
i =

{∑mi
j=1 Y

a=1
ij I(Sa=1

ij = 1)
}
/
{∑mi

j=1 I(Sa=1
ij = 1)

}
and Ỹ a=1

i =
{∑mi

j=1 Y
a=1
ij

I(Sa=1
ij = 0)

}
/
{∑mi

j=1 I(Sa=1
ij = 0)

}
. Unfortunately, the estimand (2.4) is not a causal effect,

as it comprises a comparison of different cluster-level outcomes, namely Y a=1
i and Ỹ a=1

i . As
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noted above, for an estimand to have a causal interpretation, the same outcome must be compared

under different counterfactual scenarios.

It is conventional, although not incontrovertible [Pearl, 2018], to define causal effects

only for a treatment or exposure that is manipulable, i.e., there can be “no causation without

manipulation” [Holland, 1986]. If this convention is followed, then in cluster-randomized trials

with non-participation, the direct effect of vaccination would only be considered well defined

in always participators. Otherwise, to define the relevant potential outcomes would require

considering a counterfactual scenario where non-participators receive vaccine. However, for

the study design under consideration, always participators receive vaccine if and only if other

always participators in their cluster also receive vaccine. Thus it is not possible to observe both

(i) a vaccinated always participator and (ii) an unvaccinated always participator, while holding

fixed the proportion of other individuals who are vaccinated in the cluster; hence the direct

effect is not identifiable without additional assumptions.

On the other hand, if the “no causation without manipulation” convention is not adopted,

there are other complications that may arise with estimating the direct effect. In particular, in

cluster-randomized trials with non-participation, vaccine coverage within a cluster is dictated by

the collective level of individual participation in the study, which is not under the investigator’s

control. Factors associated with participation may also be associated with the outcome of

interest, creating the potential for confounding. Thus causal inference methods for observational

studies, such as those assuming no unmeasured confounding, would in general be necessary

to draw inference about direct effects. To be concrete, consider the counterfactual scenario (or

policy) where individuals independently receive vaccine with probability α. Let Aij denote the

vaccination status of individual j in cluster i, and let Ai = (Ai1, Ai2, . . . , Aini). The random

vector Ai takes on values ai in the set A(ni) = {0, 1}ni . Let Yij(ai) denote the potential

outcome for individual j (in cluster i) corresponding to ai. The potential outcomes Yij(ai) may

also be expressed as Yij(ai,−j, aij) where ai,−j denotes the vector of treatment indicators for all

individuals except individual j and aij is the treatment indicator for individual j. Define the
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average outcome for individual j when vaccinated under policy α by

Yij(1;α) =
∑

b∈A(ni−1)

Yij(ai,−j = b, aij = 1)Pα(Ai,−j = b)

where Pα denotes the probability under policy α. Define Yij(0;α) analogously such that

Yij(0;α) is the average outcome for individual j when not vaccinated under policy α. Then

define the direct effect under policy α to be

E[Ȳi(1;α)]− E[Ȳi(0;α)] (2.5)

In the cluster-randomized trial setting considered in this paper, individuals self-select whether

to participate such that it would be dubious to assume treatment received is independent of an

individual’s potential outcomes. However, in some settings, it might be reasonable to assume

there exists some vector of baseline covariates, say Li, such that the set of potential outcomes for

individuals within cluster i are conditionally independent of the treatment selected given these

covariates, i.e., Yij(ai) ⊥ Ai | Li. This is a cluster level version of the usual no unmeasured

confounders assumption. Under this assumption, inverse probability weighted estimators have

been proposed which are consistent for (2.5) [Tchetgen Tchetgen and VanderWeele, 2012,

Perez-Heydrich et al., 2014].

2.3 Typhoid Vaccine Trial

A cluster-randomized study was conducted to investigate the effectiveness of a Vi polysac-

charide typhoid vaccine in Kolkata, India over two years of follow-up from 2004 to 2006 [Sur

et al., 2009b]. The control in this trial was an inactivated hepatitis A vaccine. Geographic

mapping and a census that characterized and counted all people and households in the study

area were used to define 80 clusters. For purposes of randomization, clusters were stratified by

ward (an administrative unit of Kolkata) and by the number of residents in certain age groups.

Overall, 40 clusters were assigned to Vi vaccine and the other 40 to control. Because data
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from the typhoid trial are not publicly available, a simulated data set was constructed (see Data

Availability Statement). The data were simulated to match exactly the cluster level summary

statistics from the actual trial shown in Table 2.1.

Table 2.1: Summary statistics of a cluster-randomized study in Kolkata from 2004 to 2006 of
a Vi typhoid vaccine versus a hepatitis A control vaccine [Sur et al., 2009b]. SD: standard
deviation

Typhoid Vaccine Control
Number of clusters 40 40
Mean ± SD of people per cluster 777 ± 136 792 ± 142
Mean ± SD of participants per cluster 472 ± 103 470 ± 104
Number of participants 18869 18804
Number of non-participants 12206 12877
Number of events in participants 34 96
Number of events in non-participants 16 31

Sur et al. [2009b] measure vaccine effects in terms of hazard ratios. However, causal

interpretations for hazard ratios are difficult because hazard ratios can depend on time and have

an inherent selection bias [Hernán, 2010]. In particular, time-specific hazard ratios compare

different subsets of subjects and, as noted above, estimands have a causal interpretation only

when comparing potential outcomes between the same set (or subset) of units. Due to these

issues, instead of using the hazard ratio to determine the vaccine effects as in Sur et al. [2009b],

the risk difference of typhoid over two years is calculated here to quantify vaccine effects.

The overall, indirect, and total effects were estimated using (2.2) with the Yi definitions

provided in section 2.2.3. The effect estimates, estimated standard errors (SEs), and 95% Wald

confidence intervals (CIs) are shown in Table 2.2. For example, the overall effect estimate was

obtained by taking the difference in the average number of cases of typhoid per 1000 individuals

between Vi clusters and control clusters. In particular, Vi clusters had 1.61 cases of typhoid per

1000 people, while control clusters had 4.10 cases of typhoid per 1000 people. Thus, the overall

effect estimate is -2.49 cases per 1000 people. The standard error of the overall effect estimate

was calculated by
{
σ̂2
0 + σ̂2

1

}1/2 where σ̂a denotes the estimated standard error for clusters
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assigned a = 0 (control), 1 (Vi). Finally, a 95% Wald CI was estimated in the usual manner

with a result of (-3.41, -1.58). The overall effect estimate has a straightforward interpretation

which may be of interest to public health officials such as epidemiologists. In particular, the

number of cases of typhoid per 1000 persons over a two year period is estimated to decrease by

2.5 on average when a cluster receives the Vi vaccine compared to receiving control.

Both participants and non-participants appear to benefit from the Vi vaccine. In particular,

over the study period, on average, there were 1.85 cases of typhoid per 1000 participants in Vi

clusters, and 5.15 cases of typhoid per 1000 participants in control clusters. Thus, the total effect

estimate is -3.30 (95% CI -4.61, -1.99), indicating that assigning a cluster to Vi vaccine causes

3.3 fewer cases of typhoid per 1000 participants compared to assigning a cluster to hepatitis A

vaccine. Likewise, Vi clusters had 1.29 cases of typhoid per 1000 non-participants on average,

while control clusters had 2.58 cases of typhoid per 1000 non-participants on average over the

study period. Taking the difference between these values gives an indirect effect estimate of

1.29 (95% CI 0.19, 2.38). The indirect effect estimate suggests that assigning a cluster to the

typhoid vaccine results in 1.29 fewer cases per 1000 non-participants; as non-participants never

receive the vaccine, this indicates an indirect (or herd immunity) effect of the typhoid vaccine.

Table 2.2: Estimates of overall, indirect, and total effects, standard errors (SE), and 95% Wald
confidence intervals (CI). Effect estimates are differences in typhoid cases per 1000 people per
two years.

Effect Estimate (SE) 95% CI
Overall -2.49 (0.47) (-3.41, -1.58)
Indirect -1.29 (0.56) (-2.38, -0.19)

Total -3.30 (0.67) (-4.61, -1.99)

On the other hand, the naive direct effect estimator (2.3) equals 0.56 (95% CI -0.44, 1.55).

Although not statistically significant, this point estimate implies that the average number of

cases of typhoid per 1000 people is higher in vaccinated individuals compared to non-vaccinated
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individuals in clusters randomized to the Vi vaccine. However, as described above, this estimate

cannot be interpreted as an effect of the vaccine as discussed in Section 2.2.4. For example,

perhaps individuals at higher risk of typhoid chose to participate in the trial, or those who

participated tended to have different health care seeking behavior. Moreover, the average

number of cases of typhoid per 1000 people was also higher in participants compared to non-

participants (2.57, 95% CI 1.19, 3.96) in the control clusters, providing direct evidence of

confounding. Sur et al. [2009b] reported similar results, with incidence of typhoid higher in

participants compared to non-participants, both within Vi vaccine clusters and within control

clusters.

2.4 Discussion

Randomized controlled trials are the gold standard in vaccine trials since randomization

ensures that the vaccine and control groups are comparable. Carefully defining estimands

in clinical trials is vital to ensure accurate interpretation of the resulting treatment effect

estimates. Because cluster-randomized trials can be large and expensive to conduct, it is

important to formally characterize estimands for use in these trials. This paper considers causal

estimands in cluster-randomized trials where interference may be present within clusters. An

illustrative example is provided motivated by a recent cluster-randomized typhoid vaccine trial

demonstrating inference and interpretation of the overall, total, and indirect effect estimands.

These types of analyses can be used to inform public health policies regarding vaccination.

In cluster-randomized trials with self-selection, estimators of the direct effect must account

for possible confounding. As described at the end of Section 2.2, a standard method to adjust

for confounding is to condition on covariates and assume that conditional on these covariates,

participants and non-participants are exchangeable. A possible indirect way to adjust for

confounding could involve comparing outcomes between participants and non-participants in

the control clusters as an estimate of the confounding bias, if present, similar to negative control

approaches described in Lipsitch et al. [2010] and Tchetgen Tchetgen [2013]. Alternatively,
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two-stage randomized designs could be considered to eliminate possible confounding when

drawing inference about the direct effect. In two-stage randomized experiments, clusters are

first randomly assigned to a treatment allocation program, then individuals within those clusters

are assigned to treatment or control based on their cluster’s treatment allocation program

[Hudgens and Halloran, 2008]. Randomization eliminates possible confounding at the cluster

and individual level, such that direct, indirect, total, and overall effects can be estimated

[Hudgens and Halloran, 2008, Baird et al., 2018, Basse and Feller, 2018]. However, it may not

always be feasible to conduct two-stage randomized trials. In addition, the effects estimated

by a two-stage randomized experiment are not equivalent to the effects estimated in cluster-

randomized trials with participation self-selection and may have less public health relevance

[Papadogeorgou et al., 2019, Barkley et al., 2020].

Estimated effects may have greater real-world relevance depending on the estimands

of interest and characteristics of individuals in the trials, such as the level of participation.

Westreich [2017] provides several examples of population intervention effects defined by

contrasts in average potential outcomes under different possible interventions on the distribution

of treatment. These population intervention effects may be more germane to real-world policy

than the traditional approach of defining causal effects by comparing average outcomes when

all individuals in the population receive treatment versus when no individuals receive treatment.

The estimands described here for cluster-randomized trials with self-selection are examples of

population intervention effects, to the extent that the participation rate in the trial approximates

vaccination uptake should the vaccine under evaluation become widely available to the public.

For example, in Sur et al. [2009b], about 60% of individuals on average chose to be vaccinated in

both Vi and hepatitis A clusters; thus, the overall, total, and indirect effect estimates approximate

the effects of vaccinating 60% of the population. Such effect estimates could potentially help

inform public health policy decisions regarding vaccination.
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Data Availability Statement

Because data from the typhoid trial are not publicly available, a simulated dataset was

constructed. This dataset is available at https://github.com/KilpatrickKW.
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CHAPTER 3: G-FORMULA FOR OBSERVATIONAL STUDIES WITH PARTIAL IN-
TERFERENCE, WITH APPLICATION TO BED NET USE ON MALARIA

3.1 Introduction

In settings where individuals interact or are connected, one individual’s treatment status may

affect another individual’s outcome, i.e., interference may be present between individuals [Cox,

1958]. Interference is common in infectious disease research. For instance, if one individual

wears a mask, this could affect whether another individual develops COVID-19 (coronavirus

disease 2019). In some settings, it may be reasonable to assume that individuals within a cluster

(or group) may interfere with one another, but not with individuals in other clusters, i.e., there

is “partial interference” [Sobel, 2006]. Clusters might entail households, villages, schools,

or other hierarchical structures. For instance, when assessing the effect of an intervention

or exposure in students, it may be reasonable to assume no interference between students in

different schools. Under this partial interference setting, several methods have been proposed

for drawing inference about causal estimands of treatment effects; e.g., see Tchetgen Tchetgen

and VanderWeele [2012], Papadogeorgou et al. [2019], Barkley et al. [2020].

In the presence of interference, it is of interest to assess the effect of policies which alter

the distribution of treatment in the population. For instance, in the Democratic Republic of the

Congo, public health officials and policy makers may be interested in estimates of malaria risk

for different levels of bed net usage in the population. In observational studies where partial

interference is present, it may be unlikely that treatment selection among individuals in the

same cluster is independent. For example, in household studies of vaccine effects, we might

expect vaccine uptake to be positively correlated between individuals in the same household.

Therefore, estimands that will be most relevant to policy makers need to account for possible
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within-cluster treatment selection dependence. Papadogeorgou et al. [2019] and Barkley et al.

[2020] recently proposed such estimands and developed corresponding inferential methods using

inverse probability weighted (IPW) estimators. These IPW estimators entail inverse weighting

by an estimated group propensity score. Unfortunately, this approach is not well suited for

large groups, because in practice the estimated group propensity score is often near zero when

there are a large number of individuals in a group [Saul and Hudgens, 2017, Chakladar et al.,

2019, Liu et al., 2019]. In the absence of interference, a commonly used alternative to the

IPW estimator is the parametric g-formula, which entails combining outcome regression and

standardization [Robins, 1986, Hernán and Robins, 2006]. This paper proposes an extension of

the parametric g-formula for observational studies where partial interference may be present

which is better suited for large clusters compared to IPW.

The proposed methods were motivated by the 2013-14 Democratic Republic of the Congo

(DRC) Demographic and Health Survey (DHS), a nationally representative survey to gather

information about fertility, maternal and child health, sexually transmitted infections, mosquito

net (hereafter “bed net”) usage, malaria, and other health information [MPSMRM, MSP, and

ICF International, 2014]. In the analysis presented below, population level effects of bed net use

on malaria are assessed using data from the DRC DHS. Figure 3.2 displays province-level bed

net use and the proportion of children who did not use bed nets with malaria. The DHS data were

collected at the household level. For the analysis here, a single linkage agglomerative cluster

method was used to group individuals into clusters based on their household global positioning

system (GPS) coordinates, resulting in a total of 395 clusters with at least one child and measured

spatial information and other covariates. After performing this clustering algorithm, covariates

and bed net use data are available for approximately 87,500 individuals. Malaria outcome

data is available for about 7,500 children between 6 to 59 months (for brevity, henceforth

referred to as ”children”). Among the clusters with at least one child who did not use a bed

net, the prevalence of malaria in children who did not use bed nets is inversely associated with

the proportion of bed net usage in the cluster (Spearman correlation rs = −0.16, p = 0.002),
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suggesting the possibility of interference within clusters. Previously, Levitz et al. [2018] showed

that community-level bed net usage was significantly associated with protection against malaria

in children younger than five years old. The inferential goal in this paper is to assess the

population-level effects of bed use on malaria when varying the proportion of children who use

bed nets.

Figure 3.2: Malaria bed net study in the Democratic Republic of the Congo. Left map: province-
level bed net usage. Right map: prevalence of malaria in children who do not use bed nets.

The outline of the remainder of this paper is as follows. Section 3.2 presents the proposed

extension of the g-formula to allow for partial interference. Section 3.3 presents the simulation

results evaluating the performance of the proposed methods in finite samples. In Section 3.4,

the proposed estimators are employed to assess the effect of bed net use on malaria using data

from the DRC DHS. Section 3.5 concludes with a discussion.

3.2 Methods

3.2.1 Estimands and Effects of Interest

Suppose data is observed on m clusters of individuals, and let Ni denote the number of

individuals in cluster i. Suppose some individuals within each cluster may receive treat-

ment (e.g., bed net) and denote the vector of binary treatment indicators in cluster i as

Ai = (Ai1, Ai2, . . . , AiNi) with Aij representing the treatment indicator for individual j. Let

Si = (
∑Ni

j=1Aij)/Ni denote the proportion of treated individuals in cluster i. Let Yi represent
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the outcome at the cluster level. In general, Yi may be defined differently depending on the

outcome of interest. For example, in the analysis of the DRC data, Yi may be defined as the

proportion of children in a cluster with malaria. Let Li represent a vector of cluster-level

baseline covariates, including Ni. Let Oi = {Li, Si, Yi} be the observed random variables for

cluster i, and assume O1, . . . , Om are independent and identically distributed. For notational

simplicity, the subscript i is omitted when not needed.

Assume partial interference, i.e., there is no interference between clusters, but there may be

interference between individuals within the same cluster. For example, in the DRC analysis,

one individual’s bed net usage may affect whether or not another individual in the same cluster

gets malaria. Let A(Ni) denote the set of all vectors of length Ni with binary entries such that

a = (ai1, ai2, . . . , aiNi) ∈ A(Ni) is a vector of possible treatment statuses for a cluster of size

Ni. For cluster i, let Y a
i represent the potential outcome if, possibly counter to fact, the cluster

had been exposed to a ∈ A(Ni), such that Y a
i = Yi when Ai = a.

In addition to partial interference, we also assume the cluster level potential outcomes

depend only on the proportion of individuals treated, but not which particular individuals receive

treatment. That is, Y a
i = Y a′

i for any two vectors a, a′ ∈ A(Ni) such that
∑Ni

j=1 aij =
∑Ni

j=1 a
′
ij;

this type of assumption is sometimes referred to as “stratified interference” [Hudgens and

Halloran, 2008]. For example, in the DRC analysis, we will assume that the prevalence

of malaria in a cluster only depends on the proportion of bed net users, not which specific

individuals use bed nets. For cluster i, let Y s
i denote the potential outcome for any a such

that (
∑Ni

j=1 aij)/Ni = s. Assume exchangeability conditional on L at the cluster level, i.e.,

Y s ⊥ S|L.

Population-level effects of interventions such as bed nets can be defined by differences in

expected outcomes when the distribution of treatment is altered. For example, in the absence

of interference, the effect of treatment is often defined by the difference in expected outcomes

when all individuals receive treatment versus when no individuals receive treatment. Here we

consider stochastic policies where individuals receive treatment with some probability between
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0 and 1. Define policy α to be the setting where the expected proportion of individuals in a

cluster who receive treatment is α, i.e., Eα(S) = α, where in general the subscript α denotes the

counterfactual scenario in which the policy α is implemented. For example, the DRC analysis

below considers policies where different proportions of individuals use bed nets.

The expected outcome in a group of individuals under policy α can be expressed as:

µα = Eα(Y ) =

∫
l

∑
s∈S

Eα(Y |S = s,L = l)Pα(S = s|L = l)dFαL(l) (3.6)

=

∫
l

∑
s∈S

Eα(Y s|S = s,L = l)Pα(S = s|L = l)dFαL(l)

where S = {0, 1/n, 2/n, ..., 1} and FαL denotes the marginal distribution of baseline covariates

under policy α. The first line of (3.6) follows from the law of total expectation and the second

line from causal consistency [Cole and Frangakis, 2009]. Effects of interest can be defined by

contrasts in µα for two policies α and α′, e.g.,

δ(α, α′) = µα − µα′ . (3.7)

Here, effects are defined as a difference in average potential outcomes, but ratios or other

contrasts could be used instead. A primary contrast of interest in the DRC analysis is the

difference in the proportion of children infected with malaria under policies α versus α′.

In the DRC analysis, we will consider three different effects of bed nets: the overall effect,

the spillover effect when treated, and the spillover effect when untreated. All three effects have

the form (3.7) but differ in how Yi is defined. The overall effect compares the average outcome

among all individuals in a cluster under policies α versus α′. As it is likely that populations of

interest will include a mixture of individuals who would and who would not choose to receive

treatment, the overall effect may be valuable for public health officials and policy makers in

assessing the overall impact of increasing treatment coverage among a population. For inference

about the overall effect, Yi is a summary measure of outcomes in all individuals in cluster i.
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For the malaria data analysis, Yi is defined to be the proportion of all children in a cluster with

malaria.

Two different spillover effects are also considered. The spillover effect when untreated

contrasts average outcomes when an individual is untreated under policy α versus policy α′. For

this effect, Yi may be defined by some summary measure of outcomes in untreated individuals.

In the DRC analysis of the spillover effect in the untreated, Yi will be defined as the proportion

of children who do not use bed nets with malaria. If there are no untreated individuals in the

cluster, we adopt the convention Yi = 0. Similarly, the spillover effect when treated contrasts

average outcomes when an individual is treated under policy α versus policy α′. For the spillover

effect when treated in the DRC analysis, Yi will be the proportion of children who use bed nets

with malaria, with Yi = 0 in clusters with no treated individuals.

3.2.2 Identifiability

Additional assumptions are made to draw inference about the estimands described above.

Assume FL = FαL, i.e., the distribution of the covariates is the same under the factual and

counterfactual policies. Let πs = g−1(ρ0 + ρ1L), where g is some monotone, user-specified link

function such as logit or probit, and assume

P (S = s|L) = P (S = s|L; ρ) =

(
N

Ns

)
πNss (1− πs)N−Ns. (3.8)

where ρ = (ρ0, ρ1). Likewise, under policy α, let πsα = g−1(γ0α + γ1αL) and assume

Pα(S = s|L) = Pα(S = s|L; γ) =

(
N

Ns

)
πNssα (1− πsα)N−Ns. (3.9)

where γ = (γ0α, γ1α). The parameters ρ in (3.8) are identifiable from the observable data,

whereas the counterfactual parameters γ in (3.9) are not identifiable without additional assump-

tions. As in Barkley et al. [2020], assume ρ1 = γ1α; this assumption implies rank preservation

between clusters in treatment propensity. In other words, if treatment adoption is more likely in
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cluster i than cluster j, then under counterfactual policy α, treatment adoption will also be more

likely in cluster i than cluster j. It follows that πsα = g−1(γ0α + ρ1L) and γ0α is the solution to

∫
l

Eα(S|L = l; γ0α, ρ1)dFL − α = 0 (3.10)

where Eα(S|L = l; γ0α, ρ1) = πsα. Finally, let πy = g−1(β0 + β1L + β2S) and assume

E(Y |S = s,L = l) = E(Y |S = s,L = l; β) = πy (3.11)

where β = (β0, β1, β2). For simplicity, an interaction between S and L is omitted from the

model of E(Y |S = s,L = l) but could be included. Assume that the mean of Y given S,L is

the same under the factual scenario and counterfactual scenario α, i.e., E(Y |S = s,L = l) =

Eα(Y |S = s,L = l).

3.2.3 Inference

Estimators for µα can be constructed as follows. First estimate the parameters ρ = (ρ0, ρ1)

of model (3.8) and β = (β0, β1, β2) of model (3.11) via maximum likelihood; denote these

estimators by ρ̂ = (ρ̂0, ρ̂1) and β̂ = (β̂0, β̂1, β̂2). Next, for a given policy α, let γ̂0α denote the

estimator of γ0α obtained by finding the solution to (3.10) with FL replaced by its empirical

distribution, i.e., m−1
∑m

i=1 Êα(S|Li; γ0α, ρ̂1) − α = 0 where Êα(S|Li; γ0α, ρ̂1) = g−1(γ0α +

ρ̂1Li). Let P̂α(S = s|L) denote (3.9) evaluated using (γ̂0α, ρ̂1), and let Ê(Y |S = s,L = l)

denote (3.11) evaluated using β̂. Then the g-formula estimator of µα is

µ̂α =

∫
l

∑
s∈S

Ê(Y |S = s,L = l)P̂α(S = s|L = l)dF̂L(l)

where F̂L denotes the empirical distribution function of L, and the estimator for the effects

of interest is δ̂(α, α′) = µ̂α − µ̂α′ . The estimators ρ̂, β̂, µ̂α, µ̂α′ , and δ̂(α, α′) are solutions to

unbiased estimating equations (see Appendix A). Therefore, it follows from standard large-
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sample estimating equation theory that the estimators are consistent and asymptotically Normal

[Stefanski and Boos, 2002]. The empirical sandwich estimators, which are consistent estimators

of the asymptotic variances, can be used to construct Wald confidence intervals (CIs).

3.2.4 Population Strata

For the DRC malaria example, the methods described above may be applied directly if

children are considered the population of interest and we ignore data collected from adults.

Such an approach makes inference about counterfactual scenarios regarding the distribution

of bed net usage in children and is agnostic to bed net use by others in the clusters. However,

the DRC DHS includes bed net data for all individuals, which can be utilized to estimate the

effects of bed net usage by all individuals on the risk of malaria in children. To do so, the

approach above can simply be modified by changing the definition of S to be the proportion

of all individuals in the cluster, not just children, who use bed nets. Alternatively, one may

choose to model separately the proportion of children using bed nets (say S1) and the proportion

of other individuals in the cluster using bed nets (say S2). In particular, the population mean

estimand µα may be expressed

∫
l

∑
s2∈S2

∑
s1∈S1

E(Y |S1 = s1, S2 = s2,L = l)Pα(S1 = s1|L = l, S2 = s2)Pα(S2 = s2|L = l)dFL(l)

where policy α is defined such that individuals in strata 1 and 2 are treated with the same

probability: Eα(S1) = Eα(S2) = Eα(S) = α. Inference proceeds analogous to Sections

3.2.2–3.2.3, but with separate parametric models for S1 given L, S2 and for S2 given L; such an

approach is taken in the DRC bed net analysis in Section 3.4.

3.2.5 G-Null Paradox

In the absence of interference, the parametric g-formula may give rise to the so-called g-null

paradox. That is, certain parametric models are guaranteed to be misspecified under the null

hypothesis of no treatment effect. As a result, the null hypothesis of no treatment effect will be
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incorrectly rejected with high probability when the sample size is large [Robins, 1986, Robins

and Wasserman, 1997, Taubman et al., 2009].

For the setting considered in this paper, the null hypothesis is that the proportion treated S

has no effect on the outcome Y , or that µα = µ′α for any two policies α, α′. If S has no effect

on Y , then β2 = 0 and E(Y |S = s,L) = E(Y |L). Recall E(Y |S = s,L) = Eα(Y |S = s,L).

Therefore (3.6) reduces to

µα =

∫
l

E(Y |L = l)
∑
s∈S

Pα(S = s|L = l)dαFL(l) =

∫
l

E(Y |L = l)dFL(l) (3.12)

where the second equality follows because
∑

s∈S Pα(S = s|L = l) = 1. The right-hand side of

(3.12) does not depend on α, so the g-null paradox does not occur here.

3.3 Empirical Evaluation

Simulation studies were conducted to evaluate the finite sample properties of the proposed

g-formula estimator. Three separate simulations studies were conducted for the three target

estimands: overall effect, spillover effect when treated, and spillover effect when not treated. For

the overall effect simulation study, 1000 data sets each withm = 125 clusters were stochastically

generated as follows:

(i) The number of individuals per cluster Ni was simulated such that P (Ni = 8) =

0.4, P (Ni = 16) = 0.35, and P (Ni = 20) = 0.25.

(ii) Two cluster level covariates L1i and L2i were generated, where L1i was Normal with

mean 40 and standard deviation 10, and L2i was such that P (L2i = 0) = 5/18, P (L2i =

1) = 3/18, P (L2i = 2) = 4/18, P (L2i = 3) = 5/18, P (L2i = 4) = 1/18.

(iii) For each cluster, the number of treated individuals was drawn from a Binomial distribution

with parameters Ni and πsi = expit(ρ0 + ρ1L1i + ρ2L2i) where ρ = (logit(0.6),−0.01,
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− 0.01). The proportion of individuals treated per cluster, Si, was then calculated by

dividing the number of treated individuals by Ni.

(iv) For each cluster, the outcome Yi was set equal to Xi/Ni where Xi was Binomial with

parametersNi and πyi = expit(β0+β1L1i+β2Si+β3L2i) where β = (logit(0.6),−0.01,

− 0.8,−0.01).

Correctly specified models of Y given S and L, and of S given L were fit by maximum

likelihood. The asymptotic variance of the estimators was estimated using the empirical

sandwich variance estimator, and Wald 95% CIs were calculated with these variance estimates.

The true values of estimands for policies α ∈ {0.4, 0.5, 0.6} were calculated analytically

for the data generating process described above. In particular, the true values of γ0α are the

solutions to (3.10) where πsα = expit(γ0α + ρ1L1 + ρ2L2). The counterfactual probabilities

Pα(S = s|L) for s ∈ S can then be computed via (3.9) based on the true values of γ0α, ρ1, ρ2.

Similarly, E(Y |S = s,L) for s ∈ S may be evaluated using (3.11) and the true value of β.

Finally, the true values of µα can be found using (3.6).

Results for the overall effect simulation study are given in the top third of Table 3.3. The

average bias of the proposed g-formula estimators was negligible, and the CIs contained the

true parameter values for approximately 95% of the simulated datasets. The average of the

estimated sandwich standard errors was approximately equal to the empirical standard errors,

with standard error ratios of approximately 1.

The simulation study described above was repeated for the spillover effect when treated,

with the following modification. In step (iv), the cluster outcome Yi was set equal to Xi/(NiSi)

where Xi was Binomial with parameters NiSi and πyi. If there were no treated individuals in a

cluster, then Yi was set to 0. Results for the g-formula estimator of the spillover effect when

treated are presented in the middle part of Table 3.3. Results are similar to the overall effect,

except the standard error for the g-formula estimator of the spillover effect when treated is larger

because fewer individuals contribute to the outcome.
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Finally, a third simulation study was conducted for the spillover effect when untreated. The

simulation steps above were repeated, but with step (iv) modified such that the cluster outcome

Yi was set equal to Xi/{Ni(1− Si)} where Xi was Binomial with parameters Ni(1− Si) and

πyi, with Yi set to 0 if Si = 1. Results are given in the bottom section of Table 3.3.

Table 3.3: Summary of simulation study results as described in Section 3.3. Truth: true value of
the estimand targeted by the estimator. Bias: average bias of the g-formula estimates over 1000
datasets. Cov%: empirical coverage of Wald 95% CIs. ASE: average of estimated sandwich
standard errors. ESE: empirical standard error. SER: ASE/ESE.

Estimator Truth Bias Cov% ASE ESE SER
All Individuals

µ̂α=0.4 0.418 0.000 94% 0.0147 0.0153 0.96
µ̂α=0.5 0.399 -0.000 94% 0.0119 0.0121 0.98
µ̂α=0.6 0.380 -0.000 94% 0.0145 0.0149 0.97

δ̂(α = 0.6, α′ = 0.4) -0.038 -0.001 94% 0.0172 0.0180 0.95
δ̂(α = 0.6, α′ = 0.5) -0.019 -0.000 94% 0.0084 0.0089 0.95
δ̂(α = 0.5, α′ = 0.4) -0.019 -0.000 94% 0.0087 0.0091 0.96

When Treated
µ̂α=0.4 0.418 -0.002 95% 0.0243 0.0242 1.00
µ̂α=0.5 0.399 -0.001 96% 0.0174 0.0165 1.05
µ̂α=0.6 0.380 0.000 95% 0.0184 0.0178 1.03

δ̂(α = 0.6, α′ = 0.4) -0.038 0.002 93% 0.0255 0.0267 0.96
δ̂(α = 0.6, α′ = 0.5) -0.019 0.001 93% 0.0126 0.0132 0.96
δ̂(α = 0.5, α′ = 0.4) -0.019 0.001 93% 0.0129 0.0135 0.96

When Untreated
µ̂α=0.4 0.418 -0.001 95% 0.0185 0.0188 0.99
µ̂α=0.5 0.399 -0.000 96% 0.0173 0.0167 1.03
µ̂α=0.6 0.380 0.000 96% 0.0235 0.0231 1.02

δ̂(α = 0.6, α′ = 0.4) -0.038 0.001 94% 0.0248 0.0259 0.96
δ̂(α = 0.6, α′ = 0.5) -0.019 0.000 94% 0.0122 0.0127 0.96
δ̂(α = 0.5, α′ = 0.4) -0.019 0.000 94% 0.0126 0.0131 0.96

3.4 Analysis of Bed Net Use on Malaria in the Democratic Republic of the Congo

The methods described above were applied to the DRC DHS survey to draw inference about

the effects of bed nets on malaria in children when varying the proportion of children in this age
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range who use bed nets. As mentioned in Section 3.1, a single linkage agglomerative hierarchical

cluster method [Everitt et al., 2011] was used to group households of individuals into clusters.

The maximum distance between any two households in the same cluster was constrained to

not exceed 10 kilometers. This distance was selected based on the maximum flight distance

of an Anopheles mosquito [Janko et al., 2018]. The GPS coordinates used in the clustering

algorithm were randomly displaced from the actual location to prevent participant identification.

Rural clusters were displaced up to 5 kilometers, while urban clusters were displaced up to 2

kilometers [MPSMRM, MSP, and ICF International, 2014]. Using this clustering algorithm,

there were 395 clusters with at least one child that were not missing spatial information and

other covariates. Figure 3.3 displays the number of children per cluster, as well as the proportion

of these children who used bed nets; on average, 55% of children utilized bed nets.
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Figure 3.3: Malaria bed net study in the Democratic Republic of the Congo. Left panel: number
of children with a measured malaria outcome per cluster. Right panel: proportion of children
who used bed nets per cluster.

Because malaria was measured only in children, Y , S, and N for each cluster were defined

based only on children with a measured outcome. Exchangeability was assumed conditional on

the cluster-level proportion of women, as well as cluster-level averages of building materials

(described below), urbanicity, altitude, age, temperature in the month of the survey, total

precipitation in a 10 kilometer radius the month before the survey, and proportion of agricultural

land cover within a 10 kilometer radius in 2013. The building material variable was defined

similar to Levitz et al. [2018] where roof and wall materials were summed for each individual
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within a cluster. Natural materials were worth 0 points, rudimentary materials 1 point, and

finished materials 2 points. Hence, for each individual, the building material variable was an

integer between 0 and 4. The link g = logit was used for fitting both the treatment and outcome

models.

Figure 3.4 displays g-formula estimates of the population mean estimands over a range of

policies α ∈ [0.1, 0.9] in all individuals, when treated, and when untreated. The left panel of

Figure 3.4 shows that the overall risk of malaria decreases as α increases, which is not surprising

since bed nets are known to protect against malaria and bed net usage increases with α. The

middle panel of Figure 3.4 demonstrates that the risk of malaria when treated also decreases as

α increases, suggesting the presence of interference. In other words, treated individuals appear

to benefit from others in their cluster also using bed nets. On the other hand, there appears to be

little or no spillover effect when untreated (right panel Figure 3.4).

Estimates of the overall effects, spillover effects when treated, and spillover effects when

untreated for different policies α compared to the current factual policy α′ = 0.55 are displayed

in Figure 3.5. These estimates approximate the expected change in the number of cases of

malaria due to increasing or decreasing bed net use relative to current utilization. For example,

δ̂(α = 0.8, α′ = 0.55) = −0.056 (95% CI −0.076,−0.035) indicates that if 80% of children in

a cluster were to use bed nets, then we would expect 56 fewer cases of malaria per 1000 children

on average. Similarly, for the spillover effect when treated, δ̂(α = 0.8, α′ = 0.55) = −0.077

(95% CI −0.10,−0.054) indicating we would expect 77 fewer cases of malaria per 1000 treated

children on average if 80% of children in a cluster were to use bed nets. On the other hand,

the spillover effect when untreated for α = 0.8 compared to α′ = 0.55 is −0.011 (95% CI

−0.045, 0.023), suggesting no or modest benefit of increasing bed net use to non users.

For sake of comparison, the Barkley et al. [2020] IPW estimator was also applied to the

DRC DHS data to estimate the bed net effects. However, the mixed effects model used to

estimate the group propensity scores did not converge, hence it was not possible to compute

the IPW estimates. Given that the DRC data includes several large clusters, it is not surprising
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Figure 3.4: Estimates of the population mean estimands from the malaria bed net study. The pro-
portion of treated children is denoted by policy α. The shaded regions indicate 95% confidence
intervals.

issues were encountered when attempting to compute the IPW estimator. A possible workaround

would be to exclude the large clusters [Chakladar et al., 2019], but this would inefficiently

discard data and limit generalizability of the results.

The results above are based on clustering of households such that the maximum distance

between any two households in the same cluster was 10 km. Sensitivity analyses were performed

where clusters were instead defined based on maximum distances of 5 km and 2.5 km. There

were 415 clusters in the 5 km analysis and 445 clusters in the 2.5 km analysis that were not

missing spatial information and had at least one child. Population mean estimates were very

similar between the 2.5 km, 5 km and 10 km analyses; see Figure 3.6.

To investigate the effect of changing the proportion of the entire population who use bed

nets, the 10 kilometer clusters were also analyzed using the methods from Section 3.2.4. The

estimated population means for the general population policy compared to the children-only

policy are shown in Figure 3.7. Changes in the general population policy are associated with

greater changes in the mean outcome in all individuals and when treated compared to the

children-only policy. However, the largest difference in estimated population means between

the general population policy and the children-only policy is only 0.05. For the spillover effect
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Figure 3.5: Estimated effects from the malaria bed net study. The proportion of treated children
is denoted by policy α. Effects contrast α with α′ = 0.55, the current factual policy. The shaded
regions indicate point-wise 95% confidence intervals.

when untreated, the estimates are approximately the same for both the children-only and general

population policies.
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Figure 3.6: Estimates of the population mean estimands from the malaria bed net study. The
proportion of treated children is denoted by policy α. Solid black lines represent 10 km, solid
gray lines represent 5 km, and dashed lines represent 2.5 km clusters.
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Figure 3.7: Estimates of the population mean estimands from the malaria bed net study for the
children-only policy (solid lines) and general population policy (dashed lines).
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3.5 Discussion

In the presence of partial interference, the proposed g-formula estimator is an alternative to

existing IPW estimators, such as those proposed in Tchetgen Tchetgen and VanderWeele [2012].

The g-formula estimator can accommodate large clusters, unlike IPW estimators [Chakladar

et al., 2019, Liu et al., 2019], and does not suffer from the g-null paradox that may occur in the

absence of interference. Like the IPW estimators of Papadogeorgou et al. [2019] and Barkley

et al. [2020], the proposed methods target counterfactual estimands which allow for within

cluster dependence of treatment selection and thus may be more relevant to policy makers.

Consistency of the proposed g-formula estimator requires that the parametric models be correctly

specified; future research could explore relaxing these parametric assumptions, perhaps by using

semiparametric or nonparametric models. While motivated by infectious disease prevention

studies, the g-formula methods developed in this paper are applicable in other settings where

partial interference may be present.

Supporting Information

Code and Data Availability R code to replicate the simulation study is available at

https://github.com/KilpatrickKW. The DRC survey data is available upon re-

quest at http://www.dhsprogram.com and the corresponding spatial data is available at

http://spatialdata.dhsprogram.com.
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CHAPTER 4: G-ESTIMATION WITH PARTIAL INTERFERENCE

4.1 Introduction

In infectious disease research, one individual’s treatment status may have an effect on

another individual’s outcome. This is generally known as “interference” between individuals

[Cox, 1958]. A recent example of interference is with the spread of COVID-19 (coronavirus

disease 2019). If one individual wears a mask, this can affect whether another individual

contracts COVID-19. If individuals are able to be grouped together into clusters, a reasonable

assumption may be that the individuals within a particular cluster can interfere with each other,

but individuals between clusters cannot interfere with one another. This is known as “partial

interference” [Sobel, 2006]. Methods under the partial interference setting have been proposed

for causal estimands of treatment effects; e.g., see Tchetgen Tchetgen and VanderWeele [2012],

Papadogeorgou et al. [2019], Barkley et al. [2020].

Common methods under the observational setting include inverse probability weighting

(IPW) and the parametric g-formula. For example, Tchetgen Tchetgen and VanderWeele [2012],

Papadogeorgou et al. [2019], Barkley et al. [2020] provide consistent estimates in the IPW

setting. However, the estimator can be unstable when propensity scores are near zero, making

it difficult to handle large clusters [Saul and Hudgens, 2017, Chakladar et al., 2019, Liu et al.,

2019]. The parametric g-formula provides an alternative method of estimating causal effects that

combines the g-computation algorithm of Robins [1986] with parametric outcome regression

[Hernán and Robins, 2006]. However, the parametric g-formula requires specifying the outcome

model and is not valid if this model is misspecified.

An alternative to IPW and the g-formula is g-estimation. This method was originally

proposed for structural nested models [Robins, 1989, Robins et al., 1992]. G-estimation can
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perform better than IPW when the positivity assumption may be violated and does not suffer

from the g-null paradox [Vansteelandt and Joffe, 2014]. There are doubly robust g-estimators

that provide consistent estimators as long as at least one model is correctly specified. A drawback

of g-estimation is that it is not commonly used because of the perception that there is a lack

of off-the-shelf software. Dukes and Vansteelandt [2018] have provided a method using a

gamma generalized linear model to obtain g-estimators of causal mean ratios using generalized

estimating equations. However, this does not allow for partial interference. This paper extends

existing g-estimation methods for observational studies to the setting where partial interference

may be present and allows for more flexible forms of the treatment variable.

The motivation behind the methods proposed in this paper was the 2013-14 Democratic

Republic of the Congo (DRC) Demographic and Health Survey (DHS), with the question of

interest focusing on the effect of bed net use on malaria [MPSMRM, MSP, and ICF International,

2014]. This was a nationally representative survey to gather health information, including data

about mosquito net usage and malaria. Data were collected at the household level. Only children

between 6 to 59 months, referred to as “children” for brevity, were tested for malaria, but

covariates and bed net use data were collected for all individuals. In the presented analysis,

a single linkage agglomerative cluster method based on household global positioning system

(GPS) coordinates was used to group individuals into clusters, resulting in a total of 395

clusters with at least one child and measured spatial information and other covariates. After this

algorithm is performed, there are approximately 87,500 individuals with about 7,500 children

with non-missing malaria outcomes (about 96% of children in this age range) in the survey.

Community-level bed net usage has previously been shown to be significantly associated with

malarial protection in children younger than five years old [Levitz et al., 2018]. In the DRC

data, the proportion of malaria in children who do not use bed nets is inversely associated with

the proportion of bed net usage in the cluster for clusters with at least one child who did not

use a bed net (Spearman correlation of rs = −0.16, p = 0.002), suggesting that there may be

interference within clusters. Figure 4.8 displays this inverse relationship. The inferential goal is
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to assess the population-level effects of bed use on malaria when varying the proportion of bed

net users.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75
Proportion of Bed Net Users per Cluster

P
ro

po
rt

io
n 

of
 M

al
ar

ia
 in

 N
on

 B
ed

 N
et

 U
se

rs
 p

er
 C

lu
st

er

Figure 4.8: Malaria Bed Net Study in the Democratic Republic of the Congo. This figure
displays bed net usage of the entire cluster vs prevalence of malaria in children who do not use
bed nets. Points have been vertically jittered by 0.015. Circle size corresponds to the number
of children who do not use bed nets in the cluster, with larger circle sizes indicating larger
numbers.

The outline of the remainder of this paper is as follows. In Section 4.2, notation, estimands,

estimators, and effects of interest are described. Simulation results for the proposed estimators

in finite samples are presented in Section 4.3. In Section 4.4, the proposed estimators are applied

to the DRC data to investigate the effect of bed net use on malaria. A discussion is presented in

Section 4.5.

4.2 Methods

4.2.1 Notation and Assumptions

Let there be Ni individuals in cluster i for i = 1, . . . ,m. Some individuals within each

cluster may receive treatment, such as a bed net. Denote the binary treatment indicator for

individual j in cluster i by Aij , and let Ai = (Ai1, Ai2, . . . , AiNi) represent the vector of

treatment indicators for all individuals in the cluster. Denote the proportion of treated individuals

in cluster i by Si = (
∑Ni

j=1Aij)/Ni. Represent the outcome at the cluster level by Yi. Depending
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on the outcome of interest, Yi can be defined differently. In the DRC analysis, Yi may be

defined as the proportion of children with malaria in a cluster. Let Li represent a vector of

cluster-level covariates, including Ni. Denote the observed random variables for cluster i by

Oi = {Li, Si, Yi}, and assume there are m observed independent and identically distributed

copies O1, . . . , Om. For ease of notation, the subscript i is omitted when not needed.

Assume that there is no interference between clusters, but there may be interference between

individuals within the same cluster, i.e., partial interference. For example, one individual’s bed

net usage may affect if another individual in the same cluster gets malaria in the DRC analysis.

Let A(Ni) denote the set of all vectors of Ni binary entries for a cluster of size Ni, where a

vector of potential treatment statuses is ai = (ai1, ai2, . . . , aiNi) ∈ A(Ni). Let Y a
i represent the

potential outcome if, possibly counter to fact, cluster i had been exposed to ai ∈ A(Ni). When

Ai = ai, Y a
i = Yi. Cluster i has 2Ni potential outcomes.

Assume that only the proportion of treated individuals is important, not the particular

individuals themselves. This assumption is also known as stratified interference [Hudgens and

Halloran, 2008]. For any two vectors ai, a′i ∈ A(Ni) where
∑Ni

j=1 aij =
∑Ni

j=1 a
′
ij , Y

a = Y a′ .

Let Y s
i represent the potential outcome for any a where (

∑Ni
j=1 aij)/Ni = s for cluster i. Assume

exchangeability conditional on L at the cluster level, i.e.,

Y s ⊥ S|L for s ∈ {0, 1/N, 2/N, . . . 1}. (4.13)

This assumption reduces the number of potential outcomes for cluster i to Ni + 1.

4.2.2 Estimands and Effects of Interest

Ratios of expected outcomes when the proportion of treated individuals is changed can

provide information about the population-level effects on interventions, such as bed net use in

the DRC data. Treatment effects in the absence of interference are often defined as contrasts in

expected outcomes when all individuals receive treatment versus where no individuals receive
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treatment. This paper considers a range of contrasts where the proportion of treated individuals,

S, varies.

Assuming exchangeability conditional on L as given in (4.13), consider the following

structural model
E[Y s|L]

E[Y 0|L]
= exp(ψf(s)) (4.14)

for s ∈ {0, 1/N, 2/N, . . . , 1} where ψ is a row vector of parameters of interest and f is a

some (column) vector-valued function of s. For example, f(s) = (s, s2, s3)>. The special case

f(s) = s is the model considered by Dukes and Vansteelandt [2018]. In the DRC analysis, the

causal contrast of interest for the case where f(s) = s, exp(ψs), is the ratio of the expected

proportion of individuals with malaria when proportion s of individuals are treated compared to

the scenario when no individuals are treated.

For all effects, the estimand of the effect can be written as (4.14) with different definitions

of Y . The overall effect compares the average disease outcome among all individuals in a

cluster when s individuals are treated versus when no individuals are treated. This effect may

be the most relevant to public health policy because it is likely that there will be a mixture

of individuals who would and who would not choose to receive treatment in a population of

interest. For inference about the overall effect, the proportion of outcomes in all individuals

in a cluster is represented by Yi. In the DRC analysis, Yi is the proportion of all children with

malaria.

Spillover effects can be defined among only untreated individuals in a cluster and among

only treated individuals in a cluster. The effect of treatment, if one exists, that untreated

individuals may experience from being surrounded by other treated individuals is quantified by

the spillover effect when untreated. Let Yi be the proportion of outcomes in untreated individuals

in cluster i for the spillover effect when untreated, and let Yi = 0 if there are no untreated

individuals in the cluster. For the DRC analysis, the proportion of children who do not use bed

nets with malaria will be Yi. The spillover effect when treated can be defined analogously. In the

DRC analysis, the proportion of children who use bed nets with malaria will be Yi. In addition,
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for the spillover effect when treated, s∗ = 1− s is used in place of s. This effect compares the

proportion of individuals with malaria when the proportion of treated individuals is s∗ to that

when all individuals are treated.

4.2.3 Estimators

Suppose we fit by maximum likelihood a correctly specified finite dimensional model for

S|L with parameter vector ρ. Let e(L; ρ) denote E[S|L] with parameters ρ. In this paper, S is

assumed to follow a binomial distribution with parameters N and e(L; ρ) = expit(ρ0 + ρ1L).

Denote the maximum likelihood estimate of ρ as ρ̂. Consider the model

E[Y |L, S] = exp(ω(L) + ψf(S)) (4.15)

where ω(L) is the unknown effect of L in the true outcome model. Extending the method

in Dukes and Vansteelandt [2018] to handle a general function f(S) in the case of partial

interference, a consistent estimator of ψ can be obtained by fitting a gamma generalized linear

model with a log link for the outcome Y

E[Y |S,L] = exp(β0 + β1E{f(S)|L; ρ̂}+ ψf(S)). (4.16)

The estimator ψ̂SR is the solution to

n∑
i=1

d(Li; ρ̂, β̂0, β̂1)[f(Si)− E{f(Si)|Li; ρ̂}][Yi exp(−ψf(Si))− g(L; ρ̂, β̂0, β̂1)] = 0 (4.17)

where d(L; ρ̂, β̂0, β̂1) = exp(−β̂0 − β̂1E{f(Si)|Li; ρ̂}), g(L; ρ̂, β̂0, β̂1) = exp(β̂0 +

β̂1E{f(Si)|Li; ρ̂}), and β̂ = (β̂0, β̂1) are the maximum likelihood estimates for the model

in (4.16). The estimate of ψ from fitting the gamma generalized linear model in (4.16) is

equivalent to finding the value of ψ that solves (4.17). Dukes and Vansteelandt [2018] show

this equivalence in the appendix of their paper for the case when f(S) = S. The more general
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case considered here is shown in Appendix B. If the model for S|L is correctly specified and

model (4.15) holds, then ψ̂SR is a consistent estimator for ψ. Following Dukes and Vansteelandt

[2018], this estimator will be referred to hereafter as the “singly robust” estimator because it

requires both the S|L model and model (4.15) to be correct. If either S|L or (4.15) do not hold,

then (4.17) is not necessarily unbiased and therefore ψ̂SR is not consistent.

A doubly robust estimator can be constructed as well by fitting a gamma generalized linear

model with a log link for the outcome Y and adjusting for all covariates L as follows

E[Y |S,L] = exp(β0 + β1E{f(S)|L; ρ̂}+ βLL + ψf(S)). (4.18)

The estimate of ψ from fitting the gamma generalized linear model in (4.18) is equivalent to

finding the value of ψ̂DR that solves

n∑
i=1

d̃(Li; ρ̂, β̂0, β̂1)[f(Si)− E{f(Si)|Li; ρ̂}][Yi exp(−ψf(Si))− g̃(L; ρ̂, β̂0, β̂1)] = 0 (4.19)

where d̃(L; ρ̂, β̂0, β̂1) = exp(−β̂0 − β̂1E{f(Si)|Li; ρ̂} − β̂LLi), g̃(L; ρ̂, β̂0, β̂1) = exp(β̂0 +

β̂1E{f(Si)|Li; ρ̂} + β̂LLi), and β̂ = (β̂0, β̂1, β̂L) are the maximum likelihood estimates for

the model in (4.18). As long as either the outcome model for the untreated E[Y |L, S = 0] =

exp(β0 + βLL) or the treatment model S|L is correctly specified, but not necessarily both, then

ψ̂DR is consistent for ψ. This estimator is therefore doubly robust. Finally, the estimators for

the effects of interest can be defined as exp(ψ̂f(s)) for s ∈ {0, 1/N, 2/N, . . . , 1} using either

ψ̂SR or ψ̂DR. An exponential model can be fit instead of a gamma generalized linear model for

the outcome as the estimates will be the same in either case. In Appendix B, these estimators

are shown to be consistent and asymptotically Normal using standard large-sample estimating

equation theory as described by [Stefanski and Boos, 2002]. The empirical sandwich estimators,

which are consistent estimators of the asymptotic variances, can be used to construct Wald

confidence intervals (CIs). These standard error estimates account for estimating e(L), so the

variance estimator is not conservative.
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4.3 Simulations

In order to evaluate finite sample properties of the proposed g-estimator, simulation studies

were performed for the special case when f(s) = s. Two separate studies were done for two

of the target estimands: the overall effect and the spillover effect when untreated. Since the

spillover effect when treated is essentially the same process as the spillover effect when untreated,

with the exception of recoding the treatment variable, it was omitted for the simulation studies.

For the overall effect simulation study, 1000 datasets of m = 350 clusters were stochastically

generated as follows:

(i) The number of individuals per cluster Ni was simulated such that P (Ni = 40) =

0.4, P (Ni = 50) = 0.35, and P (Ni = 60) = 0.25.

(ii) Two cluster level covariates L1i and L2i were generated with L1i following a Normal

distribution with mean 40 and standard deviation 10, and L2i such that P (L2i = 0) =

5/18, P (L2i = 1) = 3/18, P (L2i = 2) = 4/18, P (L2i = 3) = 5/18, P (L2i = 4) =

1/18.

(iii) For each cluster, the number of treated individuals was drawn from a Binomial distribution

with parameters Ni and e(Li; ρ) = expit(ρ0 + ρ1L1i + ρ2L2i) where (ρ0, ρ1, ρ2) =

(logit(0.55),−0.01,−0.01). For each cluster, the proportion of individuals treated per

cluster, Si, was calculated by dividing the number of treated individuals by Ni.

(iv) For each cluster, the outcome Yi was set equal to Xi/Ni where Xi was Poisson with pa-

rameter λyi = exp(β0+ψSi+β1L1i+β2L2i) where (β0, ψ, β1, β2) = (log(0.6Ni),−0.6,

− 0.01,−0.01).

This process was repeated for the spillover effect when untreated. For this effect, Yi was set equal

to Xi/{Ni(1−Si)} where Xi was Poisson with parameter λyi with β1 = log(0.6{Ni(1−Si)}).

If there were no untreated individuals, then Yi = 0.
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Binomial regression models for S were fit with main effects for L1, L2 to calculate fitted

values e(L; ρ̂). Gamma regression models with a log-link for Y were fit with main effects

for S, e(L; ρ̂). In the case of the doubly robust estimator, these models had main effects for

S, e(L; ρ̂), L1. As noted in Dukes and Vansteelandt [2018], including both e(L; ρ̂) and all

covariates L can sometimes result in failed convergence or unstable estimates due to collinearity.

This was the case here when including both L1, L2, so just L1 was used instead. Note that these

models were correctly specified. The asymptotic variance of the estimators was calculated using

the empirical sandwich variance estimator, which is described in Appendix B. Wald-type 95%

CIs were calculated with these variance estimates.

In the case where the model for S is misspecified, the true treatment model uses e(L; ρ) =

probit−1(−0.002L2
1 + 0.5

√
L2). A binomial regression model for S is then fit with main effects

for L1, L2 as before. In the case where the model for Y is misspecified, the true outcome model

uses λy = exp(log(0.3K) + ψS − 0.5I(55 > L1 > 35) + 0.005I(L2 < 3)) where K = N for

the overall effect or {Ni(1− Si)} for the spillover effect when untreated. Gamma regression

models are then fit as mentioned above.

The estimates for each dataset were compared to the true value of ψ with a summary of

these results in Table 4.4. For the singly robust estimator, the average bias is negligible when

the S|L model is correctly specified, and the Wald-type 95% CIs contained the true parameter

values in approximately 95% of the simulated datasets. When the S|L model is not correctly

specified, the estimator is biased and coverage is below 90%, as expected. For the doubly robust

estimator, the average bias of the estimators was negligible when both models are correctly

specified, when the E[Y |L, S = 0] model is correctly specified (but the S|L model is incorrect),

and when the treatment model S|L is correctly specified (but E[Y |L, S = 0] is incorrect). For

these scenarios, the Wald-type 95% CIs contained the true parameter values in approximately

95% of the simulated datasets. When both models are misspecified, the estimators are biased

with poor coverage. The average of the estimated sandwich standard errors was approximately

equal to the empirical standard errors, with standard error ratios of approximately 1. These
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simulations demonstrate that the estimators performed well. Additional simulations for the

overall effect for the case when f(s) = s+ s2 can be seen in Appendix B.

Table 4.4: Summary of simulation study results as described in Section 4.3. Truth: true value of
ψ targeted by the estimator. Bias: average bias of the g-estimates over 1000 datasets. Cov%:
empirical coverage of Wald 95% CIs. ASE: average of estimated sandwich standard errors.
ESE: empirical standard error. SER: ASE/ESE. Group: group of interest where All denotes all
individuals, Untreated denotes untreated individuals.

Scenario Group Bias Relative Bias Cov% ASE ESE SER
Singly robust

S model correct All 0.003 -0.5% 96% 0.20 0.19 1.03
Untreated -0.002 0.3% 94% 0.28 0.29 0.95

S model incorrect All 0.41 -68% 76% 0.34 0.36 0.96
Untreated 0.42 -70% 80% 0.41 0.43 0.95

Doubly Robust
Both correct All 0.003 -0.5% 96% 0.20 0.19 1.05

Untreated -0.003 0.5% 94% 0.28 0.29 0.96
S model incorrect All -0.027 4.5% 94% 0.35 0.36 0.97

Untreated -0.017 2.8% 93% 0.42 0.44 0.96
Y model incorrect All -0.003 0.5% 97% 0.35 0.31 1.15

Untreated -0.030 5% 95% 0.44 0.42 1.07
Both incorrect All 1.5 -250% 17% 0.50 0.53 0.94

Untreated 1.5 -250% 28% 0.58 0.59 0.97

4.4 Analysis of Bed Net Use on Malaria in the Democratic Republic of the Congo

To measure the effects of bed nets on malaria in children when varying the proportion of

children who use bed nets in the DRC, the methods described above can be applied. Individuals

within 10 kilometers are grouped into larger clusters using a single linkage agglomerative cluster

method, as mentioned in Section 4.1. The maximum distance between any two households in

the same cluster was constrained to not exceed 10 kilometers The maximum flight distance of

an Anopheles mosquito is 10 kilometers, which was the basis for this choice of distance [Janko

et al., 2018]. In order to prevent identification of participants, the GPS coordinates in the data

that were used in this algorithm are randomly displaced from the real location. Rural clusters
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were displaced up to 5 kilometers, while urban clusters were displaced up to 2 kilometers

[MPSMRM, MSP, and ICF International, 2014]. There were 395 clusters with at least one child

and were not missing spatial information and other covariates after this clustering algorithm.

Partial interference is assumed at the cluster level. Figure 4.9 displays the number of children

per cluster, as well as the proportion of these children who use bed nets.
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Figure 4.9: Malaria Bed Net Study in the Democratic Republic of the Congo. Left panel:
number of children with a measured malaria outcome per cluster. Right panel: proportion of
children who use bed nets per cluster.

For each cluster, Y , S, andN were defined based only on children with a measured outcome

because malaria was only measured in children. Exchangeability was assumed conditional on

the cluster-level proportion of women, as well as cluster-level averages of building material,

urbanicity, altitude, age, temperature in the month of the survey, total precipitation in a 10

kilometer radius the month before the survey, and proportion of agricultural land cover within

a 10 kilometer radius in 2013. The building material variable was defined as the sum of roof

and wall materials for each individual within a cluster, similar to Levitz et al. [2018]. Natural

materials were worth 0 points, rudimentary materials 1 point, and finished materials 2 points, so

the building material variable is an integer between 0 and 4 points.

Causal mean ratios conditional on L can be constructed using ψ̂SR and ψ̂DR for the overall

effect, spillover effect when treated, and spillover effect when untreated. While the methods
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presented in Section 4.2 involve a comparison to the case when no children are treated (or

when all children are treated in the case of the spillover effect when treated), this may not be

of interest to policy makers. Instead, the analysis presented here compares the estimated mean

proportion of children in each group of interest with malaria when a given proportion of children

are treated versus the case in the actual data where 55% of children are treated on average. First,

the choice of f(S) was investigated to see if this affects the results in the malaria dataset. The

estimated causal mean ratios exp(ψ̂(f(S)− f(0.55))) for different functions f(S) can be seen

in Figure 4.10 for f(S) = S, S + S2, S + S2 + S3, and I(0.2 < S ≤ 0.4) + I(0.4 < S ≤

0.6) + I(0.6 < S ≤ 0.8) + I(0.8 < S ≤ 1). For example, the estimated causal mean ratio

for f(S) = S + S2 is exp(ψ̂0(S − 0.55) + ψ̂1(S
2 − 0.552)). The functional form of S can

change the behavior of the estimated causal mean ratio. For the flexible models, the estimated

causal mean ratio increases and then decreases, while for the simple case f(S) = S, this ratio

decreases. In comparison with the piecewise constant model, the quadratic and cubic models

appear to fit better than linear model.

Figure 4.11 displays the estimated causal mean ratios when f(S) = S + S2. For the overall

effect, this ratio compares the estimated mean proportion of all children with malaria when

a given proportion of children are treated versus when 55% of children are treated. For the

spillover effect when treated, this ratio compares the estimated mean proportion of treated

children with malaria when a given proportion of children are treated versus when 55% of

children are treated. The spillover effect when untreated is defined similarly with untreated

children as the population and the comparison of interest is to the case when 55% of children

are treated. The estimated ratios increase and then decrease as the proportion treated increases.

For comparisons where the proportion of children treated is greater than 55%, all confidence

intervals in Figure 4.11 exclude 1, indicating that if more than 55% of children in this population

used bed nets, there is a significant protective effect of bed net use in all children, in treated

children, and in untreated children.
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Figure 4.10: Estimated Causal Mean Ratios Using Different Functions of Treatment from the
Malaria Bed Net Study. The plotted lines are the estimated causal mean ratios exp(ψ̂(f(S)−
f(0.55))) for different functions f(S). Solid black lines represent f(S) = S, dashed lines
represent f(S) = S +S2, long dashed lines represent f(S) = S +S2 +S3, and solid dark gray
lines represent f(S) = I(0.2 < S ≤ 0.4) + I(0.4 < S ≤ 0.6) + I(0.6 < S ≤ 0.8) + I(0.8 <
S ≤ 1). The overall effect, spillover effect when untreated, and spillover effect when treated
compare the expected proportion of malaria cases in all children, untreated children, and treated
children, respectively, when the proportion treated is a given value compared to the expected
proportion of malaria cases when 55% of children are treated.

Sensitivity analyses were performed to investigate if the choice of 10 kilometers for the

single linkage agglomerative clustering algorithm affects the results in the malaria dataset.

The clustering algorithm was performed using 5 kilometers and 2.5 kilometers as well. There

were 415 clusters for the 5 km analysis and 445 clusters for the 2.5 km analysis that were not

missing spatial information and have at least one child. The estimated causal mean ratios where

f(S) = S + S2 can be seen in Figure 4.12 and are very similar to those when using 10 km,

with a maximum absolute difference of 0.12 for the singly robust results and 0.11 for the doubly

robust results. The conclusions are the same for all choices of distance.
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Figure 4.11: Estimated Causal Mean Ratios from the Malaria Bed Net Study. Shaded regions
indicate 95% CIs. Dashed black lines represent the singly robust estimator, and solid gray lines
represent the doubly robust estimator. The overall effect, spillover effect when treated, and
spillover effect when untreated compare the expected proportion of malaria cases in all children,
treated children, and untreated children, respectively, when the proportion treated is a given
value compared to the expected proportion of malaria cases when 55% of children are treated.
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Figure 4.12: Sensitivity Analysis for Estimated Causal Mean Ratios from the Malaria Bed Net
Study. Solid lines represent 10 km, dotted lines represent 5 km, and dashed lines represent
2.5 km. The overall effect, spillover effect when treated, and spillover effect when untreated
compare the expected proportion of malaria cases in all children, treated children, and untreated
children, respectively, when the proportion treated is a given value compared to the expected
proportion of malaria cases when 55% of children are treated.
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4.5 Discussion

G-estimation is an alternative to IPW and the parametric g-formula. Unlike IPW, the

proposed estimator can handle large cluster sizes [Saul and Hudgens, 2017, Chakladar et al.,

2019, Liu et al., 2019]. The proposed estimator is also not subject to the g-null paradox, unlike

the parametric g-formula. Both IPW and the parametric g-formula rely upon parametric models.

G-estimation is a semi-parametric approach and is more flexible than IPW or the parametric

g-formula. Both singly and doubly robust estimators are provided here with a general function

of the treatment variable that allows for more flexible models. In order for the estimators to be

consistent, the appropriate parametric models must be correctly specified; future research could

explore relaxing the parametric assumptions further.

The causal effects of treatment mentioned in this paper may be of interest to policy makers.

Populations of interest may have a mixture of those who would and would not choose to

be treated, so public health officials could investigate treatment effects in different parts of

these populations. Recently, IPW and g-formula methods for the partial interference setting

in observational studies have been proposed [Barkley et al., 2020, Kilpatrick and Hudgens,

2021]. Both methods consider counterfactual scenarios that change the distribution of treatment

according to different policies. However, this paper does not consider this type of stochastic

intervention, so some effect estimates may not make sense depending on cluster size, i.e., the

effect estimates for a proportion treated of 50% may not make sense for an odd sized cluster.

However, the causal mean ratio curves presented above can still help guide policy makers. The

methods presented in this paper are focused on the infectious disease setting, but the methods

can also be applied to other settings with partial interference.

Code and Data Availability

R code to replicate the more complex simulation study in Appendix B is available at

https://github.com/KilpatrickKW. The DRC survey data is available upon request
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at http://www.dhsprogram.com and the corresponding spatial data is available at http:

//spatialdata.dhsprogram.com.
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CHAPTER 5: CONCLUSION

Causal inference can be a powerful tool to evaluate treatment effects. In a real world setting,

it is likely that some individuals can interfere with each other, i.e., one individual’s treatment can

affect another individual’s outcome. The proposed methods in this dissertation assume partial

interference where individuals can be placed into groups, and individuals within the same group

can interfere with each other but not with individuals in other groups. By accounting for the

possible presence of interference, different treatment effects can be calculated. Since the real

world population will likely be made up of individuals who will and will not choose to receive

treatment, calculating different treatment effects in these different populations can be useful

for public health policies. In this dissertation, methods are proposed to go beyond the usual

causal effect that compares the average outcome when all individuals are treated versus when

no individuals are treated.

The first setting considered in this dissertation was cluster-randomized trials. Estimands

for the overall, indirect, and total effects of vaccination are defined. This chapter can be useful

for investigators when designing and analyzing a cluster-randomized trials, especially since

there is currently a movement in clinical trials literature to carefully define estimands of interest.

A Vi polysaccharide (typhoid) vaccine trial was the motivating example for this chapter [Sur

et al., 2009b]. Individuals within clusters chose whether or not to participate in this trial. The

number of cases of typhoid per 1000 persons over a two year period was found to decrease

when receiving the Vi vaccine for all individuals, for non-participants, and for participants.

Future research related to this chapter could be to develop methods accounting for possible

confounding in order to define the estimator of the direct effect.
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We then move to the setting of observational studies for the following two chapters. In

Chapter 3, we extend the G-formula to the case of partial interference when the scientific

question of interest is the efficacy of different treatment policies. The estimands of interest

were shown to be identifiable from observational data, and the proposed estimators were shown

to be consistent and asymptotically normal using estimation equation theory. The proposed

estimators were applied to the 2013-14 DRC Demographic and Health Survey to investigate the

causal effect of bed net use on malaria. As the proportion of children who use bed nets increases,

the expected number of cases of malaria decreased for all children and treated children. For

non users, increasing bed net use seems to either have no benefit or a modest benefit. For this

chapter, future research could include using semiparametric or nonparametric models in order

to relax the parametric assumptions made here.

Finally, in Chapter 4, g-estimation is extended to the case of partial interference where

the question of interest is again the effect of different treatment policies. We showed that the

estimands of interest are identifiable from observed data, and that the proposed estimators are

consistent and asymptotically normal. The proposed estimators were applied to 2013-14 DRC

Demographic and Health Survey to again investigate the causal effect of bed net use on malaria.

Using this method, the estimated causal mean ratios were found to decrease as the proportion of

bed net users increased, indicating that there are fewer cases of malaria as more individuals use

bed nets. Future research building from this chapter could be to explore relaxing the parametric

assumptions further.
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APPENDIX A: TECHNICAL DETAILS FOR CHAPTER 3

The g-formula estimators in Section 3.2.3 can be shown to be consistent and asymptotically

Normal using standard large-sample estimating equation theory. Let θ = (ρ, γ0α, γ0α′ , β, µα,

µα′ , δ(α, α′)). Estimating functions for ρ̂ and β̂ are given by score equations corresponding to

the binomial models P (S = s|L; ρ) and P (Y = y|S = s,L; β). Denote these score equations

by ψρ(O; θ) and ψβ(O; θ). For policy α, let ψγ0α(O; θ) = Eα(S|L = l; γ0α, ρ1) − α where

Eα(S|L = l; γ0α, ρ1) = expit(γ0α + ρ1L), and let

ψµα(O; θ) =
∑
s∈S

E(Y |S = s,L; β)Pα(S = s|L; γ0α, ρ)− µα.

Define ψδ(α,α′)(O; θ) = ψµα(O; θ) − ψµα′ (O; θ), and let ψθ = (ψρ, ψγ0α , ψγ0α′ , ψβ, ψµα , ψµα′ ,

ψδ(α,α′))
>. Then the estimator θ̂ = (ρ̂, γ̂0α, γ̂0α′ , β̂, µ̂α, µ̂α′ , δ̂(α, α′)) is the solution to the vector

estimating equation
∑m

i=1 ψθ(O; θ) = 0.

It is straightforward to show these estimating equations are unbiased. Because ψρ(O; θ)

and ψβ(O; θ) are score equations,
∫
ψρ(O; θ)dFO(O) = 0 and

∫
ψβ(O; θ)dFO(O) = 0 where

FO(O) denotes the distribution of the observed variables O. For policy α, γ0α is the solution to

(3.10), implying E{ψγ0α(O; θ)} = 0. Next note

E{ψµα(O; θ)} = E{
∑
s∈S

Eα(Y |S = s,L)Pα(S = s|L)} − µα

= E{
∑
s∈S

Eα(Y s|S = s,L)Pα(S = s|L)} − µα

= E{
∑
s∈S

Eα(Y s|L)Pα(S = s|L)} − µα

=

∫
l

∑
s∈S

Eα(Y s|L = l)Pα(S = s|L = l)dFL(l)− µα

= 0
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where the first equality holds assuming the Y |S,L and S|L models are correctly specified and

that Eα(Y |S = s,L = l) = E(Y |S = s,L = l), the second equality by causal consistency, the

third equaltiy from conditional exchangeability, and the last equality from the definition of µα.

From standard large-sample estimating equation theory, it follows that under suitable

regularity conditions, θ̂ →p θ and
√
m(θ̂ − θ) →d N(0,Σ) where Σ = U−1W (U−>) for

U = E{−ψ̇θ(O; θ)}, where ψ̇θ(O; θ) = ∂ψθ(O; θ)/∂θ>, and W = E{ψθ(O; θ)⊗2} [Stefanski

and Boos, 2002]. The asymptotic variance Σ can be consistently estimated by the empirical

sandwich variance estimator Σ̂ = Û−1Ŵ (Û−>) where Û = m−1
∑m

i=1−ψ̇θ(Oi; θ̂) and Ŵ =

m−1
∑m

i=1 ψθ(Oi; θ̂)
⊗2.
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APPENDIX B: TECHNICAL DETAILS FOR CHAPTER 4

The estimators in Section 4.2.3 can be shown to be consistent and asymptotically Normal

using standard large-sample estimating equation theory [Stefanski and Boos, 2002]. Under the

assumptions in Section 4.2, the model in equation (4.14) is equivalent to assuming E(Y |S,L) =

exp(w(L) + ψf(S)) for some unspecified function w(L). The goal is to draw inference about

ψ based on m iid copies of O = (L, S, Y ). Suppose we fit by maximum likelihood a correct

specified finite dimensional model for S|L with parameter vector ρ. Next fit Gamma glm

E(Y |S,L) = µ where µ = exp(β0 + β1E{f(S)|L; ρ̂} + ψf(S)) and where ρ̂ is MLE of ρ.

Let ρ = (ρ0, ρ1) and β = (β0, β1, βL) where βL is only included if using the doubly robust

estimator. Let θ = (ρ, β, ψ). Estimating functions for θ̂ are given by score equations; denote

these score equations by γρ(O; ρ), γβ(O; θ), γψ(O; θ). Let γθ = (γρ, γβ, γψ)>. The estimator

θ̂ = (ρ̂, β̂, ψ̂) is the solution to the vector estimating equation
∑m

i=1 γθ(O; θ) = 0, i.e.,

0 =
∑
i



γρ(Oi; ρ)

γβ0(Oi; ρ, β0, β, ψ)

γβ1(Oi; ρ, β0, β, ψ)

γψ(Oi; ρ, β0, β, ψ)


=
∑
i



γρ(Oi; ρ)

Yiµ
−1
i − 1

E{f(S)|Li; ρ}(Yiµ−1i − 1)

f(Si)(Yiµ
−1
i − 1)


Note that this is equivalent to solving

0 =
∑
i



γρ(Oi; ρ)

γβ0(Oi; ρ, β0, β, ψ)

γβ1(Oi; ρ, β0, β, ψ)

γ∗ψ(Oi; ρ, β0, β, ψ)


=
∑
i



γρ(Oi; ρ)

Yiµ
−1
i − 1

E{f(S)|Li; ρ}(Yiµ−1i − 1)

(f(Si)− E{f(S)|Li; ρ})(Yiµ−1i − 1)


It is straightforward to show that the estimating equations are unbiased. Define β∗0 and β∗1 to be

values of β0 and β1 such that E(γβ0(O; ρ, β∗0 , β
∗
1 , ψ) = 0 and E(γβ1(O; ρ, β∗0 , β

∗
1 , ψ) = 0. Be-

cause γρ(O; ρ) and γβ(0; θ) are score equations,
∫
γρ(O; ρ)dFO(O) = 0 and

∫
γβ(O; θ)dFO(O)

69



= 0 where FO(O) denotes the distribution of the observed variables O. Next note

γ∗ψ(O; ρ, β∗0 , β
∗
1 , ψ) = d(L; ρ, β∗0 , β

∗
1){f(S)− E{f(S)|L; ρ}}(Y exp(−ψf(S))− g(L; ρ, β∗0 , β∗1))

where d(L; ρ, β0, β1) = exp(−β0 − β1E{f(S)|L; ρ}) and g(L; ρ, β0, β1) = exp(β0 +

β1E{f(S)|L; ρ}). From Robins [1994] it follows that E(γ∗ψ(O; ρ, β∗0 , β
∗
1 , ψ)) = 0 if the treat-

ment model and structural models above are correctly specified. Using obvious shorthand

E(γ∗ψ) = ES,L[d(f(S)− E{f(S)|L; ρ}){E(Y exp(−ψf(S))|S,L)− g}]

= ES,L[d(f(S)− E{f(S)|L; ρ}){exp(w(L))− g}] = 0

where first equality holds by the assumed structural model and the second equality holds

assuming the treatment model is correct.

Consider the estimator from above, but suppose now that instead we fit Gamma glm

E(Y |S,L) = µ where µ = exp(β0 + β1E{f(S)|L; ρ̂} + βLL + ψf(S)). The estima-

tor θ̂ = (ρ̂, β̂, ψ̂) is the solution to estimating equations listed above with the addition of

γβL(Oi; ρ, β0, β1, ψ) = Li(Yiµ
−1
i − 1). Define β∗0 , β∗1 , and β∗L to be values of β0, β1 and βL such

that E(γβ(O; ρ, β∗0 , β
∗
1 , β

∗
2 , ψ)) = 0 for γβ0 , γβ1 , γβL . By the previous arguments, ψ̂ is CAN for

ψ if the treatment model is correctly specified. Alternatively, suppose we can assume that

E(Y |L, S = 0) = exp(β0 + βLL)

such that β∗0 = β0, β
∗
1 = 0, β∗L = βL. Then it follows that E(Yiµ

−1
i |Si,Li) = 1, implying

E(γβ) = 0 and E(γ∗ψ) = 0 even if the treatment model is misspecified. Thus ψ̂ is CAN for ψ if

the treatment model is correct or the Y |S = 0,L model is correct, i.e., the estimator is doubly

robust.

It follows from standard large-sample estimating equation theory that under suitable

regularity conditions, θ̂ →p θ and
√
m(θ̂ − θ) →d N(0,Σ) where Σ = U−1W (U−>) for
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U = E{−γ̇θ(O; θ)}, where γ̇θ(O; θ) = ∂γθ(O; θ)/∂θ>, and W = E{γθ(O; θ)⊗2} [Stefanski

and Boos, 2002]. The asymptotic variance Σ can be consistently estimated by the empiri-

cal sandwich variance estimator Σ̂ = Û−1Ŵ (Û−>) where Û = m−1
∑m

i=1−γ̇θ(Oi; θ̂) and

Ŵ = m−1
∑m

i=1 γθ(Oi; θ̂)
⊗2.

Additional Simulations

Additional simulations were performed for the overall effect when f(s) = s + s2. Steps

(i)-(iv) in Section 4.3 were performed using true values of ψ0 = −3, ψ1 = 1.5 for λy =

exp(β0 + β1L1i + β2L2i + ψ0Si + ψ1S
2
i ). When the model for S model is misspecified, the

true treatment model uses e(L; ρ) = probit−1(−0.4I(55 > L1 > 35) + 0.2I(L2 < 3)). When

the model for Y is misspecified, the true outcome model uses λy = exp(log(0.7N) + ψ0S +

ψ1S
2 − 0.5I(55 > L1 > 35) + 0.3I(L2 < 3)). Binomial regression models for S were fit with

main effects for L1, L2. Gamma regression models with a log link for Y were fit with main

effects for S, S2, E[S|L; ρ̂], E[S2|L; ρ̂]. In the case of the doubly robust estimator, these models

also had main effects for both L1, L2. These estimators performed as expected. The singly

robust estimator may be robust to some misspecifications, but this could be due to the choice of

parameters and is not guaranteed.

Scenario ψ Group Bias Relative Bias Cov% ASE ESE SER
Singly robust

S model correct ψ0 All -0.014 0.5% 94% 2.29 2.33 0.98
ψ1 All 0.012 0.8% 94% 2.57 2.65 0.97

S model incorrect ψ0 All -0.26 8.7% 94% 1.31 1.32 0.99
ψ1 All 0.28 18% 94% 1.43 1.45 0.99

Doubly Robust
Both correct ψ0 All -0.019 0.6% 94% 2.29 2.34 0.98

ψ1 All 0.016 1.1% 94% 2.57 2.66 0.96
S model incorrect ψ0 All 0.042 -1.4% 94% 1.32 1.34 0.99

ψ1 All -0.057 -3.8% 94% 1.44 1.46 0.98
Y model incorrect ψ0 All 0.069 -2.3% 93% 2.14 2.28 0.94

ψ1 All -0.085 -5.7% 93% 2.40 2.57 0.93
Both incorrect ψ0 All 0.97 -32% 85% 1.16 1.26 0.92

ψ1 All 0.61 40% 89% 1.24 1.34 0.93
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Sample R Code

The full code used for the simulations in the previous section is available at https://github.

com/KilpatrickKW. The following code demonstrates how to fit both models and find

standard error estimates using the geex package in R.

#--------------------------------------------------------------------------

# Fit S|L model

#--------------------------------------------------------------------------

s_model_rhos<-glm(S˜L1+L2,data=simdataset,family="binomial",weights = N)

rho_hat<- s_model_rhos$coef

simdataset$e_L<-expit(rho_hat["(Intercept)"]+rho_hat["L1"]*simdataset$L1+

rho_hat["L2"]*simdataset$L2)

# now find E[Sˆ2|L]

ehat_s<-list()

sum_over_s<-list()

for (i in simdataset$cluster){

Nval<-simdataset$N[i] #max num in cluster

for (s in 1:(Nval+1)){

pmf_s<-dbinom(s-1,size=Nval,prob=simdataset$e_L[i])

summand<-((s-1)/Nval)ˆ2*pmf_s

sum_over_s[s]<-summand

}

ehat_s[[i]]<-sum(unlist(sum_over_s))

sum_over_s<-list()

}

simdataset$e_L_squared<-unlist(ehat_s)

#--------------------------------------------------------------------------

# Fit Y model

#--------------------------------------------------------------------------
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#singly robust version

g_est<-geem(Y˜e_L+e_L_squared+S+S2,family = Gamma(link="log"),id=cluster,

data = simdataset)

beta_hat<-coefficients(g_est)[c("(Intercept)","e_L","e_L_squared")]

psi_hat<-coefficients(g_est)[c("S","S2")]

#doubly robust version

g_est_dr<-geem(Y˜e_L+e_L_squared+L1+L2+S+S2,family = Gamma(link="log"),

id=cluster, data = simdataset)

beta_hat_dr<-coefficients(g_est_dr)[c("(Intercept)","e_L","e_L_squared",

"L1","L2")]

psi_hat_dr<-coefficients(g_est_dr)[c("S","S2")]

#--------------------------------------------------------------------------

# Find SEs using geex

#--------------------------------------------------------------------------

estfun_gf <- function(data,models){

S <- data$S

S2 <- data$S2

Y <- data$Y

X_s<-cbind(rep(1, length(Y)),data$L1,data$L2,data$N)

function(theta){

# s score equations

pi_score_s<-expit(theta[1]*X_s[,1]+theta[2]*X_s[,2]+theta[3]*X_s[,3])

score_int_s<-X_s[,4]*(S-pi_score_s)*X_s[,1]

score_L1_s<-X_s[,4]*(S-pi_score_s)*X_s[,2]

score_L2_s<-X_s[,4]*(S-pi_score_s)*X_s[,3]

#now we need E(S|L)

e_L<-pi_score_s

#now find E(Sˆ2|L)

ehat_s<-list()

sum_over_s<-list()

for (i in length(Y)){
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Nval<-data$N[i] #max num in cluster

for (s in 1:(Nval+1)){

pmf_s<-dbinom(s-1,size=Nval,prob=e_L[i])

summand<-((s-1)/Nval)ˆ2*pmf_s

sum_over_s[s]<-summand

}

ehat_s[[i]]<-sum(unlist(sum_over_s))

sum_over_s<-list()

}

e_L_squared<-unlist(ehat_s)

# singly robust for Y

mu_inv<-exp(-theta[4]-theta[5]*e_L-theta[6]*e_L_squared-theta[7]*S-

theta[8]*S2)

score_int_y<-Y*mu_inv-1

score_eL_y<-e_L*(Y*mu_inv-1)

score_eLsquared_y<-e_L_squared*(Y*mu_inv-1)

score_psi<-S*(Y*mu_inv-1)

score_psi_1<-S2*(Y*mu_inv-1)

# doubly robust for Y

mu_inv_dr<-exp(-theta[9]-theta[10]*e_L-theta[11]*e_L_squared-

theta[12]*X_s[,2]-theta[13]*X_s[,3]-theta[14]*S-theta[15]*S2)

score_int_y_dr<-Y*mu_inv_dr-1

score_eL_y_dr<-e_L*(Y*mu_inv_dr-1)

score_eLsquared_y_dr<-e_L_squared*(Y*mu_inv_dr-1)

score_L1_y_dr<-X_s[,2]*(Y*mu_inv_dr-1)

score_L2_y_dr<-X_s[,3]*(Y*mu_inv_dr-1)

score_psi_dr<-S*(Y*mu_inv_dr-1)

score_psi_1_dr<-S2*(Y*mu_inv_dr-1)

c(score_int_s, score_L1_s, score_L2_s,

score_int_y, score_eL_y, score_eLsquared_y,
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score_psi, score_psi_1,

score_int_y_dr, score_eL_y_dr, score_eLsquared_y_dr, score_L1_y_dr,

score_L2_y_dr, score_psi_dr, score_psi_1_dr)}}

geex_results<-m_estimate(

estFUN = estfun_gf,

data = simdataset,

roots = c(rho_hat, beta_hat, psi_hat, beta_hat_dr, psi_hat_dr),

compute_roots = FALSE)

psi_se<-sqrt(geex_results@vcov[7,7])

psi_1_se<-sqrt(geex_results@vcov[8,8])

psi_dr_se<-sqrt(geex_results@vcov[14,14])

psi_1_dr_se<-sqrt(geex_results@vcov[15,15])
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