
 

 

FUNCTIONAL HIPPOCAMPAL REDUNDANCY AS A MEASURE OF RESILIENCE TO 
PATHOLOGICAL AGING 

Stephanie Langella 

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in 
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department 

of Psychology and Neuroscience in the College of Arts and Sciences. 

Chapel Hill 
2021 

 Approved by: 

 Charlotte Boettiger 

 Eran Dayan 

 Jessica Cohen 

 Keely Muscatell 

 Kelly Giovanello  



 

 ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
© 2021 

Stephanie Langella 
ALL RIGHTS RESERVED



 

 iii 

ABSTRACT 
 

Stephanie Langella: Functional hippocampal redundancy as a measure of resilience to 
pathological aging 

(Under the direction of Kelly Giovanello and Eran Dayan) 
 

 Aging is accompanied by declines in episodic memory and altered hippocampal function, 

each of which are exacerbated in response to the development of Alzheimer’s disease. Therefore, 

it is critical to identify factors which support resilience to such pathological aging. One proposed 

factor is redundancy, the existence of duplicate elements within a system that offers protection 

against failure. Redundancy is hypothesized to operate within the brain as a neuroprotective 

mechanism, though this hypothesis has not been tested in the context of neurodegenerative 

diseases. This dissertation presents initial evidence that hippocampal redundancy, quantified 

from resting-state functional brain networks, operates as a neuroprotective mechanism in aging. 

The role of hippocampal functional redundancy is examined in the context of clinical, 

cognitive, pathological, and experiential factors across three studies. The first study demonstrates 

that posterior hippocampal redundancy is lower in mild cognitive impairment, a precursor stage 

to Alzheimer’s disease, than in healthy aging, though redundancy does not differ between early 

and late stages of mild cognitive impairment. Further, posterior hippocampal redundancy is 

related to better memory performance. The second study expands upon these results, relating 

hippocampal redundancy to pathological markers of Alzheimer’s disease, showing that 

hippocampal redundancy mediates the relationship between hippocampal volume and memory 

performance. Additionally, the combination of low hippocampal redundancy, volume, and 

memory is associated with subsequent dementia conversion. The final study reveals that the 
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positive mnemonic benefit of redundancy weakens throughout healthy older adulthood and is 

specific to posterior rather than anterior hippocampus. However, this study finds no evidence 

that redundancy is influenced by either education or physical activity, two prominent protective 

factors for healthy aging. 

Across these three studies, hippocampal redundancy, particularly in posterior regions, is 

shown to be associated with better clinical and cognitive outcomes. Future studies will benefit 

from longitudinal analysis of redundancy in relation to clinical progression and long-term 

measures of physical activity. Together, the results presented in this dissertation provide the 

initial evidence that hippocampal redundancy supports resilience to pathological aging. 
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CHAPTER 1: INTEGRATIVE INTRODUCTION 

Alzheimer’s disease (AD), the sixth leading cause of death in the United States, is a 

neurodegenerative disease with a rapidly increasing prevalence (“2020 Alzheimer’s disease facts 

and figures,” 2020). AD is characterized by two hallmark pathologies: beta-amyloid (Aß) 

plaques and neurofibrillary tau tangles. The aggregation of AD neuropathology precedes the 

onset of clinical symptoms, beginning during healthy aging and continuing to aggregate 

throughout disease progression, affecting both brain structure and function (Jack et al., 2013; 

Nelson et al., 2012). AD progression can be roughly categorized into three phases: preclinical 

AD, mild cognitive impairment (MCI), and clinical dementia. Daily function is preserved in both 

preclinical and MCI stages despite an increasing neuropathological burden, but MCI, often 

regarded as a precursor stage to AD, is additionally characterized by cognitive impairment 

(“2020 Alzheimer’s disease facts and figures,” 2020; Jack et al., 2013; Jack Jr et al., 2018). 

One of the earliest sites affected by AD pathology is the hippocampal formation of the 

medial temporal lobe (Braak & Braak, 1991; Harris et al., 2010; Jack et al., 2013; Schönheit, 

Zarski, & Ohm, 2004; Yankner, Lu, & Loerch, 2008). The hippocampus is the primary structure 

supporting episodic memory, the memory for distinct events defined by a specific context and 

time of occurrence (Eichenbaum, 2017), which is, in turn, the initial and primary cognitive 

deficit observed in MCI and early AD (Gallagher & Koh, 2011). In additional to pathological 

burden, the hippocampus experiences atrophy in both normal (or preclinical) and pathological 

aging, though higher rates are observed in MCI and AD (Apostolova et al., 2012; Barnes et al., 

2009) and in individuals who show clinical progression rather than stability (Frankó & Joly, 
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2013; Jack et al., 2000). Such atrophy is related to deficits in episodic memory performance 

(Grundman et al., 2002; O’Shea, Cohen, Porges, Nissim, & Woods, 2016). As with structure, 

hippocampal function undergoes changes in normal aging, related to declines in episodic 

memory ability (Leal & Yassa, 2015; Yankner et al., 2008), though is further impaired in MCI 

and AD. As compared to healthy aging, there is hippocampal hyperactivity in MCI, followed by 

hypoactivity in AD (Dickerson et al., 2005), and this MCI-based hyperactivity predicts future 

cognitive decline (Miller et al., 2008). Further, individuals with some level of cognitive 

impairment show decreased hippocampal activity overtime (O’Brien et al., 2010). 

Studies of pathology, structure, and function have long demonstrated that the 

hippocampus is a critically affected region across clinical AD stages. However, a high proportion 

of cognitively healthy individuals harbor AD pathology without ever displaying clinical 

symptoms (Bennett et al., 2006; Katzman et al., 1988; Price et al., 2009; Price & Morris, 1999). 

Mechanisms which support continued hippocampal function across preclinical and MCI stages 

are critical to research to further understand why some individuals can harbor AD pathology 

without displaying clinical impairment. In other words, certain functional properties of the 

hippocampus may be neuroprotective against AD pathology. 

The notion of reserve developed from these findings of discrepant pathological and 

clinical status (Katzman et al., 1988; Stern, 2006). Reserve refers to the difference between the 

extent of brain damage and its outward clinical or cognitive presentation, such that individuals 

with more reserve exhibit resilience to physical brain damage (Cabeza et al., 2018; Montine et 

al., 2019; Stern, Barnes, Grady, Jones, & Raz, 2019). Functional connectivity has been posited as 

a reserve mechanism and has garnered extensive support in the cognitive aging community in 

recent years. Functional connectivity describes how brain regions interact across time. In the 
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context of cognitive aging, functional connectivity is typically derived from functional magnetic 

resonance imaging (fMRI), which estimates the blood-oxygen-level-dependent (BOLD) signal as 

a proxy of brain activity. Functional connectivity derived from fMRI, then, represents the 

correlated time series of the BOLD response between two regions. Resting-state functional 

connectivity is calculated during a session in which the participant remains awake in the scanner 

but does not complete any task, representing an intrinsic state of functional networks. Resting-

state scans are more commonly used in patient populations than are task-based designs, due to 

the relative ease of acquisition and ability to compare results widely across research groups. As 

such, resting-state functional connectivity has been examined extensively in MCI populations. 

As is observed in activation studies, hippocampal functional connectivity patterns are 

impaired in MCI and AD as compared to healthy aging (Binnewijzend et al., 2012; Sohn, Yoo, 

Na, & Jeong, 2014; Z. Wang et al., 2011). Despite hippocampal functional impairments between 

healthy and pathological aging, greater hippocampal resting-state functional connectivity within 

individuals with MCI is related to better memory performance. Mnemonic benefits of 

hippocampal connectivity have been found broadly, including via connections to the default 

mode network and associated regions (Dunn et al., 2014; Su et al., 2017; Y. Wang et al., 2013; 

Yan, Zhang, Chen, Wang, & Liu, 2013), to the cerebellum (Delli Pizzi, Punzi, & Sensi, 2019), 

and to the brain globally (i.e., hippocampal whole-brain connectivity) (Sheng et al., 2017). These 

results indicate that higher connectivity (i.e., stronger correlations) between the hippocampus and 

other brain regions are supportive of memory function. 

 However, what remains unclear are the mechanisms through which certain individuals 

exhibit a resilience to AD pathology and demonstrate preserved clinical and cognitive 

functioning. In addition to characterizing the strength of correlations between timeseries’, 
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functional connectivity between brain regions can further be characterized as a network, in which 

the correlation between the timeseries’ of two brain regions are represented as edges in a matrix 

representing all pairs of brain regions (Rubinov & Sporns, 2010). Properties derived from such 

graph-based networks may provide additional insight as to how hippocampal connectivity is 

beneficial in preclinical aging and MCI. Despite a relative emphasis on properties defined by 

shortest or direct paths within a network, longer-range connections are likely to exist in complex 

brain networks and contribute to resilience (Avena-Koenigsberger, Misic, & Sporns, 2018). One 

such property is redundancy, conceptually referring to the existence of duplicate elements within 

a system that, in case of failure of a specific element, provide alternate means of functionality 

(Tononi, Sporns, & Edelman, 1999). Redundancy, a prominent principle in engineering fields 

(Billinton & Allan, 1992), exists in a variety of biological systems, offering preserved 

functionality, for example, in the event of gene deletions (Navlakha, He, Faloutsos, & Bar-

Joseph, 2014) or organ failure (Glassman, 1987), and contributes to robustness of neural 

networks (Pitkow & Angelaki, 2017).  

 As a graph measure specifically, redundancy is quantified as the sum of direct and 

indirect paths between two nodes. In this sense, redundancy was introduced using resting-state 

electroencephalogram (EEG) timeseries’ in healthy young adults, providing evidence that 

redundancy exists in brain network organization (De Vico Fallani et al., 2012). These results 

were supported when redundancy was applied to magnetoencephalography (MEG) data, again 

showing evidence of redundancy in brain networks, and further showing a difference between 

redundancy and other common graph properties, namely shortest path (a direct contrast to 

redundancy’s emphasis on longer paths), and communicability (a walk-based metric that 

incorporates indirect paths) (Di Lanzo, Marzetti, Zappasodi, De Vico Fallani, & Pizzella, 2012). 
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In an extension to psychiatric group comparisons, individuals with depression were shown to 

have lessened modulation of EEG-based functional redundancy during painful stimulation 

(Leistritz et al., 2013). However, despite prior hypotheses that redundancy is neuroprotective in 

neurodegenerative diseases (Arkadir, Bergman, & Fahn, 2014; Creasey & Rapoport, 1985; 

Glassman, 1987), it has not been applied to healthy and pathological aging populations. 

This dissertation examines the potentially protective role of functional hippocampal 

redundancy derived from resting-state fMRI networks in healthy and early pathological aging, 

with an emphasis on its relation to cognitive and biological markers of AD. As the hippocampus 

is affected in early disease stages, redundancy of the hippocampus in particular is a probable 

mechanism for resilience to AD pathology. In healthy brains, communication should be similar 

between low and high redundancy networks. However, upon neurodegeneration, networks with 

low redundancy may lose critical connections between brain regions. Conversely, networks with 

high redundancy have alternative channels for communication, thereby supporting connections 

that may be lost in a low redundancy network. To that end, high hippocampal redundancy may 

support clinical and cognitive function in aging. Therefore, Study 1 characterizes hippocampal 

functional redundancy across various stages of healthy and pathological aging, along with its 

associations with cognitive performance. This study is the first to examine redundancy as a graph 

property in the context of neurodegenerative disease, providing a basis with which to further 

study its involvement in resilience. 

Expanding upon the clinically-defined group approach in Study 1, Study 2 incorporates 

known biological markers of AD. A recently introduced biologically-oriented research 

framework, ATN (amyloid, tau, neurodegeneration), advocates the use of biomarkers that reflect 

the buildup of AD pathologies to stage AD progression (Jack Jr et al., 2018). Indeed, 
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hippocampal neurodegeneration is related to clinical progression (Apostolova et al., 2012; 

Barnes et al., 2009; Frankó & Joly, 2013; Jack et al., 2000) and poor memory performance 

(Golomb et al., 1993; Huang et al., 2019; Nathan et al., 2017; O’Shea et al., 2016; Peng et al., 

2015). Therefore, it is imperative to understand the relationships between hippocampal 

redundancy and AD biomarkers. Study 2 examines how hippocampal redundancy relates to two 

such markers: hippocampal atrophy and cortical Aß. Specifically, hippocampal redundancy was 

examined as a potential underlying mechanism through which hippocampal atrophy relates to 

memory impairment, a relationship which may be moderated by Aß burden. This study puts 

functional redundancy in the context of known pathological markers and suggests a mechanistic 

role in cognitive aging. 

Findings from initial investigations of functional redundancy in aging suggest that 

changes in redundancy likely occur before the onset of MCI. Specifically, upon diagnosis of 

MCI, hippocampal redundancy has already declined substantially compared to healthy aging 

(Langella, Sadiq, Mucha, Giovanello, & Dayan, 2021; Study 1), hippocampal atrophy is 

accompanied by low hippocampal redundancy (Study 2), and whole-brain redundancy declines 

during healthy aging (Sadiq, Langella, Giovanello, Mucha, & Dayan, 2021). Healthy older 

adults, however, are not a homogenous group. Despite a general tendency for clinically healthy 

older adults to experience brain changes and episodic memory decline, some older adults are 

able to better retain memory function due to various factors, including high reserve (Stern, 2006; 

Stern et al., 2019). Two prominent protective factors are education and physical activity, each 

related to better clinical outcomes in aging (Meng & D’Arcy, 2012; Norton, Matthews, Barnes, 

Yaffe, & Brayne, 2014; Rashid, Zahid, Zain, Kabir, & Hassan, 2020). However, further research 

is needed on the functional mechanisms which may support preserved memory ability in older 
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adulthood. Therefore, Study 3 examines hippocampal redundancy across healthy older 

adulthood, characterizing the contributions of hippocampal redundancy to preserved cognition in 

healthy aging. Hippocampal redundancy is treated as a mechanism through which education and 

physical activity may relate to cognition. In contrast to Studies 1 and 2, Study 3 examines 

hippocampal redundancy as a neuroprotective mechanism in healthy rather than impaired 

populations, particularly in the context of factors that influence reserve. 

 Together, this research aims to present hippocampal redundancy as a neuroprotective 

mechanism through which certain individuals exhibit resilience to AD-related clinical and 

cognitive decline. Resting-state fMRI, widely collected in healthy and patient populations, 

provides insights into intrinsic brain organization. Current knowledge from resting-state fMRI 

data have illuminated many functional changes associated with aging and AD; however, 

functional redundancy as a graph measure has not been widely adopted despite strong theoretical 

support for its beneficial role. These studies leverage existing knowledge of the course of AD, 

focusing analyses on the hippocampus and known biomarkers, while introducing a novel 

measure to understand resilience in aging.  
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CHAPTER 2: LOWER FUNCTIONAL HIPPOCAMPAL REDUNDANCY IN MILD 
COGNITIVE IMPAIRMENT1 

 Alzheimer’s disease (AD) is a neurodegenerative disease that poses a significant public 

health concern, with dementia constituting the fifth leading cause of death worldwide (Nichols et 

al., 2019). AD is characterized by the accumulation of amyloid beta plaques and neurofibrillary 

tau tangles, which disrupt neural communication and contribute to functional and structural 

changes across the brain (Nelson et al., 2012). These pathologies aggregate during healthy aging 

and continue into mild cognitive impairment (MCI), regarded as a precursor stage to AD (Aisen 

et al., 2010). Although individuals diagnosed with MCI are more likely to later progress to AD, 

there is considerable variability in individual trajectories, with conversion estimates ranging from 

8% to 25% (Petersen et al., 2018). In addition, the prevalence of biologically-defined AD 

(diagnosed post-mortem) is up to three times higher than clinically-defined AD, illustrating that a 

high proportion of older adults are presenting normal cognitive function despite extensive neural 

pathology (Jack et al., 2013). This suggests that in certain individuals, neuroprotective 

mechanisms allow the brain to cope with early neurodegeneration and retain normal cognitive 

function. With an increasing aging population, it is critical to identify the mechanisms that 

mitigate cognitive decline, yet these mechanisms are currently not well understood. 

 The general notion of reserve has been introduced to refer to the difference between the 

extent of brain damage and its outward presentation (clinically or cognitively) (Cabeza et al., 

 
1This chapter previously appeared as an article in Translational Psychiatry. The original citation is as follows: 
Langella, S., Sadiq, M. U., Mucha, P. J., Giovanello, K. S., & Dayan, E. (2021). Lower functional hippocampal 
redundancy in mild cognitive impairment. Translational Psychiatry, 11(61). https://doi.org/10.1038/s41398-020-
01166-w 
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2018; Montine et al., 2019; Stern et al., 2019).Thus, individuals with more reserve exhibit a 

resilience to or temperance of physical brain damage (Cabeza et al., 2018; Montine et al., 2019; 

Stern et al., 2019). Reserve mechanisms in the brain are difficult to quantify. One potential 

quantifiable reserve mechanism is redundancy: the existence of duplicate elements within a 

system that provide alternative functionality in case of failure (Navlakha et al., 2014; Tononi et 

al., 1999). This design principle is abundant in engineering fields, where redundant elements 

protect a design from total failure in the event of malfunction of a specific element (Billinton & 

Allan, 1992). Redundancy exists in biological systems as well, with examples in genetic 

structures and cells, up to the level of whole organs (Glassman, 1987; Navlakha et al., 2014; 

Pitkow & Angelaki, 2017). For example, recent work has demonstrated that redundant elements 

are effective at preserving functioning in the event of gene deletions (Navlakha et al., 2014) and 

providing robustness in neural networks (Pitkow & Angelaki, 2017). Since physical redundancy 

is not a requirement to support informational or functional redundancy (Nguyen, Xu, Luu, Zhao, 

& Yang, 2019), functional redundancy can be calculated from a graph-based representation of 

functional brain networks (Di Lanzo et al., 2012; Leistritz et al., 2013). Numerous studies have 

derived graph-based measures and topological properties from resting-state functional magnetic 

resonance imaging (rs-fMRI) data, in which systems are represented as a collection of nodes 

(brain regions) and edges (correlated timeseries data) (Bassett & Sporns, 2017; Bullmore & 

Sporns, 2009; Rubinov & Sporns, 2010). This approach has recently been employed to analyze 

functional redundancy in young adults, quantified as the sum of direct and indirect paths between 

any pair of nodes (Di Lanzo et al., 2012; Leistritz et al., 2013). Similar approaches have been 

used to quantify redundancy in other biological networks, leading to the consideration that path 

redundancy (the presence of multiple paths between a pair of nodes) is an important contributor 
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to robustness of cellular networks (Aittokallio & Schwikowski, 2006). However, while the role 

of redundancy in neuroprotection has been postulated before (Arkadir et al., 2014; Glassman, 

1987), it has not yet been formally quantified to date for studying neuroprotection in 

neurodegenerative diseases. 

 It remains unknown, therefore, if redundancy is neuroprotective against age-related 

cognitive decline. A plausible site where neuroprotective functional redundancy may be detected 

is the hippocampus. This medial temporal lobe structure, critical for memory processes, is among 

the earliest sites affected by AD pathology (Harris et al., 2010). Functional and structural 

alterations in the hippocampus are early and precede the onset of AD (Jack et al., 2013), and 

MCI is characterized by declines in memory and hippocampal functioning (Gallagher & Koh, 

2011). We thus reasoned that hippocampal functional redundancy may serve as a neuroprotective 

mechanism to outward clinical presentation of MCI, such that in a redundant network, 

communication could continue even in the presence of neurodegeneration of a node (e.g., 

hippocampus) (Fig. 2.1A). Conversely, communication within a less redundant network should 

be severely disrupted in the presence of neurodegeneration (Navlakha et al., 2014) (Fig. 2.1A). 

The current study investigates functional redundancy in 130 cognitively normal (CN), 

early MCI (eMCI), and late MCI (lMCI) older adults (Fig. 2.1B) across four anterior and 

posterior hippocampal nodes (Fig. 2.1C) to elucidate how functional redundancy is associated 

with healthy (or asymptomatic) and pathological aging. Three potential relationships between 

redundancy and cognitive status were considered: (a) no relationship between redundancy and 

cognitive status (i.e., redundancy is not a neuroprotective mechanism), (b) redundancy declines 

linearly with cognitive status (i.e., redundancy is protective in both healthy and pathological 

aging), or (c) redundancy declines from healthy to pathological aging, but plateaus upon 
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reaching MCI (i.e., redundancy is neuroprotective in healthy or asymptomatic aging, but ceases 

to offer functional benefits upon appearance of neurodegeneration) (Fig. 2.1D). We hypothesize 

that functional redundancy will be related to diagnosis, such that CN individuals will have 

greater redundancy than those with MCI. Further, if redundancy acts as a neuroprotective 

mechanism, then we hypothesize that higher redundancy will be related to better cognitive 

performance. 

Figure 2.1 | Study design and hypotheses 

 
A. Examples of networks with high and low redundancy. The shortest path between nodes i, j do 
not differ between high and low redundancy in a healthy state. In the case of neurodegeneration 
(red nodes), a highly redundant network retains a path between nodes i, j, whereas there are no 
paths between nodes i, j in a low redundancy network. B. Sample characteristics of the included 
subjects. C. Representation of the functional parcellation used in the current study made up of 
300 nodes representing cortical, subcortical, and cerebellar regions (Seitzman et al., 2020). The 
four hippocampal nodes are shown next to the full atlas parcellation, representing anterior (cyan) 
and posterior (blue) hippocampus. D. Three hypothesized relationships between redundancy and 
cognitive decline. There could be no relationship between redundancy and cognitive decline 
(gray line), a linear relationship such that redundancy declines linearly across healthy aging, 
early MCI, and late MCI states (blue line), or a nonlinear relationship, such that redundancy 
declines between healthy aging and MCI, but plateaus in MCI (red line). Redundancy equation 
presented above hypothesized relationships, in which redundancy, R, of node pair i,j is 
represented by the sum of all paths between i,j at length l, up to a maximum path length, L. 
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Materials and Methods 

Dataset 

 Data were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

database (adni.loni.usc.edu), a longitudinal multi-site study launched in 2003 and led by 

Principal Investigator Michael W. Weiner, MD. For up to date information, see www.adni-

info.org. Subjects were participants of the ADNIGO/2 protocol, which distinguishes between a 

diagnosis of early and late MCI and includes rs-fMRI data. Study visits were approved by each 

site’s local IRB. All participants provided informed consent. The following inclusion criteria 

were established by ADNI: 

MCI subjects: subjective memory concern, clinical dementia rating (CDR) of 0.5, Mini-

Mental State Exam (MMSE) score between 24 and 30, an abnormally low score on the 

Wechsler Memory Logical Memory II subscale (LM-II), no significant levels of impairment 

in other cognitive domains, preserved activities of daily living, non-demented. 

Early MCI (eMCI): LM-II score between 9-11 for ≥ 16 years of education, 5-9 for 8-15 

years of education, 3-6 for 0-7 years of education 

Late MCI (lMCI): LM-II score ≤ 8 for ≥ 16 years of education, ≤ 4 for 8-15 years of 

education, ≤ 2 for 0-7 years of education 

Cognitive normal (CN) subjects: no subjective memory concern, CDR of 0, MMSE scores 

between 24 and 30, scores on LM-II within the expected range (≥ 9 for 16 or more years of 

education, ≥ 5 for 8-15 years of education, ≥ 3 for 0-7 years of education), no reported 

memory complaints, non-depressed, non-MCI, non-demented. 

The distinction between early and late MCI was determined by ADNI via the extent of 

low performance on the LM-II subscale, such that an eMCI diagnosis was made for scores about 
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1 SD below the education adjusted norm, and a lMCI diagnosis for scores about 1.5 SD below 

the education adjusted norm, in addition to meeting the above MCI criteria (Aisen, Petersen, 

Donohue, & Weiner, 2015). In an independent sample, participants classified as eMCI displayed 

less severe cognitive impairment and a slower rate of progression than those classified as lMCI 

(Aisen et al., 2010). Participants were included in the current study if (1) they had a diagnosis of 

either CN, eMCI, or lMCI, (2) they were between 60 and 90 years old, (3) they had rs-fMRI and 

anatomical MRI collected on the same day, and (4) the images were collected using a 3 Tesla 

scanner. The first available scan that met these criteria was used for each subject. All participants 

that met these criteria were included in the study (n = 143). 

Image acquisition and preprocessing 

Structural magnetization-prepared rapid gradient echo and rs-fMRI images were 

collected on a Philips Intera 3 Tesla scanner. Functional images were collected using a GR pulse 

sequence (flip angle = 80 degrees, slice thickness = 3.31mm, TE = 30ms, TR = 3000ms). 

Participants were instructed to keep their eyes open during resting-state scans. 

Preprocessing steps were implemented in the MATLAB (R2017b) Conn toolbox 

(conn18b) (Whitfield-Gabrieli & Nieto-Castanon, 2012). Structural images underwent 

segmentation of gray matter, white matter, and cerebrospinal fluid. Functional images were 

preprocessed by realignment and unwarping, slice-timing correction, co-registration to structural 

images, spatial normalization, and motion outlier identification. White matter, cerebrospinal 

fluid, and 12 subject-motion parameters were included as nuisance regressors. Temporal band-

pass filtering was employed to remove BOLD signal frequencies below 0.008 Hz or above 0.09 

Hz. Outlier volumes were defined as having greater movement than 1.5mm or a Z threshold of 7. 
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Subjects with greater than 50% of volumes removed were excluded from subsequent analyses (n 

= 13), resulting in a final sample of 130 subjects. 

Matrix construction and calculations of network measures 

Functional timeseries were obtained using a functionally defined parcellation of 300 non-

overlapping spherical regions of interest (ROIs) (Seitzman et al., 2020), including substantial 

cortical, subcortical, and cerebellar coverage (Fig. 2.1C; coordinates available at 

https://wustl.app.box.com/s/twpyb1pflj6vrlxgh3rohyqanxbdpelw). Unweighted functional 

connectivity matrices were constructed for each subject with edges representing correlations 

between each ROI, by Fisher Z transformation and binarizing at thresholds selected for densities 

ranging from the top 2.5% to 25% of edges retained in each individual network. 

Redundancy. A redundancy matrix (R) was calculated for each node pair from each 

subject's connectivity matrix, defined as the sum of the direct and indirect edges between any 

two nodes (i, j), where l represents the total allowed path length and L represents the maximum 

path length (set to 4, in line with previous work and computational demands): 

!(#, %) = 	)*(#, %, +)
!

"#$
 

The four hippocampal nodes of the parcellation were a priori defined as the main ROIs in 

this study: left and right anterior, along with left and right posterior hippocampus. Redundancy 

was calculated between each hippocampal ROI and all other nodes (i.e., the average R value for 

the 299 ROI-node pairs). Five additional regions were identified for secondary analysis, focused 

on nodes within two functional networks affected in early AD: the default mode and 

frontoparietal networks (Badhwar et al., 2017) (see Appendix A, Supplementary Methods). 
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Degree. Unweighted degree was calculated for each hippocampal ROI, i, defined as the 

sum of all its binarized edges, where di,j represents the edge between nodes i and j. 

,% =	)-%,'
(

'#$
 

Global efficiency. Global efficiency, Eglobal, was calculated from each subject's binarized 

connectivity matrix, defined as the inverse of the shortest path length between two nodes (i, j), 

where n is the total number of nodes in the graph, and Li,j is the length of the shortest path 

between i and j: 

.)"*+," =	
1
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Cognition 

 We selected two cognitive domains that vary in the strength of their association with 

pathological aging: memory, the earliest reported cognitive deficit in MCI, and executive 

function, in which deficits are observed in later disease stages (Arnaiz & Almkvist, 2003). These 

were represented by composite measures MEM and EF respectively (Crane et al., 2012; Gibbons 

et al., 2012) (see Appendix A, Supplementary Methods). 

Participant characteristics 

The final sample included 130 subjects in rs-fMRI analyses (39 CN, 54 eMCI, 37 lMCI; 

Fig. 2.1B). The groups did not differ in age, F(2,127) = 2.07, p = .130, or sex, Χ2(2) = 4.04, p = 

.133. The groups differed in education, F(2,127) = 3.41, p = .036, such that the lMCI group had 

more years of education than the eMCI group, p = .036 (CN-eMCI p = .202, CN-lMCI: p = 

.734). Of this sample, 118 (37 CN, 50 eMCI, 31 lMCI) had cognitive data within three months of 

their scan date and were included in the cognition analyses. Within this subset, the groups did not 

differ in age, F(2,115) = 2.66, p = .074, education, F(2, 115) = 2.47, p = .089, or sex, X2(2) = 
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1.52, p = .468. The early and late MCI groups did not differ in percentage of amyloid-positive 

subjects, Χ2(1) = 0.16, p = .686, 95% CI [-0.17, 0.31] (see Appendix A, Supplementary 

Methods). 

Statistical analysis 

 Analyses were performed at all matrix densities (2.5% to 25%) and on the values 

averaged across densities. For brevity, results are reported in-text and in figures using the 

average across densities; results for each individual density are reported in the Supplementary 

Materials in Appendix A. Statistical analyses were run using R and MATLAB using raw data. 

Data were normalized for visualization. 

Group comparisons. Permutation tests were used for group comparisons of graph 

measures as they do not make assumptions about the distribution of the data and are more robust 

to non-normality than are parametric tests. Group comparisons were tested using the aovperm 

function from the permuco R package, which conducts analysis of covariance (ANCOVA) using 

permutation testing (Frossard & Renaud, 2019). Three-group omnibus tests were first computed 

using redundancy or degree as the dependent variable, group as the independent variable, and 

education as a covariate. Each test was run using 10,000 permutations and a significance level of 

p < .05. Significant tests were followed by post hoc tests using the permutation ANOVA for each 

pairwise group comparison with 10,000 permutations. Education was only included as covariate 

in eMCI-lMCI comparisons, as the other groups did not differ in years of education. Multiple 

comparisons in post hoc testing were corrected for using the Benjamini & Hochberg procedure to 

reduce false discovery rate (FDR) using the p.adjust R function. Cohen’s d and 95% confidence 

intervals (CI) were calculated using the effsize R function for pairwise comparisons (Torchiano, 

2020). 
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Group differences in overall functional connectivity, white matter hyperintensities, and 

cognition were analyzed separately using a one-way ANOVA implemented with the aov R 

function, with a significance level of p < .05. Significant omnibus tests were probed using 

Tukey’s post-hoc Honest Significant Difference test using the TukeyHSD R function, which 

adjusts the p-values for multiple comparison testing at a significance level of p < .05. Education 

was included as a covariate in overall functional connectivity analyses, and age and education 

were included as covariates in white matter hyperintensity analyses, due to group demographic 

differences in the respective samples. 

Nodal ratios. To quantify the magnitude of differences in redundancy between each 

group, pairwise nodal ratios were computed by dividing the average redundancy, R, of node i in 

one group by the average R of i in a second group. Redundancy of node i is the sum of its row in 

the redundancy matrix. This value was averaged to create a group-mean nodal redundancy value 

for each of the groups, which was then used to compute the ratio. This was done for all 300 

nodes for each pairwise group comparison. For example, the average redundancy of each node 

for the CN subjects was divided by the redundancy of each node for the eMCI subjects, resulting 

in a CN:eMCI ratio for each of the 300 atlas nodes, such that a ratio of 1 indicates equivalent 

redundancies and a ratio greater than 1 indicates higher redundancy in CN than in eMCI. This 

process was repeated for CN:lMCI and eMCI:lMCI comparisons. To test the significance of the 

posterior hippocampal nodal ranks, left and right posterior hippocampal ratios were averaged to 

create one posterior hippocampal ratio for each group ratio set and compared to the average ratio 

of a null distribution of random node pairs in each set, excluding posterior hippocampus (total: 

10,000 random node pairs). 



 

 18 

Redundancy regressions. Linear regressions were implemented using the lm R function, 

with redundancy as the independent variable and either cognition or global efficiency as the 

dependent variable, first collapsing across group, followed by within-group regressions. MEM 

and EF were regressed separately on hippocampal redundancy. Global efficiency was regressed 

on hippocampal redundancy, with education included as a covariate in the full sample regression. 

Hippocampal redundancy was regressed on MMSE within the MCI subjects to provide an 

alternate measure of MCI progression. Standardized betas are reported for all regression output. 

Due to the non-normality of the redundancy data, analyses were repeated using robust regression 

using Huber weights with the rlm function from the MASS R package (Ripley, 2020), with a 

Wald test of significance using the f.robftest function from the sfsmisc R package (Maechler, 

2020). 

Data and code availability. Neuroimaging and cognitive data are available at 

http://adni.loni.usc.edu/. The processed datasets generated in the current study are available from 

the corresponding author upon reasonable request. 

Results 

Lower hippocampal redundancy in MCI  

 We first compared hippocampal redundancy across healthy and pathological aging using 

an omnibus ANCOVA permutation test (Fig. 2.2A; Fig. S2.1; Tables S2.1-2.3). Neither left nor 

right anterior hippocampal nodes significantly differed by group [left: F(2,126) = 1.43, p = .250; 

right: F(2, 126) = 2.15, p = .125]. Conversely, both posterior hippocampal nodes significantly 

differed by group [left: F(2,126) = 4.84, p = .009; right: F(2, 126) = 5.22, p = .004]. Post hoc 

tests revealed greater redundancy in the CN group as compared to either MCI group in both left 

[eMCI: F(1,91) = 7.76, p = .014, Cohen’s d = 0.59, 95% CI(0.16, 1.01); lMCI: F(1,74) = 4.67, p 
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= .048, d = 0.50, 95% CI(0.03, 0.96)] and right [eMCI: F(1,91) = 9.00, p = .011, d = 0.63, 95% 

CI(0.20, 1.06); lMCI: F(1,74) = 6.21, p = .021, d = 0.57, 95% CI(0.11, 1.04)] posterior 

hippocampus. The MCI groups, on the other hand, did not differ in posterior hippocampal 

redundancy [left: F(1,88) = 0.09, p = .771, d = 0.05, 95% CI(-0.48, 0.37); right: F(1,88) = 0.02, p 

= .893, d = 0.03, 95% CI(-0.45, 0.39)]. 

To probe the relative importance of the observed group differences in hippocampal 

redundancy, we calculated between-group nodal redundancy ratio sets (CN:eMCI, CN:lMCI, 

eMCI:lMCI), thereby identifying the nodes with the greatest magnitude of group differences (top 

20 presented in Fig. 2.2B). Posterior hippocampal nodes consistently appeared in the top 5% of 

nodes in the CN:eMCI and CN:lMCI sets across network densities (Figs. S2.2-2.4). Left 

posterior hippocampus had the second highest ratio in the CN:eMCI set and the sixth highest 

ratio in the CN:lMCI set, indicating that not only does posterior hippocampal redundancy 

significantly differ between CN and MCI groups, but that posterior hippocampus has some of the 

largest differences across all nodes between CN and MCI groups. Indeed, posterior hippocampal 

ratios were significantly higher than the random node ratios in both the CN:eMCI set (MposteriorHC 

= 1.76, Mrandom = 1.15, SErandom = 0.002, p = .001; Fig. 2.2C; Table S2.4) and the CN:lMCI set 

(MposteriorHC = 1.66, Mrandom = 1.20, SErandom = 0.002, p = .017). The posterior hippocampus ratio 

did not differ from the random nodes in the eMCI:lMCI set (MposteriorHC = 0.95, Mrandom = 1.06, 

SErandom = 0.001, p = .831), supporting the finding that posterior hippocampal redundancy was 

less central for comparisons across MCI stages. 

Although our analysis divided MCI into two groups based on LM-II scores, other ways 

exist to formalize MCI progression. Therefore, we additionally assessed the association between 

hippocampal redundancy and MMSE scores within the MCI participants. MMSE was not related 
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to hippocampal redundancy in any of the four hippocampal nodes (lowest p = .204; Fig. S2.5; 

Tables S2.5-2.6), consistent with the absence of group differences between early and late MCI. 

Figure 2.2 | Hippocampal whole-brain functional redundancy differs in CN and MCI 
groups 

 
A. Group comparisons for the four hippocampal nodes. Error bars represent one standard error of 
the mean. B. The top 20 of 300 nodal ratios in each ratio set. Posterior hippocampal nodes 
(peach) and anterior hippocampal nodes (dark red) are highlighted. Bar labels denote the node’s 
Seitzman et al. 2020 network affiliation. Hippocampal nodes are further labeled with “LP”, 
“RP”, “LA”, or “RA” to represent left posterior, right posterior, left anterior, and right anterior 
respectively. C. Statistical comparison of the average posterior hippocampal ratio to random 
node pairs in each ratio set. D. Nodes included in the frontal (red), parietal (yellow), and 
temporal (orange) cortical analysis. E. Group comparisons for the cortical nodes. Error bars 
represent one standard error of the mean.  *p < .05, **p < .01 
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To further validate the specific role of hippocampal redundancy in cognitive aging, we 

analyzed a set of frontal, temporal, and parietal nodes to determine whether the observed effects 

were widespread across cortical regions affected in early AD (Badhwar et al., 2017) (Fig. 2.2D). 

Redundancy did not differ by group in any of the selected regions (lowest p = .097), suggesting 

this effect was, for the most part, unique to the hippocampus (Figs. 2.2E, S2.6; Tables S2.7-2.8). 

Hippocampal redundancy is related to memory but not executive function  

We sought additional evidence of a protective role of redundancy in aging from the 

relationship between cognitive performance and redundancy, hypothesizing that functional 

redundancy would be associated with a cognitive benefit. The groups significantly differed in 

MEM scores [F(2, 115) = 24.60, p < .001, (Fig. 2.3A)], such that the CN group (M = 1.01, SD = 

0.55) had higher scores than the eMCI group (M = 0.47, SD = 0.58, p < .001, 95% CI[-0.83, -

0.25]) and the lMCI group (M = 0.07, SD = 0.53, p < .001, 95% CI[-1.26, -0.62]), and the eMCI 

group had higher scores than the lMCI group (p = .006, 95% CI[-0.70, -0.10]). We initially 

collapsed our sample into a single group to examine the overall relationship between cognition 

and redundancy, focusing on posterior hippocampal redundancy due to its consistency in group 

difference analyses and prominence in nodal rankings. Both left and right posterior hippocampal 

redundancy were related to higher MEM scores (Figs. 2.3B-C; Tables 2.1, S2.9-2.10). Although 

the results reveal an overall effect of higher redundancy relating to better memory performance, 

we performed separate regressions by group as this relationship could differ based on cognitive 

status. The positive relationship between MEM and left hippocampal redundancy was retained in 

the CN group but not in either MCI group (Figs. 2.3B-C insets, S2.7; Tables 2.1, S2.9). In right 

hippocampus, only the eMCI group showed a positive relationship, but significance was 

inconsistent across densities (Fig. S2.7; Tables 2.1, S2.10). 
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This analysis process was repeated for EF. The groups differed in EF scores [F(2, 115) = 

3.69, p = .028, (Fig. 2.3D)], such that the CN group (M = 0.78, SD = 0.77) had higher scores than 

the lMCI group (M = 0.22, SD = 0.97, p = .021, 95% CI[-1.06, -0.07]), but did not differ from 

the eMCI group (M = 0.49, SD = 0.84, p = .245, 95% CI[-0.74, 0.14]). The two MCI groups did 

not differ from each other (p = .370, 95% CI[-0.73, 0.20]). Posterior hippocampal redundancy 

was not related to EF scores in our full sample, nor in any group (Figs. 2.2,2.3E-F, S2.7; Tables 

2.1, S2.11-2.12). Results for both MEM and EF were consistent when using robust regression 

methods (Table S2.13), suggesting the results were not driven by outliers. 

 

 

Table 2.1 | Posterior hippocampal redundancy-cognition regressions for averaged density 
 
 Left posterior Right Posterior 
 

ß p-value 
Adjusted 

R2 
ß p-value 

Adjusted 
R2 

Memory 
Whole group 0.187 .001 0.076 0.135 .022 0.036 

CN 0.206 .023 0.115 0.014 .877 0.028 
eMCI 0.119 .152 0.022 0.186 .021 0.087 
lMCI -0.075 .427 0.012 -0.058 .530 0.020 

       
Executive Function 
Whole group 0.067 .403 0.003 0.033 .680 0.007 

CN 0.143 .274 0.007 0.073 .571 0.019 
eMCI 0.077 .529 0.012 0.043 .718 0.018 
lMCI -0.280 .099 0.060 -0.198 .237 0.015 
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Figure 2.3 | Relationship between redundancy and cognitive performance 

 
A. Memory composite scores across groups. Boxplot denotes the median (bold bar), first and 
third quartiles (box limits), and +/- 1.5 times the inter-quartile range (whiskers). B. Whole 
sample regression of left posterior hippocampal redundancy on memory composite score. Inset 
shows within-group regression beta-weights. C. Whole sample regression of right posterior 
hippocampal redundancy on memory composite score. Inset shows within-group regression beta-
weights. D. Executive function composite scores across cognitive groups. Boxplot denotes the 
median (bold bar), first and third quartiles (box limits), and +/- 1.5 times the inter-quartile range 
(whiskers). E. Whole sample regression of left posterior hippocampal redundancy on executive 
function composite score. Inset shows within-group regression beta-weights. F. Whole sample 
regression of right posterior hippocampal redundancy on executive function composite score. 
Inset shows within-group regression beta-weights. *p < .05, **p < .01, ***p < .001 
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Specificity of redundancy as a topological property 

 Because the redundancy measure includes paths of length 1 (i.e., direct connections), we 

next examined whether similar group differences would be observed using only these length-1 

paths by way of node degrees (e.g., whether the inclusion of indirect paths is informative). No 

significant group differences were observed for any of the hippocampal nodes [left anterior: F(2, 

126) = 0.94, p = .390; right anterior: F(2, 126) = 0.80, p = .455; left posterior: F(2, 126) = 2.74, p 

= .071; right posterior: F(2, 126) = 0.90, p = .413; Fig. 2.4A; Table S2.14]. 

Groups were compared on overall functional connectivity for each of the hippocampal 

nodes to ensure graph measures were not biased due to underlying functional connectivity 

differences (van den Heuvel et al., 2017) (see Supplementary Methods in Appendix A). No 

group differences were found when retaining only positive correlations [left anterior: F(2, 126) = 

1.15, p = .319; right anterior: F(2, 126) = 1.68, p = .191; left posterior: F(2, 126) = 2.58, p = 

.080; right posterior: F(2, 126) = 1.31, p = .274], or when taking the absolute value of all 

correlations, [left anterior: F(2, 126) = 0.55, p = .580; right anterior: F(2, 126) = 0.72, p = .489; 

left posterior: F(2, 126) = 0.39, p = .679; right posterior: F(2, 126) = 0.05, p = .954]. 

Additionally, there were no group differences in total volume of white matter 

hyperintensities, F(2, 109) = 0.31, p = .737, nor did volume of white matter hyperintensities 

relate to hippocampal redundancy in any of the four ROIs (Table S2.15). Together, these results 

suggest that the redundancy measure provides valuable and specific information differentiating 

CN and MCI individuals. 

Redundancy does not come at the cost of efficiency 

 Our final analysis examined whether the existence of redundant edges in brain networks 

is associated with compromised communication efficiency within the network, measured by 
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global efficiency. There was no significant relationship between global efficiency and 

redundancy in any of the hippocampal nodes when collapsing across group [left anterior: β = -

0.17, p = .061, adjusted R2 = 0.02; right anterior: β = -0.03, p = .766, adjusted R2 = 0.01; left 

posterior: β = 0.07, p = .411, adjusted R2 = 0.003; right posterior: β = 0.05, p = .573, adjusted R2 

= 0.01] (Fig. 2.4B; Table S2.16), suggesting that efficient network communication is not 

compromised by having high functional redundancy. We further probed redundancy-efficiency 

relationships within each group, finding no significant relationships in either the CN or lMCI 

groups (Fig. 2.4B; Tables S2.17-S2.19). There was a positive relationship between global 

efficiency and left posterior hippocampal redundancy in the eMCI group, β = 0.32, p = .017, 

adjusted R2 = 0.09. Results were consistent using robust regression methods (Table S2.20). 

 
Figure 2.4 | Degree and global efficiency 

 
A. Group comparisons of degree in each hippocampal ROI. B. Global efficiency regressed on 
hippocampal redundancy in each ROI within each group and collapsing across groups. 
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Discussion 

Certain individuals exhibit normal cognition despite harboring the characteristic 

pathology of AD and other dementias (Driscoll et al., 2006; Driscoll & Troncoso, 2011; Jack et 

al., 2013), yet mechanisms of neuroprotection in the human brain remain elusive and difficult to 

quantify. Early work postulated that redundancy may exist in the brain, but it could not be 

quantified with the contemporary methods (Glassman, 1987). In the current study we quantified 

functional redundancy in healthy older adults and those with either early or late stage MCI to test 

whether redundancy acts as a neuroprotective mechanism against pathological aging. Consistent 

with previous reports of beneficial redundancy in biological systems (Nguyen et al., 2019; 

Pitkow & Angelaki, 2017), we found evidence that redundancy serves a neuroprotective role in 

cognitive aging. Specifically, healthy older adults showed higher posterior hippocampal 

redundancy than individuals with MCI, and posterior hippocampal redundancy was positively 

related to memory performance, with this association primarily driven by the cognitively intact 

group. The MCI groups did not differ in levels of hippocampal redundancy nor did they exhibit 

relationships between redundancy and cognition, thereby supporting the conclusion that 

redundancy incurs a neuroprotective benefit in healthy (and possibly asymptomatic) aging, 

which plateaus in symptomatic pathological aging (Fig. 2.1D, red line). Further, we found no 

group differences in temporal, parietal or frontal cortical nodes, suggesting these results are 

mostly specific to the hippocampus. 

 We found a clear distinction between anterior and posterior hippocampus, such that only 

posterior hippocampus consistently differentiated healthy aging from MCI. This distinction may 

be explained by the functional specialization along the long-axis of the hippocampus. As 

established in the rodent literature, dorsal (posterior in primates) hippocampus underlies memory 
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processes, and ventral (anterior in primates) hippocampus is involved in emotional processing. 

The anatomical connectivity of these regions supports this functional segregation, with ventral 

hippocampus connecting to the amygdala and dorsal hippocampus connecting to retrosplenial 

and anterior cingulate cortices (Fanselow & Dong, 2010). This distinction is further supported by 

a prominent memory theory (Ranganath & Ritchey, 2012), differentiating between a posterior 

medial and an anterior temporal functional network in humans, which largely overlap with the 

previously described structural connections (Fanselow & Dong, 2010). Relatedly, posterior, but 

not anterior, hippocampal nodes clustered with the default mode network (DMN) in the 

parcellation employed in the current study (Seitzman et al., 2020). The DMN has considerable 

overlap with the proposed posterior medial network (Ranganath & Ritchey, 2012), and exhibits 

functional deficits in the context of aging and AD (Buckner, Andrews-Hanna, & Schacter, 2008; 

Koch et al., 2012; Mohan et al., 2016), thereby supporting our primary findings in posterior 

rather than anterior hippocampus. 

 In addition to group differences in redundancy, we found that posterior hippocampal 

redundancy is related to memory performance. This relationship held in both our full sample and 

in healthy older adults but not in either MCI group. It is possible that the MCI groups, since they 

on average have lower redundancy than the CN group, may not exhibit enough hippocampal 

redundancy to benefit performance. Another interpretation is that the relationship between 

redundancy and cognition differs across groups. Though neither reached significance, the eMCI 

group had a positive memory-redundancy relationship, unlike the lMCI group which exhibited a 

negative relationship. Future work should probe whether there is an amount of redundancy that is 

necessary to benefit cognition, or if redundancy rather becomes a hindrance in later disease 

stages. We did not find any relationship between hippocampal redundancy and executive 
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function. Although hippocampal function has been associated with a range of cognitive 

processes (Shohamy & Turk-Browne, 2013), its role is particularly critical to mnemonic 

processes (R. E. Clark & Squire, 2013; Eichenbaum, 2017). This dissociation, then, indicates a 

selective cognitive benefit of nodal functional redundancy which can be further explored in other 

brain regions (e.g., prefrontal cortex and executive function). 

 Taken together, these results provide support for redundancy as a quantifiable 

neuroprotective mechanism, but further research is needed to satisfactorily describe its role as 

either a reserve or compensatory mechanism (Cabeza et al., 2018; Montine et al., 2019). Reserve 

encompasses both structural and functional properties of the brain accumulated over time that 

support cognitive or clinical function in the event of damage, as opposed to a compensatory 

mechanism that reacts in response to damage (Cabeza et al., 2018; Montine et al., 2019; Stern et 

al., 2019). We would expect increased redundancy in MCI if it acted as compensatory response; 

rather, we observed a benefit in healthy aging, suggesting it serves as a reserve mechanism. AD-

type pathology is already present in healthy aging and MCI stages, particularly in the 

hippocampus (Jack et al., 2013); aging individuals with more reserve (e.g., redundancy) are 

likely to show better cognitive outcomes, and therefore exhibit resilience to that damage. 

However, it is possible that redundancy increases for some individuals in healthy aging as a 

compensatory response to the accumulation of early pathology, that does not occur in individuals 

who are subsequently diagnosed with MCI or AD. Lifespan or longitudinal studies can provide 

additional evidence to elucidate its exact role. 

 Several limitations exist in this study. Although our results suggest a cognitive benefit of 

functional redundancy, our data were cross-sectional, limiting our claims about the progression 

of redundancy during the course of aging. Future studies should investigate longitudinally and 
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probe the potential difference in anterior and posterior hippocampal redundancy in 

differentiating stages of healthy and pathological aging, as later stages of MCI and AD may be 

expected to differ from healthy controls in anterior-based mnemonic processes (Koen & 

Yonelinas, 2014; Poppenk, Evensmoen, Moscovitch, & Nadel, 2013). In fact, our results 

demonstrated anterior hippocampal nodes are consistently among the highest 5% of nodal ratios 

between MCI groups. However, we did not observe significant group differences. The definition 

of early and late MCI used here, adopted from the ADNI protocol, may have precluded our 

ability to observe differences between MCI stages. The early versus late distinction is determined 

solely on performance on the LM-II, which could be affected by factors other than later stage 

cognitive decline (e.g., fatigue, concentration, practice effects) (Escandon, Al-Hammadi, & 

Galvin, 2010; Salthouse, 2010). However, we have no reason to believe these factors would 

differentially affect the groups, and we did not find a relationship between hippocampal 

redundancy and MMSE scores in MCI. Recently, it was proposed that an accurate staging of 

MCI and AD progression can be achieved through a combination of amyloid-beta, tau, and 

neurodegenerative markers (Jack Jr et al., 2018). The shift from staging MCI based on 

symptomatic markers to biological markers should be considered in future investigations. 

 In conclusion, we found that posterior hippocampal redundancy is greater in healthy or 

asymptomatic older adults than in individuals with MCI. Our data suggest a decrease in 

redundancy between healthy aging and MCI, upon which the amount of redundancy plateaus and 

no longer provides a functional advantage. Further, higher amounts of hippocampal redundancy 

are related to better memory performance. Although previous discussions of redundancy have 

been wary of a trade-off with efficiency (Glassman, 1987), we did not observe any reduction in 
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efficiency as a result of hippocampal redundancy. These data provide novel and promising 

quantitative support that redundancy acts as a neuroprotective mechanism in cognitive aging. 
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CHAPTER 3: THE ASSOCIATION BETWEEN HIPPOCAMPAL VOLUME AND MEMORY 
IN PATHOLOGICAL AGING IS MEDIATED BY FUNCTIONAL REDUNDANCY 

Alzheimer’s disease (AD) characteristic neuropathology, extracellular plaque deposits of 

ß-amyloid (Aß) and neurofibrillary tangles of hyperphosphorylated tau, accumulates during both 

healthy aging and mild cognitive impairment (MCI), and is accompanied by neurodegeneration 

and cognitive decline (Jack et al., 2013). Neurodegeneration, though not specific to AD (Jack Jr 

et al., 2018), has critical effects on cognition (Apostolova et al., 2012; Barnes et al., 2009; 

Frankó & Joly, 2013; Jack et al., 2000; Morra et al., 2009). Hippocampal atrophy in particular 

has been consistently associated with worse memory performance in cognitively normal (CN) 

individuals and in pathological aging (Golomb et al., 1993; Grundman et al., 2002; Huang et al., 

2019; Nathan et al., 2017; O’Shea et al., 2016; Peng et al., 2015). Higher rates of atrophy are 

observed in later AD stages and in individuals with progressive cognitive decline as compared to 

those who remain stable (Apostolova et al., 2012; Barnes et al., 2009; Frankó & Joly, 2013; Jack 

et al., 2000; Morra et al., 2009). However, the functional mechanisms through which atrophy 

relates to impaired cognition remain uncertain. 

Our primary objective was to determine whether topological properties of functional 

brain networks underlie the relationship between atrophy and cognition in older adulthood. 

Focusing on the hippocampus as one of the earliest sites of AD pathology (Harris et al., 2010), 

we considered two theoretically opposing functional properties through which hippocampal 

volume may relate to memory function: redundancy versus efficiency (Fig. 3.1). Redundancy, 

present in numerous biological systems, provides robustness to the system in the event of failure 
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of a specific element through the existence of alternative channels of communication (Billinton 

& Allan, 1992; Glassman, 1987; Navlakha et al., 2014; Tononi et al., 1999). On the other hand, 

local efficiency, an important property in small-world networks, refers to the efficiency of local 

information exchange, with higher local efficiency contributing to a lower cost of information 

flow (Achard & Bullmore, 2007; Latora & Marchiori, 2001; Rubinov & Sporns, 2010). 

 
Figure 3.1 | Study hypotheses 
 

 
A. Hypothesized mechanism through which hippocampal atrophy relates to memory impairment. 
B. Depiction of topological properties considered. In low redundancy or low local efficiency 
networks, degeneration of a node results in no paths between nodes i,j. In high redundancy and 
high local efficiency networks, alternate paths exist between nodes i,j. 
 

As a network property, redundancy is computed as the sum of direct and indirect paths 

(edges) between nodes in a network (Di Lanzo et al., 2012; Langella et al., 2021; Leistritz et al., 

2013; Sadiq et al., 2021). Whole-brain redundancy declines in aging (Sadiq et al., 2021), whereas 

hippocampal redundancy specifically benefits memory in aging and is reduced in MCI (Langella 

et al., 2021). In contrast to redundancy’s emphasis on indirect connections, local efficiency refers 

to the efficiency of communication between neighboring nodes (i.e., those with direct paths). 

Local efficiency is lower in older adults as an averaged whole-brain property, in specific 
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functional networks (e.g., default mode network), and regionally (e.g., hippocampus) (Achard & 

Bullmore, 2007; Cao et al., 2014; Geerligs, Renken, Saliasi, Maurits, & Lorist, 2015). Therefore, 

we hypothesized that reduced redundancy or loss of local efficiency may underlie the 

relationship between hippocampal atrophy and cognitive impairment. 

Secondly, we examined the moderating effects of Aß burden on these relationships. 

Higher Aß burden, a more specific AD biomarker (Jack Jr et al., 2018), is also related to memory 

impairment in healthy aging and MCI (Huang et al., 2019; Nathan et al., 2017). Therefore, 

individuals with greater pathological burden may show differential relationships between 

volume, function, and cognition. Finally, neurodegeneration itself is a poor predictor of 

conversion to AD, but we reasoned that the combination of structural, functional and cognitive 

measures may aid in predicting clinical outcomes. To that end, we assessed whether such a 

combination relates to subsequent dementia conversion. In sum, we aimed to elucidate whether 

topological network measures, either via robustness and redundancy or through efficiency of 

communication, are mechanisms through which atrophy impacts cognitive function. 

Materials and Methods 

Dataset 

Data were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

database (adni.loni.usc.edu), a longitudinal multi-site study launched in 2003 and led by 

Principal Investigator Michael W. Weiner, MD. For up to date information, see www.adni-

info.org. Study visits were approved by each site’s local IRB. All participants provided informed 

consent. The following diagnostic inclusion criteria were established by ADNI: CN participants 

have no subjective memory concern or objective impairment, clinical dementia rating (CDR) = 

0, Mini-Mental State Exam (MMSE) ≥ 24, non-depressed, non-MCI, non-demented; MCI 
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participants have a subjective memory concern and objective memory impairment, CDR = 0.5, 

MMSE ≥ 24, no significant impairment in other cognitive domains, preserved activities of daily 

living, non-demented. CN and MCI participants from the ADNIGO/2 protocol between 60 and 

90 years old with available resting-state fMRI (rs-fMRI), structural MRI, florbetapir PET, and 

cognitive composite scores were included in this study. Functional and structural MRI images 

were collected on the same day, and PET images and cognitive measures were collected within 

three months of the MRI scan. The first available timepoint meeting these criteria was used for 

each participant (initial n = 116 participants). 

MRI data acquisition and processing 

MRI scans were acquired on a 3 Tesla Philips Intera scanner (structural magnetization-

prepared rapid gradient echo: flip angle = 9 degrees, slice thickness = 1.2 mm, TE = 3.1ms, TR = 

6.8ms, sagittal plane; functional gradient echo: flip angle = 80 degrees, slice thickness = 

3.31mm, TE = 30ms, TR = 3000ms, eyes open). Image preprocessing was completed using the 

Conn toolbox, version 18b (Whitfield-Gabrieli & Nieto-Castanon, 2012), running on MATLAB 

(R2017b). Preprocessing included realignment and unwarping, correction of slice-timing, co-

registration of functional to structural images, spatial normalization to MNI space, and 

segmentation of gray matter, white matter, and CSF. Motion outlier identification was used to 

identify and remove volumes with movement greater than 1.5mm or a global signal Z threshold 

of 7. Noise components from white matter and CSF along with six participant-motion parameters 

and their first order derivatives were included as nuisance variables. Signal frequencies below 

0.008 Hz and above 0.09 Hz were removed using temporal band-pass filtering. Participants with 

greater than 50% of volumes removed due to excessive motion were excluded from subsequent 

analyses (n = 12). 
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Functional network construction and calculation of topological measures 

Functional timeseries were extracted based on a functionally defined parcellation 

template composed of 300 distinct spherical regions of interest (ROIs), or nodes, encompassing 

cortical, subcortical, and cerebellar regions (Seitzman et al., 2020). Participant-level correlation 

matrices were constructed, in which edges represent Fisher Z transformed correlations between 

each node. Individual matrices were binarized at a range of densities retaining the top 2.5–25% 

of edges in each network, representing each participant’s unweighted functional connectivity 

matrix. As we considered whole hippocampal volume as our variable of interest, network 

measures were calculated for each of the four hippocampal nodes included in the parcellation 

(encompassing bilateral anterior and posterior regions), then averaged to create one hippocampal 

ROI. To examine the specificity of any hippocampal effects, analyses were also conducted for 

the insula (comprised of eight nodes), a deep cortical structure which can be reliably segmented 

with T1 images, yet has slower rates of atrophy than do medial temporal lobe regions (Sluimer et 

al., 2009). Network measures were not related to total volume of white matter hyperintensities, 

nor did groups differ in underlying functional connectivity (see Appendix B, Supplemental 

Methods). 

Redundancy: The path array, P, was calculated as the number of indirect and direct paths 

between each node pair (i, j) with path length l from each connectivity matrix. The redundancy 

matrix, R, was calculated as the sum of the paths between nodes i and j, up to maximum path 

length L, set to 4 (Langella et al., 2021; Sadiq et al., 2021). The average of each hippocampal 

nodal sum over j of R (hippocampal node, j) yielded the whole hippocampal ROI redundancy. 
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Local Efficiency: Local efficiency, Elocal, of the hippocampal ROI, i, was calculated as the 

average nodal efficiency among the neighboring nodes (where L = 1, and Lj,k denotes the shortest 

path between nodes j,k) of node i, excluding itself, where N is the number of nodes in graph Gi, 

and Gi is the subgraph of G that includes all neighboring nodes of i: (Rubinov & Sporns, 2010)  
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Regional brain volume 

Regional volume was available through ADNI. FreeSurfer v. 5.1 (Fischl, 2012) was used 

to segment anatomical MRI scans using the Desikan-Killany atlas and were manually checked 

for accuracy (full methods are available through ADNI). All structural MRI scans were taken on 

the same day as the rs-fMRI. Scans that failed the quality check were excluded from this 

analysis, as that indicates failed segmentation of the hippocampus (n = 2). Hippocampal volume 

was averaged across hemispheres as there were no hemispheric differences in either the whole 

sample, t(101) = 0.16, p = .875, or in MCI participants only, t(74) = 0.18, p = .861. The resulting 

average volume was normalized by dividing hippocampal volume by total intracranial volume 

and multiplied by 106 to retain the original scaling. All participant scans passed the insula quality 

control check. As with the hippocampus, left and right hemisphere volumes were averaged, and 

resulting values were normalized using total intracranial volume. 

Florbetapir PET 

Florbetapir PET imaging was available through ADNI for participants within three 

months of their MRI scan dates. Mean florbetapir uptake was calculated for cortical gray matter 

regions, averaged to create a single cortical value, and normalized using a cerebellar reference 

region. Participants with normalized florbetapir uptake ≤1.11 were classified as Aß positive 
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(Aß+), and those below 1.11 were classified as Aß negative (Aß-) (C. M. Clark et al., 2011; Joshi 

et al., 2012). Full methods are available through ADNI. 

Cognitive measures 

We chose two cognitive processes as our outcome measures, in which deficits are 

observed throughout AD progression: memory, the earliest and primary cognitive deficit, and 

executive function (EF), which declines later in the disease (Arnaiz & Almkvist, 2003). Memory 

(primarily reflecting verbal recall and recognition) and EF were evaluated using composite 

measures calculated using an IRT framework (mean = 0, standard deviation = 1) (Crane et al., 

2012; Gibbons et al., 2012) (see Appendix B, Supplementary Methods). 

Statistical analysis 

Raw data were used for statistical analyses and were normalized for visualization. For 

brevity, statistical results and figures in the main text are reported using values averaged across 

densities, and results from each individual density are included in the supplemental materials 

(Appendix B). Analyses were completed in both the whole-sample and in the MCI participants 

only. Across analyses, a significance level of p < .05 was used. 

Group differences were analyzed in R using an independent samples t-test with equal 

variance assumed for two group comparisons, an ANOVA for comparisons involving more than 

two groups or when including covariates, and a chi-square test for dichotomous variables. 

Permutation ANCOVA was used for group comparisons of network measures because it is more 

robust to non-normality, implemented using the aovperm function from the permuco R package 

(Frossard & Renaud, 2019) (10,000 permutations, and with age, sex, and years of education as 

covariates). Linear regressions were estimated in R using the lm R function, with age, sex, and 

years of education included as covariates of no interest: (1) volume on cognition (memory, EF), 
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(2) volume on network measure (redundancy, local efficiency), and (3) network measure on 

cognition. Resulting beta-weights were standardized using the lm.beta R function. 

Mediation models were estimated using the mediation R package (Tingley, Yamamoto, 

Hirose, Keele, & Imai, 2014) with volume as the predictor, cognition as the outcome, network 

measure as the mediator, and age, sex, and education as covariates of no interest. Effects were 

estimated using bootstrapping (10,000 simulations). In significant mediation models, Aß was 

included as a dichotomous moderator of the mediation, included in the path between the 

predictor and mediator. Indirect and direct effects of the model were conditionalized on Aß- and 

Aß+ separately. Indirect effects at each level were compared using bootstrapping (10,000 

simulations). 

K-means clustering was implemented in MATLAB. Values of k ranging from 2 to 8 were 

considered. The optimal k was determined using the silhouette method with 10,000 iterations and 

10 simulations. Distance was measured using city block (Manhattan) distance, as it is less 

sensitive to outliers. Since different densities may result in different cluster solutions, rendering 

comparison across densities difficult, only the average density was used. Variables were 

normalized for clustering. Three-dimensional clustering was computed using hippocampal 

volume, memory, and redundancy. To assess the specific contribution of redundancy, we also 

completed two-dimensional clustering using memory and volume. Because redundancy was 

positively related to hippocampal volume and memory, the residuals from regressing volume on 

redundancy and from regressing memory on redundancy were used in the cluster analysis, 

thereby removing the effect of redundancy on each variable. 

Groups resulting from the clustering procedure described above were compared with a 

survival analysis, testing the extent to which the groups differ in rates of conversion to dementia, 
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using the survival (Therneau, 2020) and survminer (Kassambara, Kosinski, Biecek, & Fabian, 

2020) R packages, based on the Kaplan-Meier method to estimate survival probability. Groups 

were compared using a log-rank test. Participants were examined up to three years following the 

MRI visit to determine their conversion status. The earliest time point was selected if a 

participant did convert to dementia. If the participant did not convert, the latest available time 

point, up to three years post scan, was used (average follow-up time: 23.58 months for the whole 

sample and 23.94 months for MCI only). In total, 12 participants converted to dementia. 

Results 

Association between hippocampal volume, memory, and topological network properties 

The final sample consisted of 102 participants (Table 3.1). Diagnostic groups did not 

differ in hippocampal volume [F(1,97) = 0.25, p = .621]. The CN group had higher hippocampal 

redundancy than the MCI group [F(1,97) = 7.48, p = .008], but the groups did not differ in 

hippocampal local efficiency [F(1, 97) = 0.12, p = .743] (Table S3.1). Additionally, there was a 

positive relationship between redundancy and local efficiency, indicating that one does not come 

at the expense of the other (whole-sample: ß = 0.40, p < .001, R2adjusted = .135; MCI: ß = 0.38, p = 

.001, R2adjusted = .127; Table S3.2). 

 

Table 3.1 | Participant characteristics by diagnosis 
 
 CN (n = 27) MCI (n = 75) Test Statistic p 
Age 75.26 (6.51) 71.85 (6.51) t(100) = 2.33 .022 
Sex 15F/12M 36F/39M X2(1) = 0.20 .654 
Education 16.19 (1.98) 16.15 (2.68) t(100) = 0.07 .946 
Aß burden 8+/19- 43+/32- X2(1) = 5.04 .025 
MMSE 28.74 (1.10) 27.99 (1.75) t(100) = 2.09 .039 
Memory 0.99 (0.57) 0.34 (0.59) t(100) = 4.93 < .001 
EF 0.87 (0.74) 0.43 (0.92) t(100) = 2.24 .027 

Note: Standard deviation given in parentheses; age and education given in years 
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We first tested whether hippocampal volume was associated with our two cognitive 

measures. Lower hippocampal volume was associated with lower memory (whole-sample: ß = 

0.38, p < .001, R2adjusted = .230; MCI: ß = 0.43, p = .001, R2adjusted = .303; Fig. 3.2A) but not to EF 

(whole-sample: ß = 0.17, p = .102, R2adjusted = .218; MCI: ß = 0.14, p = .276, R2adjusted = .249). 

Next, we examined the relationships of the topological network measures with volume and 

cognition (Tables 3.2, S3.3-S3.8). Lower hippocampal volume was related to lower redundancy, 

and in turn, lower hippocampal redundancy was related to worse memory performance (but not 

EF) (Fig. 3.2B). As with redundancy, lower hippocampal volume was related to lower local 

efficiency (Fig. 3.2C). However, local efficiency was not related to memory or EF. 

 
Table 3.2 | Linear regression output between hippocampal topological measures, volume, 
and cognition at the averaged density 
 
 Redundancy-Volume Redundancy-Memory Redundancy-EF 

 ß p R2  ß p R2  ß p R2  

All 0.27 .022 .025  0.34 <.001 .242  0.17 .052 .227  

MCI 0.29 .039 .032  0.32 .002 .277  0.11 .280 .249  

 
 Efficiency-Volume Efficiency-Memory Efficiency-EF 

 ß p R2  ß p R2  ß p R2  

All 0.24 .043 .009  0.12 .209 .138  0.05 .608 .198  

MCI 0.34 .019 .026  .096 .362 .184  -0.01 .893 .237  

Note: Output from analyses using all participants (CN and MCI) and MCI only. ß = standardized 
beta, R2 = adjusted R2 

 

Hippocampal redundancy underlies the hippocampal volume-memory relationship 

We then estimated models to determine whether the topological properties mediated 

volume-cognition relationships (Tables 3.3, S3.9-S3.12). Hippocampal volume exerted a 

significant effect on memory through redundancy (whole-sample proportion mediated = 0.20, p 
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= .013; MCI only proportion mediated = 0.17, p = .039; Fig. 3.2D). Conversely, local efficiency 

did not mediate the hippocampal volume-memory relationship (Fig. 3.2E). Neither redundancy 

nor local efficiency mediated the relationship between volume and EF in either the whole group 

or in MCI only, suggesting a specific role for hippocampal redundancy in memory ability. 

The prior results suggest that participants with more risk for AD (i.e., low hippocampal 

volume), have accompanying low functional redundancy, which contributes to memory 

impairment. To test the hypothesis that individuals with higher rates of AD pathology would 

show different relationships between structural and functional measures, we included Aß as a 

moderator in the volume-redundancy-memory mediation model (Tables S3.13, S3.14). In the 

whole group, neither the Aß+ (indirect effect: ß = 1.44 x 10-4, 95% CI[-9.16 x 10-7, 3.44 x 10-4], 

p = .051; direct effect: ß = 7.92 x 10-4, 95% CI[3.85 x 10-4, 1.26 x 10-3], p < .001) nor Aß- 

(indirect effect: ß = 1.21 x 10-4, 95% CI[-2.25 x 10-6, 2.96 x 10-4], p = .054; direct effect: ß = 1.25 

x 10-4, 95% CI[-3.65 x 10-4, 6.82 x 10-4], p = .654) effects reached significance, and the indirect 

effects were not significantly different from each other (p = .870). When limiting to MCI 

participants, however, redundancy was a partial mediator of the volume-memory relationship for 

Aß+ participants (indirect effect: ß = 1.47 x 10-4, 95% CI[4.28 x 10-6, 4.00 x 10-4], p = .040; 

direct effect: ß = 8.12 x 10-4, 95% CI[4.08 x 10-4, 1.24 x 10-3], p < .001; proportion mediated: 

0.15). Conversely, redundancy was not a significant mediator when estimating for Aß- 

participants (indirect effect: ß = 4.15 x 10-5, 95% CI[-5.78 x 10-5, 1.64 x 10-4], p = .351; direct 

effect: ß = 8.85 x 10-5, 95% CI[-4.53 x 10-4, 6.97 x 10-4], p = .746), suggesting that the functional 

redundancy mediation is specific to individuals harboring AD pathology. However, the indirect 

effects for Aß+ and Aß- did not differ from one another (p = .288). 
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Figure 3.2 | Relationships between hippocampal volume, topological network measures, 
and memory 
 

 

 
A. Whole-sample regression of hippocampal volume on memory composite score, with 
histograms showing distribution of variable values and inset standardized beta coefficients. B. 
Whole-sample regression of hippocampal volume on hippocampal redundancy, and of 
hippocampal redundancy on memory composite score, with histograms showing distribution of 
variable values and inset standardized beta coefficients. C. Whole-sample regression of 
hippocampal volume on hippocampal local efficiency, and of hippocampal local efficiency on 
memory composite score, with histograms showing distribution of variable values and inset 
standardized beta coefficients. D. Mediation results from hippocampal volume-redundancy-
memory model. Bold lines denote significant paths. E. Mediation results from volume-local 
efficiency-memory model. Bold lines denote significant paths. *p < .05, **p < .01, ***p < .001 
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Table 3.3 | Mediation output at the averaged density 
 
Volume – Redundancy – Memory 

 Indirect Effect Direct Effect 

 ß 95% CI p  ß 95% CI p  

All 1.32x10-4 2.40x10-5, 2.81x10-4 .013  5.31x10-4 1.83x10-4, 9.25x10-4 .004  

MCI 1.08x10-4 2.74x10-6, 3.00x10-4 .038  5.34x10-4 1.64x10-4, 9.20x10-4 .006  

   
Volume – Local Efficiency – Memory 

 Indirect Effect Direct Effect 

 ß 95% CI p  ß 95% CI p  

All 2.29x10-5 -6.06 x 10-5, 1.31 x 
10-4 

.562  6.40x10-4 2.87x10-4, 1.02x10-3 .001  

MCI -2.58x10-8 -1.38x10-4, 1.07x10-4 .968  6.42x10-4 3.11x10-4, 1.04x10-3 <.001  

   
Volume – Redundancy – Executive Function 

 Indirect Effect Direct Effect 

 ß 95% CI p  ß 95% CI p  

All 9.63x10-5 -2.27x10-5, 2.79x10-4 .122  3.18x10-4 -1.56x10-4, 7.86x10-4 .184  

MCI 6.11x10-5 -7.29x10-5, 3.02x10-4 .417  2.54x10-4 -3.04x10-4, 7.62x10-4 .373  

   
Volume – Local Efficiency – Executive Function 

 Indirect Effect Direct Effect 

 ß 95% CI p  ß 95% CI p  

All 9.90x10-6 -1.10x10-4, 1.61x10-4 .841  4.05x10-4 -8.57x10-5, 8.88x10-4 .099  

MCI -3.76x10-5 -2.28x10-4, 1.68x10-4 .664  3.53x10-4 -2.12x10-4, 8.99x10-4 .207  

Note: Output from analyses using all participants (CN and MCI) and MCI only. ß = 
unstandardized beta 
 
Low volume, redundancy, and memory predict subsequent dementia conversion 

We sought to further explore the relationship between these variables using a data-driven 

approach, more specifically clustering participants based on hippocampal volume, redundancy, 
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and memory. In our whole group, a two cluster solution emerged, in which one cluster had low 

redundancy, volume, and memory (low RVM, n = 50), and the other had high values on all three 

variables (high RVM, n = 52). Each cluster was comprised of both CN and MCI participants, 

along with Aß- and Aß+ participants (Fig. 3.3A-B). The low RVM cluster had more MCI 

participants than the high RVM cluster [X2(1) = 6.63, p = .010], but the clusters had similar 

proportions of Aß+ participants [X2(1) = 3.18, p = .075]. Additionally, the low RVM group was 

older [t(100) = 3.74, p < .001] and had fewer years of education [t(100) = 1.99, p = .049]. 

The mediation results and cluster characteristics suggest that the combination of low 

hippocampal volume and low hippocampal redundancy is a risk factor for pathological aging. 

We sought additional evidence of this notion by examining rates of conversion to dementia in 

each of the clusters. Strikingly, no participants in the high RVM group converted to dementia, 

whereas all dementia conversions (n = 12) occurred in the low RVM group. The survival 

probability was thus lower in the low RVM cluster than in the high RVM cluster (p < .001) (Fig. 

3.3D). Critically, the two clusters did not differ in average follow-up time [t(100) = 1.47, p = 

.145]. 

Clustering just the MCI participants resulted in similar results, again finding a low RVM 

(n = 35) and a high RVM (n = 40) group. The clusters had similar proportions of Aß+ 

participants [X2(1) = 2.58, p = .108]. The low RVM group was older than the high group [t(73) = 

3.43, p < .001], but they had similar levels of education [t(73) = 1.49, p = .141]. Finally, 

individuals in the low RVM group were more likely to convert to dementia than those in the high 

RVM group (p = .007), with 10 of the 12 participants who converted to dementia clustering with 

low RVM. The two clusters did not differ in average follow-up time [t(73) = 1.09, p = .281]. 
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To test the specific contribution of redundancy to the clustering approach reported above, 

we repeated the analysis using only volume and memory. The removal of redundancy changed 

the results considerably, yielding four groups, between which survival probability did not differ 

(whole-sample: p = .160; MCI: p = .120). Further, the low VM group contained only four of the 

12 converters in the whole group and seven of the 12 in the MCI only participants, compared to 

the respective 12 and 10 converters in the analogous low RVM group. 

Figure 3.3 | Characteristics of three-dimensional k-means clustering solution groups 

 
A. Percent of CN and MCI participants within each cluster. B. Percent of Aß- and Aß+ 
participants within each cluster. C. Scatterplot showing the relationship between hippocampal 
redundancy, hippocampal volume, and memory in each cluster. D. Survival probability for each 
cluster over time. Vertical drop in curve indicates a conversion to dementia. Tick marks 
represent censoring of a participant (i.e., final timepoint). RVM = redundancy, volume, memory 
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Specificity of hippocampal atrophy 

Finally, we examined the relationships between volume, redundancy, and memory in the 

insula, a deep cortical structure exhibiting a slower rate of atrophy in preclinical stages (Sluimer 

et al., 2009), to determine the specificity of hippocampal atrophy and function (Fig. 3.4; Tables 

S3.15-S3.17). Insular volume was not related to memory (whole-sample: ß = 0.14, p = .140, 

R2adjusted = .144; MCI: ß = 0.10, p = .368, R2adjusted = .184), nor to insular redundancy (whole-

sample: ß = 0.11, p = .315, R2adjusted = .010; MCI: ß = 0.10, p = .428, R2adjusted = .025). Insular 

redundancy was not related to memory (whole-sample: ß = 0.08, p = .396, R2adjusted = .131; MCI: 

ß = 0.02, p = .847, R2adjusted = .175). Further, insular redundancy did not mediate the relationship 

between insular volume and memory in either the whole sample or MCI only (ps > .628). 

 
Figure 3.4 | Relationships between insular volume, redundancy, and memory 

 
Whole sample regression of insular volume on memory composite score (A), insular volume on 
insular redundancy (B), and insular redundancy on memory composite score (C), with 
histograms showing distribution of variable values and inset standardized beta coefficients. D. 
Mediation results from insular volume-redundancy-memory model. 
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Discussion 

Despite widespread findings of hippocampal atrophy across healthy and pathological 

aging (Apostolova et al., 2012; Barnes et al., 2009; Frankó & Joly, 2013; Jack et al., 2000; Morra 

et al., 2009), the functional mechanisms through which hippocampal atrophy relates to impaired 

cognition remain uncertain. Our data suggest that hippocampal redundancy is one such 

mechanism. In CN and MCI older adults, we found that low hippocampal volume was related to 

low memory performance, which was mediated by low redundancy but not local efficiency. 

Data-driven clustering methods supported these findings, such that participants with low volume, 

redundancy, and memory clustered together and separately from those with high values on all 

three measures. Further, the low RVM cluster included all of the participants who subsequently 

converted to dementia. Overall, these results provide evidence that low hippocampal redundancy 

underlies the relationship between hippocampal atrophy and memory impairment, and that this 

presentation of low structure, function, and cognition is a risk factor for conversion to dementia. 

Our analysis focused on two topological network measures, redundancy and local 

efficiency, but only redundancy mediated the relationship between hippocampal volume and 

memory. Redundancy supports robustness in cellular and neural networks (Aittokallio & 

Schwikowski, 2006; Pitkow & Angelaki, 2017), and hippocampal functional redundancy is 

beneficial for memory and is reduced in pathological aging (Langella et al., 2021). Retaining 

hippocampal redundancy, then, may be neuroprotective in early stages of AD. Significant 

mediation effects were observed in both our combined sample as well as in just MCI 

participants. However, only in MCI was there evidence that the role of redundancy may differ as 

a result of Aß burden. Although the difference between Aß+ and Aß- effects did not reach 

significance, mediation was significant only for Aß+ participants, providing initial evidence that 
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redundancy contributes to low memory in individuals with greater risk for developing AD (e.g., 

individuals with MCI who are Aß+), but exerts no effect in less impaired groups. The loss of 

hippocampal redundancy may accompany the accumulation of disease pathology. Future work 

should further probe potential differences as a function of pathological burden. 

Our results also demonstrate a specificity to the role of hippocampal redundancy. 

Significant mediation by redundancy was only observed for the association of memory with 

hippocampal atrophy, not for EF. Whole-brain redundancy, on the other hand, supports EF in 

healthy adults (Sadiq et al., 2021). Though hippocampal function is implicated widely in 

cognition (Shohamy & Turk-Browne, 2013), given its primary involvement in mnemonic 

processes (R. E. Clark & Squire, 2013; Eichenbaum, 2017), our findings show that regional 

measures of redundancy appear to be selective in their effects. Additionally, insular redundancy 

did not mediate a relationship between insular volume and cognition, suggesting a relatively 

specific effect of the hippocampus in healthy and early pathological aging. 

The finding of low and high RVM clusters in our dataset support our mediation findings 

that low structure, function, and cognition accompany each other. Further, the combination of 

low values on all three variables represents a risk state, with a higher proportion of individuals 

subsequently converting to dementia. However, when clustering on volume and memory, and 

equating redundancy, a more complex four-cluster solution emerged with ill-defined risk groups. 

The low VM cluster did not capture the high proportion of conversions that was achieved when 

including functional redundancy. Indeed, hippocampal neurodegeneration itself is not specific to 

AD (Jack Jr et al., 2018), and atrophy is common in healthy aging (Daugherty, Bender, Raz, & 

Ofen, 2016). In our sample, low hippocampal volume was a poor predictor of subsequent 
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dementia conversion, but when accompanied by hippocampal redundancy, prediction 

substantially improves. 

This study has several limitations. Our sample consisted of disproportionately more 

participants with MCI than CN individuals. To address this limitation, analyses were repeated 

using just MCI participants, with results supporting the same conclusions. However, we did not 

have a large enough CN sample to repeat the analyses in just CN participants. Additionally, the 

markers of interest were examined cross-sectionally, precluding longitudinal assessment of 

hippocampal atrophy or Aß accumulation. Future work should also employ longitudinal 

assessment of functional hippocampal redundancy to elucidate whether redundancy is malleable 

across healthy and pathology aging, such as in response to neuropathology. 

In sum, we find that hippocampal redundancy underlies the relationship between low 

hippocampal volume and poor memory performance. Although neurodegeneration is a non-

specific risk factor for AD (Jack Jr et al., 2018), by including this functional correlate of 

hippocampal atrophy, the ability to differentiate between stable and converter participants is 

improved. Topological network properties are thus critical in understanding the link between 

atrophy and cognitive impairment in preclinical older adults. 
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CHAPTER 4: POSTERIOR HIPPOCAMPAL REDUNDANCY IS RELATED TO MEMORY 
BUT NOT TO EDUCATION OR PHYSICAL ACTIVITY IN HEALTHY AGING 

 Aging is characterized by normative and pathological changes to the brain, accompanied 

by declines in cognitive function. One of the primary regions affected in aging is the 

hippocampus, a medial temporal lobe structure which supports memory processes. Although the 

hippocampus is severely affected in pathological aging (e.g., Alzheimer’s disease, AD), 

hippocampal functional deficits, atrophy, and episodic memory declines are also observed in 

normative aging (Fjell, McEvoy, Holland, Dale, & Walhovd, 2014; O’Shea et al., 2016; Raz et 

al., 2005; Yankner et al., 2008). However, periods of normative aging are marked by significant 

variability, and some older adults maintain high levels of cognition throughout older adulthood 

(de Godoy et al., 2020; Wilson, Wang, Yu, Bennett, & Boyle, 2020). Given the detrimental 

effects of cognitive decline, it is imperative to understand the factors that support such preserved 

cognition in aging. 

Individual differences in accumulated reserve may explain some of this variability: 

reserve mechanisms build throughout an individual’s life which support resilience to physical 

brain damage (e.g., pathological build-up, neurodegeneration), thereby delaying the onset of 

observable clinical or cognitive decline (Cabeza et al., 2018; Montine et al., 2019; Stern, 2006; 

Stern et al., 2019). Recent evidence suggests that functional redundancy derived from resting-

state fMRI networks relates to reserve and resilience in aging. Whole-brain redundancy increases 

throughout the adolescent and adult lifespan, then begins to decline in older adulthood, though 

redundancy diminishes age-related declines in cognition (Sadiq et al., 2021). Hippocampal 
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redundancy, in particular, is related to higher memory performance in healthy aging and is lower 

in individuals with mild cognitive impairment (Langella et al., 2021). These findings indicate 

that redundancy serves as a neuroprotective mechanism in cognitive aging, through which 

cognition is preserved. However, no study to date has comprehensively examined the 

relationship between hippocampal redundancy and memory in healthy cognitive aging. Because 

the hippocampus exhibits long-axis functional specialization, also reflected in its functional 

connections, (Blessing, Beissner, Schumann, Brünner, & Bär, 2016; Fanselow & Dong, 2010; 

Strange, Witter, Lein, & Moser, 2014), it is critical to examine potential differences in anterior 

and posterior hippocampal redundancy as it relates to various aspects of memory. Further, it is 

unknown how protective factors commonly studied in the context of reserve may influence 

hippocampal redundancy. 

Education and physical activity have been identified as two important potentially 

modifiable, protective factors that impact AD risk (Norton et al., 2014). Although higher reserve 

as a general construct is related to better cognition (Cabral et al., 2016; Giogkaraki, Michaelides, 

& Constantinidou, 2013), a meta-analysis comparing proxies of cognitive reserve identified 

consistent support that high levels of education is independently related to reduced risk of AD 

and higher clinical functioning in older adulthood (Meng & D’Arcy, 2012). Higher levels of 

education also relate to slower rates of cognitive decline in aging (Butler, Ashford, & Snowdon, 

1996; Christensen et al., 1997). Strikingly, education was identified as the best predictor of 

cognitive change in older adults over a two-year period aside from baseline cognition (Albert, 

Jones, Savage, Berkman, & et al, 1995). These positive outcomes may arise from education-

facilitated synaptic density (Piras, Cherubini, Caltagirone, & Spalletta, 2011) and volumetric 

increases (see Wenger & Lövdén, 2016 for a review) in the hippocampus. 
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Physical activity is similarly deemed a protective factor for healthy aging. Higher 

physical activity has been related to both delayed onset and slowed progression of AD (see 

Rashid, Zahid, Zain, Kabir, & Hassan, 2020 for a review). In healthy aging, physical activity 

moderates age-related atrophy of the medial temporal lobe, such that older adults with high 

levels of activity do not show signs of atrophy which are evident in older adults with low activity 

levels (Bugg & Head, 2011). Further, implementation of exercise programs increases 

hippocampal volume (Erickson et al., 2011) and memory performance (Ji et al., 2018) in healthy 

older adults. Higher self-reported physical activity in older adults is associated with better global 

cognition and episodic memory performance, regardless of the intensity of activity (Reas et al., 

2019). Mechanistically, exercise induces neurogenesis in the hippocampus, including cellular 

proliferation and promoting synaptic plasticity, thereby supporting learning and memory and 

deterring cognitive decline (Ma et al., 2017; Olson, Eadie, Ernst, & Christie, 2006). 

Based on the ability of both education and physical activity to impact hippocampal 

structure and function, it is plausible that they similarly positively influence hippocampal 

redundancy. Therefore, the current study utilizes a large sample of healthy older adults between 

the ages 60 and 90 years to probe the relationship between hippocampal redundancy and 

cognition and assess whether hippocampal redundancy serves as an underlying mechanism 

through which education and physical activity support preserved cognition in older adulthood 

(Fig. 4.1). We hypothesize that hippocampal redundancy will be positively associated with 

memory performance, and will explore potential differences between anterior and posterior 

hippocampal regions, as well as differences between item-level and contextual episodic memory. 

We hypothesize that higher education and higher physical activity will be related to higher 

hippocampal redundancy, which, in turn, will relate to better memory performance. 
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Figure 4.1 | Study design and hypotheses 

 

A. Cortical-subcortical-cerebellar parcellation used to define functional networks. Hippocampal 
nodes shown in blue, representing left and right anterior and posterior hippocampus. Non-
hippocampal nodes shown in gray. B. Hypothesized relationships between protective factors, 
redundancy, and memory, such that high education or physical activity relate to higher 
redundancy, which in turn promotes memory performance. Alternatively, low education or 
physical activity relate to lower hippocampal redundancy, which in turn relates to low memory 
performance. 
 

Materials and Methods 

Dataset and participants 

 Data were obtained from the Human Connectome Project – Aging (HCP-Aging) database 

(Harms et al., 2018) for older adults between 60 and 90 years old who demonstrated normal 

cognitive functioning as assessed by the Montreal Cognitive Assessment (MoCA) [60-69 years: 

score equal to or above 26; 70 years and above: score within one standard deviation of their age 

and education adjusted norm (Malek-Ahmadi et al., 2015)] and preserved activities of daily 

living as assessed by the Lawton-Brody Instrumental Activities of Daily Living (IADL) scale 

(score at or above 7, maximum score of 8). All participants who met the above criteria and had 

available resting-state fMRI, structural MRI, and cognitive data were included in this study. 
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Participant characteristics and final sample sizes per measure of interest are included in Table 

4.1. 

Image processing and redundancy calculation 

 Structural and functional images were collected on a 3 Tesla Siemens Prisma scanner 

(Harms et al., 2018). Structural images were collected using a multi-echo magnetization prepared 

rapid gradient echo sequence (voxel size: 0.8x0.8x0.8mm, TR = 2500ms, TE = 

1.8/3.6/5.4/7.2ms, flip angle = 8 degrees). Functional images were collected using a 2D 

multiband gradient-recalled echo echo-planar imaging sequence (voxel size: 2x2x2mm, TR = 

800ms, TE = 37ms, flip angle = 52 degrees). Participants had two functional scans with opposite 

phase encoding direction (posterior-anterior and anterior-posterior). A fixation cross was 

displayed during the functional scans, and participants were instructed to keep their eyes open. 

Images which had undergone minimal preprocessing using the HCP-Pipelines were obtained for 

this study (described in Glasser et al., 2013). Each functional run was processed separately. 

Additional processing steps and timeseries extraction were implemented in the MATLAB 

(R2017b) Conn toolbox (conn18b) (Whitfield-Gabrieli & Nieto-Castanon, 2012), including 

outlier identification, nuisance regression (white matter, cerebrospinal fluid, and 12 motion 

parameters), and temporal band-pass filtering (0.01 – 0.1Hz). Outlier volumes were identified 

from the functional images, defined as movement greater than 0.9mm or global blood-oxygen-

level-dependent signal changes above 5SD, and were removed. Outlier volumes per participant 

ranged from 0 to 94 of 956 total frames. 

 Functional timeseries were obtained from 300 regions of interest (ROIs) for each 

functional run. ROIs were defined using a functionally-defined parcellation of spherical, non-

overlapping cortical, subcortical, and cerebellar nodes (Seitzman et al., 2020). Fisher Z 
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transformed correlation matrices (300 x 300) were constructed for each session for each 

participant, and resulting correlation matrices for each session were averaged to create a single 

correlation matrix per participant. Individual matrices were binarized to retain the top 2.5 – 25% 

of edges in 2.5% increments. A redundancy matrix (R) was calculated from each participant’s 

unweighted functional connectivity matrix, represented as the sum of direct and indirect paths 

between nodes i and j with path length l (up to maximum path length L, set to 4): 

!(#, %) = 	)*(#, %, +)
!

"#$
 

Four nodes representing left and right anterior and posterior hippocampus were 

considered as the primary study ROIs. Hippocampal redundancy was calculated separately for 

each hippocampal ROI as the summed redundancy between the hippocampal ROI and all other 

matrix ROIs (i.e., across row j). Hippocampal redundancy was not related to number of volumes 

removed nor to mean motion at any density (all ps > .176; Table S4.1). 

Cognitive measures 

 Due to its strong relation to the hippocampus and age-related cognitive decline (Leal & 

Yassa, 2015), memory was the primary cognitive domain of interest and was assessed using two 

tasks: the Ray Auditory Verbal Learning Task (RAVLT) and Picture Sequence Memory (PSM). 

The RAVLT is a neuropsychological task for evaluating item-level episodic memory. The 

experimenter reads a list of 15 unrelated words, and the participant repeats the words back that 

they remember. This process is repeated five times. Participants’ total scores on these five 

learning trials represent a measure of encoding and recall ability (“Learning”, possible scores 

range from 0-75). After hearing a distractor list, participants are asked to recall the original word 

list (“Immediate Recall”, possible scores range from 0-15). PSM is a task in which participants 

are shown a series of pictures depicting activities while a story is read aloud, and participants are 
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asked to recall the sequence of the pictures (trials include one 15-item sequence and one 18-item 

sequence). Scores are determined using item response theory (IRT) methodology, then 

normalized to have a mean of 100 and standard deviation of 15. 

To assess whether any observed effects are specific to memory or extend to other 

cognitive domains, executive function was also examined, quantified as completion time for the 

Trails Making Test Part B (TMT-B). During the TMT-B, participants must connect a set of 25 

dots as quickly and accurately as possible. Each dot is labeled with a letter or number, and the 

participant must alternate between consecutive letters and numbers until reaching the end. 

Education and physical activity 

 Education and physical activity were chosen as two protective factors that may influence 

hippocampal redundancy. Education was represented as self-reported years of education 

completed and was treated as a continuous variable. Physical activity was quantified using the 

Short International Physical Activity Questionnaire (IPAQ), a 4-item report addressing the 

number of days and minutes engaged in various levels of activity over the last week. Time spent 

on walking, moderate, and vigorous activity per week was expressed as a single variable of 

MET-minutes per week (MET = metabolic equivalent of task) consistent with IPAQ guidelines. 

Due to non-normality of the responses, scores were log-transformed for analyses. 

Statistical analysis 

Analyses were performed at each density and on the values averaged across densities. 

The average values are reported in the main text, and individual density information is reported 

in the Supplemental Materials in Appendix C. Statistical analyses were run using R. Age and sex 

were included as covariates in all analyses. An alpha level of .05 was used to determine 

statistical significance for all tests. 
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Linear regression. Linear regressions were estimated using the lm R function. 

Standardized betas are reported using the lm.beta R function. Because of the non-normality of 

functional redundancy values, analyses were repeated using robust regression using Huber 

weights with the rlm function from the MASS R package (Ripley, 2020), with a Wald test of 

significance using the f.robftest function from the sfsmisc Rpackage (Maechler, 2020). 

Interactions between predictors were probed using the interactions R package (Long, 2019). 

Mediation. Multiple mediation models were estimated using the mma R package (Yu & 

Li, 2020) with education and physical activity as predictors, cognition as the outcome, and 

redundancy as the mediator. In each model, hippocampal ROIs were simultaneously tested as 

mediators, and separate models were run for each predictor and outcome variable. Effects were 

estimated using bootstrapping (10,000 simulations). 

 
Table 4.1 | Participant characteristics and sample sizes per measure of interest 
 
 N Mean (SD) 
Sex 122F - 
MoCA 214 27.29 (1.72) 
IADL 214 7.97 (0.17) 
Age 214 73.36 (8.41) 
Education (years) 214 17.79 (2.28) 
MET-min per week 214 2669.64 (2488.06) 
RAVLT Immediate Recall 211 9.19 (3.08) 
RAVLT Learning 208 44.64 (9.54) 
Picture Sequence Memory 181 98.82 (13.22) 
TMT-B (seconds) 213 77.88 (42.10) 

Note: F = female; RAVLT = Rey Auditory Learning Test; TMT-B = Trails Making Test Part B 
 

Results 

Left posterior hippocampal redundancy is related to better memory performance 

 The first aim of this study was to assess whether hippocampal redundancy was related to 

memory in healthy older adulthood and whether any differences existed due to mnemonic task or 
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hippocampal subregion. Therefore, performance on three memory tasks were regressed on each 

of the four hippocampal nodes, controlling for age and sex (Fig. 4.2). Higher left posterior 

hippocampal redundancy was related to better performance on the PSM (ß = 0.18, p = .011, 

adjusted R2 = 0.14), demonstrating a positive relationship between redundancy and contextual 

episodic memory retrieval. Hippocampal redundancy was not related to learning or immediate 

recall, which tax verbal item-level encoding and retrieval (Tables 4.2, S4.2-4.4). Results were 

consistent using robust regression (Table S4.6). 

Figure 4.2 | Redundancy-memory relationships across hippocampal ROIs and tasks 

 

Scatterplot of hippocampal redundancy and RAVLT Learning (top row), RAVLT Immediate 
Recall (middle row), and PSM (bottom row), with standardized beta weights. * p < .05 

To assess whether hippocampal redundancy effects are specific to memory, regressions 

were repeated using TMT-B completion time as the cognitive outcome measure. Redundancy 

was not related to TMT-B completion time in any hippocampal node (left anterior: ß = -0.06, p = 

.336, adjusted R2 = 0.08; right anterior: ß = 0.01, p = .938, adjusted R2 = 0.08; left posterior: ß = -

0.04, p = .552, adjusted R2 = 0.08; right posterior: ß = -0.04, p = .526, adjusted R2 = 0.08; Table 

S4.5). These results suggest a specific effect on contextual episodic memory performance. 
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Table 4.2 | Linear regression output between hippocampal redundancy and memory at the 
averaged density 
 
 Left Anterior Right Anterior Left Posterior Right Posterior 

 ß p  ß p  ß p  ß p  

Learning 0.02 .788  -0.04 .564  0.06 .311  -0.03 .680  

Recall -0.004 .955  -0.11 .098  0.08 .220  0.02 .751  

PSM 0.12 .091  -0.05 .507  0.18 .011  0.03 .684  

Note: Analyses included age and sex as covariates. ß = standardized beta  
 
Redundancy-memory relationship weakens in later older adulthood 

 To determine whether redundancy relates to cognition similarly throughout older 

adulthood, we further explored the redundancy-cognition relationship by testing for interactions 

between redundancy and age (Table S4.7). Given the relationship between left posterior 

hippocampus and memory in the prior analysis and its prominent role in healthy aging reported 

in Langella et al. (2021), this analysis was limited to left posterior hippocampal redundancy. Age 

significantly interacted with left posterior hippocampal redundancy in predicting two of the three 

memory tasks, immediate recall and PSM, such that with increasing age, the effect of 

redundancy on memory lessens. For immediate recall performance, there was a negative main 

effect of age (ß = -0.30, p < .001), no main effect of redundancy (ß = 0.07, p = .312), and a 

significant negative age-redundancy interaction (ß = -0.14, p = .035). Redundancy-memory 

slopes were probed at three ages spanning the decades included in this study, representing early 

older adulthood (65 years), middle older adulthood (75 years), and later older adulthood (85 

years). These results indicated that redundancy predicted recall performance only in earlier older 

adulthood (p = .022), but not in middle (p = .518) or later older adulthood (p = .305). Similar 

results were observed for PSM (Fig. 4.3). There were significant main effects of age (ß = -0.32, p 

< .001) and redundancy (ß = 0.15, p = .028) and a negative interaction (ß = -0.19, p = .010). 
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Redundancy predicted PSM performance in early older adulthood (p < .001), but not for middle 

(p = .282) or later older adulthood (p = .301). There were no age-redundancy interactions for 

learning (ß = -0.06, p = .362) or for TMT-B performance (ß = -0.01, p = .934). Together, these 

results suggest a specific positive relationship between left posterior hippocampal redundancy 

and memory performance that weakens across older adulthood. 

 

Figure 4.3 | Redundancy-memory relationships weakens in later older adulthood 

 

Scatterplot showing Picture Sequence Memory performance as a function of left posterior 
hippocampal redundancy. Regression lines represent the slope at three ages, chosen to represent 
early older adulthood (65 years, light blue short dash), middle older adulthood (75 years, 
medium blue long dash), and later older adulthood (85 years, dark blue solid line). 
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No relationship between hippocampal redundancy and education or physical activity 

 Because hippocampal redundancy demonstrates a beneficial effect on memory in aging, 

we next sought to determine whether certain protective factors may influence hippocampal 

redundancy. To that end, hippocampal redundancy was regressed on education and recent 

physical activity. Neither education (left anterior: ß = -0.03, p = .645, adjusted R2 = 0.01; right 

anterior: ß = -0.03, p = .678, adjusted R2 = 0.02; left posterior: ß = 0.09, p = .221, adjusted R2 = 

0.01; right posterior: ß = 0.05, p = .474, adjusted R2 = 0.01) nor physical activity (left anterior: ß 

= 0.001, p = .980, adjusted R2 = 0.01; right anterior: ß = -0.09, p = .210, adjusted R2 = 0.03; left 

posterior: ß = -0.02, p = .757, adjusted R2 = 0.01; right posterior: ß = -0.05, p = .486, adjusted R2 

= 0.01) were related to hippocampal redundancy (Fig. 4.4; Table S4.8-S4.10). 

 

Figure 4.4 | Relationships between hippocampal redundancy and education, physical 
activity 

 

Scatterplots of redundancy for each hippocampal ROI and years of education (A) and physical 
activity (B) with standardized beta weights. 
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Indirect effects between education and physical activity and cognition, through 

hippocampal redundancy, were tested using multiple mediation. The four hippocampal nodes 

were tested as joint mediators, and age and sex were included as covariates of no interest. There 

was no significant mediation effect, by the hippocampal nodes jointly or individually, for any 

predictor and outcome variable combination (Tables 4.3, 4.4, S4.11-S4.19). Taken together with 

the regression analyses, we did not find evidence that education or recent physical activity relates 

to hippocampal redundancy in healthy aging. 

 
Table 4.3 | Multiple mediation indirect effects of education on cognition through 
redundancy at the averaged density  
 
 Learning Recall PSM TMT-B 
 ß p  ß p  ß p  ß p 
Left Anterior <-0.01 .974  <0.01 .973  <0.01 .963  0.02 .917 

Right Anterior <0.01 .987  <-0.01 .975  <-0.01 .972  0.01 .918 

Left Posterior 0.02 .620  0.01 .494  0.07 .466  -0.02 .832 

Right Posterior -0.01 .792  <0.01 .955  0.01 .934  -0.01 .947 

Joint 0.01 .850  0.01 .724  0.07 .654  -0.01 .985 

Note: Analyses included age and sex as covariates.  
 
 
 

Table 4.4 | Multiple mediation indirect effects of physical activity on cognition through 
redundancy at the averaged density 
 
 Learning Recall PSM TMT-B 
 ß p  ß p  ß p  ß p 
Left Anterior 

0.01 .878  <0.01 .871  -0.04 .740  -0.01 .980 
Right Anterior 

0.04 .623  0.03 .551  0.09 .566  -0.09 .758 
Left Posterior 

-0.01 .890  <-0.01 .902  <-0.01 .985  0.05 .828 
Right Posterior 

0.02 .792  -0.01 .750  <0.01 .998  0.06 .865 
Joint 

0.06 .682  0.02 .772  0.05 .877  0.01 .990 
Note: Analyses included age and sex as covariates. 

 



 

 63 

Discussion 

Utilizing a large sample of healthy older adults spanning 60 to 90 years of age, we 

adopted a comprehensive approach to examine the role of hippocampal redundancy, education, 

and physical activity in supporting cognition in older adulthood. This is the first study to probe 

(1) the relationship between hippocampal redundancy and memory through examining 

hippocampal subregions and various aspects of episodic memory, and (2) the influence of two 

widely studied protective factors in cognitive aging. We found evidence that posterior, but not 

anterior, hippocampal redundancy was related to memory performance in older adulthood. 

Exploratory analyses indicated that this relationship weakens in later older adulthood. However, 

we did not find evidence that either education or physical activity were associated with 

hippocampal redundancy, nor did hippocampal redundancy serve a mediating role between those 

factors and cognition. 

In this sample of healthy older adults, we replicate and extend the finding of a positive 

association between left posterior hippocampal redundancy and memory performance, 

suggesting a high degree of specificity to cognitive benefits of regional redundancy. The 

broadest comparison, between cognitive domains, indicated that redundancy was related to 

memory but not to executive function, providing evidence that cognitive benefits of increased 

hippocampal redundancy are specific to the hippocampus’ primary function (Eichenbaum, 2017), 

consistent with prior findings (Langella et al., 2021). Within the memory domain, only PSM was 

associated with hippocampal redundancy. Whereas RAVLT relies on item-level memory, PSM 

taps into more complex contextual processes. The specific posterior hippocampus-PSM finding 

may reflect underlying differences in functional connectivity along the long-axis of the 

hippocampus: posterior, but not anterior, hippocampus connects with a posterior-medial network 
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which supports memory for contextual events and episodes (Ranganath & Ritchey, 2012; 

Ritchey, Libby, & Ranganath, 2015). Therefore, functional redundancy of posterior 

hippocampus may reflect greater connections with such posterior-medial regions, which in turn 

supports the contextual memory involved in PSM. In both the current study and in Langella et al. 

(2021), left posterior hippocampal redundancy specifically was related to memory performance 

in healthy older adults. This lateralization within posterior nodes may reflect the verbal nature of 

the memory outcome measures in the studies (e.g., word lists, nameable objects). Encoding and 

retrieval of such verbal information tends to exhibit left-hippocampal lateralization (Frisk & 

Milner, 1990; Powell et al., 2005); therefore, greater functional redundancy in left hippocampus 

may be more beneficial for performance on the measured tasks. 

Finally, this positive association between redundancy and memory weakened across older 

adulthood, becoming non-significant in later decades of life. Although the included participants 

were all considered to be cognitively healthy, high proportions of non-demented older adults 

exhibit AD neuropathology, particularly in later decades (Price et al., 2009). If the older group is 

in fact comprised of a higher proportion of adults with significant pathological build up, 

redundancy may not be protective for adults in more advanced preclinical stages, as it has 

previously been shown to not confer benefits in early mild cognitive impairment (Langella et al., 

2021). Explicitly measuring pathology across this age range will provide further information 

about the level at which redundancy ceases to offer protection. 

 Contrary to our hypotheses, education and physical activity, key protective factors in 

cognitive aging (Norton et al., 2014), did not show any association with hippocampal 

redundancy. One potential reason for the lack of relationship with education could be the limited 

range of educational attainment in this sample. The participants were highly educated, with only 
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three participants not completing at least a high school-level education, and the vast majority 

completing a college-level degree or higher. This level of education is higher than in many 

studies finding evidence of its protective nature (Albert et al., 1995; Butler et al., 1996; reviewed 

in Meng & D’Arcy, 2012). A second explanation could be a true lack of relationship between 

education and redundancy. Despite prior findings and models supposing education serves as a 

reserve mechanism (Cabeza et al., 2018; Meng & D’Arcy, 2012), other findings show no 

relationship between education and hippocampal volume or cognitive decline (Lövdén, 

Fratiglioni, Glymour, Lindenberger, & Tucker-Drob, 2020; Nyberg et al., 2021). In fact, a recent 

review suggests education effects may be better reflected by other factors, such as parental 

socioeconomic status or underlying cognitive ability (Lövdén et al., 2020). Future studies should 

investigate both greater ranges of educational attainment and potential underlying, explanatory 

factors. 

 Similarly, no effects were observed for physical activity, measured through the IPAQ 

which reflects recent activity over the last week. It is possible a longer-term measure would be 

more appropriate for measuring effects on brain organization, as prior positive findings of 

exercise on neural and cognitive measures have examined activity over the course of a decade 

(Bugg & Head, 2011; Liang et al., 2010) or from pre- and post-interventions spanning several 

weeks (Erickson et al., 2011; Ji et al., 2018). Likewise, physical activity during midlife is 

associated with a reduced risk of dementia in later life (Chang et al., 2010; Rovio et al., 2005; 

Tolppanen et al., 2015). Repeated and regular physical activity is necessary for the underlying 

mechanisms through which exercise is deemed to be protective (e.g., neurogenesis, 

synaptogenesis, neurotransmitter production) (El-Sayes, Harasym, Turco, Locke, & Nelson, 

2019; Paillard, 2015). However, in our older adult sample, the IPAQ captures only physical 



 

 66 

activity engaged in the prior week, a timeframe which is likely missing the longer-term 

beneficial impact of physical activity and which does not take into account the consistency of 

physical activity. In other words, it’s possible for an individual with a single highly active day to 

receive the same score as an individual with several moderately active days, though neither score 

may be reflective of a typical week. Longer-term measures of physical activity may be likely to 

reflect consistent exercise habits. Indeed, the length of physical activity appears to influence 

functional brain network measures, such that certain functional changes in older adults were 

evident after a year-long exercise intervention program but not after six-months (Voss et al., 

2010). 

 This study includes several limitations. Because the sample is cross-sectional, we are 

unable to know whether redundancy changes precede cognitive change. Longitudinal lifespan 

studies will be crucial to elucidate the pattern of redundancy across healthy aging. Additionally, 

participants were deemed to be cognitively healthy based on scores on activities of daily living 

and the MoCA. Though commonly used in the field, these clinical assessments do not provide 

information about potential underlying pathology. It is likely that a portion of included 

participants are harboring various levels of neuropathology or genetic risk for cognitive 

impairment. Inclusion of these measures in future studies will enable more accurate 

characterization of healthy aging separate from preclinical aging. 

 This is the first study to comprehensively examine the relationship between hippocampal 

redundancy and cognition in healthy aging, along with the role of education and physical 

activity. We found that left posterior hippocampal redundancy only is beneficial for memory in 

healthy older adulthood, suggesting heterogeneity in the hippocampus’ subregional functional 

organization as related to supporting healthy memory function in aging. Additionally, benefits 
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were specific to memory for contextual object sequencing rather than item-level memory. 

Finally, we found no evidence that education or recent physical activity are associated with 

hippocampal redundancy, though future studies should examine alternative measures of these 

constructs as well as additional protective factors in aging. In sum, this study expands on our 

current knowledge of hippocampal redundancy across healthy older adulthood while providing 

clear avenues for future research. 
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CHAPTER 5: INTEGRATIVE DISCUSSION 

Summary 

 Cognitive aging is marked by considerable variability, ranging from preserved cognition 

to the development of neurodegenerative diseases, including Alzheimer’s disease (AD). 

Therefore, identifying mechanisms which underlie resilience to pathological aging is important 

in order to support neural and cognitive functioning across older adulthood. This dissertation 

aimed to present the initial evidence that hippocampal functional redundancy, as defined through 

resting-state fMRI networks, is a neuroprotective property within the aging brain that contributes 

to resilience in cognitive aging. To that end, the presented work focused on the primary cognitive 

domain, episodic memory, and the primary brain region, hippocampus, affected by AD. Study 1 

examined hippocampal redundancy across a spectrum of healthy and pathological aging and its 

relation to cognitive performance (Langella et al., 2021). Study 2 related hippocampal 

redundancy to underlying AD pathology (i.e., hippocampal atrophy and beta-amyloid, Aß), along 

with clinical and cognitive outcomes. Finally, Study 3 examined the influence of experiential 

protective factors, education and physical activity, on hippocampal redundancy and its relation to 

memory. Throughout these studies, hippocampal redundancy emerged as a mechanism of 

resilience to pathological aging through its relationships with cognitive, clinical, and 

pathological measures. However, its role is heterogeneous across hippocampal subregions and 

stages of cognitive decline. These findings are discussed below, along with their implications 

and open questions. 
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Hippocampal Redundancy Supports Resiliency in Aging 

 The first evidence indicating a neuroprotective role of hippocampal redundancy in aging 

is the finding that hippocampal redundancy is lower in pathological aging than in healthy aging, 

measured both by clinical diagnosis and pathological burden. Study 1 reported the initial 

comparison, finding that posterior hippocampal redundancy is lower in mild cognitive 

impairment (MCI) than in cognitively normal (CN) older adults but does not differ between early 

and late MCI stages (Langella et al., 2021). Whole-hippocampal redundancy, examined in Study 

2, similarly was higher in healthy aging than in MCI. Further, low hippocampal redundancy in 

the combined CN and MCI sample was associated with higher Aß and clinical progression to 

dementia. Together, these results suggest that the onset of pathological aging is accompanied by 

reductions in hippocampal redundancy, or that individuals with low hippocampal redundancy are 

more likely to present clinical symptoms. Conversely, these differences were not apparent in 

hippocampal degree (Study 1; Langella et al., 2021) or local efficiency (Study 2). This 

distinction between redundancy and other graph measures is consistent with findings in younger 

adults (Di Lanzo et al., 2012), suggesting that redundancy is capturing a novel aspect of 

functional network organization. 

 Also suggestive of hippocampal redundancy’s neuroprotective role in aging is the 

consistent finding across the three studies that higher redundancy is related to better memory 

performance. However, these effects are most evident in healthy aging. When examined as 

separate groups, CN, but not early or late MCI, participants showed a mnemonic benefit of 

posterior hippocampal redundancy in Study 1 (Langella et al., 2021). Study 3, which only 

included CN participants, also found this positive relationship, but the benefit of redundancy 

weakened with advancing age, becoming non-significant in later older adulthood. These two 



 

 70 

findings suggest that the beneficial cognitive effects may be most evident in adults with low risk 

of developing AD, since the risk for developing AD increases with age, and a high proportion of 

individuals in later older adulthood are likely to harbor more advanced stages of underlying 

pathology (Price et al., 2009). Earlier older adulthood is generally marked by relatively lower 

levels of pathology, through which hippocampal redundancy appears able to provide protection 

against memory failure. 

Seemingly in contrast to the healthy aging results in Studies 1 and 3, Study 2 found a 

positive relationship between hippocampal redundancy and memory in a combined CN-MCI 

sample. However, the combined CN-MCI sample in Study 1 also showed a significant positive 

redundancy-memory relationship; only when splitting the groups was it apparent the results were 

specific to CN participants (Langella et al., 2021). These overall positive combined-group 

findings may reflect a more nuanced relationship, such that the effect weakens across disease 

progression, that is not detected when comparing categorical groups. Indeed, the progression of 

AD follows a continuum (Jack et al., 2013; Jack Jr et al., 2018). Employing continuous markers 

of disease staging (e.g., neurofibrillary tau, Aß, neurodegeneration, clinical rating scales) rather 

than categorical groups may reveal a progressive weaking in the redundancy-memory 

relationship similar to the age-redundancy interaction observed in Study 3. 

In addition to differing across clinical stages, the redundancy-memory relationship 

differed between subregions of the hippocampus. In Studies 1 and 3, group differences and 

relationships with memory were specific to posterior rather than anterior hippocampal 

redundancy. This is consistent with the wider literature on hippocampal connectivity in memory 

and aging. Several prominent functional networks are associated with memory processes and 

posterior hippocampus more so than anterior hippocampus, including the posterior-medial 
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network (Ranganath & Ritchey, 2012; Ritchey et al., 2015) and the default mode network 

(Fanselow & Dong, 2010; Kim, 2015; Seitzman et al., 2020). Additionally, hippocampal and 

default mode network connectivity is altered along the continuum from healthy aging to MCI 

and AD (as reviewed in Dennis & Thompson, 2014; Hafkemeijer, van der Grond, & Rombouts, 

2012; Sheline & Raichle, 2013). Therefore, the primary findings in posterior, rather than 

anterior, hippocampal redundancy reflect the more general pattern of functional changes across 

healthy and pathological aging. These anterior-posterior differences also demonstrate the 

importance of considering other potential sources of heterogeneity within the hippocampus. 

Effects of redundancy using other hippocampal divisions, such as anatomical subfields, should 

be investigated. One particular region, cornu ammonis region 1, is early affected by AD 

pathology and volume loss in MCI (Mueller et al., 2010; Padurariu, Ciobica, Mavroudis, Fotiou, 

& Stavros, 2012) and may demonstrate a similar role in resilience. 

Evidence for a Mechanistic Role 

To more concretely assess the role of hippocampal redundancy in resilience to 

pathological aging, Studies 2 and 3 examined whether hippocampal redundancy served a 

mechanistic role in preserving cognition. Study 2, focusing on pathological markers, found that 

low hippocampal redundancy mediated the relationship between low hippocampal volume and 

low memory. Further, this combination of factors related to a higher likelihood of converting to 

dementia in subsequent years than the combination of high redundancy, volume, and memory. In 

accordance with one proposed method to establish a reserve-based mechanism (Stern et al., 

2019), this study included a measure of brain status (e.g., hippocampal atrophy and Aß burden), 

clinical and cognitive performance outcomes (e.g., memory and future clinical diagnosis), and 

the proposed measure of reserve (e.g., hippocampal redundancy). The mediating role of 
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hippocampal redundancy suggests that it could act as a reserve mechanism. This would be 

consistent with a recent lifespan study showing that whole-brain redundancy does in fact follow 

a reserve-type pattern, building across adulthood before declining in older adulthood (Sadiq et 

al., 2021). 

However, Study 3 found no association with two prominent protective factors (education 

and physical activity) and redundancy, nor did hippocampal redundancy mediate a relationship 

between either factor and memory performance. These null results may suggest that redundancy 

is not experience-dependent, though this area warrants more investigation, as a range of 

environmental factors do influence brain health and resilience broadly (Karatsoreos & McEwen, 

2013; Menardi et al., 2021; Tost, Champagne, & Meyer-Lindenberg, 2015). With respect to this 

study’s included measures, the years of educational attainment in our sample was more limited 

(biased to higher levels of education) than many prior studies indicating a protective effect of 

education (reviewed in Meng & D’Arcy, 2012; Stern, Albert, Tang, & Tsai, 1999), and the 

concurrent measure of physical activity may not reflect longer-term levels of activity. Persistent 

activity, beginning even in middle age, in particular is related to better outcomes (Chang et al., 

2010; Rovio et al., 2005; Tolppanen et al., 2015) and to the molecular and cellular changes 

accompanying the beneficial cognitive and neural effects (El-Sayes et al., 2019; Paillard, 2015). 

Therefore, the current findings will need to be explored using alternative measures to uncover 

whether experience can modify redundancy. Future studies should also consider other methods 

to investigate redundancy’s potential role as a reserve mechanism, including the residual method 

(Reed et al., 2010), in which the variance unexplained by demographic and structural factors 

(e.g., age, brain atrophy) is related to the proposed mechanism (e.g., redundancy), as well as 

additional protective factors. 
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Limitations and Open Questions 

The current work describes a neuroprotective role of hippocampal redundancy in aging as 

defined through resting-state fMRI networks, with the primary findings demonstrating that 

hippocampal redundancy is an intrinsic property of functional brain networks that supports 

healthy memory and clinical function. There are many advantages to resting-state data, including 

the ease of acquisition in patient populations, consistency across research sites, and 

representation of such intrinsic patterns of functional organization. However, one limitation for 

cognitive aging science, and pertinent to the findings discussed here, is that cognitive 

mechanisms are often inferred based on correlations between resting-state connectivity and 

behavior at a different time point (see Campbell & Schacter, 2017). Correlations between offline 

behavioral measures and resting-state derived functional connectivity do not provide direct 

information about hippocampal functional organization during the memory process itself. 

Although there are many similarities between resting-state and task-based functional networks 

(Cole, Bassett, Power, Braver, & Petersen, 2014; Kraus et al., 2021; Krienen, Thomas Yeo, & 

Buckner, 2014), some researchers point to significant differences between rest and task network 

organization (Davis, Stanley, Moscovitch, & Cabeza, 2017). It is yet to be determined how 

hippocampal redundancy differs between resting- and task-states and the associated implications 

for healthy aging. Online investigation of hippocampal redundancy during episodic memory 

tasks will be a valuable next step in more closely aligning this functional property with specific 

mnemonic processes. 

Finally, it will be important to examine longitudinal changes in hippocampal redundancy 

as a function of disease progression to more accurately determine whether redundancy is 

malleable and decreases in response to AD pathology, or if low redundancy is a risk factor itself 
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in which low-redundancy brains are unable to cope with increasing pathology. Longitudinal 

studies have consistently demonstrated reconfiguration of functional brain organization in aging 

(Malagurski, Liem, Oschwald, Mérillat, & Jäncke, 2020b, 2020a; Ousdal et al., 2020; Rakesh, 

Fernando, & Mansour L., 2020). Therefore, coupled with the cross-sectional finding that 

redundancy changes across the lifespan (Sadiq et al., 2021), it is plausible that redundancy is not 

a static trait, and instead can be affected by pathology or environmental factors. The current 

work suggests that redundancy may be influenced by pathological factors in particular. As 

discussed previously, though, the effects of physical activity may be more evident using 

longitudinal designs, particularly beginning in midlife. Because AD pathology begins to 

aggregate years before the onset of clinical symptoms (Jack et al., 2013), longitudinal studies, 

even beginning in middle-age, will be central to connecting changes in functional redundancy 

with pathological and clinical progression. 

Conclusion 

 Despite a theorized protective role of redundancy in the brain (Arkadir et al., 2014; 

Creasey & Rapoport, 1985; Glassman, 1987), functional redundancy has largely gone unstudied 

in the context of aging and neurodegenerative diseases. This dissertation provides the first 

evidence that hippocampal functional redundancy serves as a neuroprotective mechanism in 

aging. In particular, hippocampal redundancy is associated with better clinical status and 

outcomes, higher memory performance, and lower levels of pathology. These beneficial effects 

are most pronounced in healthy or preclinical aging (before the onset of clinical symptoms) and 

in posterior hippocampus. Future studies should further probe these relationships using 

longitudinal designs to closely link memory and pathological changes to redundancy, as well as 

determine to what extent modifiable factors, such as physical activity, can influence redundancy. 



 

 75 

Taken together, this dissertation presents hippocampal functional redundancy as a novel marker 

of resilience to pathological aging. 

  



 

 76 

APPENDIX A: CHAPTER 2 SUPPLEMENTARY MATERIALS 

Supplementary Methods 

Overall functional connectivity 

Overall levels of functional connectivity were calculated for each of the four 

hippocampal nodes for each subject using (1) all positive correlations and (2) the absolute value 

of all network correlations, as underlying differences in connectivity may bias patient group 

comparisons when using proportional thresholding. 

Total volume of white matter hyperintensities 

Total volume of white matter hyperintensities were available for 114 subjects through 

ADNI. Volumes were calculated using a Bayesian approach to segment the T1 and fluid 

attenuation inversion recovery (FLAIR) MR scan sequences (additional protocol information 

available through ADNI). 

Classification of beta-amyloid positivity 

 Florbetapir PET imaging was available for 81 of the 91 MCI subjects within 1 year of 

their resting-state scan. Mean florbetapir uptake was calculated for cortical gray matter and 

normalized using a cerebellar reference region. Subjects with normalized florbetapir uptake 

equal to or above 1.11 were classified as amyloid-positive, and those below 1.11 were classified 

as amyloid-negative (C. M. Clark et al., 2011; Joshi et al., 2012) (additional protocol information 

available through ADNI). Of the 81 MCI participants with available amyloid-beta PET imaging, 

50 were amyloid-positive and 31 were amyloid-negative. 

Secondary nodal analysis 

We performed a secondary analysis on precuneus, anterior cingulate cortex (ACC), 

frontal, temporal, and parietal cortical nodes. Analyzed nodes were clustered with either the 
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default mode network or frontoparietal network. Precuneus consisted of six nodes (three from 

each hemisphere), and ACC was comprised of four nodes (three left hemisphere, one right 

hemisphere). Both precuneus and ACC were solely comprised of nodes clustering with the 

default mode network. Frontal (n = 44), temporal (n = 15), and parietal (n = 18) nodes were 

clustered with default mode and frontoparietal networks. Redundancy was calculated separately 

for each node, then averaged across all nodes comprising the anatomical region. 

Cognitive composite scores 

MEM and EF were calculated using an IRT framework (Crane et al., 2012; Gibbons et 

al., 2012). MEM incorporated RAVLT (Trials 1-5, Interference, Immediate recall, Delay, 

Recognition), ADAS-Cog (Trials 1-3, Recall, Recognition), Logical Memory (Immediate, 

Delay), MMSE (word recall). EF was calculated using: Category Fluency (animals, vegetables), 

WAIS-R Digit Symbol, Digit Span Backwards, Trails A, Trails B, Clock Drawing. Both MEM 

and EF have a mean of 0 and standard deviation of 1, with positive scores indicating better 

performance. 

Supplementary Tables 

Table S2.1 | Hippocampal redundancy omnibus test statistics across densities (df = 2, 126) 
  

Left Anterior Right Anterior Left Posterior Right Posterior 
Density F p F p F p F p 
2.5 1.02 .373 1.82 .162 4.39 .002 2.15 .119 
5 1.13 .337 1.43 .254 6.73 .002 4.49 .008 
7.5 1.43 .252 1.03 .358 6.22 .001 5.33 .005 
10 1.29 .285 1.33 .270 5.66 .003 4.73 .008 
12.5 1.45 .239 2.07 .130 5.37 .004 4.89 .007 
15 1.72 .186 2.35 .098 5.36 .004 4.12 .018 
17.5 1.50 .225 2.40 .094 5.12 .005 4.20 .015 
20 1.49 .232 1.93 .152 4.78 .008 5.00 .008 
22.5 1.32 .277 2.10 .126 4.70 .010 5.50 .005 
25 1.29 .279 2.04 .130 4.27 .014 5.33 .006 
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Table S2.5 | Hippocampal redundancy-MMSE regressions across densities 
 
 Left Anterior Right Anterior Left Posterior Right Posterior 
Density ß p ß p ß p ß p 
Avg. -0.12 .299 0.11 .341 0.06 .567 0.14 .204 
2.5 -0.06 .567 0.09 .390 0.03 .805 0.05 .622 
5 -0.03 .804 0.10 .358 0.04 .715 0.07 .502 
7.5 -0.02 .849 0.08 .465 0.09 .435 0.05 .675 
10 -0.04 .741 0.11 .325 0.09 .440 0.05 .615 
12.5 -0.03 .785 0.12 .294 0.07 .555 0.07 .511 
15 -0.07 .521 0.11 .319 0.07 .527 0.10 .356 
17.5 -0.09 .396 0.11 .335 0.06 .601 0.11 .293 
20 -0.14 .204 0.12 .285 0.08 .487 0.13 .236 
22.5 -0.13 .219 0.09 .423 0.06 .559 0.15 .177 
25 -0.12 .296 0.10 .355 0.05 .632 0.16 .142 

 
 
 
 
Table S2.6 | Hippocampal redundancy-MMSE regressions for averaged density, using 
robust regression (Huber weighting) and Wald test for significance 
 
 ß t p 
Left Anterior -0.13 1.13 .258 
Right Anterior 0.12 1.06 .294 
Left Posterior 0.07 0.66 .511 
Right Posterior 0.13 1.32 .186 
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Table S2.9 | Left posterior hippocampal redundancy-memory regressions across densities 
with standardized beta and p values 
 

 Whole group CN eMCI lMCI 
Density ß p ß p ß p ß p 
2.5 0.29 .001 0.38 .017 0.13 .370 -0.14 .439 
5 0.32 < .001 0.37 .022 0.12 .380 -0.01 .971 
7.5 0.30 .001 0.33 .043 0.17 .230 -0.05 .784 
10 0.30 .001 0.33 .041 0.20 .160 -0.04 .832 
12.5 0.29 .001 0.36 .025 0.19 .188 -0.12 .495 
15 0.29 .001 0.38 .020 0.16 .258 -0.13 .459 
17.5 0.27 .002 0.38 .021 0.18 .210 -0.17 .355 
20 0.28 .002 0.39 .017 0.19 .179 -0.14 .442 
22.5 0.28 .002 0.37 .024 0.22 .133 -0.15 .400 
25 0.28 .002 0.37 .028 0.21 .135 -0.14 .442 

 
 
Table S2.10 | Right posterior hippocampal redundancy-memory regressions across 
densities with standardized beta and p values 
 

 Whole group CN eMCI lMCI 
Density ß p ß p ß p ß p 
2.5 0.05 .608 0.02 .912 0.07 .608 -0.25 .136 
5 0.11 .230 -0.05 .784 0.18 .215 -0.12 .482 
7.5 0.10 .279 -0.11 .520 0.19 .173 -0.13 .473 
10 0.11 .225 -0.11 .523 0.22 .124 -0.11 .537 
12.5 0.16 .078 -0.04 .786 0.25 .071 -0.09 .617 
15 0.17 .061 -0.03 .871 0.29 .035 -0.12 .492 
17.5 0.17 .055 -0.02 .886 0.32 .022 -0.14 .413 
20 0.18 .039 0.02 .904 0.29 .038 -0.12 .498 
22.5 0.21 .017 0.02 .894 0.33 .016 -0.11 .541 
25 0.23 .009 0.09 .600 0.34 .015 -0.10 .582 
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Table S2.11 | Left posterior hippocampal redundancy-executive function regressions across 
densities 
 

 Whole group CN eMCI lMCI 
Density ß p ß p ß p ß p 
2.5 0.13 .142 0.21 .197 0.01 .943 -0.27 .123 
5 0.12 .187 0.15 .353 0.05 .700 -0.25 .180 
7.5 0.10 .267 0.14 .387 0.06 .678 -0.22 .211 
10 0.09 .297 0.14 .403 0.09 .529 -0.24 .172 
12.5 0.09 .316 0.18 .271 0.06 .657 -0.28 .119 
15 0.08 .359 0.17 .321 0.08 .580 -0.28 .116 
17.5 0.08 .369 0.19 .252 0.10 .495 -0.30 .088 
20 0.07 .435 0.18 .288 0.09 .554 -0.28 .110 
22.5 0.08 .387 0.20 .239 0.10 .492 -0.30 .088 
25 0.07 .465 0.18 .288 0.09 .544 -0.28 .108 

 
 
Table S2.12 | Right posterior hippocampal redundancy-executive function regressions 
across densities 
 

 Whole group CN eMCI lMCI 
Density ß p ß p ß p ß p 
2.5 -0.11 .234 0.02 .924 -0.15 .269 0.36 .031 
5 0.02 .854 0.10 .529 -0.07 .644 -0.33 .054 
7.5 0.02 .865 0.11 .495 -0.03 .839 -0.31 .066 
10 0.02 .831 0.14 .395 0.01 .946 -0.32 .062 
12.5 0.03 .714 0.18 .265 -0.00 .995 -0.32 .062 
15 0.03 .762 0.12 .454 0.03 .827 -0.27 .119 
17.5 0.03 .720 0.12 .466 0.03 .827 -0.23 .185 
20 0.03 .748 0.11 .512 0.03 .838 -0.22 .211 
22.5 0.04 .650 0.08 .633 0.07 .615 -0.20 .247 
25 0.04 .632 0.06 .732 0.07 .638 -0.16 .353 
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Table S2.13 | Posterior hippocampal redundancy-cognition regressions for averaged 
density, using robust regression (Huber weighting) and Wald test for significance 
 
 Left Posterior Right Posterior 
 ß t p ß t p 
Memory    

Whole group 0.19 3.02 .003 0.14 2.27 .025 
CN 0.20 2.08 .043 0.04 0.45 .654 

eMCI 0.12 1.42 .161 0.19 2.16 .034 
lMCI -0.12 1.36 .187 -0.11 1.19 .246 

 
Executive Function 

   

Whole group 0.06 0.70 .485 0.04 0.52 .602 
CN 0.13 0.82 .410 0.10 0.62 .532 

eMCI 0.08 0.62 .532 0.02 0.19 .849 
lMCI -0.31 1.89 .069 -0.19 1.13 .269 

 
 
Table S2.14 | Hippocampal degree omnibus test statistics across densities (df = 2, 126) 
  

Left Anterior Right Anterior Left Posterior Right Posterior 
Density F p F p F p F p 
2.5 0.21 .820 0.43 .656 1.87 .155 0.42 .663 
5 0.01 .994 0.49 .618 1.97 .145 0.72 .497 
7.5 0.30 .741 0.38 .680 3.07 .046 1.33 .269 
10 0.93 .401 0.68 .513 2.83 .060 1.18 .316 
12.5 1.14 .335 0.74 .483 2.53 .083 0.65 .532 
15 1.70 .183 0.89 .428 2.70 .073 0.39 .670 
17.5 1.32 .268 0.90 .409 2.75 .065 0.55 .576 
20 0.93 .403 0.67 .503 2.42 .087 1.00 .375 
22.5 0.82 .439 0.78 .462 2.45 .086 1.33 .264 
25 1.18 .306 0.85 .429 2.18 .115 1.60 .204 

Note: Follow-up tests of left posterior degree at density 7.5 revealed no significant group 
differences after correcting for multiple comparisons [CN-eMCI: F(1, 91) = 5.49, p = .061; CN-
lMCI: F(1, 74) = 2.45, p = .175; eMCI-lMCI: F(1, 88) = 0.25, p = .623]. 
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Table S2.15 | Hippocampal redundancy-white matter hyperintensities regressions for 
averaged density, using robust regression (Huber weighting) and Wald test for significance 
 
 ß t p 
Left Anterior -0.003 0.03 .977 
Right Anterior 0.177 1.65 .100 
Left Posterior 0.003 0.04 .964 
Right Posterior 0.079 0.92 .357 

 
 
Table S2.16 | Hippocampal redundancy-global efficiency regressions across densities 
collapsed across group 
 
 Left Anterior Right Anterior Left Posterior Right Posterior 
Density ß p ß p ß p ß p 
2.5 -0.03 .736 -0.02 .859 0.06 .523 0.14 .123 
5 -0.09 .285 -0.08 .369 0.07 .423 0.04 .657 
7.5 -0.11 .231 -0.05 .603 0.04 .652 0.11 .205 
10 -0.13 .150 -0.11 .234 0.08 .385 0.16 .067 
12.5 -0.16 .071 -0.12 .182 0.07 .424 0.11 .195 
15 -0.20 .024 -0.12 .192 0.05 .547 0.11 .219 
17.5 -0.20 .024 -0.11 .210 0.04 .646 0.05 .542 
20 -0.18 .035 -0.08 .383 0.04 .640 0.02 .823 
22.5 -0.16 .071 -0.06 .507 0.00 .996 -0.05 .591 
25 -0.11 .215 -0.02 .817 -0.03 .768 -0.11 .213 

 
 
Table S2.17 | Hippocampal redundancy-global efficiency regressions across densities within 
CN group 
 
 Left Anterior Right Anterior Left Posterior Right Posterior 
Density ß p ß p ß p ß p 
Avg. -0.25 .127 0.13 .414 -0.10 .530 -0.19 .259 
2.5 0.02 .899 0.28 .068 0.03 .835 -0.07 .643 
5 0.02 .911 0.17 .282 -0.03 .838 -0.17 .275 
7.5 -0.02 .904 0.30 .056 -0.12 .437 -0.12 .433 
10 -0.04 .815 0.20 .219 -0.10 .525 -0.08 .617 
12.5 -0.14 .391 0.11 .497 -0.10 .509 -0.14 .394 
15 -0.22 .196 0.09 .594 -0.13 .418 -0.13 .406 
17.5 -0.28 .098 0.10 .530 -0.17 .293 -0.20 .193 
20 -0.26 .125 0.14 .373 -0.18 .243 -0.28 .070 
22.5 -0.22 .189 0.15 .360 -0.23 .137 -0.39 .011 
25 -0.14 .418 0.20 .223 -0.25 .113 -0.43 .004 
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Table S2.18 | Hippocampal redundancy-global efficiency regressions across densities within 
eMCI group 
 
 Left Anterior Right Anterior Left Posterior Right Posterior 
Density ß p ß p ß p ß p 
Avg. -0.11 .431 -0.11 .429 0.32 .019 0.14 .306 
2.5 -0.01 .922 -0.23 .102 0.33 .018 0.26 .058 
5 -0.10 .496 -0.25 .081 0.41 .003 0.31 .027 
7.5 -0.12 .396 -0.21 .132 0.37 .007 0.32 .022 
10 -0.18 .211 -0.27 .050 0.32 .020 0.28 .044 
12.5 -0.18 .215 -0.28 .046 0.29 .037 0.22 .124 
15 -0.20 .168 -0.27 .056 0.25 .068 0.18 .207 
17.5 -0.17 .260 -0.26 .067 0.27 .051 0.14 .340 
20 -0.15 .296 -0.20 .161 0.30 .034 0.12 .396 
22.5 -0.14 .357 -0.18 .219 0.26 .061 0.09 .535 
25 -0.06 .671 -0.14 .325 0.26 .060 0.06 .679 

 
 
Table S2.19 | Hippocampal redundancy-global efficiency regressions across densities within 
lMCI group 
 
 Left Anterior Right Anterior Left Posterior Right Posterior 
Density ß p ß p ß p ß p 
Avg. 0.17 .328 -0.10 .538 0.05 .763 0.25 .132 
2.5 0.16 .402 -0.09 .612 0.04 .808 0.29 .105 
5 -0.08 .673 -0.06 .729 0.12 .493 0.26 .142 
7.5 0.03 .861 -0.07 .664 0.05 .797 0.23 .190 
10 0.07 .697 -0.12 .497 0.06 .747 0.25 .146 
12.5 0.14 .416 -0.10 .570 0.05 .777 0.25 .153 
15 0.17 .349 -0.08 .660 0.06 .734 0.31 .077 
17.5 0.20 .263 -0.08 .643 0.06 .726 0.29 .100 
20 0.20 .252 -0.08 .663 0.13 .461 0.30 .085 
22.5 0.24 .167 -0.01 .942 0.13 .451 0.28 .106 
25 0.23 .190 0.00 .991 0.15 .387 0.26 .138 

 
  



  

87 
 

T
ab

le
 S

2.
20

 | 
H

ip
po

ca
m

pa
l r

ed
un

da
nc

y-
gl

ob
al

 e
ff

ic
ie

nc
y 

re
gr

es
si

on
s f

or
 a

ve
ra

ge
d 

de
ns

ity
, u

si
ng

 r
ob

us
t r

eg
re

ss
io

n 
(H

ub
er

 
w

ei
gh

tin
g)

 a
nd

 W
al

d 
te

st
 fo

r 
si

gn
ifi

ca
nc

e 
  

L
ef

t A
nt

er
io

r 
R

ig
ht

 A
nt

er
io

r 
L

ef
t P

os
te

ri
or

 
R

ig
ht

 P
os

te
ri

or
 

 
ß 

t 
p 

ß 
t 

p 
ß 

t 
p 

ß 
t 

p 
W

ho
le

 g
ro

up
 

-0
.1

6 
1.

89
 

.0
64

 
-0

.1
0 

1.
17

 
.2

56
 

0.
12

 
1.

39
 

.2
08

 
0.

07
 

0.
84

 
.4

18
 

C
N

 
-0

.2
8 

1.
72

 
.0

91
 

0.
05

 
0.

33
 

.7
55

 
-0

.1
5 

0.
95

 
.3

46
 

-0
.2

6 
1.

62
 

.1
12

 
eM

C
I 

-0
.0

7 
0.

47
 

.6
41

 
-0

.1
3 

0.
92

 
.3

78
 

0.
32

 
2.

37
 

.0
21

 
0.

16
 

1.
19

 
.2

33
 

lM
C

I 
0.

14
 

1.
10

 
.2

76
 

-0
.1

2 
0.

90
 

.3
64

 
-0

.0
6 

0.
48

 
.6

37
 

0.
17

 
1.

30
 

.2
02

 
   

 



  

88 
 

Su
pp

le
m

en
ta

ry
 F

ig
ur

es
 

 Fi
gu

re
 S

2.
1 

| W
ho

le
-b

ra
in

 h
ip

po
ca

m
pa

l r
ed

un
da

nc
y 

ac
ro

ss
 d

en
si

tie
s. 

*p
 <

 .0
5,

 *
*p

 <
 .0

1.
 C

N
-e

M
C

I c
om

pa
ris

on
 in

 b
la

ck
, C

N
-lM

C
I 

co
m

pa
ris

on
 in

 re
d.

 



  

89 
 

Fi
gu

re
 S

2.
2 

| C
N

:e
M

C
I n

od
al

 r
at

io
s a

cr
os

s d
en

si
tie

s 

 
Po

st
er

io
r h

ip
po

ca
m

pa
l n

od
es

 in
 p

ea
ch

. 



  

90 
 

Fi
gu

re
 S

3.
3 

| C
N

:lM
C

I n
od

al
 r

at
io

s a
cr

os
s d

en
si

tie
s 

 
Po

st
er

io
r h

ip
po

ca
m

pa
l n

od
es

 in
 p

ea
ch

, a
nt

er
io

r h
ip

po
ca

m
pa

l n
od

es
 in

 d
ar

k 
re

d.
 



  

91 
 

Fi
gu

re
 S

2.
4 

| e
M

C
I:

lM
C

I n
od

al
 r

at
io

s a
cr

os
s d

en
si

tie
s 

 
A

nt
er

io
r h

ip
po

ca
m

pa
l n

od
es

 in
 d

ar
k 

re
d.



 

 92 

Figure S2.5 | Scatterplots showing hippocampal redundancy-MMSE relationship in MCI 
subjects 

 
 
Figure S2.6 | Precuneus and anterior cingulate cortex (ACC) redundancy group difference 
comparisons 

 
A. Precuneus nodes in yellow, ACC nodes in red. B. Group means with standard error bars 
representing one standard error of the mean. 
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Figure S2.7 | Within-group scatterplots of hippocampal redundancy-cognition relationships 
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APPENDIX B: CHAPTER 3 SUPPLEMENTARY MATERIALS 

Supplementary Methods 

Overall functional connectivity 

Because underlying group connectivity differences may bias comparisons when using 

proportional thresholding (van den Heuvel et al., 2017), overall functional connectivity was 

calculated from the correlation matrix for the hippocampal ROI for each subject using all 

positive correlations and the absolute value of all network correlations. CN and MCI groups did 

not differ in hippocampal connectivity, controlling for age, sex, and education [positive 

correlations: F(1, 97) = 1.36, p = .247; absolute value: F(1, 97) = 0.16, p = .689]. 

White matter hyperintensities 

Total volume of white matter hyperintensities, calculated using a Bayesian approach to 

segment the T1 and fluid attenuation inversion recovery MR scan sequences, were available 

through ADNI. Full protocol information is available through ADNI. Total volume of white 

matter hyperintensities was not related to either redundancy (whole-group: ß = 0.06, p = .561; 

MCI only: ß = 0.15, p = .186) or local efficiency (whole-group: ß = -0.09, p = .363; MCI only: -

0.07, p = .563). 

Cognitive composite scores 

The memory composite score was calculated using RAVLT (Trials 1-5, Interference, 

Immediate recall, Delay, Recognition), ADAS-Cog (Trials 1-3, Recall, Recognition), Logical 

Memory (Immediate, Delay), and MMSE (word recall) (Crane et al., 2012). The EF composite 

was calculated using Category Fluency (animals, vegetables), WAIS-R Digit Symbol, Digit Span 

Backwards, Trails A, Trails B, and Clock Drawing (Gibbons et al., 2012). 
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Supplementary Tables 

Table S3.1 | Test statistics from permutation ANCOVA comparing hippocampal 
topological network properties between CN and MCI groups across all densities (df = 1, 97) 
  

Redundancy Local efficiency 
Density F p F p 
2.5 8.00 .007 0.17 .687 
5 10.17 .002 0.36 .541 
7.5 10.29 .002 0.58 .459 
10 8.57 .005 0.04 .845 
12.5 8.51 .004 0.01 .923 
15 7.77 .004 0.07 .796 
17.5 8.03 .007 0.82 .371 
20 7.56 .007 0.76 .384 
22.5 7.41 .008 0.72 .402 
25 6.38 .012 0.72 .396 

 
 
Table S3.2 | Hippocampal redundancy-local efficiency linear regression output 
(standardized beta and p-value) across densities in the whole sample and in MCI only 
 
 Whole sample MCI only 
Density ß p ß p 
2.5 0.20 .055 0.10 .386 
5 0.38 <.001 0.39 .001 
7.5 0.52 <.001 0.53 <.001 
10 0.45 <.001 0.48 <.001 
12.5 0.45 <.001 0.48 <.001 
15 0.44 <.001 0.42 <.001 
17.5 0.45 <.001 0.41 <.001 
20 0.44 <.001 0.40 .001 
22.5 0.44 <.001 0.38 .001 
25 0.39 <.001 0.32 .006 
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Table S3.3 | Hippocampal volume-redundancy linear regression output (standardized beta 
and p-value) across densities in the whole sample and in MCI only 
 
 Whole sample MCI only 
Density ß p ß p 
2.5 0.24 .043 0.34 .019 
5 0.38 .001 0.44 .002 
7.5 0.37 .002 0.41 .004 
10 0.37 .002 0.41 .004 
12.5 0.33 .005 0.38 .007 
15 0.29 .015 0.33 .019 
17.5 0.26 .028 0.29 .046 
20 0.26 .031 0.28 .052 
22.5 0.26 .027 0.28 .049 
25 0.26 .031 0.27 .056 

 

Table S3.4 | Hippocampal redundancy-memory linear regression output (standardized beta 
and p-value) across densities in the whole sample and in MCI only 
 
 Whole sample MCI only 
Density ß p ß p 
2.5 0.26 .005 0.13 .234 
5 0.26 .004 0.22 .040 
7.5 0.29 .001 0.26 .013 
10 0.31 .001 0.29 .005 
12.5 0.33 <.001 0.32 .002 
15 0.34 <.001 0.33 .002 
17.5 0.34 <.001 0.31 .003 
20 0.33 <.001 0.30 .005 
22.5 0.34 <.001 0.32 .002 
25 0.34 <.001 0.31 .003 
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Table S3.5 | Hippocampal redundancy-executive function linear regression output 
(standardized beta and p-value) across densities in the whole sample and in MCI only 
 
 Whole sample MCI only 
Density ß p ß p 
2.5 0.17 .057 0.05 .611 
5 0.19 .030 0.09 .376 
7.5 0.18 .049 0.09 .356 
10 0.18 .046 0.10 .305 
12.5 0.18 .049 0.09 .375 
15 0.18 .046 0.11 .306 
17.5 0.17 .050 0.10 .337 
20 0.17 .062 0.10 .346 
22.5 0.18 .047 0.12 .255 
25 0.17 .064 0.12 .254 

 

Table S3.6 | Hippocampal volume-local efficiency linear regression output (standardized 
beta and p-value) across densities in the whole sample and in MCI only 
 
 Whole sample MCI only 
Density ß p ß p 
2.5 0.10 .404 0.15 .303 
5 0.23 .055 0.31 .029 
7.5 0.17 .152 0.24 .098 
10 0.24 .040 0.33 .021 
12.5 0.28 .017 0.36 .012 
15 0.19 .111 0.30 .033 
17.5 0.26 .026 0.35 .014 
20 0.25 .034 0.32 .024 
22.5 0.23 .050 0.28 .048 
25 0.21 .073 0.28 .053 
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Table S3.7 | Hippocampal local efficiency-memory linear regression output (standardized 
beta and p-value) across densities in the whole sample and in MCI only 
 
 Whole sample MCI only 
Density ß p ß p 
2.5 0.08 .395 0.08 .459 
5 0.08 .417 -0.01 .941 
7.5 0.12 .212 0.09 .385 
10 0.08 .390 0.10 .352 
12.5 0.04 .640 0.02 .852 
15 0.07 .426 0.07 .523 
17.5 0.17 .075 0.15 .149 
20 0.17 .072 0.17 .117 
22.5 0.15 .098 0.17 .104 
25 0.16 .084 0.21 .049 

 

Table S3.8 | Hippocampal local efficiency-executive function linear regression output 
(standardized beta and p-value) across densities in the whole sample and in MCI only 
 
 Whole sample MCI only 
Density ß p ß p 
2.5 0.01 .901 -0.02 .853 
5 0.02 .842 -0.04 .730 
7.5 0.04 .652 -0.02 .813 
10 0.04 .634 0.01 .902 
12.5 0.00 .991 -0.06 .534 
15 0.05 .558 0.01 .927 
17.5 0.13 .142 0.07 .505 
20 0.12 .188 0.06 .552 
22.5 0.12 .193 0.04 .669 
25 0.12 .172 0.06 .568 
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Table S3.15 | Insular volume-insular redundancy linear regression output (standardized 
beta and p-value) across densities in the whole sample and in MCI only 
 
 Whole sample MCI only 
Density ß p ß p 
2.5 -0.01 .926 -0.03 .819 
5 0.02 .845 0.01 .951 
7.5 0.03 .764 0.01 .907 
10 0.05 .614 0.03 .798 
12.5 0.08 .466 0.06 .608 
15 0.09 .402 0.08 .528 
17.5 0.10 .330 0.09 .476 
20 0.11 .311 0.10 .431 
22.5 0.12 .271 0.11 .372 
25 0.11 .296 0.10 .389 

 
 
Table S3.16 | Memory-insular redundancy linear regression output (standardized beta and 
p-value) across densities in the whole sample and in MCI only 
 
 Whole sample MCI only 
Density ß p ß p 
2.5 0.06 .353 -0.003 .967 
5 0.06 .314 0.03 .688 
7.5 0.04 .528 -0.002 .973 
10 0.04 .509 -0.001 .994 
12.5 0.03 .586 -0.004 .955 
15 0.04 .516 0.01 .922 
17.5 0.05 .426 0.01 .880 
20 0.05 .405 0.02 .808 
22.5 0.06 .369 0.01 .852 
25 0.06 .362 0.02 .800 
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APPENDIX C: CHAPTER 4 SUPPLEMENTARY MATERIALS 

Supplementary Tables 

Table S4.1 | Regression output for hippocampal redundancy participant motion 
parameters across densities 
 
 Left Anterior Right Anterior Left Posterior Right Posterior 
Density ß p ß p ß p ß p 
Average Motion        
Avg.  0.01 .939  -0.05 .471  -0.07 .320  0.08 .263 
2.5 0.04 .528  0.02 .453  -0.05 .469  -0.01 .839  
5 0.01 .849  0.02 .730  -0.05 .509  -0.03 .646  
7.5 -0.05 .465  0.02 .995  -0.03 .624  0.03 .634  
10 -0.04 .540  0.02 .787  -0.06 .365  0.06 .418  
12.5 -0.01 .888  -0.06 .419  -0.06 .346  0.09 .181  
15 -0.01 .916  -0.04 .537  -0.08 .247  0.08 .239  
17.5 -0.01 .873  -0.03 .702  -0.07 .297  0.09 .200  
20 -0.01 .919  -0.04 .572  -0.06 .358  0.08 .232  
22.5 0.01 .925  -0.06 .388  -0.06 .344  0.07 .290  
25 0.02 .741  -0.05 .431  -0.06 .355  0.07 .338  
Invalid Scans        
Avg.  0.07 .310  -0.03 .638  0.04 .526  0.07 .325  
2.5 0.02 .777  0.08 .752  -0.03 .618  0.02 .768  
5 0.06 .384  0.08 .953  0.01 .918  <0.01 .969  
7.5 0.04 .517  0.08 .973  0.01 .877  0.02 .780  
10 0.07 .309  0.08 .884  -0.01 .922  0.02 .745  
12.5 0.09 .176  -0.04 .563  -0.01 .887  0.08 .254  
15 0.06 .357  -0.03 .656  <0.01 .977  0.08 .259  
17.5 0.02 .817  0.00 .964  0.04 .543  0.07 .300  
20 0.06 .363  -0.03 .642  0.06 .391  0.08 .266  
22.5 0.07 .296  -0.03 .614  0.06 .370  0.06 .380  
25 0.08 .236  -0.04 .574  0.04 .585  0.06 .376  

Note: ß = standardized beta 
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Table S4.2 | Hippocampal redundancy-learning regressions across densities 
 
 Left Anterior Right Anterior Left Posterior Right Posterior 
Density ß p ß p ß p ß p 
2.5 0.01 .913 <0.01 .980 0.07 .236 0.02 .705 
5 0.02 .738 0.02 .730 0.11 .082 -0.04 .512 
7.5 0.01 .909 <0.01 .952 0.08 .182 -0.02 .751 
10 -0.02 .715 -0.04 .521 0.09 .174 <0.01 .972 
12.5 -0.01 .842 -0.03 .689 0.09 .172 <0.01 .990 
15 0.01 .821 -0.03 .620 0.08 .222 -0.02 .701 
17.5 0.01 .821 -0.04 .553 0.08 .202 -0.03 .640 
20 0.03 .587 -0.04 .537 0.07 .284 -0.03 .617 
22.5 0.03 .633 -0.03 .632 0.06 .314 -0.03 .605 
25 0.03 .614 -0.05 .462 0.05 .465 -0.04 .541 

Note: Analyses included age and sex as covariates. ß = standardized beta 
 
 
Table S4.3 | Hippocampal redundancy-immediate recall regressions across densities 
 
 Left Anterior Right Anterior Left Posterior Right Posterior 
Density ß p ß p ß p ß p 
2.5 0.04 .526 -0.06 .360 0.04 .564 <0.01 .970 
5 0.07 .318 -0.07 .263 0.09 .182 -0.03 .591 
7.5 0.01 .902 -0.08 .199 0.04 .554 -0.01 .867 
10 -0.02 .753 -0.11 .091 0.04 .537 <0.01 .959 
12.5 -0.01 .898 -0.08 .206 0.05 .477 0.01 .918 
15 <0.01 .968 -0.10 .133 0.06 .369 0.01 .910 
17.5 -0.03 .695 -0.10 .117 0.08 .201 0.01 .845 
20 -0.02 .817 -0.11 .111 0.08 .216 0.04 .503 
22.5 -0.02 .767 -0.09 .156 0.08 .228 0.04 .537 
25 -0.02 .800 -0.11 .098 0.08 .241 0.03 .671 

Note: Analyses included age and sex as covariates. ß = standardized beta 
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Table S4.4 | Hippocampal redundancy-picture sequence memory regressions across 
densities 
 
 Left Anterior Right Anterior Left Posterior Right Posterior 
Density ß p ß p ß p ß p 
2.5 0.05 .494 -0.03 .767 0.03 .608 <0.01 .966 
5 0.08 .283 0.01 .899 0.13 .057 <0.01 .975 
7.5 0.09 .227 0.02 .764 0.12 .086 0.04 .547 
10 0.08 .253 <0.01 .961 0.12 .089 0.01 .862 
12.5 0.10 .165 -0.01 .848 0.14 .039 0.06 .417 
15 0.08 .236 -0.02 .751 0.17 .015 0.02 .789 
17.5 0.10 .143 -0.02 .789 0.20 .004 0.02 .727 
20 0.13 .082 -0.03 .722 0.19 .006 0.03 .619 
22.5 0.12 .088 -0.04 .589 0.17 .017 0.04 .598 
25 0.11 .137 -0.08 .286 0.15 .028 0.03 .644 

Note: Analyses included age and sex as covariates. ß = standardized beta 
 
 
Table S4.5 | Hippocampal redundancy-TMT-B regressions across densities 
 
 Left Anterior Right Anterior Left Posterior Right Posterior 
Density ß p ß p ß p ß p 
2.5 0.04 .554 -0.02 .725 -0.02 .809 0.06 .385 
5 -0.08 .238 -0.03 .699 -0.05 .487 0.10 .132 
7.5 -0.14 .037 -0.04 .545 <0.01 .991 0.08 .244 
10 -0.14 .029 -0.04 .556 0.03 .698 0.05 .452 
12.5 -0.12 .075 -0.02 .788 0.02 .796 0.02 .791 
15 -0.08 .225 0.01 .922 -0.02 .715 0.02 .783 
17.5 -0.06 .353 <0.01 .964 -0.05 .468 -0.02 .735 
20 -0.09 .181 <0.01 .963 -0.05 .436 -0.03 .695 
22.5 -0.06 .347 0.01 .909 -0.05 .479 -0.07 .325 
25 -0.02 .779 0.01 .919 -0.03 .626 -0.07 .277 

Note: Analyses included age and sex as covariates. ß = standardized beta 
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