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ABSTRACT

Hunyong Cho: Precision medicine methodology development
with application to survival and genomics data

(Under the direction of Michael R. Kosorok and Di Wu)

Precision medicine and genomics data provide chances for better decision making in the

public health domain. In this dissertation, we develop some important elements of precision

medicine and address some aspects of genomics data.

The first element is developing a nonparametric regression method for interval censored

data. We develop a method called Interval Censored Recursive Forests (ICRF), an iterative

random forest survival estimator for interval censored data. This method solves the splitting bias

problem in tree-based methods for censored data. For this task, we develop consistent splitting

rules and employ a recursion technique. This estimator is uniformly consistent and shows high

prediction accuracy in simulations and data analyses.

Second, we develop an estimator of the optimal dynamic treatment regime (DTR) for

survival outcomes with dependent censoring. When one wants to maximize the survival time or

the survival probability of cancer patients who go through multiple rounds of chemotherapies,

finding the dynamic optimal treatment regime is complicated by the incompleteness of the

survival information. Some patients may drop out or face failure before going through all the

preplanned treatment stages, which results in a different number of treatment stages for different

patients. To address this issue, we generalize the Q-learning approach and the random survival

forest framework. This new method also overcomes limitations of the existing methods—

independent censoring or a strong modeling structure of the failure time. We show consistency

of the value of the estimator and illustrate the performance of the method through simulations

and analysis of the leukemia patient data and the national mortality data.
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Third, we develop a method that measures gene-gene associations after adjusting for the

dropout events in single cell RNA sequencing (scRNA-seq) data. Posing a bivariate zero-inflated

negative binomial (BZINB) model, we estimate the dropout probability and measure the under-

lying correlation after controlling for the dropout effects. The gene-gene association measured

in this way can serve as a building block of gene set testing methods. The BZINB model has a

straightforward latent variable interpretation and is estimated using the EM algorithm.
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INTRODUCTION

A notable paradigm shift from traditional medicine to precision medicine has brought

a considerable impact on public health. This new paradigm has been made official through

President Barack Obama’s Precision Medicine Initiative in 2015 that aims to foster the related

research. The increasing availability of patient information, including genetic features, provides

essential ingredients for the growth of precision medicine. Although the machinery for storing,

delivering, and processing the growing amount of data with complexity has been rapidly

improved, there are a large number of method development problems that still need to be

addressed. In this manuscript, we develop some important elements of precision medicine and

genomics data analysis.

We outline three topics covered in this dissertation and introduce each of them in more

detail with a literature review in the next section. The first two topics are precision medicine

method developments in the survival data context. For these topics, we develop random forest

methods suitable for 1) interval censored data problems and 2) multi-stage dynamic treatment

regime estimation. The third topic is the genomics analysis method development for identifying

functional pathways. For this, we develop a bivariate zero-inflated negative binomial model to

account for the dropout events in single cell RNA sequencing (scRNA-seq) data.

In the first chapter, we develop a method called Interval Censored Recursive Forests (ICRF),

an iterative random-forest-based regression estimator designed for interval censored survival

data. This method handles the splitting bias problem prevalent in the existing tree-based methods.

It recursively updates the survival estimates in a self-consistent way to minimize the bias. We

generalize the log-rank and Wilcoxon rank-sum test for interval censored data and show that

they are consistent. Their improved performances are illustrated through simulations. The
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convergence of the self-consistency algorithm is managed via the out-of-bag (OOB) error

monitoring, and kernel-smoothing is further applied. The ICRF is uniformly consistent, and

both simulations and applications to the avalanche and national mortality data indicate its high

prediction accuracy. For reproducible research, we developed an R package icrf available

on CRAN, and the code for simulations and data analyses is available on https://github.

com/Hunyong/icrf.

The second chapter focuses on the multi-stage dynamic treatment regime estimation problem

for right censored data, where censoring is dependent on the failure time. We develop a

nonparametric dynamic treatment regime estimator that maximizes either mean survival time

or the survival probability at a certain time point. In these data, the number of treatments

varies among patients due to censoring or failure before the terminal stage. This missing data

issue complicates the application of the standard Q-learning approach. The existing methods

that address the issue still have limitations, such as independent censoring and other strong

modeling assumptions. To address the issue and the limitations of the existing methods, we

propose a generalized random survival forest approach that extends the standard Q-learning

framework. While standard Q-learning optimizes a scalar form of outcomes such as mean

survival time, this new extension optimizes stochastic processes—the whole survival curve.

Consistency of the estimator is shown using the empirical process theory. We show relatively

high expected values of the estimated regime than the existing methods in many settings of the

simulations and in the leukemia data analysis. An R package dtrSurv was developed and is

available on CRAN, and the code for simulations and leukemia data analysis is available on

https://github.com/Hunyong/survQlearn.

In the third chapter, we develop a bivariate count model with zero-inflation. Measuring

gene-gene dependence in scRNA-seq count data is often of interest, as it can help identify gene

sets and pathways. However, it remains challenging because an unidentified portion of the

zero counts or “dropouts,” caused by technical limitation of the sequencing procedures, may

unduly moderate the degree of dependence. As a consequence, conventional statistical methods

2
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that fail to account for the dropouts provide incorrect measures of dependence. To address

this problem, we propose a bivariate zero-inflated negative binomial (BZINB) model, which is

constructed using a bivariate Poisson-gamma mixture with dropout indicators for the excess

zeros. Estimation is based on the expectation-maximization (EM) algorithm, and the underlying

dependence is measured after decomposing the two sources of zeros—zeros before dropouts

and the dropouts. This model has a simple latent variable interpretation, and its computation is

feasible with large-scale data. Using a recent scRNA-seq dataset, we illustrate model fitting and

compare the naive and proposed dependence measures. An R package bzinb is available on

CRAN.

The rest of the dissertation is organized as the following. In the literature review part, we

review the literature relevant to each of the three topics. In Chapters 1–3, we discuss the main

content of topics 1 (ICRF), 2 (dynamic treatment regime estimator for right censored data), and

3 (BZINB) in order. Chapter 4 discusses future research directions of the three areas, followed

by technical details of each section and references.
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LITERATURE REVIEW

This part of the dissertation provides existing literature relevant to the methodologies

developed in Chapters 1, 2, and 3.

Interval Censored Recursive Forests

In this section, we review interval censoring and tree-based methods for censored data and

study the splitting bias problem in tree-based methods and how they were addressed in the

literature.

Interval censoring is a widely observed censoring mechanism in survival analysis. In

interval censored data, the failure time information is given as an interval that is known to

contain the failure time. In that sense, right censored data, where the failure time is either

exactly observed or is known to be later than a certain censoring time, is a special case of

interval censored data. However, since interval censored data, in its narrow definition, are not

given as exact failure times, analysis of such data is often challenging and unique. For instance,

while the Kaplan-Meier estimator designed for right censored data has a closed-form solution,

its counterpart for interval censored data, or the nonparametric maximum likelihood estimator

(NPMLE), does not have a closed-form solution (Huang and Wellner, 1997). Also, estimation of

the survival probability for interval censored data has been a challenge until recently. This can

be seen from the fact that the algorithm for the NPMLE with a convergence guarantee was only

developed in the early 1990’s (Groeneboom and Wellner, 1992; Jongbloed, 1998). Particular

challenges arise in current status data (also known as case-I censored data) where the survival

status of a subject is inspected at a single random monitoring time, thus yielding an extreme

form of interval censoring.
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For censored data, tree-based methods have been widely used (Zhou and McArdle, 2015).

Survival trees recursively partition data into two parts until they form small, homogeneous

subgroups (‘the terminal nodes’) and estimate the marginal survival probabilities for each

terminal node (Gordon and Olshen (1985), Segal (1988), Ciampi et al. (1991), LeBlanc and

Crowley (1992), and LeBlanc and Crowley (1993)). The partitioning procedure is usually done

by exhaustively examining the degree of heterogeneity at all possible cutoffs for each variable

and selecting the cutoff that maximizes heterogeneity. Trees stop partitioning when the terminal

nodes become smaller than a pre-defined size or when further splitting does not bring enough

reduction in heterogeneity. As trees grow deeper, trees tend to have less bias and, as a trade-off,

gain more variability.

Random survival forests are constructed by averaging a large number of diverse survival

trees (Hothorn et al. (2004), Hothorn et al. (2005), Ishwaran et al. (2008), and Zhu and Kosorok

(2012)). (Survival) trees in random (survival) forests are usually grown in full depth in an

effort to minimize the bias. The individually highly variable trees, however, become much less

variable when aggregated, thanks to the diversity across different trees. Diversity is induced by

randomizations such as subsampling, random variable selection for splitting, and random cutoff

selection (Geurts et al., 2006; Mentch and Zhou, 2020). That is, multiple trees are built 1) based

on resampling of the data with or without replacement, 2) by only considering a random subset

of variables for splitting at each node, and/or 3) by evaluating the heterogeneity of the daughter

nodes at only a random subset of the cutoff values for each splitting variable. For example,

in Geurts et al. (2006)’s extremely randomized trees (ERT), which is a generic algorithm

and is applicable to the survival context, multiple trees are generated without resampling but

by selecting a random subset of variables and one arbitrary cutoff point for each variable at

each node. For a comprehensive review about survival trees and random survival forests, see

Bou-Hamad et al. (2011), Ishwaran and Lu (2014), and Zhou and McArdle (2015).

One of the characteristic features of the tree-based methods in survival analysis is the

way of incorporating censored information into measuring heterogeneity. While Classification
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And Regression Trees (CARTs, Breiman et al. (1984)) and Random Forests (Breiman, 2001),

designed for continuous outcomes, use mean squared error (MSE) for quantifying heterogeneity,

in right-censored survival tree methods, alternative approaches such as the log-rank statistic

(Ishwaran et al., 2008) and inverse probability weighting (Molinaro et al., 2004; Steingrimsson

et al., 2019) are used.

Using the log-rank statistic, however, can cause bias for two reasons. First, the log-rank

statistic assumes that censoring time is independent of failure time. In practice, censoring is

often informative of failure time. Thus, when the independent censoring assumption is violated,

survival trees built based on the log-rank statistic may not be able to identify the optimal partition.

Second, even when censoring is independent of failure, the log-rank statistic does not account

for heterogeneity within each daughter node. In other words, the log-rank statistic implicitly

assumes that subjects within a daughter node share the same marginal hazards process over

censored intervals, when in fact, they may have different hazard processes conditional on their

covariate values. This discrepancy contradicts and, as a result, possibly undermines the purpose

of the random survival forests—estimation of the covariate-conditional hazards. Thus, naive use

of the log-rank statistics could incur significant bias by choosing sub-optimal partitions.

Most existing survival trees are subject to this bias. Often, at each node of survival trees,

censored data are supplemented with information borrowed from the marginal survival proba-

bility of the node. By using such crude marginal information, however, the heterogeneity of

individuals is not sufficiently accounted for, especially in the early phases of tree partitioning.

Although as trees grow toward their terminal nodes, they utilize more covariate-conditional

information and eventually form a finer partition, it is probable that the early stages of parti-

tioning that utilize insufficient information might adversely affect subsequent splits resulting

in potential bias. Thus, utilizing covariate-conditional survival probabilities for censored data

from the beginning of the partitioning procedure is essential for reducing potential bias.

Zhu and Kosorok (2012) provided an intuitive solution to this problem by proposing

recursively imputed survival trees (RIST) for right-censored data. The main idea is to guess
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the censored failure time using conditional survival probabilities and to utilize it for splitting.

Considering that the finest covariate-conditional survival probabilities are available only after

the trees grow far enough towards their terminal nodes, they use a recursion technique so that

the terminal node prediction is utilized to impute the censored subjects in the next iteration of

the forest building process.

This issue, however, has yet to be fully addressed in the interval censored data literature.

Moreover, tree-based regression methods for interval censored data are sparse; there are only

a few tree-based methods available. Yin et al. (2002) and Fu and Simonoff (2017) developed

tree models for interval censored data that use the likelihood ratio test and a modified log-rank

test as a splitting criterion, respectively. Yao et al. (2019) recently extended the work of Fu and

Simonoff (2017) to an ensemble method. Yang et al. (2021) proposed a survival tree method for

current status data that applies the idea of censoring unbiased transformation (Steingrimsson

et al., 2019). However, these methods have the aforementioned limitation of insufficient usage

of covariate-conditional information.

To respond to this issue, we propose a tree-based nonparametric regression method for

interval censored survival data in Chapter 1. This new estimator, which solves the splitting

bias problem through recursion, is consistent for the true survival probability and shows high

prediction accuracies in simulations and data analyses.

Dynamic Treatment Regime Estimation for Survival Outcomes

In this section, we review literature about dynamic treatment regime estimation, with a

focus on survival outcomes. Multi-stage treatments are becoming more prevalent in medicine.

Chronic conditions such as cancer, auto-immune disease, HIV, and heart disease, often require

multiple treatments over a long period. For instance, cancer patients may receive multiple rounds

of chemo- and/or biological therapies (Habermann et al., 2006; Huang et al., 2020). Auto-

immune disease patients might receive additional treatments in response to relapses (Edwards

and Cambridge, 2006; Hogan and Radhakrishnan, 2013). Traditionally such chronic diseases
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have been treated following a one-size-fits-most approach by which the standard of care is

selected as the treatment or treatment plan that will likely benefit most patients with a similar

condition, i.e., the treatment that is optimal only in the sense of the marginal effects.

However, in recent years, a more personalized approach to the treatment of chronic dis-

eases has become of interest. Under this approach, patients benefit from treatment rules that

incorporate the patient heterogeneity of treatment effects, and thereby, treatment decisions are

based on the individual characteristics of each patient. Dynamic treatment regimes formal-

ize this data-driven approach to treatment by optimizing the overall outcome of interest and

providing treatment suggestions that are based on the patient’s information available at each

point of the decision making process (Murphy, 2003; Kosorok and Moodie, 2015; Kosorok and

Laber, 2019; Tsiatis et al., 2019). In part because they utilize all available information, such

optimized dynamic treatment regimes are often found to be more beneficial than a traditional set

of fixed treatment plans(Kidwell, 2015). Further, because optimal dynamic treatment regimes

focus on the overall or long-term outcome, they are more advantageous than applying multiple

single-stage treatment rules that only optimize the stage-level outcomes.

Finding an optimal dynamic treatment regime is a reinforcement learning problem (Sutton

and Barto, 2018), wherein an action by an agent, or a physician, changes both the immediate

reward and the environment of the next stage and the learner, or the statistician, searches for

the rule of actions that brings the most overall reward. Like many statistical learning methods,

reinforcement learning problems are often solved using the Q-learning algorithm (Watkins,

1989; Zhu et al., 2015; Zhao et al., 2011; Zhang et al., 2017; Qian and Murphy, 2011), which

defines the value as the expected cumulative sum of discounted rewards and optimizes the

set of rules using backward recursion. Next, we review a little more details of the Q-learning

approach.

Review of Q-learning

In the precision medicine domain, multiple methods have also been developed using Q-learning

(Murphy et al., 2007; Zhao et al., 2009, 2011; Schulte et al., 2014), where the best policy is
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chosen so that under the best policy the accumulated reward given the initial state is maximized.

The solution to reinforcement learning problem can be succinctly expressed as the solution to

the Bellman equation (Bellman, 1966):

π∗t (st,at−1) = arg max
at

E[Rt +Q∗t+1(St+1,At)|St = st,At = at],

whereQ∗t+1(st+1,at) = E[
∑T

i=t+1Ri|St+1 = st+1,At = at] is the quality function, (St, At, Rt)

denotes a tuple of state, action, and reward at stage t, bold symbols denote the vector of the corre-

sponding history up to stage t, and the value function is defined as V π
t (st) =

∫
at
Qt(st, at)π(at|st)dat.

Q-learning solves the Bellman equations by estimating the quality functions and optimiz-

ing the policy using backward recursion. The policy estimates are given by π̂t(st,at−1) =

arg maxat Q̂t(st, (at−1, at)) for t = T, T − 1, ..., 1.

Q-learning in the survival analysis context

In precision medicine applications, the rewards are often defined in the form of survival

outcomes, such as mean survival time or survival probabilities, which pose unique challenges.

For survival outcomes, the failure time is often censored, and any approach should take into

account the missing information. Several methods have been developed for this purpose, for

example, redistribution of the failure probability as in the Kaplan-Meier Efron (1967) and

Robertson and Uppuluri (1984) or inverse probability weighting (Robins et al., 1994; Robins

and Rotnitzky, 1992; Wahed and Tsiatis, 2006; Orellana et al., 2010). Further, the treatment

timing may not be fixed and may even depend on a patient’s status or previous treatments having

an association with the failure time. In such scenarios, the three events at each stage are failure,

proceeding to the next treatment, and censoring, which can be restated in a competing risks

framework, in which the three dependent events compete and only the earliest event is observed.

However, the full joint distribution of the events is not identifiable without knowledge of their

dependence structure (Tsiatis, 1975). Thus, the dependency between the events needs to be

carefully considered. For example, a cancer patient whose physical condition has improved

has a longer expected survival time and at the same time may want to take another round of
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chemotherapy earlier than expected. If this is the case, the survival time and the treatment time

have a negative association.

There are two additional challenges that arise in the analysis of survival outcomes that

must be addressed. First, the total number of treatments received may vary among patients.

For example, some patients may experience failure or be censored before taking all planned

treatments. And finally, there could be different optimization criteria for survival times. For

some patients and clinicians, the average survival time is of primary interest, while the six-month

survival probability may be of greater concern for others. A method that can address different

types of endpoints would be useful in practice.

Several methods regarding the estimation of dynamic treatment regimes for survival out-

comes have been proposed in the literature. Goldberg and Kosorok (2012) first developed a

dynamic treatment regime estimator for survival outcomes using the Q-learning framework. To

address the problems introduced by a different number of treatments as well as by censoring,

the authors proposed modifying the survival data so that each observation has the same number

of treatment stages without missing values and showed that the value of a policy in the original

problem can be represented as an expectation of the modified data. After the data modification,

the problem was put into a standard Q-learning framework using inverse probability weighting

to account for censoring.

To be more specific, in the original problem the outcome of interest is the sum
∑T̄

j=1 Rj

of segment lengths up to the stage T̄ that contains the failure time, St = (Zt, Rt−1) is the state

at stage t, and Zt and At are the covariate and the treatment at the beginning of the stage for

t = 1, 2, ..., T . The goal is to find a treatment rule that maximizes E[
∑T̄

j=1Rj ∧ τ ] where τ

is the study length. Here censoring time is denoted as C and is assumed independent of both

covariates and event time. In the auxiliary problem, S ′t = (Z ′t, R
′
t−1) is the state at stage t,

Z ′t = Zt, R′t = Rt, and A′t = At for each t except that Z ′t = ∅, A′t is a random draw from the

treatment space A for stages t after the stage experiences the failure. Further modification is

done to handle a situation where
∑t

i=1 R
′
i > τ . The main idea of all this translation into the
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auxiliary problem is to put the irregular problem into a well-defined format without adding or

losing additional information. Then instead of maximizing E[
∑T̄

j=1Rj ∧ τ ], one could set the

value function as Vπ(s1) = E[
∑T

j=1 Rj]. This formulation enables solving the optimization by

the Q-learning framework.

However, in this method, censoring was assumed to be completely independent of all

covariates and event times. The estimated Q-function and the resulting decision rules would be

thus subject to bias for data with dependent censoring.

Huang et al. (2014) addressed a similar problem using backward recursion. Their motivating

problem was a recurrent disease clinical trial where patients receive an initial treatment followed

by a salvage treatment if patients experience either treatment resistance or relapse. Simoneau

et al. (2019) extended the dynamic treatment regime estimator for continuous outcomes via

weighted least squares (Wallace and Moodie, 2015) into the censored time-to-event data setting.

Both of these methods use the accelerated failure time model for the failure time distribution,

which carries a risk of model misspecification. Thus, a more flexible model is needed to allow

for more relaxed distributional assumptions. Wahed and Thall (2013) proposed a dynamic

treatment regime estimator using a full specification of the likelihood and Xu et al. (2016)

developed a Bayesian alternative, where the disease progression dynamic was modeled using a

dependent Dirichlet process prior with Gaussian process measure. While the latter approach

provides a more flexible modeling framework than the former, the class of regimes for both

methods is refined to a fixed number of pre-defined treatment sequences.

Each of the existing methods described above has its limitations. First, not all methods allow

for a flexible number of treatment stages and/or treatment levels. For example, the methods

in Wahed and Thall (2013) and Huang et al. (2014) were designed for a two-stage decision

problem, and the Simoneau et al. (2019) approach is restricted to binary treatments. Second,

the outcomes of interest in most methods are limited to the mean survival time. Jiang et al.

(2017) proposed an optimal dynamic treatment regime estimator that maximizes the t-time

survival probability. However, none of the methods permit choosing the criterion except Wahed
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and Thall (2013). Third, parametric models or strong structural assumptions are employed for

all of these methods, with the exception of Goldberg and Kosorok (2012). Strong modeling

assumptions, such as the accelerated failure time model or the proportional hazards models

used by the existing methods, are subject to model-misspecification, may limit the policy class,

and, consequently, may invoke loss in the value of the optimal policy. Finally, the censoring

assumptions of Goldberg and Kosorok (2012) are restrictive. Censoring is associated with

failure time in many medical applications, but it is often reasonable to assume independence of

censoring after conditioning on patient historical information. See Table 0.1 for comparison of

the methods.

Table 0.1: Assumptions of the existing and the proposed methods. Q, the number of stages;
|A(q)|, the number of treatment arms at stage q; criterion, the target value to be optimized;
T , failure time model; C, censoring assumption; {π}, policy class; 2+, can be generalized to
more than two; NP, non-parametric; AFT, accelerated failure time; PH, proportional hazards;
BNP, Bayesian non-parametric; CI, conditional independence; Ind, independence; fixed, a fixed
number of distinct treatment rules.
method Q |A(q)| criterion T C {π}
the new method finite finite E[T ∧ τ ], S(t) NP CI flexible
Goldberg and Kosorok (2012) finite finite E[T ∧ τ ] NP Ind flexible
Huang et al. (2014) 2+ 2+ E[T ] AFT CI linear
Jiang et al. (2017) finite 2 S(t) PH CI linear
Simoneau et al. (2019) finite 2 E[T ] AFT CI linear
Wahed and Thall (2013) finite finite E[T ], S(t) AFT CI fixed
Xu et al. (2016) finite finite E[T ] BNP CI fixed

In Chapter 2, we develop a general dynamic treatment regime estimator for censored time-

to-failure outcomes that addresses all of the limitations discussed for the existing estimators.

This method is nonparametric, allows covariate-independent censoring, and optimizes either the

mean truncated survival time or the survival probability at a given time point.
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Bivariate Zero-Inflated Negative Binomial Model

This section reviews existing methods that handle the dropout problem of single cell RNA

sequencing data. We first describe why dropouts matter, outline two general approaches, and

further study existing bivariate count models.

Single cell RNA sequencing (scRNA-seq) is a high throughput sequencing technology

that profiles gene expression at a cell’s resolution (Kolodziejczyk et al., 2015). This is in

contrast to bulk RNA sequencing (RNA-seq), where a group of cells are sequenced altogether

and consequently no cell-level information is available in data. As a price for the cell-level

resolution, scRNA-seq loses some information by the so-called “dropout” phenomenon; during

the sequencing steps (and the capturing steps) of scRNA-seq, a large amount of RNAs are

undetected. Consequently, the observed count data include a greater number of zeros than

would be expected given the number of molecules sequenced and our a priori knowledge of

transcription rates at individual loci (Risso et al., 2018; Hicks et al., 2017; Huang et al., 2018).

That is, an expressed gene in a cell might be recorded as zero due to low transcriptome capture

and sequencing efficiency (Huang et al., 2018). In contrast, in a bulk RNA-seq, excess zeros are

less frequently observed (Hicks et al., 2017). For these reasons, negative binomial models have

been extensively used for bulk RNA-seq data (Love et al., 2014; Robinson et al., 2010), and

ZINB models are typically used for scRNA-seq data (van den Berge et al., 2018; Risso et al.,

2018).

There is a growing amount of literature that many scRNAseq data are not zero-inflated,

and dropout events are primarily caused by PCR amplification that could be removed by the

unique molecular identifiers (UMI) technique (Vieth et al., 2017; Townes et al., 2019; Svensson,

2020). While a good amount of comfort is available that there is no zero-inflation in the data

for the droplet-based data such as 10X that uses UMI quantification, there is still a need to

address dropouts in other platform-based scRNA-seq data as well as single cell proteomics and

metatranscriptomics data. We show an example of zero-inflated scRNA-seq data in Section 3.4.
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Statistical inferences at both individual gene level (Iacono et al., 2019; Yu, 2018) and gene

set level, e.g., pathways, can be misleading without considering the excess zeros caused by

dropouts. Inference of gene-gene dependence, e.g., the correlation-based method, has been

widely used in pathway analysis of bulk RNA-seq data (Zhang and Horvath, 2005) and in

recent scRNAseq data analyses (Iacono et al., 2019; Yu, 2018; Pont et al., 2019; Van Dijk

et al., 2018; Eraslan et al., 2019). However, the conventional Pearson correlation of two genes

with significant dropouts in the scRNAseq may not properly reflect the underlying gene-gene

dependence.

For example, a pair of genes, of which expressions are highly correlated without dropouts,

would have an attenuated correlation, based on the observed data, when only one of them

have a large amount of dropouts. On the other hand, a pair of uncorrelated genes would

have higher correlation, when both genes have dropouts in a substantial portion of the sample.

The systematic bias will not vanish without adjusting for the effects of the dropout events,

regardless of what dependence measure is used. This includes Pearson correlation, PC(X, Y ) =

Cov(X, Y )/
√
V ar(X)V ar(Y ), and mutual information, MI(X, Y ) :=

∫ ∫
X×Y f(x, y) log

f(x,y)
f(x)f(y)

dxdy (Mc Mahon et al., 2014; Chan et al., 2017).

Two strategies have been considered to address the bias in scRNA-seq data. Imputation

methods (Li and Li (2018); Eraslan et al. (2019); Peng et al. (2019)) aim to provide expression

levels free of the excess zeros by imputing them. While imputation methods are versatile

in that they provide ready-to-use data, they are not deterministic, having different results for

every implementation. The other strategy is estimation of the count distribution. Once having

obtained information about the distribution of the expressions before dropouts, one can do

downstream analyses such as measuring the dependence of the before-dropout expressions.

Models such as SAVER (Huang et al., 2018) and DESCEND (Wang et al., 2018a) have been

proposed to estimate the count distribution of scRNA-seq data in order to recover either dropouts

or lower-than-expected expression levels. For example, correlations can be calculated from

SAVER-recovered genes in unique molecule index (UMI)-based DropSeq scRNA-seq data
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where its result is close to that measured from the “gold standard” RNA fluorescence in situ

hybridization (FISH) (Huang et al., 2018). However, many of the methods taking this approach

focus on modeling marginal distributions and they do not explicitly posit dependence structure

between two genes.

Next we review a variety of existing bivariate models that fit bivariate zero-inflated count

data with overdispersion: bivariate Poisson mixture models (Gurmu and Elder, 1999; Famoye,

2010; Jørgensen, 1987), bivariate generalized Poisson models (Famoye and Consul, 1995)

and copula models (Cameron et al., 2004). These models can be further extended to flexibly

accommodate excess zeros by introducing zero-inflation parameters or composing hurdle models.

For a comprehensive survey of bivariate count models, refer to Cameron and Trivedi (2013) and

Chou and Steenhard (2011).

Of a plethora of the proposed models in the literature, many of the bivariate Poisson mixture

models and bivariate generalized Poisson models take overly complicated forms; they do not

have simple marginal distributions (e.g., GBIVARNB model in Gurmu and Elder (1999)), their

parameters are hard to interpret and/or computationally expensive to estimate. Copula-based

bivariate models can be alternatives to the mixture models, but they depend on the underlying

copula models, and the interpretation can be quite complicated.

Many of the existing bivariate negative binomial models are mostly designed specifically

for modeling marginal means rather than pairwise dependence. For example, Gurmu and Elder

(1999) discussed a bivariate negative binomial distribution (BIVARNB), but their model is

specified by only four parameters, which may not provide sufficient flexibility to delineate

diverse distributional structure. For a bivariate joint distribution, four parameters are needed

to specify the first two marginal moments of each of the two independent variables, while

another parameter is needed solely for modeling the dependence. Later on, Wang (2003) applied

BIVARNB to a zero-inflated BIVARNB regression setting. In this model, zero-inflation is

dictated by a single parameter, implying that when one variable either drops out or not, the other

variable behaves exactly the same, which may not be the case for scRNA-seq data; one gene
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can drop out, while the other does not. Instead, it is possible to have three free parameters for

full joint zero-inflation probability (Li et al., 1999).

To overcome such limitations, we develop a new model called Bivariate Zero-Inflated

Negative Binomial (BZINB) model that has a simple latent variable interpretation. With this

model, which has the capability of modeling the dropout probability, the underlying gene-gene

correlation can be measured. We further discuss this new development in Chapter 3.
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CHAPTER 1: INTERVAL CENSORED RECURSIVE FORESTS

1.1 Introduction

In this chapter, we respond to the splitting bias problem raised in the literature review. We

propose a tree-based nonparametric regression method for interval censored survival data. The

method uses a recursion strategy (Zhu and Kosorok, 2012) which incorporates a self-consistency

equation (Efron, 1967). In addition, we address additional challenges inherent to interval

censored data: first, the self-consistency algorithm may not identify the global optimum for

interval censored data, and second, the interval censored data are highly noisy. To overcome

such additional concerns, the method is equipped with a convergence monitoring procedure

over recursions, probabilistic provision of information rather than imputation, and smoothing

along the time domain. The proposed method shows high prediction accuracy both on simulated

data and on our illustrative examples of avalanche victims data (Haegeli et al., 2011; Jewell

and Emerson, 2013) and national mortality data (Sorlie et al., 1995). An R package icrf is

available on CRAN.

The rest of this chapter is organized as follows. In Section 1.2, we describe the data structure

and modeling assumptions. In Section 1.3, the proposed methods are introduced and discussed

in context. The uniform consistency of the method is derived in Section 1.4. The predictive

accuracy of the proposed method is evaluated using simulations and analysis of two sets of

data in Sections 1.5 and 1.6, respectively. In Section 1.7, we discuss choice of the modeling

hyper-parameters.
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1.2 Data setup and model

The proposed method is applicable to interval censored data that include right-censored and

current status data as special cases. Current status data, also also known as case-I censoring,

only include survival status of a subject inspected at a single random monitoring time. The

event time, T , is only known to lie within an interval I ≡ (L,R], where L = T− and R = T

for an exactly observed T . Let F (t), F (t|X), F (t|I), and F (t|X, I) denote the marginal,

covariate-conditional, the interval-conditional, and the full-conditional distributions at time t,

respectively, where X ≡ (X1, ..., Xp) ∈ X ⊂ Rp is a p-dimensional covariate with distribution

function FX(·). We use S ≡ 1− F to represent a corresponding (conditional) survival function.

For the censoring mechanism, we consider covariate-conditional non-informative censoring

which is defined as,

Pr(T < t|L = l, R = r, L < T ≤ R,X) = Pr(T < t|l < T ≤ r,X).

This implies that intervals do not provide any further information than the fact that the failure

time lies in the interval given the covariate (Oller et al., 2004; Sun, 2007). The study length is

denoted by τ < ∞. A random vector U = (U1, U2, ..., UM) denotes the monitoring times at

each element of which the survival status of the subject is identified. U follows a distribution

FU with maximum potential number of follow-up times M > 0. Among the M monitoring

times, only one pair of two neighboring time points that includes T contributes to the likelihood.

Thus we only consider {L,R} = {U(m), U(m+1) : U(m) < T ≤ U(m+1),m = 0, 1, ...,M} in the

data analysis, where U(m) denotes the mth order statistic of the elements of U with U0 ≡ 0 and

U(M+1) ≡ ∞. Current status data correspond to M = 1.
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1.3 Interval censored recursive forests

1.3.1 Overview of the proposed method

We adopt the recursion strategy for interval censoring and address the challenges of interval

censoring—higher noise and non-identifiability of self-consistency algorithm—by carrying the

full conditional survival probabilities of censored subjects, employing kernel smoothing of the

survival curves along time, and monitoring convergence over recursion.

We outline the high level idea of the proposed method before we give a detailed description

in the following subsections. As an initial step, to provide rough information about the censored

intervals, we estimate the marginal survival curve, S(0)(t|X) = Ŝ(t), and obtain the estimate of

the full conditional survival probability for each subject, S(t|Xi, Ii) by projection. Instead of

doing imputation as in RIST, we store the conditional probability information for each subject

and use it in the splitting tests. In this way, we can avoid the Monte Carlo error resulting from

the imputation procedures which can be significant for interval censored data. We develop the

Generalized Wilcoxon’s Rank Sum (GWRS) test and Generalized Log Rank (GLR) test that

enable two-sample testing for interval censored data based on conditional probabilities. With

one of those splitting rules selected, a predefined number of trees are built under a modified

ERT algorithm. Unlike the original ERT algorithm, we subsample data to leave a small fraction

(‘the out-of-bag sample’) of the data for later use. At each terminal node of the trees, a local

survival probability estimate is obtained in two ways: 1) the NPMLE of the survival curve is

obtained based on raw interval data without using the survival curve information, or 2) the

full conditional survival curves are averaged. We call the former a “quasi-honest” approach,

and the latter an “exploitative” approach. The tree survival probability estimates formed in

this manner are averaged to obtain a forest survival probability estimate, S(1)(t|X), for the

first iteration. Then S(k−1)(t|X) is used to update the full conditional survival curve of each

subject S(k)(t|Xi, Ii) at the kth iteration, k = 2, 3, ..., K . For each k, S̃(k−1)(t|X) is obtained
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by kernel-smoothing. The final prediction is then given by the smoothed survival curve at the

iteration of the smallest out-of-bag error. A detailed pseudo-algorithm is given in Algorithm 1.

Result: S̃(t|X) = S̃(kopt)(t|X) where kopt = arg mink ε
(k);

initialize S(0)(t|X) and kernel smooth (S̃(0)(t|X)), if INITIAL SMOOTH is TRUE;

for k (forest iteration) = 1, 2, ..., K do

Update S(k−1)(t|Xi, Ii) based on S(k−1)(t|Xi) and Ii for each i;

for b (tree construction) = 1, 2, ..., K do

Sample Db of size s = d0.95ne from the dataset D (DOOB
b := D\Db);

Recursively partitioning using GWRS based on {S(k−1)(t|Xi)}:

At each node, randomly pick d√pe variables, pick a random cut-off for each

selected variable, and find the optimal cut-off suggested by GWRS;

if QUASIHONEST then

S
(k)
b,l (t|Ab,l) = NPMLE({Ii : Xi ∈ Ab,l});

else

S
(k)
b,l (t|Ab,l) = 1

|Ab,l|
∑

Xi∈Ab,l S
(k−1)(t|Xi, Ii);

Kernel smoothing: S̃(k)
b,l = KERNELSMOOTH(Skb,l);

The conditional survival function for the tree:

S
(k)
b (t|X) =

∑Lb
l=1 S

(k)
b,l (t|Ab,l)1(X ∈ Ab,l),

S̃
(k)
b (t|X) =

∑Lb
l=1 S̃

(k)
b,l (t|Ab,l)1(X ∈ Ab,l);

The out-of-bag error for the tree: ε(k)
b = IMSE(S̃

(k)
b ,DOOB

b );
Obtain the conditional survival function for the forest:

S(k)(t|X) = 1
ntree

∑ntree
b=1 S

(k)
b (t|X), S̃(k)(t|X) = 1

ntree

∑ntree
b=1 S̃

(k)
b (t|X);

Calculate the out-of-bag error for the forest: ε(k) = 1
B

∑B
b=1 ε

(k)
b ;

Algorithm 1: Pseudo-algorithm for ICRF

1.3.2 Splitting rules

For right-censored data, Peto and Peto (1972) compared the two-sample test statistics

including the Wilcoxon Rank Sum (WRS) test and the log-rank test. They showed that the
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log-rank test is the most locally powerful test under Lehman-type alternative hypotheses while

WRS also has strong power under Log-normal mean-shift alternative hypotheses. Thus, these

tests can be considered as potential splitting rules with some modifications for interval censoring.

For interval censored data, we develop two splitting rules by extending the WRS and

log-rank tests. We also consider two existing score tests proposed by Peto and Peto (1972)

that are used by existing tree-based methods (Fu and Simonoff, 2017; Yao et al., 2019). Below

we describe the four splitting rules and show the consistency property of the newly developed

rules. Simulation results in Section 1.5.3.2 show that our developed rules have on average better

performance than existing alternatives.

A. Generalized Wilcoxon’s Rank Sum test (GWRS). The WRS test statistic,

W̃n =
1

n1n2

∑
i∈G1

∑
j∈G2

ξ(T1,i, T2,j),

estimates θ̃ = Pr(T1 < T2) + 1
2
Pr(T1 = T2) where Tl is the survival time of a randomly chosen

subject in group Gl, ξ(T1,i, T2,j) = 1(T1,i < T2,j) + 1
2
1(T1,i = T2,j), and n1 and n2 are the

sample sizes of the two groups, respectively. The estimand can be alternatively expressed as

θ̃(S) = 1+
∫∞

0
ŠG1(t)dSG2(t),where SGl(t) = Pr(Tl > t|Gl), l = 1, 2, is the marginal survival

probability of the lth group and Š(t) = 1
2
S(t) + 1

2
S(t−) where half of the probability mass in

the left continuity point is shifted toward the right. In the presence of administrative censoring,

W̊n = 1
n1n2

∑
i∈G1

∑
j∈G2

ξ(T̊1,i, T̊2,j) estimates θ(S) = Pr(T̊1,i < T̊2,j) + 1
2
Pr(T̊1,i = T̊2,j) =

1 +
∫ τ

0
ŠG1(t)dSG2(t)− 1

2
SG1(τ)dSG2(τ), where T̊l,i = Tl,i ∧ τ, l = 1, 2.

We then generalize this statistic to allow non-informative interval censoring as follows:

Wn(S) =
1

n1n2

∑
i∈G1

∑
j∈G2

ζ(I1,i, I2,j|X1,i, X2,j;S),

where ζ(I1,i, I2,j|X1,i, X2,j;S) = Pr(T̊1,i < T̊2,j|T1,i ∈ I1,i, T2,j ∈ I2,j, X1,i, X2,j;S)+1
2

Pr(T̊1,i =

T̊2,j|T1,i ∈ I1,i, T2,j ∈ I2,j, X1,i, X2,j;S). Note ζ(I1,i, I2,j|X1,i, X2,j;S) = 1 +
∫ τ

0
Š(t|I1,i, X1,i)

dS(t|I2,j, X2,j)− 1
2
S(τ |I1,i, X1,i)S(τ |I2,j, X2,j).
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By the following theorem, the GWRS statistic, Wn(Sn), is shown to be consistent for θ(S0),

for a sequence Sn converging to the true survival function S0. The proof of Theorem 1.1 is

deferred to the Technical Details and the consistency conditions of Sn are provided in Theorem

1.3.

Theorem 1.1. For a fixed pair of setsGl ⊂ X and any sequence Sn such that supt∈[0,τ ],x∈X |Sn(t|x)

−S0(t|x)| → 0 in probability as n→∞, Wn(Sn)→ θ(S0) in probability as n→∞.

B. Generalized Log-Rank test (GLR). The log-rank test statistic for uncensored data or

right-censored data is given by

L̃Rn =

∑J
j=1

Y2jD1j+Y1jD2j

Y·j√∑J
j=1

Y1jY2jD·j(Y·j−D·j)
Y 2
·j(Y·j−1)

,

where J is the number of distinct observed time points, Yl,j and Dl,j are the number of subjects

at risk right before and the number of events at the jth time point in group l, respectively, for

l = 1, 2; Y·j = Y1,j + Y2,j and D·j = D1,j +D2,j .

Using the full-conditional survival probabilities Si(t) ≡ S(t|Xi, Ii), the log-rank test can

be extended to a generalized log-rank test (GLR) for interval censored data:

LRn(S) =

∫ τ
0
Y2(t;S)dN1(t;S)+Y1(t;S)dN2(t;S)

Y (t;S)√∫ τ
0
Y1(t;S)Y2(t;S)dN(t;S)(Y (t;S)−dN(t;S))

Y (t;S)3

,

where Yl(t;S) = 1
nl

∑
i∈Gl Si(t−), Nl(t) = 1− 1

nl

∑
i∈Gnl

Si(t), l = 1, 2, Y (t;S) = λn,1Y1(t;S)+

λn,2Y2(t;S), N(t;S) = λn,1N1(t;S) + λn,2N2(t;S), λn,l = nl
n
, and n = n1 + n2. Note that the

statistic LRn(S) is
√
nλn,1λn,2 times smaller in scale than L̃Rn.

The following theorem establishes consistency of the GLR for

ρ(S0) = −
∫ τ

0
S0(t−|G2)dS0(t|G1)+S0(t−|G1)dS0(t|G2)

S0(t−|G1∪G2)√
−
∫ τ

0
S0(t−|G1)S0(t−|G2)S(t|G1∪G2)dS(t|G1∪G2)

S3
0(t−|G1∪G2)

for some disjoint subsets Gl ⊂ X , l = 1, 2, with the proof relegated to Technical Details.
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Theorem 1.2. For a fixed pair of setsGl ⊂ X and any sequence Sn such that supt∈[0,τ ],x∈X |Sn(t|x)

−S0(t|x)| → 0 in probability as n→∞, LRn(Sn)→ ρ(S0) in probability as n→∞.

C. WRS-score test (SWRS). Peto and Peto (1972) introduced asymptotic score statistics

for interval censored data, one of which is the two sample WRS test. The test statistic is given by

S̃W n = 1
n1

∑
i∈G1

SW1,i − 1
n2

∑
i∈G2

SW2,i, where SWl,i = ŜGl(Ll,i) + ŜGl(Rl,i)− 1. To rely

on the self-consistency scheme the test statistic is rewritten as SWn(S) = 1
n1

∑
i∈G1

SW1,i(S)−
1
n2

∑
i∈G2

SW2,i(S) with SWl,i(S) = S(Ll,i|Xl,i) + S(Rl,i|Xl,i)− 1, l = 1, 2.

D. Log-Rank-score test (SLR). Another score statistic (SLR) based on the log-rank test

was proposed by Peto and Peto (1972). This statistic, under the self-consistency algorithm, can

be written as SLRn(S) = 1
n1

∑
i∈G1

SLR1,i(S)− 1
n2

∑
i∈G2

SLR2,i(S), where

SLRl,i(S) =


S(Ll,i|Xl,i) logS(Ll,i|Xl,i)−S(Rl,i|Xl,i) logS(Rl,i|Xl,i)

S(Ll,i|Xl,i)−S(Rl,i|Xl,i)
S(Ll,i|Xl,i) > S(Rl,i|Xl,i),

logS(Ll,i|Xl,i) + 1 S(Ll,i|Xl,i) = S(Rl,i|Xl,i).

The best cut point is the one that maximizes |Wn − 1
2
|, LRn, |SWn|, or |SLRn|. We use

GWRS as our main splitting rule in the subsequent analyses. In Section 1.5.3.2, we illustrate

how different splitting rules affect the prediction accuracy.

1.3.3 Self-consistent random forest and convergence monitoring

The proposed ICRF can be understood as a self-consistent estimator. The self-consistency

algorithm (Efron, 1967) can be succinctly expressed as a solution to the equation f(·; θ) =

Pnf(·|Z; θ), where Pn is the empirical average operator with respect to random quantities

denoted as script letters, Z is the observed data, and f(·; θ) is a functional parameter of interest.

For instance, the non-parametric maximum likelihood estimator (NPMLE) for interval censored

data is a self-consistent estimator for the marginal survival probability that solves for S in

S(t) = PnS(t|I), where I is the observed intervals.
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This algorithm can also be extended to tree-based estimators for survival probabilities.

Without the self-consistency scheme, survival forest estimators can generally be written as

Ŝ(t|x) =
1

ntree

ntree∑
b=1

Pn

[
S1(t|Ab(x;S2))

1(X ∈ Ab(x;S2))

|Ab(x;S2)|/n

]
,

where Ab(x) is the terminal node of the bth tree that contains x, |A| is the sample size of node

A, S1(·|Ab) is the survival probability estimate of the terminal node Ab, S2 is the survival

probability that is used to support splitting decisions in trees, and the subscripts indicating the

dependencies with the tree index b and the sample index n are suppressed in S1 and S2. Note that

S2 is needed for tree partitioning, only when the failure time is censored. If there is no censoring,

survival forest estimators can be reduced to Ŝ(t|x) = 1
ntree

∑ntree
b=1 Pn

[
S1(t|Ab(x))1(X∈Ab(x))

|Ab(x)|/n

]
.

Without censoring, the self-consistency of random survival forests can be achieved under certain

smoothness assumptions by replacing Ŝ and S1 with S and incorporating an appropriate splitting

rule. Splitting rules bring consistency to tree or random forest estimators if every terminal

node of the resulting tree partition has an arbitrarily small length in probability for every side

that contains signal and at the same time has arbitrarily many sample points, as the sample

size grows larger (Cui et al., 2017). Random splitting (Wager and Walther, 2015; Wager and

Athey, 2018) is often used for theoretical purposes, as is assumed in Theorem 1.3, instead of

the greedy splitting rules (Breiman, 2001). However, since this chapter is primarily directed at

heuristic approaches based on the self-consistency concept, we will retain use of our modified

ERT algorithm for splitting in simulations and data analyses.

Different survival tree methods assume disparate S2 in the literature. For example, the

marginal survival probability estimate Ŝ(t) is used in Fu and Simonoff (2017) and Yao et al.

(2019) and a node marginal survival probability estimate Ŝ(t|A) is used in Ishwaran et al.

(2008) and Yin et al. (2002). Note that most existing tree-based survival estimators have three

survival quantities, Ŝ(t|x), S1 and S2, that do not coincide with each other and thus, they are

not self-consistent. This discrepancy between survival probabilities may cause a greater bias.

Splitting based on crude information, e.g., using the marginal survival probability estimate Ŝ(t)
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or the intermediate node survival probability estimate Ŝ(t|A) as S2 rather than using S(t|x),

results in greater finite sample bias. See the discussion of Cui et al. (2017), where the authors

discuss the bias of random survival forests for which the splitting rule is based on the candidate

node marginal survival probabilities.

Self-consistency can be derived by replacing Ŝ(t|x), S1 and S2 with S. The ICRF estimator

Ŝ solves for S in

S(t|x) =
1

ntree

ntree∑
b=1

PnS(t|I,X ∈ Ab(x;S))
1(X ∈ Ab(x;S))

|Ab(x;S)|/n
. (3.5.1)

The self-consistency equation can be solved by recursion. This self-consistent estimator makes

sense when S(k)(t|x) ' S(t|x) for some large k. However, self-consistency equations in

general may have multiple solutions (non-identifiability) and thus, recursion algorithms may not

guarantee convergence to the truth; for example, This issue arises when estimating the NPMLE

for interval censoring (Wellner and Zhan, 1997). For some initial guesses, the estimator may

give an inconsistent estimate. Thus, it is crucial to make sure that an additional forest iteration

brings reduction in error. To monitor this in the absence of knowing the true survival curve,

the out-of-bag samples are used for estimating the accuracy. That is, for each tree in ERT, we

randomly subsample a large fraction, e.g. 95%, for tree construction and evaluate the tree using

the small (5%) hold-out sample. Using a metric that will be discussed in Section 1.5.2, we

monitor the performance of the ERT’s over a prespecified number of iterations, e.g. K = 10.

1.3.4 Quasi-honesty

Once partitioning procedures are done, the terminal node survival curves are estimated either

i) by applying NPMLE to the raw interval data (quasi-honest prediction) or ii) by averaging the

full conditional survival curves (exploitative prediction). The former approach is quasi-honest,

as the survival probability of the previous iteration is only used in the partitioning procedure but

not in the prediction procedure. It is not genuine honesty (Athey and Imbens, 2016), in the sense

that ICRF still uses the same interval data in both partitioning and terminal node prediction.
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The second approach is exploitative. This approach is computationally efficient, since

the prediction does not require a complicated optimization procedures, it is computationally

light. However, as is discussed in the following paragraphs, this approach tends to have higher

bias, non-convergence, and dilution of signals. RIST, where imputed values containing the

information about the covariate-conditional survival curve are used for both partitioning and

terminal node prediciton, is hence exploitative.

The role of (quasi-) honesty in the prediction accuracy should be understood in terms of

the bias-variance trade-off. While honesty induces higher variability by not utilizing the whole

information at each procedure, it relaxes the overfitting problem and makes trees less biased

by maintaining less dependence between the partitioning procedure and the terminal node

prediction procedure. Hence, quasi-honesty may or may not be beneficial to interval censored

survival analysis. A large amount of information about the true survival curve is lost due to

interval censoring. This means that there might be a room for an exploitative approach to make

up the information loss, since it more fully utilizes the information. However, it is also true that

once the estimation moves in a wrong direction initially, then the exploitative approach may

keep driving the estimation sequence in the wrong direction, while the quasi-honest approach

may suffer less from such non-convergence.

Another property of the exploitative approach is dilution of signal. When the initial survival

probability starts with the marginal survival distribution, even after partitioning, two different

points in a feature space share a significant amount of information about the survival distribution.

This results in lower variance and hence, sometimes, underfitting. This exploitative approach

should therefore be used when the features do not contain a large amount of information

about the failure time distribution. We compare the performances of these two approaches in

Sections 1.5 and 1.6.
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1.3.5 Smoothed forests

Random forests are relatively smoother than base learners with respect to features. However,

they are still discrete in the time domain, especially for the NPMLE of interval censored

data. Since in reality the survival function is unlikely to include step functions, it can be

beneficial to assume some smoothness on the true survival function. Groeneboom et al. (2010)

proposed two ways of estimating smooth survival curves for current status data. Although

their first method, the maximum smoothed likelihood estimator (MSLE), may not apply to

general interval censored data, one can easily use the second method, the smoothed maximum

likelihood estimator (SMLE), for such data. The idea is to find a non-smooth nonparametric

maximum likelihood estimator (NPMLE), Ŝ(t), and use kernel smoothing to obtain an SMLE:

S̃(t) = 1 +
∫ t

0

∫
R+

1
h
kh(s − u)dŜ(u)ds, where kh is a kernel function with bandwidth h > 0.

For survival forests, the SMLE is computed for each terminal node of each tree: S̃k,b(t|x) =∑Lk,b
l=1 S̃

k,b
l (t|Ak,bl )1(x ∈ Ak,bl ), where Ak,bl is the lth terminal node in the bth tree of the kth

forest iteration, l = 1, 2, ..., Lk,b, b = 1, 2, ..., ntree, and k = 1, 2, ..., K. Then the smoothed

random survival forest is S̃k(t|x) =
∑ntree

b=1 S̃
k,b(t|x). In this chapter we use a Gaussian kernel

with bandwidth h = cnmin
−1/5 where we choose c to be the inter-quartile range of the marginal

survival distribution estimate and nmin is the minimum size of the terminal nodes. For discussion

on the choice of the bandwidth, see Groeneboom et al. (2010). For the boundary kernel near

t = 0, we use a mirror kernel k̃h(t, u) = kh(t, |u|) for t ≤ 4h.

1.4 Uniform Consistency of ICRF

Although the recursion technique is intended for bias correction for finite samples, the large

sample behaviour of ICRF is of interest. We present in Theorem 1.3 a uniform consistency

result for the quasi-honest ICRF. The proof is provided in the Technical Details. We only

consider case-II censoring, since this result can be generalized without much difficulty to

case-K censoring for K <∞ (Huang and Wellner, 1997).
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Assumption 1.1 (Absolutely continuous measure). The probability measure of the failure time,

T , is absolutely continuous with respect to that of the monitoring times (L,R). Specifically, the

joint density of the monitoring times is positive (g(l, r|x) > 0), if 0 < S0(r|x) < S0(l|x) < 1,

for all x ∈ X , where S0 is the true survival probability.

Assumption 1.2 (Lipschitz continuity of the failure and censoring survivor functions). There

exist constants LS and LG such that |S0(t | x1)− S0(t | x2)| ≤ LS‖x1 − x2‖1 and |G(t1, t2 |

x1) − G(t1, t2 | x2)| ≤ LG‖x1 − x2‖1 for all x1, x2 ∈ X and t, t1, t2 ∈ [0, τ ], where G is the

censoring survival distribution and g is its derivative with respect to time.

Assumption 1.3 (Weakly dependent covariate values). The covariate spaceX is a p-dimensional

unit hypercube, i.e., X ∈ X = [0, 1]p. X has a density fX such that ζ−1 ≤ fX(x) ≤ ζ for all

x ∈ X and some constant ζ ≥ 1.

Assumption 1.4 (α-regular and random-split trees). Trees in the ICRF are random-split and

α-regular according to Definitions 3 and 4 of Wager and Athey (2018).

Assumption 1.5 (Terminal node size). The minimum size nmin of the terminal nodes in the

ICRF trees grows at the following rate:

nmin � nβ,
1

2
< β < 1,

where a � b implies both a = O(b) and b = O(a).

Theorem 1.3 (The uniform consistency of interval censored recursive forests). Suppose As-

sumptions 1.1–1.3 hold. Then the interval censored recursive forest Ŝn built based on Assump-

tions 1.4–1.5 and quasi-honesty is uniformly consistent. That is,

sup
t∈[0,τ ],x∈X

|Ŝn(t | x)− S0(t | x)| → 0

in probability as n→∞.
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1.5 Simulations

In this section, we run simulations in order to evaluate the prediction accuracy of ICRF

in multiple aspects. We also discuss the computational cost of the method. The first set of

simulations is to compare the prediction accuracy of ICRF to that of existing methods under

multiple scenarios. The second set of simulations is to compare the performances of different

splitting rules of ICRF and to compare the performances of quasi-honest and exploitative

prediction rules. The final set shows the performance as sample size grows.

The competitors considered include the Cox proportional hazards model (Finkelstein, 1986)

which is implemented using the R package icenReg (Anderson-Bergman, 2017b), the survival

tree method for interval censored data (Fu and Simonoff, 2017), and the survival forest method

for interval censored data (Yao et al., 2019).

All the models except the Cox model are implemented using an R package icrf (version

2.0.0). Note that since ICRF estimates are a weighted average of NPMLE’s and the method

of Yao et al. (2019) provides an NPMLE of weighted individuals, implementation of the latter

by icrf might involve finite sample differences. Because for other methods than ICRF, the

estimates are not identifiable at each time point but are uniquely obtained only as a set of

probability masses in intervals, we interpolate the within-interval survival curve assuming

a uniform density within those intervals. However, when the length of the intervals is not

finite, an exponential density is assumed. That is, given the estimated probability p̂[a,∞) of the

last unbounded interval, the interpolated survival estimate is given by Ŝ(t) = 1 − p̂−t/a[a,∞) for

a ≤ t <∞. The NPMLE often assigns a probability mass to the last bounded time interval even

when there are subjects known to have failure times in an unbounded interval. This can deflate

survival curves in the tail drastically. Such non-regularity can be relaxed by posing structures to

the estimator (Anderson-Bergman and Yu, 2016; Polyanskiy and Wu, 2020). In those cases, a

correction is made so that the last probability mass is allocated exponentially over an unbounded

interval. We further include smoothed versions of the existing methods for a fair comparison.
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1.5.1 Generative models and tuning parameters

We first define the simulation settings by describing generative models and tuning parame-

ters for the estimators. The basic framework for the generative models is largely taken from

Zhu and Kosorok (2012).

Generative models. Six scenarios for two different monitoring times (K = 1 and K = 3)

are studied. Scenario 1 (PH-L) assumes a proportional hazards model with linear hazards ratio,

Scenario 2 (PH-NL) has a nonlinear hazards ratio (PH-NL) in place of Scenario 1, and the third

(non-PH) is a non-proportional hazards model, where all three scenarios assume non-informative

censoring. The fourth scenario (CNIC) has non-informative censoring conditional on X , and

the fifth scenario (IC) has informative censoring. To further study how smoothed estimators

behave under a non-smooth true survival curve, we further adopted Scenario 6 (non-SM), where

the first scenario is modified so that the density of the event times is degenerate. The settings are

defined more concretely in Table 1.2. The sample size n of the training sets is 300 and samples

are independently drawn. The study period (τ ) is set to 5 for all scenarios.

scenario X T Uk µ ρ

1 PH-L N25(0,Σ(ρ)) Exp(µ) Exp(µ̄) e0.1
∑20
j=11Xj−0.1 0.9

2 PH-NL U([0, 1]10) Exp(µ) U([0, τ ]) sin(πX1) + 2|X2 − 1
2
|+X3

3 -
3 non-PH N25(0,Σ(ρ)) G(µ, 2) U([0, 3

2
τ ]) 0.5 + 0.3|

∑15
j=11Xj| 0.75

4 CNIC N25(0,Σ(ρ)) LN(µ) LN(0.8µ) 0.3|
∑5

j=1Xj|+ 0.3|
∑25

j=21Xj| 0.75
5 IC N10(0,Σ(ρ)) Exp(µ) LN(T ) 2expit(X1 +X2 +X3) 0.2
6 Non-SM N25(0,Σ(ρ)) SDE(µ) Exp(µ̄) e0.1

∑20
j=11Xj−0.1 0.9

Table 1.2: Simulation settings; Independent samples of size n = 300, X = (X1, ..., XP );
Σ(ρ) = {σij(ρ)}, σij = ρ|i−j|; U = (U(1), ..., U(K)) with K = 1, 3 and elements Uk (condition-
ally) independent of each other; NP (µ,Σ), the p-dimensional normal distribution with mean
µ and variance Σ; LN(µ), the log-normal with mean µ and variance 1; U(A), the uniform
distribution over A; Exp(µ), the exponential distribution with mean µ; G(µ, θ), the Gamma
distribution with shape µ and scale θ; SDE(µ), the semi-discretized Exponential defined as
1
2
(Exp(µ) + 1

2
d2Exp(µ)e); µ̄, a constant near the sample average of the µ’s.

Tuning parameters. The tuning parameters for the tree-based methods are summarized in

Table 1.3. The minimum size of the terminal nodes is 6 for ensemble learners and 20 for the

non-ensemble tree method. For ensemble learners, 300 trees are built by considering randomly
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method nfold ntree mtry s replace nmin

ICFR 10 300 d√pe d0.95ne no 6
Fu - 300 d√pe d0.632ne yes 6

Yao - - - - - 20

Table 1.3: Tuning parameters for the tree-based methods; Fu, the method of Fu and Simonoff
(2017); Yao, the method of Yao et al. (2019); nfold, the maximum number of iterations for ICFR;
ntree, the number of trees making up the random forests; mtry, the number of candidate features
on which splitting tests are done at each node; s, the size of the random resample for a tree
in random forests; replace, whether to resample with replacement or not; nmin, the minimum
number of observations in terminal nodes.

chosen d√pe candidate variables at each node. The default splitting rule for ICRF is set as

GWRS and both quasi-honest and exploitative prediction are used for terminal node predictions.

However, other splitting rules are also compared. The marginal survival probability estimates

are used as the initial guess. As for smoothing, the bandwidths are chosen to be h = cn−1/5

with c = 1
2
[Ŝ−1(0.25)− S−1(0.75)].

1.5.2 Prediction Accuracy

To assess the prediction accuracy of the estimators, we use integrated absolute error and

supremum absolute error over the study period. They are defined as εINT (Ŝn) =
∫ τ

0
|S0(t)−

Ŝn(t)|dt and εSUP (Ŝn) = supt∈[0,τ ] |S0(t) − Ŝn(t)|, respectively. These error measurements

are obtainable only when the true survival curve S0 is available. To measure the error in

the absence of the true survival curve, we use the integrated mean squared errors type 1

(IMSE1) and type 2 (IMSE2) (Banerjee et al., 2019). IMSE1 is defined as the squared dis-

crepancy of the estimate from the actual survival status (observed − model-predicted) aver-

aged over the interval of the known survival status and then averaged over the sample. That

is, IMSE1(Ŝn|D) = 1
n

∑n
i=1

1
τ−(Ri∧τ)+(Li∧τ)

{ ∫ Li∧τ
0

(1 − Ŝn(t|Xi))
2dt +

∫ Ri∧τ
Ri

Ŝn(t|Xi)
2dt
}

,

where D = {(L1, R1, X1), ..., (Ln, Rn, Xn)} is the test set. This can be regarded as a modified

integrated Brier score (Graf et al., 1999).

IMSE2 is defined over the whole time domain up to the study length, where the discrepancy

over the censored interval is calculated by the difference between the covariate-conditional
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survival curve and the full-conditional survival curve:

IMSE2(Ŝn|D) =
1

n

n∑
i=1

1

τ

∫ τ

0

(Ŝn(t|Xi, Ii)− Ŝn(t|Xi))
2dt.

As mentioned in the previous section, IMSE1 is used for convergence monitoring of ICFR,

as it is a model-free measure. The out-of-bag samples are used as a test set for measuring

IMSE1. The error measurement for convergence monitoring is given by

IMSEICFR1 (Ŝn|D) =
1

ntree

ntree∑
b=1

IMSE1(Ŝn,b|DOOB
b ),

where D is the whole training data and DOOB
b is the out-of-bag sample left for the bth tree.

1.5.3 Simulation results

1.5.3.1 Comparison with other methods

Simulations are done with nsim = 300 replicates for each distinct setting. The simulation

results based on quasi-honesty and GWRS rule are illustrated in Figure 1.1. The results in the

left column are for Case-I censoring and those in the right column are for Case-II censoring.

For convenience, we denote the ICRF estimator at the kth iteration by ICRF-k. The iteration

with the best out-of-bag error among the ten iterations is denoted by A. In the results, ICRF-1,

ICRF-2, ICRF-3, ICRF-5, ICRF-10, and ICRF-A are presented.

Comparison with other methods. For most of the scenarios, ICRF’s have minimum or

close-to-minimum integrated and supremum absolute errors. For Scenario 5 (both M = 1, 3),

where Cox models have better integrated absolute errors than the ICRF’s, ICRF’s have as good

supremum errors as the Cox models. Also noting that simpler models such as Fu and Simonoff

(2017)’s method and the Cox models have better accuracy than the method of Yao et al. (2019)

under Scenario 5, there is evidence that underfitting might be beneficial for settings where

features contain weak signals, i.e., when var(E(T |X)) is low.
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In Scenario 1, where data are generated under the proportional hazards model, ICRF’s have

better average accuracy than that of the Cox models. Although the Cox models eventually have

higher accuracy for larger samples (see Figure 1.3), the results indicate that ICRF methods have

a relatively high prediction accuracy.

Convergence monitoring. The ICRF’s error rate often becomes smaller as the number

of iterations increases on average. Although in general it decreases, it often fluctuates and

sometimes increases. However, ICRF-A, the ICRF at the best iteration of IMSE1 measured

against the out-of-bag samples, have integrated and supremum absolute errors close to the

minimums most of the time.

Figure 1.1: Prediction errors of methods under different simulation settings (the ICRF’s are built
in a quasi-honest manner); Fu, Fu and Simonoff (2017); Yao, Yao et al. (2019); (*), smoothed
versions; The boxes on the left column are for case-I censoring (M = 1) and those on the right
column are for case-II censoring (M = 3); For each setting, the horizontal line indicates the
minimum of mean error levels of the methods.

1.5.3.2 Splitting rules and quasi-honesty

Four splitting rules (GWRS, GLR, SWRS, SLR) with quasi-honest versus exploitative

predictions are compared in Figure 1.2 under six scenarios, with M = 1 monitoring time.

Most of the time, the new splitting rules (GWRS and GLR) have on average less error than the
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score-based rules (SWRS and SLR). Between GWRS and GLR, the two methods have about

the same prediciton accuracy. The gap between the new splitting rules and the score-based rules

might reflect the fact that score-based rules rely on approximation, while GWRS and GLR do

not.

On the other hand, the comparison between quasi-honest and exploitative predictions is less

consistent. One does not always beat the other. In Scenarios 2, the exploitative prediction has

lower integrated absolute error, and in other scenarios, it has higher error rates. As mentioned in

the last paragraph of Section 1.3.4, exploitative prediction tends to make weak contrasts between

two feature values and is expected to perform well when the true distribution has faint signals. In

contrast, quasi-honest prediction provides more precise estimates when the signal is strong. As

can be seen Figure A1 in the Technical Details, exploitative prediction is computationally lighter

than quasi-honest prediction and this difference overwhelms the difference made by different

choices of the splitting rules. See the Technical Details for more discussion on computational

cost.

1.5.3.3 Varying sample sizes

The prediction accuracy of each method is evaluated under different sample sizes for

current status data (M = 1) under Scenario 1 (proportional hazards model). The integrated and

supremum errors are measured. For ICRF, the last fold (10th) estimate is used for illustration.

The mean, the 1st quartile, and the 3rd quartile of error measurements across 300 replicates are

illustrated in Figure 1.3.

The Cox model, although it does not have the smallest errors for small sample sizes

(n = 100, 200), has rapidly decreasing errors as the sample size grows larger for both integrated

and supremum absolute errors. Among the nonparametric models, ICRF shows the highest

prediction accuracy in terms of all error measures for most sample sizes. For n = 1600,

the integrated error is lowest for the Cox model and has virtually a converged value for all

ensemble-based methods.

34



Figure 1.2: Mean and 1st and 3rd quartile εINT of splitting rules and prediction rules under
Case-I censoring.

The computation time of ICRF increases in a mildly superlinear fashion with respect to the

sample size. See Figure A2 and Web Section 4 of the Technical Details for this chapter.
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Figure 1.3: Prediction errors under different sample sizes for Scenario 1 and K = 1.

1.6 Data analyses

In this section, we apply ICRF (using 10 iterations), and three other methods—Fu and

Simonoff (2017), Yao et al. (2019), and the Cox model—with the corresponding smoothed

versions to two existing data sets: (i) avalanche victim data where the time of discovery and a

victim’s survival status were only observed (Jewell and Emerson (2013)), and (ii) data extracted

from the National Longitudinal Mortality Study (Sorlie et al. (1995)).

1.6.1 The avalanche victims data

The data of 1,247 avalanche victims buried in Switzerland and Canada between October

1980 and September 2005 are analyzed ((Jewell and Emerson, 2013)). The dataset includes

duration of burial and status of survival of the subjects, and thus can be regarded as current

status data. The covariates include location, burial depth, and the type of outdoor activities

involved. Approximately 10% of the observations have missing burial depth. The main quantity
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of interest is the covariate-conditional survival probability where the event time is defined as

time from burial to death. The event time here is counterfactual in a sense that the event time is

the time until death had the person not been discovered (prior to death).

We use the following assumptions. First, burial duration is independent of the time to

event. This assumption is feasible as avalanche recovery is usually performed in the absence

of knowledge of the survival status of victims. Second, the missingness of burial depth is

completely at random. Although this assumption may not be fully valid, we analyze the data

using complete cases only for comparative purposes. Third, the survival of individual victims

are independent. Since a single avalanche may involve multiple burials due to group activities,

without a sufficient number of covariates, this assumption may not be valid. However, the point

estimator of the survival function remains valid.

We randomly partition the complete data (n = 1127) into training (n = 789) and test

(n = 338) datasets 300 times. The training sets are used for estimation of the survival curves,

and the fitted models are evaluated using the corresponding test sets. The avalanche data is

highly skewed (median = 30, mean = 2,932, 3rd quartile = 110, max = 342,720 in minutes). To

make the estimation computationally feasible, a log-transformed time domain is used with a

transformation h : [0,∞) 7→ [0,∞) where h(t) = log(t + 1), and the prediction accuracy is

evaluated in the transformed time domain. The study length is set as τt = 14400 minutes (10

days) or τ = log(τt + 1) = 9.58. The analyses are implemented using the R package icrf.

Preliminary parametric and semi-parametric regression analyses of the data are available in

Jewell and Emerson (2013).

The prediction accuracy (IMSE) of the fitted models is summarized in Table 1.4 (LEFT).

Among nonparametric methods, the ICRF with exploitative prediction has the best prediction

accuracy. Although the smoothed Cox model shows the best prediction accuracy (IMSE1 =

0.21, IMSE2 = 0.19) among all available methods, the exploitative ICRF has a comparable

performance (IMSE1 = 0.22, IMSE2 = 0.19).
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Prediction error Variable importance
method IMSE1 (sd) IMSE2 (sd) variable quasi-honest exploitative

ICRF (Q) 0.026 (0.0032) 0.026 (0.0038) by IMSE1 (multiplier = 0.0073)
ICRF (E) 0.022 (0.0021) 0.019 (0.0013) Burial depth 1.00 0.47
Fu 0.024 (0.0030) 0.027 (0.0042) Group activity 0.17 0.41
Fu (*) 0.023 (0.0028) 0.020 (0.0032) Location 0.16 0.24

Yao 0.025 (0.0031) 0.026 (0.0031) by IMSE2 (multiplier = 0.0041)
Yao (*) 0.026 (0.0030) 0.026 (0.0030) Burial depth 1.00 0.67
Cox 0.021 (0.0025) 0.019 (0.0021) Group activity 0.27 0.46
Cox (*) 0.021 (0.0026) 0.019 (0.0022) Location 0.55 0.27

Table 1.4: Average prediction error of the avalanche survival models for each method (LEFT)
and variable importance of the ICRF model fitted on the first training set of the avalanche data
(RIGHT). ICRF (Q), quasi-honest ICRF; ICRF (E), exploitative ICRF; The importance values
are rescaled so that maximum values for each measure becomes 1. The multiplier is the original
importance scale.

Figure 1.4 illustrates the expected truncated log survival time,
∫ τ

0
h(t)dS(h(t)) + τS(τ), of

avalanche victims estimated by each smoothed model. While the Cox model, by assumption, has

a monotone expected survival time with respect to each of the covariates, nonparametric models

show non-monotone curves. The expected truncated survival time curves of the two prediction

rules have a significant difference in their model variability, or var[E[T |X]]. Quasi-honest

ICRF, compared to exploitative ICRF, has a wigglier curve along burial depths and has wider

gaps among different group activities.

For most models, burial depth seems to be the most important covariate. In general, the

mean truncated survival time decreases as the burial depth increases. However, for the emsemble

methods (ICRF, Yao et al. (2019)), the mean survival time increases for depths greater than 350

cm. This is considered to be an overfitting problem in a sparse data region. In many models,

the location also plays as important a role as burial depth; In the Cox model, the mean survival

time in Canada is on average smaller than in Switzerland. Unlike the Cox model, nonparametric

models have different patterns of expected survival time curves for different countries.

Variable importance is formally quantified by measuring the increase in IMSE for a dataset

where the values of each covariate in the original dataset are randomly permuted across the

sample. The permutation is outside of the tree building procedure and does not affect the
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Figure 1.4: Estimated mean truncated log survival time in the avalanche data. The size of dots
at the bottom of each box represents the number of sample data points.

final prediction. The increase in IMSE is averaged across ten sets of random permutations. A

larger increase in error for a variable indicates higher importance of the variable. The variable

importance calculated for the model fitted on the first training set of the avalanche data is

presented in Table 1.4 (RIGHT). For either type of measurement (IMSE1 or IMSE2), burial

depth is the most important variable explaining the survival probability. Group activity is chosen

as more important than location except when importance is measured using IMSE2 for the

quasi-honest rule.

1.6.2 National Longitudinal Mortality Study

We use the National Longitudinal Mortality Study (NLMS) data to explore the ability of

the proposed method to model rich covariate information for survival data. The NLMS is a

collaborative effort between the US Census Bureau and the National Heart, Lung, and Blood

Institute (NHLBI), National Cancer Institute (NCI), National Institute on Aging (NIA), and

the National Center for Health Statistics (NCHS). The views expressed in this dissertation are
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those of the authors and do not necessarily reflect the views of the Census Bureau, NHLBI,

NCI, NIA, or NCHS. Among several data sets resulting from this extensive study, we use

the dataset with six years of follow-up recorded around April 2002. The data are available at

https://biolincc.nhlbi.nih.gov/studies/nlms.

The data include 0.7 million subjects with time to mortality, demographic information

such as age, sex, and race, socioeconomic data such as income and housing tenure, and other

covariates. Censoring is very high (97% survived six years), as this is a general population

sample, but only administrative censoring was observed. We narrow our focus to the elderly

(age ≥ 80 in years at entry) with complete covariate records (n = 3, 630) and artificially induce

current status censoring where the monitoring time depends only on age and household size.

The proportion of missing covariate data is 20.7% for the whole data and 65.9% for the elderly

subset. Thus, it should be noted that this data analysis is solely for performance comparison

among the methods and that the results obtained from this regression analysis are limited to

the selected population. The analysis framework is largely the same as for the avalanche data,

except that with the increased sample size, the terminal node size was allowed to be larger

(nmin = 20 for random forests and nmin = 40 for trees). We provide further detail about the

data, the pre-processing pipeline, and the censoring mechanism in the Technical Details.

Table 1.5 (LEFT) provides the prediction accuracy (IMSE) of the models trained and

evaluated based on 70:30 cross-validation. The methods of Yao et al. (2019) and the exploitative

ICRF have similarly the lowest prediction errors among all methods including the Cox model.

This indicates that strong assumptions such as proportional hazards and linearity may be violated

in the data. Table 1.5 (RIGHT) lists the variable importance according to ICRF. Besides age,

type of health insurance (HI-type) turns out to be the most important variable that explains the

failure time distribution, followed by presence of a social security number (SSN), self-reported

health status (health), and sex.
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Prediction error variable importance
method IMSE (sd) quasi-honest exploitative

ICRF (Q) 0.113 (0.0038) age 1.00 age 1.00
ICRF (E) 0.113 (0.0065) HI-type 0.93 HI-type 0.71
Fu 0.135 (0.0057) SSN 0.76 SSN 0.54
Fu (*) 0.134 (0.0057) health 0.57 health 0.45
Yao 0.112 (0.0042) sex 0.55 sex 0.31
Yao (*) 0.111 (0.0038) race 0.20 weight 0.24
Cox 0.117 (0.0055) tenure 0.15 relationship 0.18

Cox (*) 0.120 (0.0130) (multiplier) 0.0169 (multiplier) 0.0151

Table 1.5: Average prediction error of the NLMS survival models for each method (LEFT) and
variable importance of the ICRF model fitted on the first training set of the NLMS data based
on IMSE1 (RIGHT). For prediction error of the NLMS data, types 1 and 2 of the IMSE are
equivalent. ICRF (Q), quasi-honest ICRF; ICRF (E), exploitative ICRF; The importance values
are rescaled so that maximum values for each measure becomes 1. The multiplier is the original
importance scale.

1.7 Discussion

In this chapter, we proposed a new tree-based iterative ensemble method for interval

censored survival data. As interval censoring masks a huge amount of information, maximizing

the use of available information can significantly improve the performance of estimators. Using

an iterative fitting algorithm with convergence monitoring, ICRF solves the potential bias issue

which most existing tree-based survival estimators have. Specifically, this bias issue arises from

not fully utilizing the covariate-conditional survival probabilities in the early phases of the tree

partitioning procedure for these methods, which causes the kernel estimate to incur significant

bias. The WRS and log-rank tests were generalized for interval censored data and were used as

splitting rules to fully utilize the hidden information. Quasi-honesty and exploitative rules were

discussed for terminal node prediction. Smoothing adds another feature to ICRF.

We suggested many of the default modeling hyper-parameters, such as using GWRS or

GLR as a splitting rule, the bandwidth of kernel smoothing, and the best iteration selection

procedure by the out-of-bag IMSE1 (or IMSE2) measurement. However, the choice of the

terminal node prediction rule remains unspecified. The quasi-honest and exploitative prediction
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rules each have their own strengths. The quasi-honest rule induces higher model variability,

while the exploitative rule tends to favor simpler models. Thus, they perform well under high

and weak signal settings, respectively.

The challenge is that IMSE measurements are not always a good replacement for the true

error measurement (εINT and εSUP ). The out-of-bag IMSE1 measurement recommends the

exploitative prediction rule for most of the simulation settings, including scenario 3 where the

quasi-honest rule has higher accuracy than the exploitative rule. Although the exploitative rule

still beats the quasi-honest rule for five out of six scenarios and hence a decision rule based on

out-of-bag IMSE1 measurements may make sense, care must be taken.

This problem can be seen as a model selection problem balancing parsimony and flexibility.

If the true model is thought to be smooth and simple, the exploitative rule should be employed. If

the true model is believed to be complicated, the quasi-honest rule should be used. Unfortunately,

the complexity or smoothness of true models is usually unknown. As model selection criteria

such as AIC, BIC, and Mallow’s Cp have been proposed in linear regression settings, new

model selection criteria for interval censored survival models might greatly improve prediction

accuracy.

The signal dilution property of the exploitative prediction rule might be caused by the

fact that the marginal survival probability is shared by all censored subjects and the shared

information is again carried forward to the next conditional survival probability estimate. This

property might be mitigated by using non-marginal survival curves as the initial estimate. For

example, the Cox model estimate or the first iteration of the quasi-honest ICRF estimate can be

used as the initial estimate.

Technical Details for ICRF

The technical details for this chapter include 1) the proofs of Theorems 1.1–1.3, 2) compu-

tational cost, and 3) more details about the NLMS data analysis.
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CHAPTER 2: DYNAMIC TREATMENT REGIME ESTIMATION FOR SURVIVAL
OUTCOMES WITH DEPENDENT CENSORING

2.1 Introduction

In this chapter, we develop a general dynamic treatment regime estimator for censored

time-to-failure outcomes that addresses all of the limitations discussed for the existing estimators

in the literature review. Our estimator maximizes either the mean survival time or the survival

probability at a certain time using backward recursion. As the objective may not be expressed as

the sum of intermediate rewards, a standard Q-learning algorithm is not applicable. Instead, the

conditional survival probability information, rather than the summarized Q-values, is appended

to the previous stage information. A generalized random survival forest is developed for this

task, where survival curves for each individual, instead of the observed survival or censoring

time, is fed into the random survival forest. A general implementation of our method is available

on CRAN, R package dtrSurv.

The key contributions of our work are the flexibility of the proposed method and the exposi-

tion of its theoretical properties. The proposed method affords significantly more flexibility than

existing methods. The target value can be either the mean survival or the survival probability

at a certain time. The method allows for a flexible number of treatment stages as well as a

flexible number of treatment arms at each stage. Censoring can be conditionally independent.

The conditional survival probability is modeled nonparametrically using a random survival

forest-based algorithm. And finally, the proposed method does not require estimating the joint

distribution of failure time and treatment time nor does it require any assumptions on their

dependency, though these are allowed. We further show the consistency of the random survival

forests and the estimated regime values.
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The remainder of the manuscript is organized as follows. In Section 2.2, we give notation

and describe the dynamic treatment rule estimator. Consistency of the estimator is derived in

Section 2.3, and its performance is illustrated through simulations in Section 2.4. Section 2.5 is

devoted to the application of the proposed method to a two-stage leukemia clinical trial. We

conclude the chapter by discussing the implications of the modeling assumptions in Section 2.6.

2.2 The method

2.2.1 Data setup and notation

We assume that each of n patients can have a maximum of Q visits, or treatment stages,

with a maximum study length τ > 0. At the qth stage, q = 1, 2, ..., Q, the ith patient, among the

n(q) ≤ n available patients, receives treatment A(q)
i ∈ A(q), if he or she has survived and has not

dropped out by the beginning of the stage, where A(q) is the finite treatment space for the qth

stage, q = 1, 2, ..., Q. Throughout this manuscript, we often drop the subject index iwhen it does

not cause confusion. Our interest lies in estimating the survival distribution Sπ of the overall

failure time T of patients if they followed a dynamic treatment regime π = (π(1), π(2), ...π(Q))>,

and then finding the ‘best’ rule π∗, which is the rule that optimizes a certain criterion φ. For

φ, we consider φµ(S) = −
∫
t>0

(t ∧ τ)dS(t) and φσ,t(S) = S(t) for some 0 < t ≤ τ . Without

loss of generality, we assume that a prolonged time to event is preferred; thus the objective is to

maximize φ(S) over the regimes.

We allow the time to next treatment U (q)
i of the ith patient to depend on the historical

informationH(q)
i ∈ H(q) available at the beginning of the qth stage and the treatment assignment

A
(q)
i . At the qth stage, we observe either the ith patient’s failure, advancement to next treatment,

or censoring. The times from the beginning of the stage to each of these events are denoted

as T (q)
i , U (q)

i , and C(q)
i , respectively. The length of the stage X(q)

i for the ith patient is defined

by the minimum of these times, and the hypothetically uncensored stage length is defined

as V (q)
i = T

(q)
i ∧ U

(q)
i . And, if q = Q, V (Q)

i = T
(Q)
i . We denote the qth stage censoring

and treatment indicators as δ(q)
i = 1(V

(q)
i ≤ C

(q)
i ) and γ(q)

i = 1(T
(q)
i ≤ U

(q)
i ), respectively.
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Note that when C(q)
i < V

(q)
i , γ(q)

i is not observable. The baseline time at stage q is defined

as B(q)
i =

∑q−1
k=1 X

(k)
i , q > 1, and B(1)

i = 0. Let Ti, Ci, Xi = Ti ∧ Ci, and δi = 1(Ti ≤ Ci)

denote the overall failure time, overall censoring time, overall observed time, and overall

censoring indicator, respectively. We denote Z(q)
i ∈ Z(q) as the covariate information of the ith

patient that is newly available at the beginning of the qth stage. Thus, H(q)
i may include the

historical information such as A(k)
i , B(k)

i , Z(k)
i , k = 1, 2, .., q − 1 and Z(q)

i ; where d(q) denotes

the dimension of H(q)
i for all i = 1, 2, ..., n(q); q = 1, 2, .., Q. The number n(q) of patients

eligible for treatment assignment at the beginning of stage q is
∑n

i=1 1(U
(q)
i ≤ T

(q)
i ∧C

(q)
i ). The

notation is summarized in Table 2.6.

2.2.2 Overview of the method

As is the case in Q-learning, our estimator optimizes the intermediate stage decision

assuming that all the later decisions are optimal, and thus backward recursion is used. Our

method is based on the observation that the remaining life L(q) at stage q is defined recursively

as a convolution of L(q+1) and the current stage length V (q) and that

S(q)(t |H(q), A(q), δ(q) = 1) =

∫
S(q+1)(t− V (q) |H(q+1), A(q+1), δ(q) = 1)

dP (V (q),H(q+1), A(q+1) |H(q), A(q), δ(q) = 1), (2.1)

where S(q)(t | ·) = 1 for all t < 0 and S(q)(t | γ(q−1) = 1) = 1(t < 0), for q = Q −

1, Q− 2, ..., 1. In other words, assuming no censoring events, the survival probability S(q) of

the remaining life L(q) at stage q can be obtained by augmenting the survival probability of the

remaining life L(q+1) of the next stage by the current stage length V (q) and then marginalizing

over all events that occur later than the beginning of stage q. Under the covariate-independent

censoring assumption, the contribution of the censored cases is incorporated into the equation
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Table 2.6: Summary of notation
(Basic notation)

q Treatment stage. 1, 2, ..., Q
τ Study length
n(q) Number of training examples available at stage q

(Predictors)
A(q) Action at stage q.
Z(q) Covariate information newly available at the beginning of stage q.
H(q) History available at the beginning of stage q including Z(q).
d(q) Dimension of historyH(q) at stage q.
π(q)(H(q)) Decision rule at stage q givenH(q).

(Stage-wise outcomes)
T (q) Failure time from the beginning of stage q.
U (q) Time to next treatment from the beginning of stage q.
C(q) Censoring time from the beginning of stage q.
V (q) Uncensored length of stage q. V (q) = T (q) ∧ U (q).
X(q) Observed length of stage q. X(q) = V (q) ∧ C(q).
δ(q) Censoring indicator of stage q. δ(q) = 1(V (q) ≤ C(q)).
γ(q) Treatment indicator of stage q. γ(q) = 1(T (q) ≤ U (q)).

B(q) Baseline time at stage q. B(q) =
∑q−1
k=1X

(k), q > 1, B(1) = 0.
L(q) Remaining life at stage q. L(q) = T −B(q).

(Overall outcomes)
T Overall failure time. T =

∑Q
q=1 V

(q)

C Overall censoring time
δ Overall censoring indicator. δ = 1(T ≤ C)

(Theoretical settings)
LS , LG Lipschitz continuity constants of Assumption 2.6.
nmin Minimum terminal node size.
β Terminal node size rate in Assumption 2.8.
α Regular split constant in Assumption 2.1

(Survival functions and values)
S Overall or generic failure survival function.
S(q) Survival function of remaining life at the beginning of stage q.
G Overall or generic censoring survival function.
φµ(S) Mean truncated survival time. φµ(S) = ES [T ∧ τ ].
φσ,t(S) Survival probability at time t. φσ,t(S) = S(t).

φ
(q)
µ (S(q)) Mean truncated survival time, given B(q). φ(q)µ (S(q)) = B(q) + ES(q) [L(q) ∧ (τ −B(q))].

φ
(q)
σ,t(S

(q)) Survival probability at time t, given B(q). φ(q)σ,t(S
(q)) = S(q)(t−B(q)).
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by redistributing the probability to the right (Efron, 1967):

S(q)(t |H(q), A(q))

=

∫ [
δ(q)S(q+1)(t−X(q) |H(q+1), A(q+1))

+ (1− δ(q))
{

1(X(q) > t) + 1(X(q) ≤ t)
S(q)(t |H(q+1), A(q+1))

S(q)(X(q) |H(q+1), A(q+1))

}]
× dP (X(q),H(q+1), A(q+1), δ(q) |H(q), A(q)). (2.2)

Assuming the standard causal inference assumptions, which we will formally introduce in

Subsection 2.3.2 (Assumption 2.13–2.15), we can translate S(q)(t | H(q), A(q) = a) into the

counterfactual quantity S(q)
a (t |H(q)). Thus, the regime is estimated using the following proce-

dure: 1. estimating the conditional survival distribution S(q)(t |H(q), A(q)) of the remaining life

L(q) for q = Q; 2. optimizing the survival distribution over A(q) to have π̂(q) and Ŝ(q)
∗ (t |H(q))

for q = Q; 3. augmenting the estimated optimal curves by the previous stage lengths, i.e.,

Ŝ
(q)
∗ (t−X(q−1) |H(q), A(q)) for q = Q; and, 4. repeating steps 1-3 for q = Q− 1, Q− 2, ..., 1.

This procedure is summarized at a high level in Algorithm 2.
Result: A dynamic treatment regime estimate π̂ = (π̂(1), π̂(2), ..., π̂(Q))>

for stage q = Q,Q− 1, ..., 1 do

Obtain Ŝ(q)(· |H(q), A(q)) via generalized random survival forest (Algorithm 3);

Obtain π̂(q)(h) = arg maxa∈A(q) φ(q)
{
Ŝ(q)(· |H(q) = h, A(q) = a)

}
;

Obtain Ŝ(q)
∗ (· |H(q)) = Ŝ(q)(· |H(q), A(q) = π̂(q)(H(q)));

Algorithm 2: the proposed dynamic treatment regime estimator
At the beginning of the last stage, there are n(Q) patients who have neither experienced

failure nor been censored. The data for these patients are used to estimate the terminal stage

covariate-conditional survival probability S(Q)(· | H(Q), A(Q)) for each treatment arm using

random survival forests described in detail in Subsection 2.2.4. Then the optimal regime for

the final stage is estimated by π̂(Q) = arg maxA φ
(Q)
{
Ŝ(Q)(·, A)

}
, where Ŝ is the estimate

of S and φ(q), q = 2, .., Q is defined adaptively for the intermediate and terminal survival
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probabilities. Specifically, φ(q)
µ

{
S(q)(· | H(q))

}
= B(q) −

∫
t>X(q)(t ∧ τ)dS(q)(t | H(q)) and

φ
(q)
σ,t

{
S(q)(· |H(q))

}
= S(q)(t−B(q) |H(q)).

We denote the estimated optimized survival distribution of the qth stage as Ŝ(q)
∗ = Ŝ(q){·, π̂(q)(·)}.

The optimized survival information of the final stage is carried back to the previous stage. Specif-

ically, the ith patient who is available at the (Q − 1)st stage and has a stage length X(Q−1)
i

is given a probabilistic augmentation so that the resulting survival probability of remaining

life at the second to the last stage is Ŝ(Q−1)
∗ (t−X(Q−1)

i | H(Q)
i ). For those who have already

experienced failure or censoring by the end of the stage, no augmentation is required, as either

their remaining life has been determined already during the stage or the censoring indicator and

the stage length contain all the necessary information.

Next, the conditional distribution of remaining life from the beginning of the (Q − 1)st

stage is estimated by the random survival forests based on the n(Q−1) patients. The distinction

between the last stage and all the other stages is that given data, the patients’ remaining life

conditioning on the current historical information is observed in a scalar form at the last stage,

while the remaining life for the other stages is not observed but is given in the form of a

stochastic process. So a modification to the random survival forest estimator is required and is

discussed in Subsection 2.2.4. Then estimation of S(q), π(q), and S(q)
∗ is recursively performed

until we reach the first stage and obtain π̂ = (π̂(1), π̂(2), ..., π̂(Q))>.

2.2.3 A few aspects of the optimization: Backward recursion and composite values

We discuss a few aspects of the optimization problem. First, we go over why backward

recursion can be used in optimizing the truncated survival mean values (φµ) or survival prob-

abilities (φσ,t). For some criteria, such as the median φmed(S) = S−1(0.5), this backward

recursion does not guarantee an overall optimum. However, for the mean survival time φµ and

the survival probability φσ,t at time t, backward recursion is a legitimate method according to

Proposition 2.1, which is proved in the Technical Details.
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Proposition 2.1 (Legitimacy of backward recursion). Pick either φµ or φσ,t for φ. Let {π} be an

arbitrary class of decision rules and π∗ = (π
(1)
∗ , π

(2)
∗ , ..., π

(Q)
∗ )> satisfy φ

{
S(· |H(1),π∗)

}
≥

φ
{
S(· |H(1),π)

}
for all π ∈ {π}. Then for any q = 1, 2, ..., Q− 1,

π(q)
∗ (H(q)) = arg max

a(q)∈A(q)
φ(q)
{
S(q)(· |H(q), π(q+1)

∗ , π(q+2)
∗ , ..., π(Q)

∗ )
}
.

Second, we study an alternative to the φσ,t criterion. When φσ,t(S) = S(t) is chosen as the

optimization criterion, the treatment rule can not discriminate treatment arms at any point later

than t. For example, when an investigator is interested in the six month survival probability

and a patient takes her third round of treatment seven months after her onset of the disease,

the optimal dynamic treatment rule could recommend any treatment option randomly, since

it does not affect the patient’s six month survival probability. Thus a composite criterion of

first maximizing S(t) and second maximizing E[T ∧ τ ] could be more beneficial than the

simple criterion φσ,t. The composite criterion values φσ,µ,t(S) = {S(t), E[T ∧ τ ]} are ordered

lexicographically; i.e., φσ,µ,t(Sπ1) > φσ,µ,t(Sπ2) if and only if either of the following is true:

Sπ1(t) > Sπ2(t), or

Sπ1(t) = Sπ2(t) and E[Sπ1 ∧ τ ] > E[Sπ2 ∧ τ ].

2.2.4 A generalized random survival forest

We develop a generalized random survival forest that takes survival probabilities as the

outcome variable. The high level algorithm is provided in Algorithm 3. Suppose we are

interested in estimating the marginal survival probability of a node N at stage q, where each

individual’s failure time information is given by the survival probability of the remaining life

and the censoring status: {(S(q)
i , δ

(q)
i )}nNi=1 where nN is the size of node N and S(q)

i is shorthand
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for Ŝ(q+1)(t−X(q)
i |H

(q+1)
i ). Then we modify the Kaplan-Meier estimator as

Ŝ(q)(t | N ) =
t∏

s≥0

{
1 +

∑
i∈N δ

(q)
i dS

(q)
i (s)∑

i∈N S
(q)
i (s−)

}
, (2.3)

where s− = s − ε with an arbitrarily small positive value ε. This modified Kaplan-Meier

estimator will be used in both tree partitioning and terminal node survival probability estimation.
Result: generalized random survival forest for the qth stage Ŝ(q)(· |H(q), A(q))

Parameters: the number of trees ntree, the minimum terminal node size nmin, the

minimum number of events in terminal nodes nmin.E;

Input data: {(X(q)
i , γ

(q)
i , δ

(q)
i ,H

(q)
i , A

(q)
i )}n(q)

i=1 , Ŝ
(q+1)
∗ (· |H(q+1));

Stochastic augmentation: S(q)
i = Ŝ

(q+1)
∗ (t−X(q)

i |H(q+1) = h
(q+1)
i ) with

S
(q)
i (t) = 1(t ≤ X

(q)
i ) if q = Q or if δ(q)

i = 0;

for treatment arm a ∈ A(q) do

for tree b = 1, 2, ..., ntree do
Recursively partition the feature space with the augmented data

{(S(q)
i , δ

(q)
i ,H

(q)
i )}{i:a(q)i =a} via LR (2.4) or MD (2.5) until node size < 2nmin

or number of failures in each node < 2nmin.E;

Obtain the terminal node survival probability Ŝ(q)
b,a (t |H(q)) via modified

Kaplan-Meier (2.3);
Obtain the random survival forest estimator

Ŝ(q)(· |H(q), A(q) = a) = 1
ntree

∑ntree
b=1 Ŝ

(q)
b,a (t |H(q));

Algorithm 3: the generalized random survival forest estimator
Now we develop the splitting rules. Many random survival forest methods use the two-

sample log-rank test statistic to partition the population into subgroups with a homogeneous

survival distribution (Ishwaran et al., 2008; Hothorn et al., 2005). When failure time is not

observed as a scalar but is given as a probabilistic process, the log-rank test can be generalized
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to the generalized log-rank statistic (Cho et al., 2019);

LR(N1,N2) =

∫ τ
0
Y2(t)dN1(t)+Y1(t)dN2(t)

Y (t)√∫ τ
0
Y1(t)Y2(t)dN(t)(Y (t)−dN(t))

Y (t)3

, (2.4)

where N1 and N2 are two candidate daughter nodes, Yl(t) = 1
|Nl|
∑

i∈Nl S
(q)
i (t−), Nl(t) =

1 − 1
|Nl|
∑

i∈Nl Si(t), l = 1, 2, Y (t) = λ1Y1(t) + λ2Y2(t), N(t) = λ1N1(t) + λ2N2(t),

λl = |Nl|
|N1|+|N2| , and |N | =

∑n(q)

i=1 1(i ∈ N ). The generalized log-rank splitting rule chooses

(N1,N2) = arg maxN1,N2
LR(N1,N2) as the best partition.

When the optimization criterion is the truncated mean survival time φµ, splitting can also

be done by finding the split point that maximizes the difference of the truncated mean survival

times. Define

MD(N1,N2) =

∣∣∣∣ ∫
t>0

(t ∧ τ)dŜ(t | N1)−
∫
t>0

(t ∧ τ)dŜ(t | N2)

∣∣∣∣, (2.5)

where Ŝ is the modified Kaplan-Meier estimator defined in Equation (2.3). The mean difference

splitting rule finds (N1,N2) = arg maxN1,N2
MD(N1,N2) as the best split.

The recursive partitioning continues until each terminal node size is less than a predefined

threshold k. At each terminal node N of the bth survival tree, the survival probability estimate

Ŝ
(q)
b (t | N ) is given by the modified Kaplan-Meier estimator in (2.3), b = 1, 2, ..., ntree, where

ntree is the number of trees in the forest. The random survival forest estimate is then given by

Ŝ(q)(t | h(q)) =
1

ntree

ntree∑
b=1

#{Nb,l}l∑
l=1

1(h(q) ∈ Nb,l)Ŝ(q)(t | Nb,l),

where #{Nb,l}l is the size, or the number of terminal nodes, of the bth tree.
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2.3 Theoretical properties

We show consistency of the proposed dynamic treatment regime estimator π̂ using empirical

process theory. We first derive that the generalized random survival forest is a uniformly—over

the feature space—consistent estimator. The uniformity is required since estimating the optimal

treatment policy of the qth stage relies on integrating the estimated survival curve of (q + 1)st

stage across the newly accrued information (H(q+1), T (q), U (q)) |H(q) between the two stages.

Then we show that the value of the estimated regime is consistent for the value of the optimal

regime, where the versions of the value are defined in Subsection 2.3.2.

2.3.1 Consistency of the generalized random survival forests

We derive consistency of the generalized random survival forest outside of the context of

dynamic treatment regimes. We have the following assumptions on data distribution that are

commonly used to achieve consistency of random forests or random survival forests (Mein-

shausen, 2006; Wager and Walther, 2015; Cui et al., 2017; Wager and Athey, 2018). These

assumptions are tailored for use later in the dynamic treatment regime setting by adding stage

indicators in Subsection 2.3.2.

Assumption 2.6 (Lipschitz continuous survival probability and censoring density). There exist

constants LS and LG such that |S(t | h1)− S(t | h2)| ≤ LS‖h1 − h2‖1 and |g(t | h1)− g(t |

h2)| ≤ LG‖h1 − h2‖1 for all h1,h2 ∈ H and t ∈ [0, τ ], where G is the censoring survival

distribution and g is its derivative with respect to time.

Assumption 2.7 (Weakly dependent covariate values). The covariate information (Z) is given

as a dZ-dimensional vector residing in a unit hypercube, i.e., Z ∈ [0, 1]dZ , with a density fZ

such that ζ−1 ≤ fZ(z) ≤ ζ for all but countably many points z ∈ [0, 1]dZ and some constant

ζ ≥ 1.

Remark 2.1. The distributional assumption was made for notational convenience and could be

relaxed. For example, the results in this chapter still hold for covariates that are a multivariate
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normal random vector truncated by some constants since random forests are invariant to scale

transformation. Also the results are still valid with categorical covariates with a finite number of

levels after modification to Assumption 2.6: in this setting, the norm is calculated by excluding

the categorical covariate coordinates. The case of categorical covariates will be discussed in the

proof of Theorem 2.4.

We also have assumptions regarding the tree-based estimator terminal node size and splitting

rules. The first assumption forces the terminal node size to be both sufficiently small and

sufficiently large.

Assumption 2.8 (Terminal node size). The minimum size nmin of the terminal nodes grows at

the following rate:

nmin � nβ,
1

2
< β < 1,

where a � b implies both a = O(b) and b = O(a).

Next, we give definitions of regular trees and random split trees that are often used for

consistency proofs in the random forest literature (Meinshausen, 2006; Wager and Walther,

2015; Cui et al., 2017; Wager and Athey, 2018).

Definition 2.1 (random-split and α-regular trees and forests). A tree is called a random-split

tree if each feature is given a minimum probability (ϕ/d) of being the split variable at each

intermediate node, where 0 < ϕ < 1. A tree is α-regular, if every daughter node has at least α

fraction of the training sample in the corresponding parent node. A random forest is called a

random-split (α-regular) forest, if each of its member trees is random-split (α-regular).

Assumption 2.9 (α-regular and random split trees). Trees are α-regular and random-split with

a constant 0 < ϕ < 1.

Now we give our uniform consistency results of the generalized random survival forests.

This theorem is largely based on the Z-estimation lemma and Donskerness of the tree kernels.

A detailed proof is relegated to the Technical Details.
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Theorem 2.4 (Uniform consistency of a random survival forest). Suppose Assumptions 2.6-2.9

hold. Let S̃ ′ be an estimator of S ′ that is uniformly consistent in bothh ∈ H and t ∈ [0, τ ], where

S ′ satisfies S(t | h) =
∫
S ′(t− (T ∧ U) |H ′)dP (T, U,H ′ |H = h). Then, the generalized

random survival forest Ŝ(t | h) built based on S̃ ′ is uniformly consistent. Specifically,

sup
t∈[0,τ ],h∈H

|Ŝ(t | h)− S(t | h)| → 0,

in probability as n→∞.

Consistency of a random survival forest sequence in a dynamic treatment regime setting

requires adaptive versions of Assumptions 2.6-2.8 and an additional condition that guarantees

an arbitrarily large sample size for the last stage with high probability. To achieve this condition,

we assume that, at each stage except the last one, each patient receives the next treatment before

experiencing failure or censoring with at least a certain minimum probability.

Assumption 2.10 (Lipschitz continuous survival probability and censoring density at each

stage). There exist constants LS and LG such that |S(q)(t | h1)− S(q)(t | h2)| ≤ LS‖h1 −h2‖

and |g(q)(t | h1) − g(q)(t | h2)| ≤ LG‖h1 − h2‖ for all h1,h2 ∈ H(q), t ∈ [0, τ − B(q)], and

q = 1, 2, ..., Q, where G(q) is the censoring survival distribution at the qth stage and g(q) is its

derivative with respect to time.

Assumption 2.11 (Weakly dependent historical information at each stage). The patient history

information H(q) at stage q is given as a d(q)-dimensional vector lying in a subset H(q) of

[0, 1]d
(q) , and its joint and marginal densities are bounded so that ζ−1 ≤ fH(q)(h) ≤ ζ and

ζ−1 ≤ fH(q),j(hj) ≤ ζ for all but a finite number of h ∈ H(q) and j = 1, 2, ..., d(q) for some

constant ζ ≥ 1.

Assumption 2.11 modifies Assumption 2.7 so that the support of the history space can be less

than a hyper-cube, since, for example, the baseline survival times, (B(1) ≤ B(2) ≤ B(3) ≤ ...),

have a dependent support structure.
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Assumption 2.12 (Probability of proceeding to the next stage). There exists a constant M ∈

(0, 1) such that for all h(q) ∈ H(q) and q = 1, 2, ..., Q− 1, Pr(U (q) < T (q) ∧ C(q) | h(q)) > M.

Corollary 2.1 (Uniform consistency of a random survival forest sequence). Suppose Assump-

tions 2.8–2.12 hold. Let Ŝ = (Ŝ(1), ..., Ŝ(q), ..., Ŝ(Q)) be the sequence of the generalized random

survival forest estimators of S = (S(1), ..., S(q), ..., S(Q)) such that the qth stage random survival

forest is built based on Ŝ(q+1) for q = 1, 2, ..., Q− 1. Then,

sup
t∈[0,τ ],h∈H,q∈{1,2,...,Q}

|Ŝ(q)(t | h)− S(q)(t | h)| → 0,

in probability as n→∞.

The proof of Corollary 2.1 is given in the Technical Details.

2.3.2 Consistency of the dynamic treatment regime estimator

We show consistency of the dynamic treatment regime estimator using the causal inference

framework. With this framework, the theoretical properties are applicable to broader settings

than sequentially randomized experiments. A counterfactual outcome is defined as an outcome

that would have been obtained if a person had a treatment option contrary to his/her actual

treatment. To denote the counterfactual outcomes pertaining to a counterfactual treatment

or treatment policy, we add a subscript to the corresponding random variables or survival

functions. For example, S(q)
π (t|H(q)) is a counterfactual survival probability of the remaining

life if treatment was given according to a treatment rule π to a person with history H(q) at

stage q. We assume the following three standard causal inference assumptions (Hernán and

Robins, 2020; Rubin, 2005; Cole and Frangakis, 2009) known as the stable unit treatment value

assumption, sequential ignorability, and positivity.

Assumption 2.13 (Stable unit treatment value assumption, or SUTVA). Each person’s counter-

factual dynamics, such as failure time, time to next treatment, and censoring, are not affected by
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the treatments or history of other patients. Moreover, each treatment has only one version, or if

there are multiple versions, their differences are irrelevant.

Assumption 2.14 (Sequential ignorability). Treatment assignment is given independently of

the counterfactual outcomes, conditionally on the individual’s historical information, where the

outcomes include all future random quantities such as failure time, time to next treatment, and

censoring time.

Assumption 2.15 (Positivity). For each stage q = 1, 2, ..., Q, given historical information, the

probability of having each treatment a ∈ A(q) is greater than a constant L > 0. Or,

Pr(A(q) = a|H(q) = h) > L

for all a ∈ A(q), h such that Pr(H(q) = h) > 0.

The following theorem states that the dynamic treatment regime estimator has a value

consistent for the value of the optimal regime. We define the value Φ of a treatment regime

π as the criterion value of the survival probability if all individuals in a population follow the

treatment regime. We use Φ(π) = φ(Sπ) to denote the value of π, and Φ inherits the subscript

of φ.

Theorem 2.5 (Consistency of the dynamic treatment regime estimator). Suppose Assump-

tions 2.10–2.15 hold, and the optimal dynamic treatment regime estimator (π̂) is built based

on the generalized random forest grown under Assumptions 2.8 and 2.9. Then, for each

φ = φµ, φσ,t,

|Φ(π)− Φ(π̂)| → 0,

in probability as n→∞.

The proof is provided in the Technical Details.
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2.4 Simulations

2.4.1 Simulation settings

We perform simulations to study the performance of the proposed method and compare

those results to that of existing methods. The overall scheme of the simulations follows the

pattern in Goldberg and Kosorok (2012), where they mimicked a cancer clinical trial using

the tumor size and wellness dynamics. We adapt their data generating mechanism so that

dependence among censoring, tumor size, and wellness is incorporated in the mechanism, and

deterministic processes are relaxed into more realistic ones.

In the hypothetical trial, patients can go through up to Q = 3 treatment rounds during the

trial with length of the trial, τ = 10. Each patient has tumor size φ(t) and wellness ω(t) at time

t ∈ [0, 10] that affects the timing of failure or treatment. We use [t(q), t(q+1)] to denote the qth

stage. For each stage, patients are given either a more aggressive (A = 1) or a less aggressive

(A = 0) treatment.

At the beginning of the trial, patients have uniformly distributed tumor sizes and wellness:

ρ(0) ∼ U(0.5, 1), ω(0) ∼ U(0.5, 1). At each treatment stage, the more aggressive treatment

immediately reduces the tumor size more than the less aggressive one. However, the more

aggressive treatment worsens patient wellness more than the less aggressive one:

ρ(t(q)+) =
ρ(t(q))

ω(t(q)){10− 6A}
∨ 0

ω(t(q)+) = ω(t(q))− 2A−2.

After each treatment (t(q) < t ≤ t(q+1)), the tumor size and wellness follow the Ornstein-

Uhlenbeck processes with negative dependence between the two:

dχ(t)

dt
= −2χ(t) + ηχ(t),
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where χ = ρ, ω and the second term obeys a drifted Wiener process such that

d

dt

ηρ(t)
ηω(t)

 ∼ N

( 0.1

0.05

 ,

 1 −0.5

−0.5 1

).
The positive means in the normal distribution imply that on average both tumor size and wellness

grow. When tumor size is greater than 1, the patient receives the next treatment. In other words,

t(q+1) = mint arg maxt>t(q) 1(ω(t) > 1), for q = 1, 2, .., Q − 1. The patient failure time is

governed by the hazard process:

λF (c) =
1

5

{
ρ(u)

ω(u)
eg(H(q))>βF (A(q)) + 1

(
ω(u) < 0.1

)}
, (2.6)

where g(H(q)) = {1, log(B(q) +1),Z(q)>}>, βF (a) is the hazard ratio for the failure time given

treatment a that is defined in Table 2.7, and the indicator accelerates the failure time when the

wellness drops below the critical level, 0.1. The baseline covariates at the qth stage follow a

p−variate normal distribution conditioning on the previous stage value: Z(q) = 1
2
Z(q−1)+ 1

2
Z

(q)
0 ,

where Z(q)
0 ∼ Np(0p, 0.8Ip + 0.2 · 1pp), q = 1, 2, ..., Q, 1pp is the p-dimensional square matrix of

ones, and Z(0) = 0p.

For each stage, the censoring occurs according to the hazard function,

λC(u) = eg(H(q))>βC(A(q)), (2.7)

where the censoring hazard ratio, βC(a), is also defined in Table 2.7.

The treatment is allocated according to a Bernoulli trial with propensity

π(H(q)) =
{

1 + exp(−g(H(q))>βπ)
}−1

, (2.8)

where the coefficient is βπ = (−1, 1,−1
2
1>p )> for the observational data setting and βπ = 0p+2

for the randomized trial setting.
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Table 2.7: The failure time and censoring hazard coefficients and dimensions of covariates in
Scenarios 1 to 4.

parameter scenario 1 scenario 2 scenario 3 scenario 4
(base) (small p) (large p) (moderate censoring)

p 5 2 10 5
βF (1) (0,−3, 2, 2, 1,−1,−1)> (0,−2, 2, 0)> (0,−2,2>4 ,−1>4 ,−2>2 ) (0,−3, 2, 2, 1,−1,−1)>

βF (0) (0,−1, 1, 1, 1, 1, 1)> (0,−1, 1, 1)> (0,−1,1>4 ,1
>
4 ,0

>
2 ) (0,−1, 1, 1, 1, 1, 1)>

βC(1) (−3, .2, .2>3 ,−.2>2 )> (−3, .2, .2,−.2)> (−3, .2, .2>4 ,−.2>3 ,0>3 )> (−2, .2, .2>3 ,−.2>2 )>

βC(0) (−3, .1, .2>3 , .2
>
2 )> (−3, .1, .2, .2)> (−3, .1, .2>4 , .2

>
3 ,0

>
3 )> (−2, .1, .2>3 , .2

>
2 )>

βF (·) and βC(·), the log hazard ratios of the counterfactual failure and censoring times in (2.6) and (2.7),
respectively.

Simulations are run with two sample sizes, n = 300 and 1000. Thus, we have in total

16 distinct factorial settings (four hazard/censoring scenarios, two propensity designs, and

two sample sizes). For each setting, we have nrep = 200 simulation replicates, and we

estimate the optimal treatment rule based on both the φµ and φσ,t=5,µ criteria. We compare

the proposed method with the methods in Goldberg and Kosorok (2012) and Simoneau et al.

(2019). We further compare the results with the observed policy characterized by (2.8) and

the estimated optimal zero-order model, where all patients are given the same embedded

treatment regime, which is the best on average over all embedded regimes. In particular, in

implementing the Goldberg and Kosorok (2012) method, the linear Q-function space and the

random forest-based approximation space were separately used. The method of Huang et al.

(2014) is not included in these simulations because Simoneau et al. (2019) can be viewed as

a doubly robust extension of their method. After estimation, the values—either the expected

truncated survival time or the survival probability at t = 5—are evaluated by generating an

uncensored sample of size neval = 10000 according to the estimated policies. The simulations

were complete using R package dtrSurv. For reproducible research, the code is available at

https://github.com/hunyong/survQlearn.

2.4.2 Simulation results

In Figure 2.5 LEFT, the simulation results show how the truncated mean survival time

(φµ) of each policy behaves under different settings. For most of the settings, on average, all

estimated regimes have greater values than the zero-order model, and the zero-order model has
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a higher value than the observed policy. This implies that the standard of care improves the

overall survival time of patients over the observed policies and that individualized treatment

rules can further enhance the outcomes.

Figure 2.5 LEFT also shows that among the individualized treatment rules, the proposed

method outperforms the other methods in many settings. Even when the method exhibits lower

or about the same performance as the other methods for the small sample size, it often has higher

performance than the others for the larger sample size. See, for example, the high censoring

cases (the last row) of either the observational or the RCT setting. In the settings where the

dimension of the covariate is high (the third row), the method of Simoneau et al. (2019) often

has high values, although sometimes estimation is not possible. This might be because of the

doubly robustness property of the method and the fact that the true optimal decision rule might

be close to a linear function, as suggested by the linear interaction of the stage-wide hazard

functions in (2.6). The method of Simoneau et al. (2019), however, often does not provide

estimates when either the sample size of the terminal stage is small due to censoring or failure

or the dimension of covariates is large.

Figure 2.5 RIGHT shows the simulation results in terms of the survival probability at t = 5,

or φσ,5. Note that the estimated regimes for the proposed method are distinct between LEFT

and RIGHT but are the same for the other methods. The proposed estimator shows better

performance in terms of the policy values under most settings, giving us similar interpretations

as the previous results.
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F: observed policy

Figure 2.5: The estimated mean truncated survival time (LEFT) and the estimated survival
probability at time t = 5 (RIGHT) under each estimated policy. Each dot represents one
simulation replicate. The box plots are the quartile summary of the points and the black dots are
the average values of each method. Each row of boxes represents a data generation scenarios,
and each column of boxes represents a combination of a study design and a sample size.

2.5 Leukemia data example

We analyze acute myeloid leukemia patient survival time using the proposed and existing

methods. We use a data set collected from a clinical trial in which 210 acute myeloid leukemia

patients were randomized to a frontline treatment followed by a salvage treatment that was

adaptively chosen based on the patient status (Wahed and Thall, 2013; Xu et al., 2016). One of

four initial treatment options was given to each patient with an equal probability: combination

of fludarabine, cytosine arabinoside, and idarubicin (FAI), combination of FAI and all-trans

retinoic acid (ATRA) (FAIA), combination of FAI + granulocyte colony stimulating factor

(G-CSF) (FAIG), and combination of FAI + ATRA + G-CSF (FAIAG). Response to the first

stage treatment took one of the following forms: complete remission followed by disease

progression, failure (either partial remission or remission with subsequent relapse), or resistance

to treatment. Surviving patients that did not attain complete remission were given a salvage

treatment based on physician judgement. The salvage treatments were labeled with one of two
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categories depending on whether or not they contained high dose ara-C (HDAC) or not. We

assume that the salvage treatment effects are homogeneous across different versions and that

the current data set contains most of the necessary information to achieve Assumption 2.14.

The data set is composed of age at entry, type of leukemia characterized by cytogentic

abnormality, treatment assignment, response to the initial treatment (failure, complete remission,

or resistance), duration of each treatment stage, and survival and censoring status at each

treatment stage. Because both age and type of leukemia are known to have high power in

predicting overall survival time, they are the main factors taken into account by clinicians when

prescribing treatment in practice thereby mitigating the potential violation of Assumption 2.14.

Patient age at entry ranges from 21 to 87 years and is 61.1 years on average. The patients’

cytogenetics abnormalities were grouped into three categories according to their prognosis

(Wahed and Thall, 2013): 65 poor, 79 intermediate, and 66 good. Out of 210 patients, 198

experienced death during the study, and 12 were censored. The overall observed survival time

(T ∧ C) was on average 414 days and had quartiles of 45, 184, and 443 days. We set τ = 450

days. Figure 2.6 overviews the dynamics of the study.

Figure 2.6: Treatment stages and patient status with the number of instances in the parentheses.

We derive the optimal treatment rules using the proposed method, the Goldberg and Kosorok

(2012) method, the Simoneau et al. (2019) method, and the zero-order model. The value of the

observed policy—the combination of randomization and physician’s judgement—is estimated

and is compared with the other rules. As in Section 2.4, the Goldberg and Kosorok (2012)
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method was implemented using two different Q-function approximations: a linear model and a

random forest. Because the Simoneau et al. (2019) method was implemented using R package

DTRreg the current version (1.7) of which allows binary treatment arms only, the method was

applied after dichotomizing the initial treatment according to inclusion of all-trans retinoic acid.

We compare the performance of the five models based on cross validation, where K =

100 training data sets of size 168 (80%) are sampled to estimate the treatment rules without

replacement and stratified according to the initial treatment, and the remaining test sets are

held out for evaluation. The value of each treatment rule is estimated by the inverse probability

(censoring) weighting approach as follows.

Define

Wi(π) =

∏2
q=1 1(π(q)(H

(q)
i ) = A

(q)
i )δi

P̂r(A
(1)
i )P̂r(A

(2)
i |H

(2)
i )
∏2

q=1 P̂r(T
(q)
i > C

(q)
i | agei)

, (2.9)

where the propensity of the salvage treatment is modeled as Pr(A(2) = a) = (1 +

exp(−H(2)β))−1,H(2) is a matrix with columns of one, B(2), A(1), age, cytogenetic leukemia

type, and response to initial treatment. Because there was an insufficient number of censored

patients in the study, the censoring propensity score is modeled using only the patient age at

entry. Then the value of each policy π and each criterion φ = φµ, φσ,t is estimated by

φ̂µ(Sπ) =

∑
i:test set(Ti ∧ τ)Wi(π)∑

i:test set Wi(π)

and

φ̂σ,t(S
π) =

∑
i:test set 1(Ti > t)Wi(π)∑

i:test set Wi(π)
,

where for the second criterion, we use t = 180 to evaluate the six month survival probabilities.

We estimate the value of the observed policy, i.e., a hybrid of randomized rule for the initial
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treatment and the physician judgement for the salvage treatment, under the same evaluation

procedure.

Figure 2.7 summarizes the value estimates of the estimated polices. Each box and scatter

plot corresponds to a policy, and within each plot, each dot represents a cross-validation replicate

of the estimated value (truncated mean survival time (LEFT) or six-month survival probability

(RIGHT)) of the corresponding policy. The results show that the proposed method achieves

higher values than the other estimated policies on average in terms of both the truncated mean

survival time and the six month survival probability. This is true when compared with the

zero-order model implying the advantage of the proposed individualized treatment rules over the

standard of care. However, the estimated methods do not have higher values than the observed

policy value on average. Recalling that the second treatment assignments were done according

to physician judgement, this implies that their judgement was fairly successful and that a larger

sample size and more patient information—available only to physicians but not included in

this data set—could enhance the performance of the methods. Despite the gap, however, the

proposed method yields the closest values to the observed policy values among the competing

methods.
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Figure 2.7: Estimated truncated mean survival time (LEFT) and estimated six-month survival
probability (RIGHT) under the dynamic treatment regimes. Each dot represents one cross-
validation replicate. The box plots are the quartile summary of the points and the black dots are
the average values of each method.

2.6 Discussion

In this project, we introduced a new dynamic treatment regime estimator for survival

outcomes. The estimator is versatile in the sense that it allows for a flexible number of treatment

stages and arms, it gives a non-linear decision rule that maximizes either the mean survival time

or the survival probability, and it permits dependent censoring. In this section, we discuss some

considerations when using our method.

The proposed estimator assumes that the distribution is well characterized by the treatment

stages rather than the natural passage of time. That is, the cohort at each treatment stage might

include patients that received the stage treatment on day 10 as well as patients that received

the stage treatment on day 1000. Thus, this method is effective when the disease dynamic is

considered stationary between stage transitions or when the treatment effect contains relatively

stronger signal than that of the baseline disease dynamics.
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Another consideration is the choice of the study length, τ , which is chosen so that the

survival probabilities are reliably estimated up to τ . For the stability of estimation, the chosen

τ should not be too large; however, reducing τ results in information loss. If all patients are

censored at a certain stage, the survival probability is not estimable. In this case, a smaller τ

should be chosen so that every stage has a sufficient number of observed failure times.

Finally, in establishing the uniform consistency results, we use the fact that under the given

assumptions, the minimum size of the terminal node becomes arbitrarily small in probability

uniformly, as argued in Wager and Walther (2015). However, the uniform rate of convergence

can be very low. As a random-split tree grows deeper and has an increasingly large number of

terminal nodes, there exists, with a not-very-small probability, at least one terminal node created

without enough splits on a certain covariate. To enhance the rate, splitting can potentially be

done in a stratified fashion by assigning a certain minimum number of splits to each variable.

The effect of the tree building rules on the rate of convergence would be an interesting future

study especially in the presence of noise variables in high-dimensional data settings.

Technical Details for the survival DTR estimator

The technical details for this chapter include 1) the proofs of Proposition 2.1, Theorem 2.4,

Corollary 2.1 and Theorem 2.5.
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CHAPTER 3: BIVARIATE ZERO-INLFATED NEGATIVE BINOMIAL MODEL FOR
MEASURING DEPENDENCE

3.1 Introduction

In this project, we study how the zero-inflation of single cell RNA-sequencing (scRNA-seq)

data can be adjusted when measuring the gene-gene correlation is of interest. As discussed in

the literature review, two strategies have been considered to address bias generally in scRNA-

seq data. Imputation methods (Li and Li, 2018 and Peng et al., 2019) and estimation of the

count distribution (Huang et al., 2018 and Wang et al., 2018b). Our proposed method takes

the distribution estimation approach where a bivariate distribution explicitly addresses the

dependence structure. Specifically, our method is built on a bivariate generalization of the

zero-inflated negative binomial (ZINB) model. For univariate count data, zero-inflated negative

binomial (ZINB) models have been well accepted and have greater capability than Poisson,

zero-inflated Poisson, and negative binomial models in terms of handling augmented zeros and

overdispersion. While negative binomial models have been extensively used for bulk RNA-seq

data without much zero-inflation (Love et al., 2014, Robinson et al., 2010), ZINB models are

typically used for scRNA-seq data (van den Berge et al., 2018, Risso et al., 2018). Therefore,

we have a particular interest in a bivariate generalization of ZINB models to model dependence

of two genes in scRNA-seq data.

We propose a bivariate zero-inflated negative binomial model with eight parameters: five

parameters for the negative binomial part and another three free parameters for the zero-

inflation part. This model allows analyzing the dependence of two zero-inflated count variables

parametrically but with more flexibility than existing models.
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The rest of the chapter is organized as follows. In Section 3.2, we describe how the model

is constructed in the order of a Bivariate Negative Binomial model and a Bivariate Zero-inflated

Negative Binomial model. We present the maximum likelihood estimator using expectation-

maximization algorithm in Section 3.3. In Section 3.4, we illustrate how well the models fit

data and how model-based dependence measures behave in contrast to naive measures using

mouse paneth scRNA-seq data. Then in Section 3.5, we show how point and interval estimators

perform based on simulations. In Section 3.6, we address limitation of the models and discuss

potential extensions. Section 3.7 provides the software information.

3.2 The model

3.2.1 A Bivariate Negative Binomial Model

In constructing the BZINB model, to induce dependence and zero-inflation, layers of

latent variables were used as in Kocherlakota and Kocherlakota (1992) and Li et al. (1999).

We first introduce a simpler model, the Bivariate Negative Binomial (BNB) model in this

subsection, and then generalize it to Bivariate Zero-Inflated Negative Binomial (BZINB) model

in Subsection 3.2.2.

One of the key assumptions about the dependence structure of BNB (and BZINB) is that

the mean parameters of two Poisson random variables are gamma random variables that share

a common gamma random variable. Let Rj ∼ Gamma(αj, β) for j = 0, 1, 2, where αj and

β are the shape and scale parameters, respectively. Then (R0 + R1, R0 + R2) is bivariate

gamma distributed, denoted as BGamma(α0, α1, α2, β). To account for heterogeneous scales

of the two Poisson mean variables, we introduce an additional parameter δ ∈ R+. Then, a pair

(X1, X2) of Poisson variables with means (R0 + R1, δ(R0 + R2)) follow a bivariate negative

binomial distribution, denoted as

(X1, X2) ∼ BNB(α0, α1, α2, β1, β2), (3.10)
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where we reparametrize (β, δ) as (β1, β2) = (β, δβ) and the observed density is given as,

fBNB(x1, x2)

=

∫∫∫
R3
+

(R0 +R1)x1(R0 +R2)x2e
− 1+β1+β2

β1
R0− 1+β1

β1
R1− 1+β2

β1
R2Rα0−1

0 Rα1−1
1 Rα2−1

2 βx22

x1!x2!Γ(α0)Γ(α1)Γ(α2)βα0+α1+α2+x2
1

2∏
j=0

dRj

× 1(x1,x2)∈N2
0

=

x1∑
k=0

x2∑
m=0

(
α0 + x1 + x2 − k −m− 1

α0 + x2 −m− 1

)(
α0 + x2 −m− 1

α0 − 1

)(
α1 + k − 1

α1 − 1

)(
α2 +m− 1

α2 − 1

)
× βx11 β

x2
2 (β1 + β2 + 1)k+m−x1−x2−α0

(β1 + 1)k+α1(β2 + 1)m+α2
1(x1,x2)∈N2

0
,

where N0 denotes the nonnegative integer space, and superscripts represent the dimension of the

product space. The support indicators will be omitted throughout this chapter when the context

is clear.

This bivariate negative binomial model (BNB) is marginally negative binomial, as we know

from the construction procedure that both X1 and X2 are Poisson random variables with means

marginally Gamma distributed, respectively:

Xj ∼ NB(α0 + αj,
1

βj + 1
) for j = 1, 2,

where the random variable X ∼ NB(ν, φ) can be interpreted as the minimum number of

failures to have ν successes with probability of φ for each trial; i.e., its density is expressed as

fNB(x; ν, φ) =
(
x+ν−1
x

)
φν(1− φ)x.

Interpretation of the BNB parameters is straightforward: α0, α1, and α2 are the shape

parameters of latent variables, where the larger α0 implies a larger amount of shared components

in X1 and X2 and thus larger correlation; β1 and β2 controls the scale of X1 and X2, respectively.

Note in scRNA-seq data context, X1 and X2 may represent the before-dropout expression level

of each of two genes in a cell in the absence of dropout events, which we rarely observe in

practice.
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The first two moments and the correlation of a BNB random pair are given as,

E(Xj) = (α0 + αj)βj j = 1, 2

V ar(Xj) = (α0 + αj)βj(βj + 1) j = 1, 2

Cov(X1, X2) = α0β1β2

Cor(X1, X2) =
α0√

(α0 + α1)(α0 + α2)

√
β1β2

(β1 + 1)(β2 + 1)
(3.11)

Note that this distribution only allows positive correlation. See Section 3.6 for more discussion.

We recognize that Maher (1990) developed another bivariate negative binomial distribution

that is a constrained case of BNB in a sense that the marginal means and variances are the same

for both variables.

One can further generalize this BNB model into a m-variate negative binomial model by

adding common latent gamma variable(s) to the m gamma variables.

3.2.2 A Bivariate Zero-inflated Negative Binomial Model

In this subsection, we generalize BNB model to BZINB model by including zero-inflation

components. Since BZINB is also a generalization of univariate zero-inflated negative binomial

model (ZINB), we illustrate the construction of univariate ZINB model first and move to the

bivariate version.

A univariate negative binomial model, NB(ν, φ), can be generalized to allow zero-inflation

by having an additional parameter, π: ZINB(ν, φ, π). The zero-inflated negative binomial

(ZINB) model has a latent variable interpretation. Let X follow NB(ν, φ) and E denote

the zero-inflation indicator having 1 with probability of π and 0 otherwise, independently of

X . Then Y ≡ (1 − E)X follows ZINB(ν, φ, π) with the density of fZINB(y; ν, φ, π) =

(1− π)fNB(y; ν, φ) + πζ(y), where ζ(a) ≡ 1(a=0).
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Similarly, a multivariate zero-inflated random variable can be constructed using a latent

variable that follows the multivariate Bernoulli distribution as in the Poisson case (Li et al.,

1999). For a bivariate distribution, suppose we have a random vector E ≡ (E1, E2, E3, E4)> ∼

MN(1,π), where MN(1,π) denotes the multinomial distribution with a single trial and

an associated probability of π ≡ (π1, π2, π3, π4)>. Now the bivariate zero-inflated negative

binomial distribution (BZINB) can be formulated as:

(Y1, Y2) := ((E1 + E2)X1, (E1 + E3)X2), (3.12)

where (X1, X2) ∼ BNB(α0, α1, α2, β1, β2) and E1, E2, E3 and E4 are the indicators of

observing bothX1 andX2, onlyX1, onlyX2, and none of them, respectively. We say (Y1, Y2) ∼

BZINB(α0, α1, α2, β1, β2, π1, π2, π3, π4). A simpler model with a restriction of π2 = π3 = 0

can also be considered as in Wang (2003).

The density of a BZINB variable is

fBZINB(y1, y2;α,β,π)

= π1fBNB(y1, y2;α0, α1, α2, β1, β2) + π2fNB(y1;α0 + α1,
1

β1 + 1
)ζ(y2)

+ π3fNB(y2;α0 + α2,
1

β2 + 1
)ζ(y1) + π4ζ(y1 + y2),

where α = (α0, α1, α2)>,β = (β1, β2)>, and π = (π1, π2, π3, π4)> with 1>π = 1.

Here, the parameters α and β has the same interpretation as in BNB but in the presence of

dropouts, and π indicates the dropout probability, where π1, π2, π3, and π4 are the probability

that none, Y2 only, Y1 only, and both were dropped out, respectively.

In scRNA-seq data,In scRNA-seq data, Y1 and Y2 are the observed number of expressions

for each of two genes in a cell. The term observed was used in contrast to before-dropout in a

sense that an unobserved subset of the zeros are excess zeros due to dropouts.
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This BZINB distribution is marginally ZINB, since the latent random variables, X1 and X2,

are marginally negative binomial random variables (from Subsection 3.2.1) with probabilities of

being observed, π1 + π2 and π1 + π3, respectively:

Yj ∼ ZINB(α0 + αj,
1

βj + 1
, π4−j + π4) for j = 1, 2. (3.13)

The first two moments of a BZINB pair are given as,

E(Yj) = (π1 + πj+1)(α0 + αj)βj j = 1, 2

V ar(Yj) = (α0 + αj)
2β2

j (π1 + πj+1)(1− π1 − πj+1)

+ (α0 + αj)βj(βj + 1)(π1 + πj+1) j = 1, 2

Cov(Y1, Y2) = {α0 + (α0 + α1)(α0 + α2)}β1β2π1

− (α0 + α1)(α0 + α2)β1β2(π1 + π2)(π1 + π3),

and the correlation ρ(Y1, Y2) is not further simplified than Cov(Y1, Y2)/
√
V ar(Y1)V ar(Y2).

When dropouts are unwanted and need to be adjusted for, then the underlying correlation

ρ∗ of Y1 and Y2 under BZINB model is simply the correlation of X1 and X2 (Equation (3.11)),

which is

ρ∗(Y1, Y2) =
α0√

(α0 + α1)(α0 + α2)

√
β1β2

(β1 + 1)(β2 + 1)
. (3.14)

3.3 Estimation

With the natural interpretation of BZINB model as layers of latent variables, one can

estimate the parameters by the expectation-maximization (EM) algorithm.
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The complete density is given as,

f(Y1, Y2, X1, X2, R0, R1, R2, E1, E2, E3, E4)

= f(X1, X2, R0, R1, R2, E1, E2, E3, E4)× 1(Y1=X1(E1+E2),Y2=X2(E1+E3))

with

f(X1, X2, R0, R1, R2, E1, E2, E3, E4)

=
(R0 +R1)X1(R0 +R2)X2Rα0−1

0 Rα1−1
1 Rα2−1

2 βX2
2

∏4
k=1 π

Ek
k

X1!X2!Γ(α0)Γ(α1)Γ(α2) exp{R0
1+β1+β2

β1
+R1

1+β1
β1

+R2
1+β2
β1
}βX2+α0+α1+α2

1

× 1∑4
k=1 Ek=1.

Thus, the full individual log-likelihood for the ith entry, or the ith cell, is

lFull
i

= X1,i log(R0,i +R1,i) +X2,i log(R0,i +R2,i)

+ (α0 − 1) logR0,i + (α1 − 1) logR1,i + (α2 − 1) logR2,i

+X2,i log β2 − (X2,i + α0 + α1 + α2) log β1 +
4∑

k=1

Ek,i log πk − logX1,i!− logX2,i!

− log Γ(α0)− log Γ(α1)− log Γ(α2)−R0,i
1 + β1 + β2

β1

−R1,i
1 + β1

β1

−R2,i
1 + β2

β1

+ log 1(Y1,i=X1,i(E1,i+E2,i)) + log 1(Y2,i=X2,i(E1,i+E3,i)) + log 1∑4
k=1 Ek=1.

The expected full log-likelihood conditional on the observed data is linear inE[Rj,i|Y1,i, Y2,i;θ],

E[log(Rj,i|Y1,i, Y2,i;θ)],E[Ek,i|Y1,i, Y2,i;θ], andE[X2,i|Y1,i, Y2,i;θ], where θ ≡ (α>,β>,π>)>,

j = 0, 1, 2 and k = 1, 2, 3, 4. The formulae of the components are given in Technical details.

As the likelihood is the product of functions convex with respect to each of the parameters,

the maximization can be achieved by solving a system of score equations. The individual scores

are given as:

73



∂αjE[lFulli |·] = E[logRj,i|·]− log β1 − ψ(αj) j = 0, 1, 2

∂β1E[lFulli |·] = E[R0,i +R2,i|·]
1 + β2

β2
1

+
E[R1,i|·]
β2

1

− α0 + α1 + α2 + E[X2,i|·]
β1

∂β2E[lFulli |·] = −E[R0,i +R2,i|·]
β1

+
E[X2,i|·]

β2

∂πjE[lFulli |·] =
E[Ej,i|·]
πj

− 1− E[Ej,i|·]
1− πj

j = 1, 2, 3,

where the conditioning arguments (Y1,Y2;θ) are suppressed as (·) and can be replaced with

(Y1,i, Y2,i;θ) where we assume a sample of independent entries, Yl denotes (Yl,1, ..., Yl,n)> for

l = 1, 2, n is the sample size, and ∂ab denotes the partial derivative of b with respect to a.

At the k + 1st iteration of the EM algorithm, we get θ(k+1) by solving the score equations

∂θ
∑n

i E[lFulli |Y1,Y2,θ
(k)] = 0:

β
(k+1)
2

β
(k+1)
1

=
Ē[X2,i|·]

Ē[R0,i +R2,i|·]

β
(k+1)
1 =

Ē[R0,i +R1,i +R2,i|·]
α

(k+1)
0 + α

(k+1)
1 + α

(k+1)
2

π
(k+1)
j = Ē[Ej,i|·] j = 1, 2, 3, 4

α
(k+1)
j = ψ−1{− log β

(k+1)
1 + Ē[logRj,i|·]} j = 0, 1, 2,

where Ē[A|·] denotes the empirical average of the conditional expectations, i.e., 1
n

∑n
i E[Ai|·],

ψ(·) is the digamma function, and the conditioning arguments (Y1,Y2,θ
(k)) are again sup-

pressed. The equations can be solved by solving the following through Newton-Raphson
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algorithm:

Solve for β1 =
Ē[R0 +R1 +R2|·]∑2

k=0 ψ
−1(− log β1 + Ē[logRk|·])

.

Then get αj = ψ−1(− log β1 + Ē[logRj|·]).

After iterations enough to observe convergence, the final updated parameter values serve as

the maximum likelihood estimate.

The standard error of the maximum likelihood parameter estimates can be calculated

using observed information. In Technical details, detailed formulae are given, and simulations

illustrating the accuracy of standard error estimation are included in Section 3.5.

3.4 Model and measure comparisons based on mouse paneth data

3.4.1 Model comparison using mouse paneth data

In this section, we show how the BZINB model fits a scRNA-seq data set compared to its

nested models (in Subsection 3.4.1) and present how model-based dependence measures can be

different from naive measures (in Subsection 3.4.2). The data were collected from paneth cells

of C57Bl6 mouse with a Sox9 gene knockout. The Fluidigm C1 system was used to capture

single cells and generate Illumina libraries using manufacutrers’ protocols. Illumina NextSeq se-

quencing platform was used for paired end sequencing. Reads per cell were demultiplexed using

mRNASeqHT demultiplex.pl, a script provided by Fluidigm. Low quality base calls and primers

were removed using Trimmomatic (Bolger et al., 2014) and poly-A tails were removed using

a custom perl script. Reads were aligned to the mouse genome (mm9) using STAR (https:

//academic.oup.com/bioinformatics/article/29/1/15/272537) and read

per gene were counted using htseq-count (https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC4287950). The data are composed of 23,425 genes for 800 cells, where all

the cells came from a single mouse and have the same cell type. Over 90% of genes have more
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than 90% zero counts and the average proportion of zero counts for a gene is 97.3% in these

zero-inflated data.

We compare four nested models: BZINB, BNB, bivariate zero-inflated Poisson (BZIP), and

bivariate Poisson (BP). BZIP has fixed mean values instead of latent gamma variables of BZINB,

and BP further lacks zero-inflation components. The estimated densities of these models are

compared with the empirical density for 50 gene pairs.

To systematically study the model performances, we performed stratified sampling of genes

according to their proportion of zeros; strata H, M, L, and V include genes with ≥ 90%, 80%

to 90%, 60% to 80%, and < 60% zeros, respectively. Genes with ≥ 98% of zeros and genes

with extremely large expression (> 10, 000 counts for at least one cell) were screened out. After

screening out those irregular genes, each group has 81.4%, 13.5%, 4.2%, and 0.9% of genes in

the order.

We randomly selected 5 pairs from each possible combination of two strata (HH, MM, LL,

VV, HM, HL, HV, ML, MV, and LV) without replacement. For each of the 50 pairs (5 pairs× 10

combinations), we estimated the parameters of the four nested models. Based on the parameter

estimates, the distributions of the four models were compared. As it is not straightforward to

compare the estimated model-based densities with the empirical density, we drew a random

sample of size n = 800 from each estimated model and the resulting empirical densities were

then compared (Figure 3.8 for several pairs and Web Figure 1 for all the 50 pairs). As we cannot

preclude the chance of getting unlikely instances by doing Monte Carlo sampling, we added

results of two more replicates in Web Figures 2 and 3. We furthermore illustrate the exact values

of the estimated density in Figure 3.9 for a couple of pairs and in Web Figure 4 for all the pairs.

Figure 3.8 illustrates the true and the model-based empirical distributions for the first pairs

of 10 combinations. The results including all 50 pairs and their replicates can be found in Web

Figures 1 to 3. For any pair, the BP model obviously fails to address the overdispersion and

zero-inflation, while the BZIP model could not properly mimic the overdispersion. BNB and

BZINB seem to fairly mimic the true distribution in most of the pairs. The poor performances
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of Poisson-based models and decently good performances of BNB and BZINB models can also

be seen on Figure 3.9.

However, when genes have some large-valued counts and many zeros at the same time

either marginally or jointly, BZINB has an apparent advantage over BNB model. Often, in

BNB model, nonzero count pairs are highly concentrated on the diagonal line, while nonzero

counts in BZINB model are more dispersed away from the diagonal line (LL1 in Figure 3.8 and

more examples in Web Figures 1 to 3). This can be explained by the lack of flexibility of BNB

model. When data are highly zero-inflated but overdispersed at the same time, BNB is forced to

have small shape parameters (αj, j = 0, 1, 2) and large scale parameters (βj, j = 1, 2) while

keeping the mean of the latent Gamma variables, E[Rj] = αjβ1, close to zero. These latent

Gamma variables, serving as mean parameters of Poisson variables, take on very small values

most of the times and very large values with small chance. It is unlikely that both R1 and R2

have large numbers at the same time (CASE 1), but it is more frequent that R0 alone has a

large number (CASE 2). Thus, the latent Poisson variables, X1 and X2, are more likely to have

similarly large numbers (resulting from CASE 2) than to have significantly different nonzero

numbers (resulting from CASE 1).

3.4.2 Mouse paneth data example for dependence measures

When the excess zeros are believed to come from dropouts, BZINB model may uncover

the underlying dependence using measures such as ρ∗ and MI∗. Note that MI∗ is defined

similarly to that of ρ∗ and can be estimated by first estimating the BZINB model parameters

and by measuring the mutual information of the estimated distribution after replacing π̂ with

(1, 0, 0, 0)>.

For the same 50 pairs in the previous subsection, we estimated the dependence using

naive measures – Pearson correlation (PC) and empirical mutual information (EMI) – and

zero-inflation adjusted measures – underlying correlation (ρ∗) and underlying MI (MI∗) based

on BZINB model. Figure 3.10 summarizes the estimates for all the pairs.
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Figure 3.8: The bivariate distribution of true and simulated mouse paneth RNA count data. Each
box corresponds to the first pair of each of the combination, HH1, MM1, LL1, VV1, HM1,
HL1, HV1, ML1, MV1, and LV1, where letters represent stratum with varying proportions
of zeros and the numbers represent the number of the pair in each combination. Each box
has the empirical distribution (LEFT) which serves as truth for the simulations, and the four
model-based simulated empirical distributions (RIGHT).

In Figrue 3.10 LEFT, we see that PC and ρ∗ mostly behave in the same direction, but also

that they can have values in the opposite directions (e.g., HL5 and HL4). If we judge whether

two genes are correlated based on (naive) Pearson correlation (PC) with a certain threshold, say

PC > 0.2, many genes might be missed (e.g., HL5) or falsely included (e.g., HL4).

Similar analyses can be done for MI-based measures. Both EMI and MI∗ estimates are

correlated, however, there are pairs that are located away from the tendency. For example the

pair MV1 has highest MI∗, while its EMI is not one of the highest. Also note that the values of

MI∗ are in general less than those of EMI for scRNA-seq data. Heavy proportion of zero-zero

pairs boosts naive EMI, while MI∗ removes the effects of the co-zero-inflation. These results
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Figure 3.9: The model estimates of bivariate densities (lines) and the empirical densities (dots)
of two gene pairs.

suggest that measures that fail to identify the excess zeros caused by the dropout events may be

highly misleading.
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Figure 3.10: Estimated dependence measures of 50 pairs. Pearson correlation and underlying
correlation estimates (LEFT). Empirical and underlying mutual information estimates (RIGHT).

3.5 Evaluation of estimators based on simulation

We ran simulations to study the performance of estimation of underlying correlation and

the associated standard error under finite sample size. We considered 40 distinct sets of BZINB

parameter values (Table 3.8). Note that for each of ρ∗’s there are two distinct sets of parameters

(α,β), the first (a) of which have lower α values and the second (b) of which have higher α

values. For each parameter set (α,β,π) and for n = 250, 500, 800, 1500, 2500, we generated

random BZINB samples of size n, nsim = 1, 000 times.

For each k of nsim simulation replicates, we got an estimate ρ̂∗k of the parameter ρ∗,

the standard error estimate se(ρ̂∗k), and the logit-transformed 95% confidence interval (i.e.,

logit−1(logit(ρ̂k)± 1.96 se(ρ̂k)
ρ̂i(1−ρ̂k)

)). Then for each set of parameters, the following three quanti-

ties were calculated:

• the average estimated standard error (SE, s̄e(ρ̂∗))

• the standard deviation of the parameter estimates (SD, sd(ρ̂∗))

• the empirical coverage probability (CP, 1
nsim

∑nsim
k=1 1ρ∗∈CIk , where CIk is the logit-transformed

95% confidence interval for the kth replicate).
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Table 3.8: The set of parameters for simulation. Combination of (α0, α1, α2, β1, β2) and
(π1, π2, π3, π4) below makes 40(= 8× 5) sets in total.

underlying correlation # (α0, α1, α2, β1, β2)
1. high (ρ∗ = 0.6) 1-a (0.2, 0.05, 0.05, 3.0, 3.0)

1-b (2.0, 0.7, 0.1, 2.5, 2.5)
2. moderate (ρ∗ = 0.3) 2-a (1.0, 1.0, 1.0, 1.5, 1.5)

2-b (3.0, 2.0, 1.0, 1.5, 0.5)
3. low (ρ∗ = 0.1) 3-a (0.2, 0.3, 3.0, 2.0, 1.5)

3-b (0.5, 2.0, 2.0, 0.5, 3.0)
4. very low (ρ∗ = 0.01) 4-a (0.01, 0.1, 1.0, 0.5, 0.5)

4-b (0.05, 2.0, 3.0, 3.0, 0.5)

zero-inflation (π1, π2, π3, π4)
i. low (0.7, 0.1, 0.1, 0.1)
ii. moderate-balanced (0.5, 0.15, 0.15, 0.2)
III. moderate-unbalanced (0.5, 0.1, 0.3, 0.1)
iv. high-balanced (0.2, 0.2, 0.2, 0.4)
v. high-unbalanced (0.2, 0.1, 0.4, 0.3)

The simulation results are provided in Figures 3.11 and 3.12. First, the mean parameter

estimates are close, or getting closer as sample size grows, to their true parameter values for

each of the 40 scenarios. For most of the 40 parameter sets, CP was close to 0.95, and for those

not close, CP gets closer to 0.95 with increasing sample size. In the same context, the average

estimated standard error (SE) was close to the standard deviation of the parameter estimates

(SD) especially when the sample size was large. However, when the underlying correlation

was close to zero (i.e., 0.01 in our example), standard error estimation did not perform as well

in terms of both CP and closeness of SE to SD. The parameter being to the boundary may

be responsible for the poorer performance. Also, Scenarios iv and v have higher SE and SD

than the others. This is perhaps because the effective sample size for those high zero-inflation

scenarios is smaller than the other scenarios.
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Figure 3.11: Mean parameter estimates (ρ̂∗) and CP (each color represents distinct simulation
scenarios.)
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Figure 3.12: Standard error (SE, solid lines) and standard deviation (SD, dashed lines) of
the BZINB-based underlying correlation estimates. Each color represents distinct simulation
scenarios.
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3.6 Discussion

In this chapter, we considered a BZINB model with application to scRNA-seq data where

we assume an independent and identically distributed random bivarate sample of zero-inflated

counts. One can generalize this homogeneous mean model to allow for subgroup analysis or

joint conditional mean analysis by introducing the generalized linear model framework. As in

univariate ZINB regression, the latent count variables (i.e., X1 and X2) can be modeled using

linear predictors with some link function. Alternatively, when the zero-inflation is not cause by

dropout but by frailty (e.g., there can be a group of people that do not have cavities at all) and

thus has a meaningful interpretation, then the observed count variable (i.e., Y1 and Y2) can be

directly modeled by the marginalized model framework (Preisser et al., 2016) or the zeros can

be separately considered using hurdle models (Mullahy, 1986).

Allowing only positive ρ∗ can be regarded as a limitation of the BZINB model. One

justification is that the negative correlation of count data are not so prevalent in reality. For

example, in genomics data, there are some genes that suppress other genes from being expressed,

however, such genes either are relatively rare or have weak negative correlation with other genes.

On the other hand, when we believe that the zeros are mostly not induced by dropout events,

we can consider using the original correlation (ρ(Y1, Y2)) which allows for negative correlation,

instead of ρ∗(Y1, Y2).

An alternative to this fully parametric approach is to use the weighted Pearson cor-

relation based on the parameter estimates. i.e., each pair (Y1,i, Y2,i) is given a weight of

wi =
fBNB(Y1,i,Y2,i;θ̂)

fBZINB(Y1,i,Y2,i;θ̂)
. Then the weighted Pearson correlation can be calculated as ρ̃ =

Cov(Y1,Y2;w)
Cov(Y1,Y1;w)Cov(Y2,Y2;w)

, whereYj = {Yj,1, ..., Yj,n},w = {w1, ..., wn}, j = 1, 2,Cov(Y1,Y2;w) :=∑n
i=1 Y1,iY2,iwi∑n

i=1 wi
−

∑n
i=1 Y1,iwi∑n
i=1 wi

∑n
i=1 Y2,iwi∑n
i=1 wi

. Note that this correlation allows negative values.

As discussed before, the BZINB model can also be generalized to a multivariate zero-

inflated negative binomial model. This model may have an exponentially increasing number

of latent variables or parameters as the dimension gets large. Though the lack of parsimony

may make the multivariate model look less attractive, the idea can be very practically used in
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simulating multivariate zero-inflated count data. For instance, a genomic count data with large

amount of zeros can be mimicked by a set of latent random layers along with the generalized

linear model framework.

3.7 Software

An R package bzinb estimating BZINB parameters using EM algorithm was written in R

version 3.5.1 (R Core Team, 2019), and is available on CRAN.

Technical Details for BZINB

The technical details for this chapter include 1) the components of the expected log-

likelihood of the EM algorithm and 2) the Standard error formula.
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CHAPTER 4: FUTURE RESEARCH

In this chapter, we discuss future research directions for the methods proposed in the three

preceding chapters.

In Chapter 1, a tree-based ensemble method for interval censored data was proposed (ICRF).

This research was initially motivated by another method development question—finding the

optimal individualized treatment rule (ITR) for interval censored or current status data. Now

that we have a suitable nonparametric regression estimator for the interval censored data, there

are multiple ways of developing the ITR estimator. For example, the Q-learning approach is

a natural extension, and adaptation of the outcome weighted learning (OWL) by Zhao et al.

(2012) can be another possibility.

In Chapter 2, we introduced a new dynamic treatment regime estimator for right censored

data. One interesting extension of the proposed method is optimizing a specific quantile of

the survival distribution, such as the median survival time. However, this task introduces a

unique challenge concerning backward recursion. Specifically, the optimal decisions made

for later stages may not be optimal once earlier decisions moderate the distribution. Thus, an

exhaustive search may be needed to find an optimal policy. An extension of the quantile-optimal

dynamic treatment regime estimators developed by Wang et al. (2018b) and Linn et al. (2017)

to right-censored data would be an interesting future work.

The proposed method assumes an unrestricted policy class. In practice, however, clinicians

and patients may prefer understandable, simple rules. A linear rule, for example, is often of

interest. By posing a Cox-type proportional hazards assumption on top of our method, the

resulting policy class becomes a set of linear functions. The task then reduces to replacing

the generalized random survival forest with the generalized Cox model, where the estimated
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survival probabilities, instead of the observed time with censoring indicators, are entered as the

outcome variable.

In Chapter 3, we developed a parametric bivariate count model based on the latent variable

framework and the negative binomial distribution with the aim of measuring dependence

between two genes. Being fully parametric, the model may be subject to misspecification. As

an alternative, a weighted Pearson correlation can be proposed. Articulating and studying the

theoretical nature of this alternative approach could be an intriguing research topic.

In this dissertation, the BZINB model was only estimated marginally, or without covariates.

However, a regression estimator can be obtained under the generalized linear model framework.

This may allow controlling the sequencing depths varying across sample and testing group

differences.

The model estimation is done by the EM algorithm, of which computation time is relatively

not ideal. Fast computation is essential for the practical application of this method. For example,

when a set of thousand genes are to be analyzed, the number of pairs is about 500,000, which

aggravates the computation problem. Thus, developing a computationally feasible solution

could be the next step.

We discussed some future research directions, such as generalizations—quantile optimiza-

tion, Cox decision rule, and the regression BZIN—and extensions—ITR based on ICRF and

weighted correlations. We hope that these new research ideas could expand the realm and depth

of precision medicine and genomics and, as a result, the general public could be benefited

eventually.
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APPENDIX 1: TECHNICAL DETAILS FOR CHAPTER 1

This chapter contains technical details including as assumptions, proofs, definitions, and

other materials supplemental to the main text of Chapter 1.

A1.1 Proof of GWRS consistency

We prove Theorem 1 (consistency of GWRS).

|Wn(Sn)− θ(S0)|

=|Wn(Sn)−Wn(S0)|+ |Wn(S0)− θ(S0)|

=|(1A)|+ |(1B)|,

where in what follows we show each term is oP (1).

|(1A)| =
∣∣∣∣ 1

n1n2

∑
i∈G1

∑
j∈G2

ζ(I1,i, I2,j|X1,i, X2,j;Sn)− ζ(I1,i, I2,j|X1,i, X2,j;Sn)

∣∣∣∣
=

∣∣∣∣ 1

n1n2

∑
i∈G1

∑
j∈G2

Pr(T̊1,i < T̊2,i|T̊1,i ∈ I1,i, T̊2,i ∈ I2,i, X1,i, X2,i;Sn)

+
1

2
Pr(T̊1,i = T̊2,i|T̊1,i ∈ I1,i, T̊2,i ∈ I2,i, X1,i, X2,i;Sn)

− Pr(T̊1,i < T̊2,i|T̊1,i ∈ I1,i, T̊2,i ∈ I2,i, X1,i, X2,i;S0)

− 1

2
Pr(T̊1,i = T̊2,i|T̊1,i ∈ I1,i, T̊2,i ∈ I2,i, X1,i, X2,i;S0)

∣∣∣∣
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=
1

n1n2

∣∣∣∣∑
i∈G1

∑
j∈G2

∫ τ

0

{Šn(t|I1,i, X1,i)− Š0(t|I1,i, X1,i)}dSn(t|I2,i, X2,i)

− 1

2
{Sn(τ |I1,i, X1,i)− Š0(τ |I1,i, X1,i)}Sn(τ |I2,i, X2,i)

+

∫ τ

0

Š0(t|I1,i, X1,i)d{Sn(t|I2,i, X2,i)− S0(t|I2,i, X2,i)}

− 1

2
S0(τ |I1,i, X1,i){Sn(τ |I2,i, X2,i)− S0(τ |I2,i, X2,i)}

∣∣∣∣
≤ 1

n1n2

∑
i∈G1

∑
j∈G2

sup
t

∣∣∣∣Šn(t|I1,i, X1,i)− Š0(t|I1,i, X1,i)

∣∣∣∣
+ sup

t

∣∣∣∣Sn(t|I2,i, X2,i)− S0(t|I2,i, X2,i)

∣∣∣∣
=

1

n1n2

∣∣∣∣ ∫ τ

0

∑
i∈G1

{Šn(t|I1,i, X1,i)− Š0(t|I1,i, X1,i)}d
∑
j∈G2

Sn(t|I2,i, X2,i)

− 1

2

∑
j∈G1

{Sn(τ |I1,i, X1,i)− Š0(τ |I1,i, X1,i)}
∑
j∈G2

Sn(τ |I2,i, X2,i)

+

∫ τ

0

∑
j∈G1

Š0(t|I1,i, X1,i)d
∑
j∈G2

{Sn(t|I2,i, X2,i)− S0(t|I2,i, X2,i)}

− 1

2

∑
j∈G1

S0(τ |I1,i, X1,i)
∑
j∈G2

{Sn(τ |I2,i, X2,i)− S0(τ |I2,i, X2,i)}
∣∣∣∣

≤ sup
t

∣∣∣∣ 1

n1

∑
i∈G1

{Šn(t|I1,i, X1,i)− Š0(t|I1,i, X1,i)}
∣∣∣∣

+ sup
t

∣∣∣∣ 1

n2

∑
i∈G2

{Sn(t|I2,i, X2,i)− S0(t|I2,i, X2,i)}
∣∣∣∣.

We further show that supt∈[0,τ ]

∣∣∣∣PnŠn(t|I,X)1(X∈Gl)
Pn1(X∈Gl)

− PnŠ0(t|I,X)1(X∈Gl)
Pn1(X∈Gl)

∣∣∣∣ = oP (1), l = 1, 2,

where PnŠn(t|I,X)1(X∈Gl)
Pn1(X∈Gl)

= 1
n1

∑
i∈G1

Šn(t|I1,i, X1,i). We then have
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sup
t∈[0,τ ]

∣∣∣∣PnŠn(t|I,X)1(X ∈ Gl)

Pn1(X ∈ Gl)
− PnŠ0(t|I,X)1(X ∈ Gl)

Pn1(X ∈ Gl)

∣∣∣∣ (4.15)

= sup
t

Pn{(Šn(t|X, I)− Š0(t|X, I)}1(X ∈ Gl)

P1(X ∈ Gl)(1 + oP (1))
(4.16)

≤ sup
t,x
|Pn{Šn(t|X, I)− Š0(t|X, I)}|λ−1

l (1 + oP (1))

≤ sup
t,x

∣∣∣∣Pn1(t ∈ [L,R))

{
Š0(t|X)− Š0(R|X)

Š0(L|X)− Š0(R|X)
− Šn(t|X)− Šn(R|X)

Šn(L|X)− Šn(R|X)

} ∣∣∣∣
≤ sup

t,x

∣∣∣∣Pn 1(t ∈ [L,R))

Š0(L|X)− Š0(R|X)

{
Š0(t|X)− Š0(R|X)− Šn(t|X) + Šn(R|X)

} ∣∣∣∣
+ sup

t,x

∣∣∣∣Pn 1(t ∈ [L,R))

Š0(L|X)− Š0(R|X)

{
Š0(L|X)− Š0(R|X)− Šn(L|X) + Šn(R|X)

} ∣∣∣∣
≤4

∣∣∣∣ sup
t,x

{
Šn(t|x)− Š0(t|x)

} ∣∣∣∣ sup
t

Pn
1(t ∈ [L,R))

Š0(L|X)− Š0(R|X)

≤4

∣∣∣∣ sup
t,x

{
Šn(t|x)− Š0(t|x)

} ∣∣∣∣(1 + oP (1))

=oP (1),

where the last inequality is due to

Pn
1(t ∈ [L,R))

Š0(L|X)− Š0(R|X)

=Pn
1(t ∈ [L,R))

S0(L|X)− S0(R|X)
for continuous S0,

=

∫
1(l ≤ t < r))

Pr(l ≤ T < r|X = x)
dPn(l, r, x)

=

∫
1(l ≤ T < r)

Pr(l ≤ T < r|X = x)

1(l ≤ t < r)

1(l ≤ T < r)
dPn(T, l, r, x)

≤

√∫
1(l ≤ T < r)

Pr(l ≤ T < r|X = x)
dPn(T, l, r, x)

√∫
1(l ≤ t < r)

1(l ≤ T < r)
dPn(T, l, r, x)
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≤
√√√√√
∫ ∫

1(l ≤ T < r)

Pr(l ≤ T < r|X = x)
dPn(T, l, r|X = x)︸ ︷︷ ︸

=1+oP (1)

dPnX(x)

×

√∫
1(l ≤ t < r)

1(l ≤ T < r)
dPn(T, l, r, x) with the denominator ≤ 1 with probability 1.

≤1 + oP (1).

Now we show (1B) = oP (1) to conclude proof of Theorem 1.

|(1B)| =|Wn(S0)− θ(S0)|

=

∣∣∣∣ ∫ τ

0


1

n1

∑
i∈G1︸ ︷︷ ︸

=:Pn,1

S0(t|I1,i, X1,i)

 d


1

n2

∑
j∈G2︸ ︷︷ ︸

=:Pn,2

S0(t|I2,i, X2,i)


− 1

2

{
1

n1

∑
j∈G1

S0(τ |I1,i, X1,i)

}{
1

n2

∑
j∈G2

S0(τ |I2,i, X2,i)

}

−
∫ τ

0

S0(t|X ∈ G1)dS0(t|X ∈ G2) +
1

2
S0(τ |X ∈ G1)S0(τ |X ∈ G2)

∣∣∣∣
=

∣∣∣∣ ∫ τ

0

{Pn,1S0(t|I,X)− S0(t|X ∈ G1)} dPn,2S0(t|I,X)

− 1

2
{Pn,1S0(τ |I,X)− S0(τ |X ∈ G1)}Pn,2S0(τ |I,X)

+

∫ τ

0

S0(t|X ∈ G1)d{Pn,2S0(t|I,X)− S0(t|X ∈ G2)}

− 1

2
S0(τ |X ∈ G1){Pn,2S0(t|I,X)− S0(τ |X ∈ G2)}

∣∣∣∣
≤

2∑
l=1

sup
t

sup
t
|Pn,lS0(t|I,X)− S0(t|X ∈ Gl)|

=oP (1).
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To see the last equality, we have

sup
t
|Pn,lS0(t|I,X)− S0(t|X ∈ Gl)|

= sup
t

∣∣∣∣PnS0(t|I,X)1(X ∈ Gl)

Pn1(X ∈ Gl)
− PS0(t|I,X)1(X ∈ Gl)

P1(X ∈ Gl)

∣∣∣∣
≤ sup

t

∣∣∣∣(Pn − P )S0(t|I,X)1(X ∈ Gl)

Pn1(X ∈ Gl)

∣∣∣∣+ sup
t

PS0(t|I,X)1(X ∈ Gl)

P1(X ∈ Gl)

∣∣∣∣(Pn − P )1(X ∈ Gl)

Pn1(X ∈ Gl)

∣∣∣∣
=oP (1),

by the law of large numbers and Slutsky’s lemma.

A1.2 Proof of GLR consistency

We prove Theorem 2 that states consistency of the GLR statistic.

Note that LRn(Sn) = g(

Y1(·;Sn)

Y2(·;Sn)

) and ρ(S0) = g(

S0(·|G1)

S0(·|G2)

), where g is a con-

tinuous map from D[0,1][0, τ ] to R+ and D[0,1][0, τ ] is the space of cadlag (right-continuous

with left-hand limits) functions bounded by 0 and 1 with support [0, τ ]. The continuity of

g can be shown without difficulty using convergence theorems for integration maps (see,

e.g., Proposition 7.27 of Kosorok (2007)). If we show supt,l |Yl(t;Sn) − S0(t|Gl)| →p 0, by

the functional continuous mapping theorem, LRn(Sn) →p ρ(S0). Thus, it remains to show

supt,l |Yl(t|Sn)− S0(t|Gl)| →p 0.

Let λl = limn→∞ λn,l, l = 1, 2. For each l = 1, 2, we have the following decomposition.

Yl(t;Sn)− S0(t|Gl)

=
PnSn(t|X, I)1(X ∈ Gl)

Pn1(X ∈ Gl)
− PS0(t|X)1(X ∈ Gl)

P1(X ∈ Gl)

=
(Pn − P )Sn(t|X, I)1(X ∈ Gl)

Pn1(X ∈ Gl)
+ (2A)
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P{(Sn(t|X, I)− S0(t|X, I)}1(X ∈ Gl)

Pn1(X ∈ Gl)
+ (2B)

P{S0(t|X, I)− S0(t|X)}1(X ∈ Gl)

Pn1(X ∈ Gl)
+ (2C)

PS0(t|X)1(X ∈ Gl)

{
1

Pn1(X ∈ Gl)
− 1

P1(X ∈ Gl)

}
. (2D)

In (2A), since Sn(t|X, I) is a stochastic process that is monotone in t, by Lemma 9.10 of

Kosorok (2007), this process {Sn(t|X, I) : t} has VC-dimension 2 and, thus, is a Glivenko-

Cantelli class. Also since any finite number of fixed sets form a Glivenko-Cantelli class and any

collection of elementwise products of Glivenko-Cantelli classes that are bounded are again a

Glivenko-Cantelli class, {Sn(t|X, I)1(X ∈ Gl) : t, l = 1, 2} is Glivenko-Cantelli. Thus by the

Glivenko-Cantelli Theorem,

sup
t
|(1A)| ≤ {(Pn − P )Sn(t|X, I)1(X ∈ Gl)}λ−1

l (1 + oP (1))→ 0,

where we used the fact that Pn1(X ∈ Gl) = λl(1 + oP (1)) and the numerator being asymptoti-

cally bounded by twice the denominator in absolute values.

sup
t
|(2B)| = sup

t

P{(Sn(t|X, I)− S0(t|X, I)}1(X ∈ Gl)

P1(X ∈ Gl)
(1 + oP (1)) (4.17)

≤ sup
t
|P{Sn(t|X, I)− S0(t|X, I)}|λ−1

l (1 + oP (1))

≤ sup
t

∣∣∣∣P1(t ∈ [L,R))

{
S0(t|X)− S0(R|X)

S0(L|X)− S0(R|X)
− Sn(t|X)− Sn(R|X)

Sn(L|X)− Sn(R|X)

} ∣∣∣∣
≤ sup

t

∣∣∣∣P 1(t ∈ [L,R))

S0(L|X)− S0(R|X)
{S0(t|X)− S0(R|X)− Sn(t|X) + Sn(R|X)}

∣∣∣∣
+ sup

t

∣∣∣∣P 1(t ∈ [L,R))

S0(L|X)− S0(R|X)
{S0(L|X)− S0(R|X)− Sn(L|X) + Sn(R|X)}

∣∣∣∣
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≤4

∣∣∣∣ sup
t,x
{Sn(t|x)− S0(t|x)}

∣∣∣∣ sup
t
P

1(t ∈ [L,R))

S0(L|X)− S0(R|X)

≤4

∣∣∣∣ sup
t,x
{Sn(t|x)− S0(t|x)}

∣∣∣∣
=oP (1),

where the last inequality is due to

P
1(t ∈ [L,R))

S0(L|X)− S0(R|X)

=

∫
1(l ≤ t < r))

Pr(l ≤ T < r|X = x)
dP (l, r, x)

=

∫
1(l ≤ T < r)

Pr(l ≤ T < r|X = x)

1(l ≤ t < r)

1(l ≤ T < r)
dP (T, l, r, x)

≤

√∫
1(l ≤ T < r)

Pr(l ≤ T < r|X = x)
dP (T, l, r, x)

√∫
1(l ≤ t < r)

1(l ≤ T < r)
dP (T, l, r, x)

≤

√√√√√
∫ ∫

1(l ≤ T < r)

Pr(l ≤ T < r|X = x)
dP (T, l, r|X = x)︸ ︷︷ ︸

=1

dPX(x)

×

√∫
1(l ≤ t < r)

1(l ≤ T < r)
dP (T, l, r, x) with the denominator ≤ 1 with probability 1.

≤1.

sup
t
|(2C)| = sup

t

{
P{S0(t|X, I)− S0(t|X)}1(X ∈ Gl)

}
λ−1
l (1 + oP (1))

≤ sup
t

{
P{S0(t|X, I)− S0(t|X)}

}
λ−1
l (1 + oP (1))

=0,
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where the last equality is from the fact that both S0(t|X, I) and S0(t|X) can be written as

expectation with only difference in the conditioning argument that are marginalized out by the

population average operator P (the double expectation). Finally,

sup
t
|(2D)| = sup

t
PS0(t|X)1(X ∈ Gl)

{
1

Pn1(X ∈ Gl)
− 1

P1(X ∈ Gl)

}
≤P1(X ∈ Gl)

{
1

Pn1(X ∈ Gl)
− 1

P1(X ∈ Gl)

}
≤P1(X ∈ Gl)− Pn1(X ∈ Gl)

Pn1(X ∈ Gl)

=oP (1).

Therefore, the desired result holds.

A1.3 Proof of uniform consistency of interval censored recursive forests

A1.3.1 Overview of the proof of Theorem 3

It suffices to prove the theorem for a single iteration, because, for a large sample, terminal

node size becomes arbitrarily small with the potential splitting bias being eliminated and as a

result recursion does not add to bias reduction.

We borrow the strategy used in Cho et al. (2020) in establishing the uniform consistency of

random survival forests, which uses empirical process theory for right censored data. There is a

unique challenge in applying the approach to interval censored survival regression problems—

namely the identifiability issue. In Cho et al. (2020), the Z-estimator theorem (Theorem 2.10) in

Kosorok (2007) could be used without such an issue, since the self-consistency algorithm gives a

unique solution for right-censored data. However, for interval censored data, the self-consistency

algorithm may not identify the global maximum of the likelihood. Thus, a careful handling of

the identifiability condition is required.
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The main technique used to guarantee identifiability is to restrict the class of candidate

survival functions to those which satisfy the identifiability condition given data. If one can

show that the unrestricted class of the estimating equations is Glivenko-Cantelli (Kosorok, 2007;

van der Vaart and Wellner, 2013), the resulting theoretical property—uniform convergence

of empirical processes—is inherited to smaller, restricted classes. This is true even if the

restriction is done in a data-dependent fashion, since any subset of a Glivenko-Cantelli class is

also a Glivenko-Cantelli class. In this way, the desired result, or uniform consistency, can be

established.

Noting that NPMLEs have uniform-over-time consistency (Groeneboom and Wellner, 1992)

in the non-regression context and that the unique NPMLEs can be estimated through the iterative

convex minorant (ICM) algorithms (Groeneboom, 1991; Jongbloed, 1998; Wellner and Zhan,

1997), the problem now reduces to incorporating the identifiability restriction into the estimating

equation and extending the uniform consistency results to the regression context.

A1.3.2 The Z-estimator framework

Now we give a detailed proof of Theorem 3 with an introduction to some basic notation

for self-consistency equations for non-regression settings and extend the notation to regression

settings. The self-consistency equation, without covariates, for case-II censoring with two

monitoring times can be expressed as

Pnψ(m)
S,t = 0 ∀t ∈ [0, τ ], (4.18)

where we put superscript (m) to denote that this is for marginal, or non-regression, settings,

ψ
(m)
S,t ≡ η1

S(t)−S(U)
1−S(U)

∨ 0 +
(
η2

S(t)−S(V )
S(U)−S(V )

∨ 0
)
∧ 1 + η3

S(t)
S(V )
∧ 1 − S(t), U and V are the

ordered monitoring times, η1 = 1(T ≤ U), η2 = 1(U < T ≤ V ), η3 = 1− η1 − η2, ∧ and ∨

are the minimum and the maximum operators, and Pn is the empirical measures of given data

of size n. Pn is, at the same time, used to denote the sample average operator such that, given
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a function f : X 7→ R that maps the sample space to the real space, Pnf =
∫
f(x)dPn(x) =

1
n

∑n
i=1 f(Xi), where Xi is the ith random entry of the data, or Xi = (Ui, Vi, η1,i, η2,i) in this

specific problem.

The following lemma is a restatement of Theorem 2.10 of Kosorok (2007). In the survival

regression setting, we let Ψ : Θ 7→ L be a map between two normed spaces, where Θ is the

space of all marginal survival functions with time ranging over [0, τ ], L is a normed space of

right-coninuous-over-time functions with support [0, τ ] and range [−1, 1], ‖ · ‖L denotes the

uniform norm over [0, τ ], Ψ is a fixed map, and Ψn is a data-dependent map.

Lemma 4.1 (Consistency of Z-estimators). Let Ψ(S0) = 0 for some S0 ∈ Θ, and assume

‖Ψ(Sn)‖L → 0 implies ‖Sn−S0‖L → 0 for any sequence {Sn} ∈ Θ. Then, if ‖Ψn(Ŝn)‖L → 0

in probability for some sequence of estimators Ŝn ∈ Θ and supS∈Θ ‖Ψn(S)−Ψ(S)‖L → 0 in

probability, ‖Ŝn − S0‖L → 0 in probability, as n→∞.

Now we adapt the lemma to address the identifiability issue by introducing a necessary and

sufficient condition (Gentleman and Geyer, 1994) for an NPMLE S to be unique:

Pnφ(m)
S,t ≤ 1 ∀t ∈ [0, τ ], (4.19)

where φ(m)
S,t = η1

1(t≤U)
1−S(U)

+ η2
1(U<t≤V )
S(U)−S(V )

+ η3
1(t>V )
S(V )

. This condition guarantees that the NPMLE

Ŝ that satisfies Pnφ(m)
S,t ≤ 1 is the global maximum and thus identifies the true S0 at its limit

given self-consistency. Thus, if we restrict the space to Θn = {S : supt∈[0,τ ] Pnφ
(m)
S,t ≤ 1},

within the resticted space, only the unique NPMLE S = Ŝn satisfies the estimating equation

(4.18). This space Θn is adaptively defined as it depends on a specific data set. This sequence of

spaces always exists, because, given data, the NPMLE can be uniquely estimated via the ICM

algorithm. Now the lemma is adapted in the following corollary to reflect the restriction and to

be further used for the regression setting.

Corollary 4.1 (Consistency of Z-estimators). Let Θ be a class of all covariate-conditional

survival functions S : [0, τ ]× X 7→ [0, 1] and let Ψ : Θ 7→ L where L is some normed space
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of functions S : [0, τ ] × X 7→ [−1, 1]. (i) Let Ψ(S0) = 0 for some S0 ∈ Θ. (ii) Assume that

there exists a sequence of subclasses Θn such that for any sequence {Sn ∈ Θn}, ‖Ψ(Sn)‖L → 0

implies ‖Sn − S0‖L → 0. (iii) Further assume that ‖Ψn(Ŝn)‖L → 0 in probability for some

sequence of estimators {Ŝn ∈ Θn}. Then, if (iv) supS∈Θn ‖Ψn(S)−Ψ(S)‖L → 0 in probability,

‖Ŝn − S0‖L → 0 in probability, as n→∞.

We first define the regression-version estimating equations, Ψ and Ψn, as below.

Ψ(S) =
PψS,tδx
Pδx

≡ P·|xψS,t,

Ψn(S) =
PnψS,tkx
Pnkx

≡ Pn,·|kxψS,t,

where

ψS,t = η1
S(t|X)− S(U |X)

1− S(U |X)
∨ 0 + η2

S(t|X)− S(V |X)

S(U |X)− S(V |X)
∨ 0 ∧ 1 + η3

S(t|X)

S(V |X)
∧ 1− S(t|X),

(4.20)

P is the population version of Pn so that, Pf =
∫
f(x)dP (x), δx = I(· = x) is the un-

normalized Dirac measure, and kx the unnormalized forest kernel. To be more specific,

kx = 1
ntree

∑ntree
b=1 1(x ∈ Lb(x)), where ntree is the number of trees in the forest, Lb(x) is the

terminal node of the bth tree of the forest that contains the point x. We use the term ‘unnormal-

ized’ to mean that they are not multiplied by the sample (or the population) size. By using the

subscripts · | x and · | kx we denote the conditional probability measures, where the latter is a

probability measure weighted by the kernel kx.

Note that for ease of theoretical exposition, we assume that the terminal node prediction of

random survival forests is given by the NPMLEs of observations weighted by the forest kernels,

instead of averaging the NPMLEs of each tree. This kernel weighting approach is often taken

in the literature (Athey et al., 2019; Yao et al., 2019) and is equivalent to the average of tree

predictions for non-censored mean outcomes. Although for censored data, these two approaches
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are not equal in general, they can be shown equivalent for B >> 1, as the former can be seen

as the average of estimates of random subsamples from the kernel-weighted population from

which the latter is estimated.

The identifiability condition (4.19) in the marginal context is now replaced by

PnφS,tkx
Pnkx

≤ 1 ∀t ∈ [0, τ ], x ∈ Rd. (4.21)

Note that the kernel k not only depends on given data but also has extra randomness due to

subsampling, random variable subsetting, and/or random cut-off selection. In other words, given

data, k is formed as a result of a realized partition of the trees or the forests. Similarly to the

restriction done in the marginal setting, the class Θ of covariate-conditional survival curves can

also be restricted to Θn,k given data and a specific partition (or the kernel k). In other words,

Θn,k = {S : S ∈ Θ, supt∈[0,τ ],x∈X
PnφS,tkx
Pnkx ≤ 1}.

Hence Theorem 3 will follows if we can show that the conditions of Corollary A4.1 hold.

First, that (i) Ψ(S0) = 0 for some S0 ∈ Θ is trivial. The second condition, (ii) existence of

a restricted set Θn with which ‖Ψ(Sn)‖L → 0 implies ‖Sn − S0‖L → 0 for any sequence

{Sn ∈ Θn,k}, can be shown to be satisfied by verifying the assumptions of Lemma 4.2 in

Section A1.3.3. The third condition, (iii), is met, since the kernel-weighed NPMLE is the

solution to ‖Ψn(Ŝ)n)‖L. The last condition, (iv), is checked in Section A1.3.4 below.

A1.3.3 Uniform identifiability

We introduce additional notation for Lemma 4.2. Let Q denote the space of all survival

functions on S : [0, τ ] 7→ [0, 1], S0 : X 7→ Q denote the true survival functions, and Q0 =

{S0(x) : x ∈ X} be the collection of S0’s. Let Φ : Q × Q 7→ R be the function that takes

S1, S2 ∈ Q and computes the supremum over [0, τ ] of the absolute value of a certain estimating

equation, where S2 is the true survival function and S1 is the candidate survival functions.

99



Assumption 4.16 (Closed covariate space, compact and continuous true survival space). (i) X

is closed, (ii) Q0 is compact with respect to the uniform norm on Q, and (iii) for all sequence

{xn} ∈ X such that xn → x1, ‖S0(xn)− S0(x1)‖∞ → 0.

Assumption 4.17 (local identifiability). For every sequence S∗n ∈ D (and also in Θn), and every

seqeunce {xn} ∈ H : xn → x1, we have that Φ(S∗n, S0(xn))→ 0⇒ ‖S∗n − S0(x1)‖∞ → 0.

Lemma 4.2 (uniform identifiability). Assume Assumptions 4.16–4.17. Suppose ∀x ∈ X ,

Sn(x) is a sequence ∈ Q and suppose supx∈X Φ(Sn(x), S0(x)) → 0. Then supx∈X ‖Sn(x) −

S0(x)‖∞ → 0.

Proof. Assume that supx∈X Φ(Sn(x), S0(x)) → 0 but supx∈X ‖Sn(x)− S0(x)‖∞ 6→ 0. Then

there exists a subsequence n′ and an associated sequence xn′ such that ‖Sn′(xn′)−S0(xn′)‖∞ →

c > 0. Also, there exists, for this subsequence, n′′ such that xn′′ → x1 for some x1 ∈ X (by

compactness of Q0).

By Assumption 2, with S∗n′′ = Sn′′(xn′′), we obtain that Φ(S∗n′′ , S0(xn′′)) → 0 ⇒

‖Sn′′(xn′′) − S0(xn′′)‖∞ → 0. This is a contradiction. Thus, the conclusion of the lemma

holds.

Assumptions 2 and 3 (Lipschitz continuity and bounded and closed covariate space) are

sufficient for Assumption A4.16. Specifically, (ii) is obtained from the Ascoli-Arzelá Theorem.

If we show that the interval censored recursive forest satisfies Assumption 4.17, the result of

Lemma 4.2 holds. While this identifiability result is valid with Φ function, the second condition

of Corollary A4.1 which relies on Ψ function, or the first term of the Φ function, is always

satisfied within the restricted class Θn. Such a sequence Θn of spaces exists, because, given

data, the NPMLE can be uniquely estimated via the ICM algorithm.

100



A1.3.4 Consistency of the estimating function

Finally, we show how the last condition is fulfilled. We decompose the quantity into three

components and bound the error.

sup
S∈Θn

‖Ψn(S))−Ψ(S)‖L

≤ sup
S∈Θn,t∈[0,τ ],x∈X

∣∣∣∣PnψS,tkxPnkx
− PψS,tkx

Pkx

∣∣∣∣+ sup
S∈Θn,t∈[0,τ ],x∈X

∣∣∣∣PψS,tkxPkx
− PψS,tδx

Pδx

∣∣∣∣
≤ sup

S∈Θn,t∈[0,τ ],x∈X

∣∣∣∣(Pn − P )ψS,tkx
Pnkx

∣∣∣∣︸ ︷︷ ︸
=(3A)

+ sup
S∈Θn,t∈[0,τ ],x∈X

∣∣∣∣PψS,tkx{ 1

Pnkx
− 1

Pkx
}
∣∣∣∣︸ ︷︷ ︸

=(3B)

+ sup
S∈Θn,t∈[0,τ ],x∈X

∣∣∣∣PψS,tkxPkx
− PψS,tδx

Pδx

∣∣∣∣︸ ︷︷ ︸
=(3C)

.

We use empirical process theory to bound the error of (3A). The class of functions

{ψS,t : S ∈ Θn, t ∈ [0, τ ]} can be shown to be a Donsker class. To see this, notice that each of

the four terms in (4.20) is a monotone stochastic process and, thus, is a VC class according to

Lemma 9.10 of Kosorok (2007). As a finite sum of VC classes is a VC class and a VC class

endowed with a bounded envelope—in this case F = 1—is Donsker, the class of ψS,t functions

is a Donsker class. Next, since kx can be shown to be a Donsker class by Proposition 6 (Bounded

entropy integral of the tree and forest kernels) of Cho et al. (2020) and is bounded above by

1, the class of their products {ψS,tδx : S ∈ Θn, t ∈ [0, τ ]} is again Donsker. Consequently,

supS∈Θn,t∈[0,τ ]

∣∣∣∣(Pn−P )ψS,tkx

∣∣∣∣ = OP (n−1/2). Meanwhile since the denominator Pnkx � nβ−1

by the assumption of terminal node size, we have (3A) = oP (1)
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(3B) = oP (1) can also be shown similarly.

(3B) = sup
S∈Θn,t∈[0,τ ],x∈X

∣∣∣∣PψS,tkx{ 1

Pnkx
− 1

Pkx
}
∣∣∣∣

= sup
S∈Θn,t∈[0,τ ],x∈X

∣∣∣∣ PψS,tkxPnkx︸ ︷︷ ︸
=OP (1)

(Pn − P )kx
Pnkx

∣∣∣∣
=OP (1)OP (n−1/2−(β−1)) = oP (1).

Finally, we show (3C) = oP (1). We first note that

P· |kxψS,x

= 1−GU(t|kx)−
∫ ∞
u=t

{1− S0(u|kx)}
1− S(t|x)

1− S(u|x)
dGU(u|kx)

+

∫ t

u=0

∫ ∞
v=t

S0(u|kx)dG(u, v|kx) +

∫ t

0

S(t|x)

S(v|x)
S0(v|kx)dGV (v|kx)

−
∫ t

u=0

∫ ∞
v=t

S(u|x)− S(t|x)

S(u|x)− S(v|x)
(S0(u|kx)− S0(v|kx))dG(u, v|kx)− S(t|x)

= 1−GU(t|kx)− S(t|x)

−
∫ ∞
u=t

R1(t, u, x){1− S0(u|kx)}dGU(u|kx)

+

∫ t

u=0

∫ ∞
v=t

S0(u|kx)dG(u, v|kx) +

∫ t

0

R2(t, v, x)S0(v|kx)dGV (v|kx)

−
∫ t

u=0

∫ ∞
v=t

R3(t, u, v, x)(S0(u|kx)− S0(v|kx))dG(u, v|kx),

where 0 ≤ R1(t, u, x), R2(t, v, x), R3(t, u, v, x) ≤ 1 are decreasing in u and increasing in v.

Thus,
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(3C) = sup
S∈Θ,x∈X

|P· |kxψS,x − P· |xψS,x|

= sup
S∈Θ,x∈X

∣∣∣∣ ∫ ∞
u=t

R1(t, u, x){1− S0(u|kx)}dGU(u|kx)

−
∫ ∞
u=t

R1(t, u, x){1− S0(u|x)}dGU(u|x)

∣∣∣∣︸ ︷︷ ︸
=(3C1)

+ sup
S∈Θ,x∈X

∣∣∣∣ ∫ t

u=0

∫ ∞
v=t

S0(u|kx)dG(u, v|kx)−
∫ t

u=0

∫ ∞
v=t

S0(u|x)dG(u, v|x)

∣∣∣∣︸ ︷︷ ︸
=(3C2)

+ sup
S∈Θ,x∈X

∣∣∣∣ ∫ t

0

R2(t, v, x)S0(v|kx)dGV (v|kx)−
∫ t

0

R2(t, v, x)S0(v|x)dGV (v|x)

∣∣∣∣︸ ︷︷ ︸
=(3C3)

+ sup
S∈Θ,x∈X

∣∣∣∣ ∫ t

u=0

∫ ∞
v=t

R3(t, u, v, x)(S0(u|kx)− S0(v|kx))dG(u, v|kx)

−
∫ t

u=0

∫ ∞
v=t

R3(t, u, v, x)(S0(u|x)− S0(v|x))dG(u, v|x)

∣∣∣∣.︸ ︷︷ ︸
=(3C4)

We show supS∈Θ,x∈X (3C1) = oP (1). Then (3C2)–(3C4) can be shown to be oP (1) using

similar arguments.
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(3C1) ≤
∣∣∣∣ ∫ ∞

u=t

R1(t, u, x){1− S0(u|kx)}dGU(u|kx)

−
∫ ∞
u=t

R1(t, u, x){1− S0(u|x)}dGU(u|kx)
∣∣∣∣

+

∣∣∣∣ ∫ ∞
u=t

R1(t, u, x){1− S0(u|x)}dGU(u|kx)

−
∫ ∞
u=t

R1(t, u, x){1− S0(u|x)}dGU(u|x)

∣∣∣∣
=

∣∣∣∣ ∫ ∞
u=t

R1(t, u, x)︸ ︷︷ ︸
∈[0,1]

{S0(u|x)− S0(u|kx)}dGU(u|kx)
∣∣∣∣

+

∣∣∣∣ ∫ ∞
u=t

R1(t, u, x){1− S0(u|x)}︸ ︷︷ ︸
∈[0,1]

d{GU(u|kx)−GU(u|x)}
∣∣∣∣

≤
∫ ∞
u=t

sup
u′∈[0,∞)

|S0(u′|x)− S0(u′|kx)|dGU(u|kx)

+

∣∣∣∣[R1(t, u, x){1− S0(u|x)}{GU(u|kx)−GU(u|x)}
]∞
u=t

∣∣∣∣
+

∣∣∣∣ ∫ ∞
u=t

{GU(u|kx)−GU(u|x)}d
[
R1(t, u, x){1− S0(u|x)}

]∣∣∣∣
≤ sup

u∈[0,∞)

∣∣∣S0(u|x)− S0(u|kx)
∣∣∣+
∣∣∣GU(t|kx)−GU(t|x)

∣∣∣
+

∫ ∞
u=t

sup
u′∈[0,∞)

∣∣∣GU(u′|kx)−GU(u′|x)
∣∣∣d[R1(t, u, x){1− S0(u|x)}︸ ︷︷ ︸

increasing in u, bounded by 0 and 1.

]
≤ sup

u∈[0,∞)

∣∣∣S0(u|x)− S0(u|kx)
∣∣∣+
∣∣∣GU(t|kx)−GU(t|x)

∣∣∣+ sup
u∈[0,∞)

∣∣∣GU(u|kx)−GU(u|x)
∣∣∣

≤ sup
x∈X

sup
x′∈kx

LS‖x− x′‖1 + 2 sup
x∈X

sup
x′∈kx

LG‖x− x′‖1

= oP (1).

The last inequality comes from Assumption 2 (Lipschitz continuity) and the subsequent

equations result from Assumptions 5 (shrinking terminal node) and 4 (random and regular

splits). The derivation for a unit hypercube with a bounded density is given in the proof of

Theorem 3 of Wager and Walther (2015).
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A1.4 Computational cost

Computation of ICRF is affected by the choice of the splitting and splitting rules, the sample

size, and the bandwidth in kernel-smoothing. We discuss the effects of choice of the rules

and the sample size from the simulations done in Section 5. Larger bandwidths require more

computation having a linear relationship with the number of operations.

First, we discuss the computational cost of ICRF with respect to the splitting and prediction

rules. We use the Scenario 1 current status data (M = 1) with sample size of n = 300, 10

forest iterations, and 300 simulation replicates. First, different splitting rules do not make

noticeable differences than having different prediction rules as can be seen in Figure 4.13. This

is because the computationally expensive NPMLEs should be obtained for all n/nmin terminal

nodes. The computation time for NPMLE is almost a quadratic function of sample size due to

its O(nk) EM-iterations and O(n log2 n) steps for preprocessing (sorting and indexing), where

n is the sample size which is nmin in our application and k is the number of Turnbull intervals

(Anderson-Bergman, 2017a). Assuming k ' cnmin for some constant c > 0 and nmin = nβ , the

total computational burden of quasi-honest ICRF is O(nfoldn
1+β). In contrast, the exploitative

ICRF implements the NPMLE computation only once at the initial step, saving the constant

nfold and the set-up cost of n1−β many NPMLE calculations.

Compared to existing splitting rules, SWRS and SLR, the new splitting rules cost slightly

more computationally. However, as mentioned above, the prediction rule is the predominant

determinant of computation over the splitting rule. Given a pair of two samples of sizes

nl, l = 1, 2 and k time points of evaluation for numerical integration, the computational burden

of GWRS and GLR is O(kn1n2) and O(k(n1 + n2)), respectively. Although GWRS and GLR

do not make a large difference in computation time in Figure 4.13, for large samples, GWRS

may be computationally more burdensome.

Figure 4.14 illustrates the trend of computation time in terms of sample size. The trend is

mildly superlinear supporting the total burden of O(nγ) for some 1 < γ ≤ 2.
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Figure 4.13: Running time for fitting ICRFs with different splitting and prediction rules.

Figure 4.14: Running time for fitting ICRFs with different sample sizes. The blue curve is a
quadratic line that minimizes the mean squared error.
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A1.5 The National Longitudinal Mortality Study data analysis

We use the NLMS dataset with six years of follow-up recorded around April 2002. The

dataset includes 745,162 subjects with their time to mortality, demographic information such as

age, sex, and race, socioeconomic information such as income and housing tenure, and other

covariates. The censoring rate of this dataset is very high (97% survived six years), as this is

a general population, and only administrative censoring is observed. We narrow our focus to

the aged population (age ≥ 80 in years) with complete covariate records (n = 3, 630). The

proportion of missing data is 20.7% for the whole data and 65.9% for the aged group data. Thus,

it should be noted that this data analysis is for performance comparison among the methods

and that the results obtained from this regression analysis are limited to the tracked population.

The administrative censoring rate is 69.6%, and the distribution of the data is summarized in

Table 4.9.

Since the observed failure time is sparse after the follow-up time of 1500, we set τ = 1500.

We induce current status censoring where the monitoring time is dependent on age and number

of households. The monitoring time is randomly drawn from the model

C ∼ N(1000 + 100(10−Xage/10 +X# households), 3002) ∨ 0 ∧ τ.

The analysis framework is largely the same for the avalanche data analysis, except that with the

large sample size, the terminal node size is allowed to be larger (nmin = 20 for random forests

and nmin = 40 for trees).
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variable min 1Q median mean 3Q max
failure time 2 315 633 694.9 1003 1739
censoring censored 69.6%
age (years) 81 83 85 84.8 86 90
number of households 1 1 2 1.9 2 13
adjusted weight 14 251 432 471 633 1982
sex male 34.8%, female 65.2%
race white 85.6%, black 10.1%, others and unknown 4.4%
Hispanic Mexican 3.4%, other Hispanics 3.6%, non-Hispanics 93.0%
relationship A. 25.6%; B. 46.7%; C. 13.6%; D. 13.2%; E. 0.9
adjusted income 1. 6.6%; 2. 11.4%; 3. 14.1%; 4. 11.6%; 5. 8.5%;

6. 12.6%; 7. 8.6%; 8. 5.7%; 9. 4.1%; 10. 3.5%;
11. 3.8%; 12. 2%; 13. 3.0%; 14. 4.6

social security number present 56.9%
housing tenure owner 76.4; rent 21.1; non-cash rent 2.5
health in general A. 5.1; B. 17.1; C. 32.5; D. 27.8; E. 17.4”
health insurance type A. 0.6; B. 75.2; C. 7.1; D. 7.5; E. 9.5
urban urban 73.1; rural 26.9
citizenship native citizen born in mainland US 88.3%; others 11.7%

Table 4.9: The NLMS data. Failure time, non-censored time in days; Relationship, relationship
to the reference person (A: reference person with other relatives in household, B. reference
person with no other relatives in household, C. spouse of reference person, D. other relative
of reference person, E. non-relative of reference person); Adjusted income, 1. < $5,000, 2. <
$7,499, 3. < $10,000, 4. < , 4. < $12,500, 5. < $15,000, 6. < $20,000, 7. < $25,000, 8. <
$30,000, 9. < $35,000, 10. < $40,000, 11. < $50,000, 12. < $60,000, 13. < $75,000, 14.
≥ $75,000; health in general, A. Excellent, B. Very good, C. Good, D. Fair, E. Poor; health
insurance type, A. Medicare, B. Medicaid, C. governmental healthcare (ChampUS, ChampVA,
etc), D. employer-based, E. private non-employer-based.
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APPENDIX 2: TECHNICAL DETAILS FOR CHAPTER 2

This chapter contains technical details including as assumptions, proofs, definitions, and

other materials supplemental to the main text of Chapter 2.

A2.1 Proof of Proposition 2.1

Proof. We first prove the case when φ = φµ. We use a recursion strategy starting from q = Q−1.

Assume

π(q+1)
∗ (H(q+1)) = arg max

a(q+1)∈A(q+1)
φ(q+1){S(q+1)(· |H(q+1), π(q+2)

∗ , ..., π(Q)
∗ )}

is true for some q = Q− 1, Q− 2, ..., 1.

Then for any policy π(q+1)
∗ (H(q+1)) for the qth stage,

∫ τ

0

S(q+1){t−X(q+2) |H(q+1), A(q+1) = π(q+1)
∗ (H(q+1)), π(q+2)

∗ , ..., π(Q)
∗ }dt

≥
∫ τ

0

S(q+1){t−X(q+2) |H(q+1), A(q+1) = π(q+1)(H(q+1)), π(q+2)
∗ , ..., π(Q)

∗ }dt.

This implies that for any a ∈ A(q),

φ(q)
µ {S(q)(·;H(q), a(q), π(q+1)

∗ , π(q+2)
∗ , ..., π(Q)

∗ )}

=

∫ τ

0

∫
S(q+1){t−X(q) |H(q+1), A(q+1) = π(q+1)

∗ (H(q+1))}

dP (X(q), δ(q),H(q+1) |H(q), A(q) = a(q))dt
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=

∫ [ ∫ τ

0

S(q+1){t−X(q) |H(q+1), A(q+1) = π(q+1)
∗ (H(q+1))}dt

]
dP (X(q), δ(q), H(q+1) |H(q), A(q) = a(q))

≥
∫ [ ∫ τ

0

S(q+1){t−X(q) |H(q+1), A(q+1) = π(q+1)(H(q+1))}dt
]

dP (X(q), δ(q), H(q+1) |H(q), A(q) = a(q))

= φ(q)
µ {S(q)(· |H(q), a(q), π(q+1), π(q+2)

∗ , ..., π(Q)
∗ )}.

This can be further extended to

φµ{S(q)(·;H(1), a(1), a(2), ..., a(q), π(q+1)
∗ , π(q+2)

∗ , ..., π(Q)
∗ )}

≥ φµ{S(q)(· | H(1), a(1), a(2), ...a(q), π(q+1), π(q+2)
∗ , ..., π(Q)

∗ )},

for any set (a(1), a(2), ..., a(q))> ∈ ⊗qj=1A(j) of treatments up to stage q. Since the optimal

treatment at stage q is chosen independently of the regime of the previous stages, the desired

result holds.

The proof for φ = φσ,t can be done similarly and is not presented here.

A2.2 Proof of Theorem 2.4

The following Z-estimator lemma (Kosorok, 2007) plays a key role in this consistency

proof. Let Ψ : Θ 7→ L and Ψn : Θ 7→ L be maps between two normed spaces, where Θ is a

parameter space, L is some normed space, ‖ · ‖L denotes the uniform norm, Ψ is a fixed map,

and Ψn is a data-dependent map.

Lemma 4.3 (Consistency of Z-estimators). Let Ψ(S0) = 0 for some S0 ∈ Θ, and assume

‖Ψ(Sn)‖L → 0 implies ‖Sn−S0‖L → 0 for any sequence {Sn} ∈ Θ. Then, if ‖Ψn(Ŝn)‖L → 0
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in probability for some sequence of estimators Ŝn ∈ Θ and supS∈Θ ‖Ψn(S)−Ψ(S)‖L → 0 in

probability, ‖Ŝn − S0‖L → 0 in probability, as n→∞.

For our specific problem, let Θ be the space of all covariate-conditional survival functions.

Define a normed space L = D[−1,1]{[0, τ ]×Rd}, whereDAB is the space of all right-continuous

left-limits functions with range A and support B.

Define

ψS,t =δS ′(t−X | H ′) + (1− δ){ S(t | H)

S(X | H)
∧ 1} − S(t | H), (4.22)

ψ̃S,t,S̃′ =δS̃ ′(t−X | H ′) + (1− δ){ S(t | H)

S(X | H)
∧ 1} − S(t | H) (4.23)

Ψ(S) =
PψS,tδh
Pδh

≡ P·|hψS,t and (4.24)

Ψn(S) =
Pnψ̃S,tkh
Pnkh

≡ Pn,·|khψ̃S,t,S̃′ , (4.25)

where P is the population average of function values, i.e., Pf =
∫
f(h)dP (h), Pn is the

sample average of function values, i.e., Pnf =
∫
f(h)dPn(h) = 1

n

∑n
i=1 f(Hi), S ′ is a fixed

survival probability that is distinct from S, S̃ ′ is a data-dependent version of S ′ such that

limn→∞ S̃
′ → S ′ in probability. In the context of dynamic treatment regimes, S ′ is the survival

probability of the remaining life of the next stage and H ′ is the historical information available

at the beginning of the next stage. Also, δh = I(· = h) is the unnormalized Dirac measure, and

kh the unnormalized forest kernel. To be more specific, kh = 1
ntree

∑ntree
b=1 1(h ∈ Lb(h)), where

ntree is the number of trees in the forest, Lb(h) is the terminal node of the bth tree of the forest

that contains the point h. We used the term ‘unnormalized’ to mean that they are not multiplied

by the sample (or the population) size.

Then by Lemma 4.3 and the following four propositions (Propositions 4.2 to 4.5), ‖Ŝ −

S0‖L → 0 in probability as n→∞.

Proposition 4.2. Ψ(S0) = 0 for S0 ∈ Θ.
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Proposition 4.3. Assume Assumptions 2.6 to 2.9. As n → ∞, ‖Ψ(Ŝ)‖L → 0 implies ‖Ŝ −

S0‖L → 0.

Proposition 4.4. Assume Assumptions 2.6 to 2.9. Let Ŝ be the kernel-conditional modified

Kaplan-Meier estimator, which is the modified Kaplan-Meier in (2.3) applied to the data with

weights indicated by the forest kernel, kh. As n→∞, ‖Ψn(Ŝ)‖L → 0 in probability.

Proposition 4.5. Assume Assumptions 2.6 to 2.9. As n→∞, supS∈Θ ‖Ψn(S)−Ψ(S)‖L → 0

in probability.

We give the proofs of Propositions 4.2–4.5. The Proposition 4.2 follows immediately from

(2.2).

Proof of Proposition 4.3. By hypothesis, ‖Ψ(Sn)‖L = supt∈[0,τ ],h∈H |P· |hψSn,t| → 0. By the

following relation, it can be shown that P· |hψSn,t → 0 uniformly over h ∈ H and t ∈ [0, τ ]

implies supt,h un(t|h)→ 0 for un defined in (4.26) below.

P· |hψSn,t = P· |h

{
δS ′(t−X | H ′) + (1− δ)1(X > t) + (1− δ)1(X ≤ t)

Sn(t)

Sn(X)
− Sn(t)

}
=

∫ t

0

{
δS ′(t−X|H ′) + (1− δ)1(X > t) + (1− δ)1(X ≤ t)

Sn(t|H = h)

Sn(X|H = h)

− Sn(t|H = h)

}
dP· |H=h

= S(t|H = h)− Sn(t|H = h)

+

∫ t

0

1(X ≤ t)

{
Sn(t|H = h)

Sn(X|H = h)
− S(t|H = h)

S(X|H = h)

}
dP· |H=h

= S(t|H = h)− Sn(t|H = h)−
∫ t

0

S(u|H = h)

Sn(u|H = h)
dG(u|H = h)Sn(t|H = h)

+

∫ t

0

dG(u|H = h)S(t|H = h)

= Sn(t|H = h)

{
−
∫
εn(u|H = h)dG(u|H = h) + εn(t|H = h)G(t|H = h)︸ ︷︷ ︸

=un(t|h)

}
,

(4.26)
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where the third equality comes from (2.2) and εn(t|h) = S(t|h)/Sn(t|h)− 1. Since εn(t|h) =

un(t|h)/G(t−) −
∫ t−

0
un(s|h)dG(s|h)
G(s|h)G(s−|h)

and G(t | h) ≥ G(τ | h) > 0, un(t|h) → 0 implies

εn(t|h)→ 0. The desired result now follows.

Proof of Proposition 4.4. We prove this by induction on t ∈ [0, τ ]. If
∑n

i ψŜ,s,h(Xi) = 0 for

s < t implies
∑n

i ψŜ,t(Xi) = 0, the desired result holds, since
∑n

i ψŜ,t=0(Xi) = 0 is trivial.

Rewrite ψS,t,h(Di) = S ′(t−Xi) + (1− δi){1−S ′(t−Xi)} S(t)
S(Ui)

−S(t), where S ′, the survival

probability of the remaining life after surviving Xi, is given. By hypothesis, if we assume∑n
i ψŜ,t−,h(Xi) = 0 is true, then we have

n∑
i

ψŜ,t

=
n∑
i

S ′(t−Xi) +
n∑
i

{
(1− δi)(1− S ′(t−Xi))

Ŝ(Xi)
− 1

}
Ŝ(t)

=

[ n∑
i

S ′(t− −Xi) +
n∑
i

{
(1− δi)(1− S ′(t− −Xi))

Ŝ(Xi)
− 1

}
Ŝ(t−)

]
︸ ︷︷ ︸

=
∑n
i ψŜ,t−=0 by hypothesis.

+
n∑
i

dS ′(t−Xi) +
n∑
i

{
(1− δi)(1− S ′(t− −Xi))

Ŝ(Xi)
− 1

}
Ŝ(t−)︸ ︷︷ ︸

=S′(t−−Xi)

δidS
′(t−Xi)

S ′(t− −Xi)

−
n∑
i

(1− δi)dS ′(t−Xi)

Ŝ(Xi)
Ŝ(t)︸ ︷︷ ︸

=−(1−δi)1(Xi=t) by below.

=
n∑
i

dS ′(t−Xi)−
n∑
i

S ′(t− −Xi)
δidS

′(t−Xi)

S ′(t− −Xi)
−

n∑
i

(1− δi)1(Xi = t)

=
n∑
i

δidS
′(t−Xi) +

n∑
i

(1− δi)dS ′(t−Xi)︸ ︷︷ ︸
=(1−δi)1(Xi=t)

−
n∑
i

δidS
′(t−Xi)−

n∑
i

(1− δi)1(Xi = t)

=0,
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where the second equation is given by Ŝ(t) = Ŝ(t−)
{

1 +
∑n
i δidS

′(s−Xi)∑n
i S
′(s−−Xi)

}
from the definition

of the modified Kaplan-Meier, and in the third equation, we used the following fact; when

δi = 0,


dS ′ = −1, Ŝ(Xi) = Ŝ(t) if Xi = t

dS ′ = 0 otherwise.

The proof of Proposition 4.5 relies on the entropy calculation and the Donsker theorem. The

strategy is to show that the tree kernels and consequently the forest kernels are Donsker, and to

show that the ψ and ψ̃ functions are also Donsker, which we will show in Proposition 4.6 below.

Then by empirical process theory and with Assumptions 2.6, 2.7, 2.8, and 2.9, the uniform

consistency is derived. Hence, we provide the related lemma (4.6) regrading the entropy of the

tree kernels before we move on to the proof of Proposition 4.5. The proof of Propositions 4.6

and the rest of the proof of Proposition 4.5 are given in Supplementary Material.

Proposition 4.6 (Bounded entropy integral of the tree and forest kernels). The collections of

the unnormalized tree and forest kernel functions are Donsker, where the tree kernels ktree(·)

are axis-aligned random hyper-rectangles, and the forest kernels kforest(·) are the mean of

arbitrarily many (ntree) tree kernels.

Proof of Proposition 4.6. The Vapnik-Chervonenkis (VC)-dimension of any axis-aligned rect-

angles in Rd can be shown 2d. By Theorem 9.2 of Kosorok (2007), for any VC-class of sets C,

the collection 1(C) of all the corresponding indicator functions has a bounded covering number

N(ε, 1(C), Lr(P )) ≤ K1V (C)(4e)V (C)ε−r(V (C)−1), where V (·) denotes the VC-dimension, and

K1 < ∞ is some universal constant. Thus, the collection 1(CTREE) of the unnormalized

tree kernels has a bounded covering number: N(ε, 1(CTREE), L2(P )) ≤ K2ε
−(4d−2), for some

constant K2 <∞. This immediately implies that the class of tree kernels have bounded entropy

integrals (
∫ 1

0
N(ε, 1(CTREE), L2(P ))dε ≤ 1) and thus is Donsker.

Next, since a forest kernel is simply a convex hull of the tree kernels, i.e., conv1(CTREE) =

{
∑m

i=1 αi1(ci) :
∑m

i=1 αi ≤ 1, αi ≥ 0, ci ∈ CTREE, i = 1, 2, ...,m}, by Theorem 9.4 of
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Kosorok (2007), N{ε, conv1(CTREE), L2(P )} ≤ K3ε
−(2− 1

d
) for some constant K3 <∞. This

implies that the unnormalized forest kernels are also Donsker.

Proof of Proposition 4.5. We prove Proposition 4.5 by showing that the class of functions

{ψS,t : S ∈ Θ, t ∈ [0, τ ]} and {ψ̃S,t,S̃′ : S, S̃ ′ ∈ Θ, t ∈ [0, τ ]} are Donsker. First, {S ′(t − X |

H), t ∈ [0, τ ]} is a stochastic process that is monotone in t for a fixed function S ′ where

the randomness comes from X and H. By Lemma 9.10 of Kosorok (2007), this process

has VC-dimension 2 and is thus Donsker. Similarly, another monotone stochastic processes,

{ S(t|H)
S(X|H)

∧ 1, t ∈ [0, τ ]} and {S(t | H)}, are also both VC and Donsker, where S ∈ Θ itself is

stochastic. Thus, {ψS,t : S ∈ Θ, t ∈ [0, τ ]} is Donsker, as all of its terms belong to uniformly

bounded Donsker classes. The Donskerness of {ψ̃S,t,S̃′ : S, S̃ ′ ∈ Θ, t ∈ [0, τ ]} can be shown by

the same approach.

With Proposition 4.6 and the Donskerness of products of bounded Donsker classes, all of

{ψS,tδh : S ∈ Θ, t ∈ [0, τ ], h}, {ψS,tkh : S ∈ Θ, t ∈ [0, τ ], h ∈ H}, and {ψ̃S,t,S̃′kh : S, S̃ ′ ∈

Θ, t ∈ [0, τ ], h ∈ H} are Donsker. Also by Assumption 2.8, suph Pnkh � nβ−1. Thus,

sup
S,S̃′∈Θ,h∈H

|Ψn(S)−Ψ(S)|

≤ sup
S,S̃′∈Θ,h∈H

∣∣∣∣Pnψ̃S,t,S̃′khPnkh
− PnψS,tkh

Pnkh

∣∣∣∣︸ ︷︷ ︸
(A)

+ sup
S,S̃′∈Θ,h∈H

∣∣∣∣PnψS,tkhPnkh
− PψS,tkh

Pkh

∣∣∣∣︸ ︷︷ ︸
(B)

+ sup
S,S̃′∈Θ,h∈H

∣∣∣∣PψS,tkhPkh
− PψS,tδh

Pδh

∣∣∣∣︸ ︷︷ ︸
(C)

= oP (1),
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where

(A) = sup
S,S̃′∈Θ,h∈H

∣∣∣∣Pnδ1(X ≤ t){S̃ ′(t−X | H)− S ′(t−X | H)}kh
Pnkh

∣∣∣∣
≤ sup

h∈H

Pnδ1(X ≤ t)kh
Pnkh︸ ︷︷ ︸
≤1

sup
S̃′∈Θ,h∈H

|S̃ ′(t−X | H)− S ′(t−X | H))|︸ ︷︷ ︸
=oP (1)

=oP (1),

(B) = sup
S,S̃′∈Θ,h∈H

∣∣∣∣PnψS,t,S̃′kh − PψS,tkhPnkh

∣∣∣∣︸ ︷︷ ︸
≤OP (n−1/2)

nβ−1 =oP (1)

+

∣∣∣∣PψS,tkh{ 1

Pnkh
− 1

Pkh

}∣∣∣∣︸ ︷︷ ︸
=
PψS,tkh
Pkh

(Pn−P )kh
Pnkh

≤OP (n−1/2)

k/n

=oP (1),

and

(C) = sup
S∈Θ,h∈H

|P· |khψS,h − P· |hψS,h|

= sup
S∈Θ,h∈H

∣∣∣∣S(t | kh)G(t | Kh)−
∫ t

0

S(u | kh)
S(u | h)

dG(u | kh)S(t | h)− S(t | h)G(t | h)

−
∫ t

0

S(u | h)

S(u | h)
dG(u | h)S(t | h)

∣∣∣∣
≤ sup

S∈Θ,h∈H
|S(t | kh)G(t | Kh)− S(t | h)G(t | h)|+

sup
S∈Θ,h∈H

∣∣∣∣ ∫ t

0

{S(u | kh)dG(u | kh)− S(u | h)dG(u | h)} S(t | h)

S(u | h)

∣∣∣∣
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≤ sup
h∈H
|S(t | kh)G(t | Kh)− S(t | h)G(t | h)|︸ ︷︷ ︸

(C1)

+

sup
S∈Θ,h∈H

∣∣∣∣ ∫ t

0

{S(u | kh)− S(u | h)}dG(u | kh)
S(t | h)

S(u | h)

∣∣∣∣︸ ︷︷ ︸
(C2)

+

sup
S∈Θ,h∈H

∣∣∣∣ ∫ t

0

S(u | h){dG(u | kh)− dG(u | h)} S(t | h)

S(u | h)

∣∣∣∣︸ ︷︷ ︸
(C3)

,

(C1) ≤ S(t | kh) sup
h∈H

∣∣∣∣G(t | Kh)−G(t | h)

∣∣∣∣+G(t | h) sup
h∈H

∣∣∣∣S(t | kh)− S(t | h)

∣∣∣∣
≤ sup

h∈H

∫ t

0

|dG(u | Kh)− dG(u | h)|+ sup
h∈H
|S(t | Kh)− S(t | h)|

≤ tLG sup
h′∈kh

‖h− h′‖1 + LS sup
h∈H

sup
h′∈kh

‖h− h′‖1

= oP (1),

(C2) ≤ sup
h∈H,u∈[0,τ ]

|S(u | kh)− S(u | h)|

≤ sup
h∈H

sup
h′∈kh

LS‖h− h′‖1

= oP (1),

(C3) ≤ sup
h∈H

∫ t

|dG(u | kh)− dG(u | h)|

≤ sup
h∈H

sup
h′∈kh

LG‖h− h′‖1

= oP (1).

The last inequalities in (C1), (C2), and (C3) come from Assumption 2.6 and the subsequent

equations result from Assumptions 2.8 and 2.9. The derivation for a unit hypercube with a

bounded density is given in the proof of Theorem 3 of Wager and Walther (2015).
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We further establish why the exception of countably many unbounded density points is

allowed. First, countably many zero density points do not affect the proof of Lemma 2 of

Meinshausen (2006). Second, we discuss the case of probability mass points. When and

only when there is at least one point with a probability mass jointly for all the covariates, the

number of observations in the corresponding terminal node cannot be bounded by an o(n) term.

However, since the point has zero Lebesgue measure, the number of observations at the point

do not contribute to the maximum size of the node. Let D ∈ [0, 1]dZ denote the set of the points

that have a fully joint probability mass. Then the proof of Lemma 2 of Meinshausen (2006) is

still valid after replacing “the number of observations” with “the number of observations outside

of D,” since the Glivenko-Cantelli argument used in translating the empirical measure into the

Lebesgue measure works in the presence of countably many discontinuity points.

The categorical covariates with finite levels can be understood in a similar manner. It is still

different from the preceding setting in a sense that there is no continuous component. Thus,

the number of splits made along the jth covariate in the terminal node that contains h cannot

become arbitrarily large for a large n, or P (S(h, j, θ) > gn) 6→ 1 according to the notation

of Meinshausen (2006) where θ is a random parameter that governs partitioning and gn is

some sequence growing to infinity for large n. However, S(h, j, θ) grows up to the number of

categories of the j covariate almost surely, meaning that the categories are fully separated. Since

the Lebesgue measure of each category is zero, the node size I(h, j, θ) along the jth coordinate

is zero almost surely, not affecting the result, maxj |I(h, j, θ)| = oP (1) for n→∞.

Proof of Corollary 2.1. Corollary 2.1 follows from recursion once we show that the Qth stage

random survival forest is consistent and n(Q) > cn for some constant c almost surely. For

each h ∈ H(Q) and treatment a ∈ A(Q), Assumption 2.12 guarantees that the probability of

a patient making all planned visits is at least MQ−1. That is, n(Q) ≥ M (Q)n almost surely.

Uniform consistency of the stage-wise random survival forest again relies on arbitrarily small

node size, suph∈H suph′∈kh ‖h − h
′‖1. Although the support in Assumption 2.11 is different
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from that in Assumption 2.7, the bounded marginal density in Assumption 2.7 is sufficient to

follow the same lines of proof given in Meinshausen (2006) and Wager and Walther (2015).

Now, by having S ′(t | h) = S̃ ′(t | h) = 1(t ≤ 0) for all h, Theorem 2.4 yields uniform

consistency of Ŝ(Q)(· | ·). Consistency of the rest of the sequence then follows as n(q) ≥ n(Q)

for q = Q− 1, Q− 2, ..., 1.

A2.3 Proof of Theorem 2.5

Proof of Theorem 2.5. The proof is largely based on the lines of proof used by Murphy (2005)

and Goldberg and Kosorok (2012). We tailor their proofs based on the Q-learning framework into

the context of this paper. We introduce notation for some intermediate stage quantities that are

the analogs to the intermediate stage Q- and V- functions. Let Ξ
(q)
S,π(H(q), a(q)) = φ(q){S(q)

π (· |

H(q), A(q) = a(q))} and Φ
(q)
S,π(H(q), a(q)) = φ(q){S(q)

π (· | H(q), A(q) = π(q)(H(q))}. The

dependency of Ξ and Φ on the choice of φ is marked with the corresponding subscripts, e.g.,

Φ
(q)
·,µ(·) = φ

(q)
µ (·), or is suppressed, if it is clear by context.

We modify Lemmas 1 and 2 of Murphy (2005) to obtain Lemmas 4.4 and 4.5 below.

Then we conclude the proof of Theorem 2.5 by bounding E

[{
Ξ

(q)
S∗,π∗

(H(q),A(q−1), A(q)) −

Ξ̂(q)(H(q),A(q−1), A(q))

}2
]

of Lemma 4.5 using a quantity

ErrΞ(q+1)(Ξ(q)) = E

{
max
a(q+1)

Ξ(q+1)(H(q+1), A(q+1))− Ξ(q)(H(q), A(q))

}2

,

where a similar strategy was used in Murphy (2005) and Goldberg and Kosorok (2012) and we

drop the arguments of Ξ(q) and Ξ(q+1) as long as no confusion arises.
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ErrΞ̂(q+1)(Ξ̂
(q))− ErrΞ̂(q+1)(Ξ

(q)
∗ )

= E[Ξ̂(q)]2 − E[Ξ(q)
∗ ]2 + 2E

[
(Ξ(q)
∗ − Ξ̂(q)) max

a(q+1)
Ξ(q+1)
∗

]
− 2E

[
(max
a(q+1)

Ξ(q+1)
∗ − max

a(q+1)
Ξ̂(q+1))(Ξ(q)

∗ − Ξ̂(q))

]
= E[Ξ̂(q)]2 − E[Ξ(q)

∗ ]2 + 2E

[
(Ξ(q)
∗ − Ξ̂(q))Ξ(q)

∗

]
− 2E

[
(max
a(q+1)

Ξ(q+1)
∗ − max

a(q+1)
Ξ̂(q+1))(Ξ(q)

∗ − Ξ̂(q))

]
= E[Ξ̂(q) − Ξ(q)

∗ ]2 − 2E

[
(max
a(q+1)

Ξ(q+1)
∗ − max

a(q+1)
Ξ̂(q+1))(Ξ(q)

∗ − Ξ̂(q))

]
≥ E[Ξ̂(q) − Ξ(q)

∗ ]2 − 2E1/2

[
max
a(q+1)

Ξ(q+1)
∗ − max

a(q+1)
Ξ̂(q+1)

]2

E1/2

[
Ξ(q)
∗ − Ξ̂(q)

]2

≥ E[Ξ̂(q) − Ξ(q)
∗ ]2 − 2

√
LE

[
Ξ

(q+1)
∗ − Ξ̂(q+1)

]2

E1/2

[
Ξ(q)
∗ − Ξ̂(q)

]2

≥ E[Ξ̂(q) − Ξ(q)
∗ ]2 − 1

2
{4LE

[
Ξ(q+1)
∗ − Ξ̂(q+1)

]2

+ E

[
Ξ(q)
∗ − Ξ̂(q)

]2

}

= E[Ξ̂(q) − Ξ(q)
∗ ]2 − 2LE[Ξ̂(q+1) − Ξ(q+1)

∗ ]2,

where in the second equality,

E

[
max
a(q+1)

Ξ(q+1)
∗ = φ(q+1){S(q+1)

∗ (· |H(q+1), A(q+1))} |H(q), A(q)

]
= Ξ(q)

∗ (H(q), A(q))

was used; in the first and the last inequalities, the Cauchy-Schwarz inequality and that fact that

ab ≤ (a2 + b2)/2 were used; and the second inequality holds true, since

{max
a(q+1)

Ξ(q+1)
∗ (a(q+1))− max

a(q+1)
Ξ̂(q+1)(a(q+1))}2

≤ max
a(q+1)
{Ξ(q+1)
∗ (a(q+1))− Ξ̂(q+1)(a(q+1))}2

≤ LE{Ξ(q+1)
∗ (a(q+1))− Ξ̂(q+1)(a(q+1))}2.
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Then we have

E[Ξ̂(q) − Ξ(q)
∗ ]2 ≤ 2

Q∑
q′=q

(4L)q
′−q{ErrΞ̂(q+1)(Ξ̂

(q))− ErrΞ̂(q+1)(Ξ
(q)
∗ )
}
,

q = 1, 2, ..., Q. Thus, by Lemma 4.5, the error bound of the value function is bounded by

Φ(π∗)− Φ(π̂)

≤
Q∑
q=1

2Lq/2

√√√√2

Q∑
q′=q

(4L)q′−q
{
ErrΞ̂(q+1)(Ξ̂(q))− ErrΞ̂(q+1)(Ξ

(q)
∗ )
}

≤
Q∑
q=1

√√√√23−2q

Q∑
q′=q

Lq′
{
ErrΞ̂(q+1)(Ξ̂(q))− ErrΞ̂(q+1)(Ξ

(q)
∗ )
}

(4.27)

Now we obtain the bound of difference in Err values:

ErrΞ̂(q+1)(Ξ̂
(q))− ErrΞ̂(q+1)(Ξ

(q)
∗ )

= E

[{
(max
a(q+1)

Ξ̂(q+1) − Ξ̂(q)) + (max
a(q+1)

Ξ̂(q+1) − Ξ(q)
∗ )
}{

Ξ(q)
∗ − Ξ̂(q)

}]
≤ 2c(φ)E

[
Ξ(q)
∗ − Ξ̂(q)

]
≤ 2c(φ) sup

h(q),a(q)

{
Ξ(q)
∗ (h(q), a(q))− Ξ̂(q)(h(q), a(q))

}
≤ 2c(φ) sup

h(q),a(q)

[
φ(q)

{∣∣∣∣S(q)
∗ (· | h(q), a(q))− Ŝ(q)(· | h(q), a(q))

∣∣∣∣}
]

≤ 2c(φ) sup
h(q),a(q)

[
φ(q)

{
sup
t∈[0,τ ]

∣∣∣∣S(q)
∗ (· | h(q), a(q))− Ŝ(q)(· | h(q), a(q))

∣∣∣∣}
]

≤ 2c(φ)φ(q)

{
sup

h(q),a(q),t∈[0,τ ]

∣∣∣∣S(q)
∗ (· | h(q), a(q))− Ŝ(q)(· | h(q), a(q))

∣∣∣∣},
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where c(φµ) = τ and c(φσ,t) = 1, and the first inequality comes from the triangular inequality

and the fact that any Ξ function is bounded by [0, τ ] for φ = φµ and [0, 1] for φ = φσ,t, and, in

the fourth inequality, Fatou’s lemma was used.

Given that all assumptions of Corollary 2.1 hold, and that the space of historyH incorporates

the historical actions, the theorem gives us

sup
t∈[0,τ ],h(q)∈H(q),a(q)∈A(q),q∈{1,2,...,Q}

|Ŝ(q)(t | h(q), a(q))− S(q)
∗ (t | h(q), a(q))| → 0,

in probability as n→∞.

Since φ is either integration over the interval [0, τ ] for φ = φµ or evaluation at t for φ = φσ,t,

the error is bounded by c(φ) times the supremum error of the survival curves. Thus,

ErrΞ̂(q+1)(Ξ̂
(q))− ErrΞ̂(q+1)(Ξ

(q)
∗ )→ 0

in probability as n→∞ and since in (4.27) Φ(π∗)− Φ(π̂) is bounded by finite summations

and bounded transformations, the desired result holds.

Lemma 4.4. For treatment regimes π̃ and π,

Φ(π̃)− Φ(π) = −Eπ
{ Q∑

q=1

∆
(q)
S∗,π̃

(H(q), A(q))

}
,

where ∆
(q)
S,π(h(q), a(q)) = ΞS,π(h(q), a(q))−ΦS,π(h(q)) is the advantage of treatment a(q) at stage

q, and S∗ is the true survival probability. This statement is true for both criteria φ = φµ, φσ,t.
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Lemma 4.5. For all functions, Ξ̂(q) satisfying π̂(q)(h(q)) ∈ arg maxa(q) Ξ̂(q)(h(q), a(q)), q =

1, 2, ..., Q, we have,

Φ(π∗)− Φ(π̂)

≤
Q∑
q=1

2Lq/2

√√√√E

[{
Ξ

(q)
S∗,π∗

(H(q),A(q−1), A(q))− Ξ̂(q)(H(q),A(q−1), A(q))

}2
]
,

where π∗ = (π(1), ..., π(Q)) is the optimal decision rule for the survival probability S∗. This

statement is true for both criteria φ = φµ, φσ,t .
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APPENDIX 3: TECHNICAL DETAILS FOR CHAPTER 3

This chapter contains technical details including as assumptions, proofs, definitions, and

other materials supplemental to the main text of Chapter 3.

A3.1 EM algorithm

The components of expected log-likelihood

The expectation of the log-likelihood comprises the folowing terms with subscripts i being

suppressed:

E(R0|Y1, Y2;θ) = α0β1
fBZINB(Y1, Y2;α0 + 1, α1, α2,β,π)

fBZINB(Y1, Y2;α0, α1, α2,β,π)
,

E(R1|Y1, Y2;θ) = α1β1
fBZINB(Y1, Y2;α0, α1 + 1, α2,β,π)

fBZINB(Y1, Y2;α0, α1, α2,β,π)
,

E(R2|Y1, Y2;θ) = α2β1
fBZINB(Y1, Y2;α0, α1, α2 + 1,β,π)

fBZINB(Y1, Y2;α0, α1, α2,β,π)
,

E(log(R0)|Y1, Y2;θ) =
1

fBZINB(Y1, Y2)
×[∑

k,m

H0(k,m;Y1, Y2,α,β){ψ(Y1 + Y2 − k −m+ α0)+

log(
β1

1 + β1 + β2

)}π1+

Y1∑
k=0

H1(k;Y1,α,β){ψ(Y1 − k + α0) + log(
β1

1 + β1

)}π2ζ(Y2)+

Y2∑
m=0

H2(m;Y2,α,β){ψ(Y2 −m+ α0) + log(
β1

1 + β2

)}π3ζ(Y1)+

{ψ(α0) + log(β1)}π4ζ(Y1 + Y2)

]
,
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E(log(R1)|Y1, Y2;θ) =
1

fBZINB(Y1, Y2)
×[∑

k,m

H0(k,m;Y1, Y2,α,β){ψ(k + α1) + log(
β1

1 + β1

)}π1+

Y1∑
k=0

H1(k;Y1,α,β){ψ(k + α1) + log(
β1

1 + β1

)}π2ζ(Y2)+

Y2∑
m=0

H2(m;Y2,α,β){ψ(α1) + log(β1)}π3ζ(Y1)+

{ψ(α1) + log(β1)}π4ζ(Y1 + Y2)

]
,

E(log(R2)|Y1, Y2;θ) =
1

fBZINB(Y1, Y2)
×[∑

k,m

H0(k,m;Y1, Y2,α,β){ψ(m+ α2) + log(
β1

1 + β2

)}π1+

Y1∑
k=0

H1(k;Y1,α,β){ψ(α2) + log(β1)}π2ζ(Y2)+

Y2∑
m=0

H2(m;Y2,α,β){ψ(m+ α2) + log(
β1

1 + β2

)}π3ζ(Y1)+

{ψ(α2) + log(β1)}π4ζ(Y1 + Y2)

]
,

E(E1|Y1, Y2;θ) =
fBNB(Y1, Y2;α,β)π1

fBZINB(Y1, Y2;θ)
,

E(E2|Y1, Y2;θ) =
fNB(Y1;α0 + α1,

β1
β1+1

)π2ζ(Y2)

fBZINB(Y1, Y2;θ)
,

E(E3|Y1, Y2;θ) =
fNB(Y2;α0 + α2,

β2
β2+1

)π3ζ(Y1)

fBZINB(Y1, Y2;θ)
,

E(E4|Y1, Y2;θ) =
π4ζ(Y1 + Y2)

fBZINB(Y1, Y2;θ)
, and

E(X2|Y1, Y2;θ) = Y2 +
(α0 + α2)β2

fBZINB(Y1, Y2;θ)
×[

fNB(Y1;α0 + α1,
β1

β1 + 1
)π2ζ(Y2) + π4ζ(Y1 + Y2)

]
,
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where

H0(k,m;Y1, Y2,α,β) :=

(
α0 + Y1 + Y2 − k −m− 1

α0 + Y2 −m− 1

)(
α0 + Y2 −m− 1

α0 − 1

)
×(

α1 + k − 1

α1 − 1

)(
α2 +m− 1

α2 − 1

)
βY11 βY22 (β1 + β2 + 1)k+m−Y1−Y2−α0

(β1 + 1)k+α1(β2 + 1)m+α2
,

H1(k;Y1,α,β) :=

(
α0 + Y1 − k − 1

α0 − 1

)(
α1 + k − 1

α1 − 1

)
βY11

(β1 + 1)Y1+α0+α1
,

H2(m;Y2,α,β) :=

(
α0 + Y2 −m− 1

α0 − 1

)(
α2 +m− 1

α2 − 1

)
βY22

(β2 + 1)Y2+α0+α2
,

θ ≡ (α>,β>,π>)>, ψ(·) is the digamma function, and the parameters in density functions

are written either in scalar, vector, or combination of both as needed without confusion.

A3.2 Standard error formula

Recall the density of BZINB is given as,

fBZINB(y1, y2;θ)

= π1fBNB(y1, y2;θ) + π2fNB(y1;α0 + α1,
1

β1 + 1
)ζ(y2)

+ π3fNB(y2;α0 + α2,
1

β2 + 1
)ζ(y1) + (1− π1 − π2 − π3)ζ(y1 + y2),

where θ here is redefined using free parameters only as (α>,β>, π1, π2, π3)>.
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Then the observed information is given as,

Iobs(θ̂) = −∂2
θl|θ=θ̂

= −
n∑
i

∂2
θ log fBZINB(y1,i, y2,i;θ)|θ=θ̂

= −
n∑
i

{∂2
θfBZINB(y1,i, y2,i;θ)}{fBZINB(y1,i, y2,i;θ)}

{fBZINB(y1,i, y2,i;θ)}2

+
n∑
i

{∂θfBZINB(y1,i, y2,i;θ)}⊗2

{fBZINB(y1,i, y2,i;θ)}2
|θ=θ̂,

where a⊗2 = aa> and ∂2
θl = ∂θ∂θ>l.

Then the large sample standard error estimate of the MLE θ̂ of θ is diag(Iobs(θ̂)−1)
1
2 ,

and that of the MLE ρ̂∗ of ρ∗ is
[
(∇g(θ̂))>Iobs(θ̂)−1∇g(θ̂)

]1/2

, where∇g(θ̂) := ∂θρ
∗|θ̂ is as

follows:

∇g(θ̂) = ρ̂TRUE
({

1

α̂0

− 1

2(α̂0 + α̂1)
− 1

2(α̂0 + α̂2)

}
,

−1

2(α̂0 + α̂1)
,

−1

2(α̂0 + α̂2)
,

1

2β̂1(β̂1 + 1)
,

1

2β̂2(β̂2 + 1)
, 0, 0, 0

)>
.

The observed information, however, can be approximated by the empirical observed in-

formation (e.g. Meilijson (1989)) which incurs only the first derivatives of the individual

log-likelihood:

Ie(θ̂) =
n∑
i=1

s(y1,i, y2,i; θ̂)s(y1,i, y2,i; θ̂)>,

where

s(y1,i, y2,i;θ) = ∂θ log fBZINB(y1,i, y2,i;θ)

=
∂θfBZINB(y1,i, y2,i;θ)

fBZINB(y1,i, y2,i;θ)
,
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∂θfBZINB(y1, y2;θ) =



π1D1 + π2ζ(y2)D6 + π3ζ(y1)D8

π1D2 + π2ζ(y2)D6

π1D3 + π3ζ(y1)D8

π1D4 + π2ζ(y2)D7

π1D5 + π3ζ(y1)D9

fBNB(y1, y2;α,β)− ζ(y1 + y2)

ζ(y2)fNB(y1;α0 + α1,
1

β1+1
)− ζ(y1 + y2)

ζ(y1)fNB(y2;α0 + α2,
1

β2+1
)− ζ(y1 + y2)



,

D1 = ∂α0fBNB(y1, y2;α,β)

=

y1∑
k=0

y2∑
m=0

[
H0(k,m; y1, y2,α,β)

{
ψ(α0 + y1 + y2 − k −m)− ψ(α0)

− log(β1 + β2 + 1)

}]
,

D2 = ∂α1fBNB(y1, y2;α,β)

=

y1∑
k=0

y2∑
m=0

[
H0(k,m; y1, y2,α,β){ψ(α1 + k)− ψ(α1)− log(β1 + 1)}

]
,

D3 = ∂α2fBNB(y1, y2;α,β)

=

y1∑
k=0

y2∑
m=0

[
H0(k,m; y1, y2,α,β){ψ(α2 +m)− ψ(α2)− log(β2 + 1)}

]
,

D4 = ∂β1fBNB(y1, y2;α,β)

=

y1∑
k=0

y2∑
m=0

[
H0(k,m; y1, y2,α,β)

{
y1

β1

− α0 + y1 + y2 − k −m
β1 + β2 + 1

− k + α1

β1 + 1

}]
,

D5 = ∂β2fBNB(y1, y2;α,β)

=

y1∑
k=0

y2∑
m=0

[
H0(k,m; y1, y2,α,β)

{
y2

β2

− α0 + y1 + y2 − k −m
β1 + β2 + 1

− m+ α2

β2 + 1

}]
,
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D6 = ∂αjfNB(y1;α0 + α1,
1

β1 + 1
) j = 0, 1

= fNB(y1;α0 + α1,
1

β1 + 1
)

[
ψ(α0 + α1 + y1)− ψ(α0 + α1)− log(β1 + 1)

]
,

D7 = ∂β1fNB(y1;α0 + α1,
1

β1 + 1
)

= fNB(y1;α0 + α1,
1

β1 + 1
)

[
y1

β1

− α0 + α1 + y1

β1 + 1

]
,

D8 = ∂αjfNB(y2;α0 + α2,
1

β2 + 1
) j = 0, 2

= fNB(y2;α0 + α2,
1

β2 + 1
)

[
ψ(α0 + α2 + y2)− ψ(α0 + α2)− log(β2 + 1)

]
, and

D9 = ∂β2fNB(y2;α0 + α2,
1

β2 + 1
)

= fNB(y2;α0 + α2,
1

β2 + 1
)

[
y2

β2

− α0 + α2 + y2

β2 + 1

]
.
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