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ABSTRACT

Jitong Lou: Machine Learning Methods for Precision Medicine using
Patient Electronic Health Records and Mobile Sensor Data

(Under the direction of Donglin Zeng)

In the field of precision medicine, researchers adopt machine learning techniques to solve health-

related problems, while applying such methods needs substantial health data. Electronic health

records (EHRs) and mobile sensor data have become two important and abundant sources of health

data. However, the modeling techniques for applying such data are still under development. The

objective of this dissertation is to develop innovative frameworks of machine learning methods to

use EHRs and/or mobile sensor data for disease prediction and precision medicine.

The first problem we address is using retrospectively collected EHRs data to learn latent patterns

that can inform patient’s health status. To handle data challenges in EHRs, we propose an approach

that is based on multivariate generalized linear models in which latent Gaussian processes are

introduced to model between-marker correlations over time. Using the inferred latent processes,

we integrate irregularly measured health markers of mixed types into composite scores and apply

hierarchical clustering to learn latent subgroup structures among patients. We demonstrate the

utility of the proposed model through simulation studies and an EHRs dataset for type 2 diabetes

(T2D) patients.

The next topic we investigate is recommending optimal individualized treatments to patients in

EHRs data. To handle the multicategory comparison of treatments and confounding effects among

patients, we incorporate the latent subgroups and use the one-versus-one approach to extend a

matched learning model. Each matched learning for binary treatments is implemented by a weighted

support vector machine with matched pairs of patients. Using the proposed method, we select the

optimal treatments from four classes of T2D treatments and achieve a better control of glycated

hemoglobin than one-size-fits-all rules for an EHRs dataset.

The last problem we explore is using mobile sensor data to predict outcomes and identify
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objective biomarkers related to adverse posttraumatic neuropsychiatric sequelae. To overcome

the difficulties in utilizing mobile sensor data, we develop a two-stage model that considers the

measurement resolution and temporal pattern of features collected from mobile sensors. Finally, we

apply our method to predict the pain experience of participants who experienced traumatic events,

using the data collected from a large-scale cohort study.
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CHAPTER 1: INTRODUCTION

In the modern era of healthcare, precision medicine has attracted great attentions from researchers

in fields of statistical and biomedical science. Precision medicine is a medical paradigm that evolves

individual characteristics of each patient such as demographics, lab test results, and genetic

information, to optimize treatments (Ginsburg and Phillips, 2018).

As the emergence of large-scaled electronic systems, one important source of patient’s health

data is the electronic health record (EHR) which automatically captures patients health information

through normal medical practice (Gunter and Terry, 2005; Cebul et al., 2011; Herrin et al., 2012).

EHRs store patient health information in a digit format and the data can be shared across different

institutions, so doctors and researchers have more opportunities to utilize the vast amounts of

longitudinal data recorded in every moment. In general, EHRs record the information including

patient demographics, vital signs, laboratory test results, medications, disease diagnosis codes, and

medical insurances, on a large population over long time frames. Compared to experimental research

like the randomized clinical trial (RCT), such observational studies provide stronger real world

evidences because of larger patient populations, more flexible patient eligibility criteria, and longer

duration for observations. Furthermore, studies using large-scaled EHRs may reflect real-world

patterns of treatment pathway which can not be conducted and observed in RCTs (Hripcsak et al.,

2016). Therefore, integrative analyses of these information across time provide great opportunities to

understand individual patient’s disease progression and susceptibility in real world settings, so as to

predict disease prognosis and optimize personalized treatments adapted to evolving patient-specific

features.

Although EHR data have advantages to the research in precision medicine, there are still some

major challenges in applying such data. First of all, health markers in EHRs are often correlated and

irregularly measured. Data sparsity and missing data can also be serious issues. In addition, EHR

data have a mixture of health marker types such as continuous, binary, and count data. Moreover,

there are underlying homogeneities and heterogeneities among thousands of patients in the data
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source. Thus, existing approaches for longitudinal data have limitations and cannot handle all the

data challenges.

In Chapter 2, we propose an innovative framework to take advantage of the rich health information

in retrospectively collected EHRs and identify latent patient subgroups. The framework is built on

multivariate generalized linear models (GLMs) which jointly analyze correlated and mixed type of

health markers over time. In multivariate GLMs, covariate effects are time dependent and latent

Gaussian processes are introduced to characterize between-marker correlations over time. Using

inferred latent processes, we integrate the irregularly measured health markers of mixed types

into composite scores and apply hierarchical clustering to learn latent subgroup structures among

patients. We use the method of moments and kernel-weighted local estimating equations to estimate

parameters that represent the covariate effects and between-marker correlations. Also, we adopt

an inverse weighted method to standardize the intensity of health marker measurements. In this

way, the bias, which is caused by heterogeneous temporal patterns of different health markers,

in parameter estimation is reduced. We prove theoretical properties of the proposed estimators

such as Fisher consistencies and asymptotic distributions. To demonstrate the performance of the

proposed framework on finite samples, we apply our method to type 2 diabetes (T2D) patients

in an EHR dataset collected from the Ohio State University Wexner Medical Center Information

Warehouse (OSU-WMCIW). The analysis shows different trends of age, sex, and race effects on

hypertension/high blood pressure (HBP), total cholesterol (TC), glycated hemoglobin (HbA1c),

high-density lipoprotein (HDL), and medications. The associations among these markers vary over

time during the study window. The hierarchical clustering of patients reveals four subgroups, and

each patient subgroup is summarized by a unique profile based on patient’s health status. The

latent patterns are further confirmed by another split of the EHRs for the same cohort, suggesting

that an effective healthcare management for these patients should be performed separately for each

subgroup.

In pace with the rapid development of computational power, an increasing number of recent

literature have adopted machine learning techniques to precision medicine (Mesko, 2017). Broadly

speaking, these machine learning research estimate the individualized treatment rule (ITR) through

maximizing some clinical outcomes. Most of the existing methods are designed for the comparison

between binary treatments and/or for RCTs. Nevertheless, in real world data such as the EHR
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dataset we handle with, there are multicategory treatments (86 types of T2D drugs) and large

samples of patients (over 50,000 patients) with diverse backgrounds.

To fill up the gap between existing methods and real world evidence, in Chapter 3, we extend a

matched learning method (Wu et al., 2020) to recommend the most effective treatment for each

individual in the EHR dataset. We handle multicategory treatments by the one-versus-one approach

and majority voting strategy (Bishop, 2006). Each matched learning classifier for two treatments

is implemented by a weighted support vector machine (SVM) (Cortes and Vapnik, 1995) with

matched sets of patients. The matched set of a target patient is defined as a group of patients

who have the same group membership and have similar characteristics as him/her, but they receive

an alternative treatment. By comparing a target patient only with patients in his/her matched

set, the confounding effects are reduced, so, in this case, the difference in the clinical outcome

reflects the treatment effect. If the average clinical outcome over the matched set is more beneficial,

then the target patient should switch from the assigned treatment to the alternative treatment.

Otherwise, the assigned treatment is already the optimal treatment for the target patient. Lastly,

the treatment with the highest vote across all binary comparisons is set to be the optimal treatment

of all classes. In a real data application, we estimate the optimal individualized treatment among

four types of T2D treatments for over five thousands patients (a different cohort from Chapter 2) in

the EHR dataset of the OSU-WMCIW. We compare our method with four one-size-fits-all rules

and two treatment rules estimated by Q-learning (Watkins and Dayan, 1992; Murphy, 2005; Qian

and Murphy, 2011), and the comparison shows the proposed method has a better management of

HbA1c level than other models by at least 5%-13%.

Besides EHRs, personal sensing data collected from mobile sensor also have received increasing

interests from various areas, especially in health care. Mobile sensors embedded in smartphones

(short messaging service, microphone, global positioning systems (GPS)), and smartwatches (electro-

cardiogram (ECG), accelerometer, time stamp) continuously monitor the health-related indices and

activities of subjects. Thus, doctors and patients can precisely understand the treatment response,

disease progression, and health status through the continuous measurement of health markers.

However, modeling techniques for mobile sensor data are still under development. The challenges

of handling mobile sensor data come from three major aspects. First of all, mobile sensor data

are high dimensional. Secondly, mobile sensor data are often correlated and have lagged effects on
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outcome variables. Lastly, data collected from different sensors can have different time scales. For

example, heart rate data have thousands of measurements for each day and the data have cyclic

patterns for the sample person. In the meantime, actigraphy data just have daily measurements.

Most of the existing literature simply treat all the features as independent predictors and fit them

using complicated machine learning or deep learning models, but these data challenges will bring in

biases to the prediction indeed.

In Chapter 4, we create a two-stage semi-parametric method for modeling clinical outcomes and

identifying objective biomarkers related to psychiatric disorder using mobile sensor data. The first

stage adopts a linear regression model to describe the relationship between different domains/sensors

of features and health markers. The model handles the effect of time scales and retrospective

measurements on the features by assigning weights to features measured at different time points.

We apply the least absolute shrinkage and selection operator (LASSO) method (Tibshirani, 1996;

Tibshirani et al., 2004) to select the most informative features and improve the model interpretability.

In the second stage, we implement the selected features and estimated weights to a support vector

regression (SVR) model (Drucker et al., 1997) to improve the prediction accuracy. This step accounts

for non-linear interactions and between-domain comorbidities of features that are not captured

in the first stage. We verify the proposed method on a sample of participants in the Advancing

Understanding of RecOvery afteR traumA (AURORA) study (McLean et al., 2020). For participants

who experienced traumatic events, this application studies the relationship between construct scores,

which quantify the pain experience of participants, and two domains of mobile sensor features

at six follow-up time points after the events. The two domains of mobile sensor features include

eight activity features and eleven heart rate variability (HRV) features collected from smartwatches.

Compared to a SVR model that does not adjust for feature selection, measurement resolutions, and

temporal patterns, the proposed method achieves a better prediction performance by using only

12% of the total features.

Each of Chapters 2 to 4 defines the research problem, introduces the background and existing

literature, explains the proposed method, demonstrates the method through numeric examples,

and summarizes the contributions and conclusions. Chapter 5 discusses the limitations of this

dissertation and provides potential directions for future research.
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CHAPTER 2: LEARNING LATENT HETEROGENEITY FOR TYPE 2
DIABETES PATIENTS USING LONGITUDINAL HEALTH MARKERS IN

ELECTRONIC HEALTH RECORDS

2.1 Introduction

In the modern era of precision medicine, one important source of patient’s health data is EHRs.

EHRs data consist of longitudinal medical records from a large number of patients in one or

more electronic healthcare systems that digitally capture measurements of patients health status

through normal medical practices (Gunter and Terry, 2005; Cebul et al., 2011; Herrin et al., 2012),

including patient’s vital signs, laboratory measurements, disease diagnosis codes, procedure codes,

and medications. Benefits of EHRs include cost effectiveness, real time updates, and reflections on

patients disease course and healthcare managements in realistic settings. Therefore, integrative

analyses of this information over time provide great opportunities to understand the heterogeneity of

patient’s disease progression and susceptibility in real world settings, which is useful for monitoring

disease prognosis and optimizing personalized healthcare management.

Due to the retrospective nature of EHRs, the analysis of EHRs is complicated by the following

challenges: first, the health markers measured over time are multivariate and the measurements can

be either continuous (e.g., lab measures), binary (e.g., disease diagnoses), or counts (e.g., number of

medications); second, for each patient, the health marker data are collected at each clinical encounter

so the measurement times can be irregular, sparse, and heterogeneous across patients; third, the

measurement times are often informative to patients health status or health care processes.

This work is motivated by the analyses of EHRs of T2D patients obtained from the OSU-

WMCIW. The data collection spanned a time period of 8 years (between 2011 and 2018) from

a total of 58,490 patients. The data contained patients medical records of glycated hemoglobin,

high-density lipoprotein, total cholesterol, hypertension, and all medications prescribed at each

clinical encounter. Because these markers were of different types and were not measured at the

same time across and within patients, directly combining the values from these markers is neither

meaningful nor feasible. For example, Figure 2.1 gives a snapshot of the measurement time of
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several health markers from 20 randomly selected patients. Clearly, each marker was measured

sparsely at irregular times for each patient, and the measurement time patterns vary significantly

from patient to patient.
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Figure 2.1: Observation time patterns of 5 health markers for 20 randomly selected T2D patients in
the EHRs at the OSU-WMCIW.

Joint models based on linear or generalized mixed effects models have been commonly used

for analyzing multivariate longitudinal data (Verbeke et al., 2014). In the joint models, various

distribution families are used (Verbeke and Molenberghs, 2000; Davidian and Giltinan, 2003;

Molenberghs and Verbeke, 2005), and subject-specific random effects are shared across all health

markers to explain their dependence due to a finite number of latent variables. For example,

Lambert and Vandenhende (2002) jointly analyzed three repeatedly measured longitudinal outcomes

using copula models in a dose titration safety study; Gueorguieva and Sanacora (2006) proposed

correlated probit models for joint analysis of repeated measurements with ordinal and continuous

health markers. Some extensions allowed time-dependent effects (Huang et al., 2002; Fan and Zhang,

2008), but assumed constant between-marker dependence over time. However, assuming parametric

patterns or attributing the dependence to a few time-invariant random effects is rather restrictive
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especially for modeling EHRs over a long period of time, since in EHRs, the trajectories of the

health markers and their dependence may vary over time depending on the disease progression and

medication usage for each patient. Moreover, it is computationally challenging to maximize a joint

likelihood in the presence of a large number of patients and many health markers.

Machine learning approaches have been also proposed to perform EHR analysis, such as deep

Poisson factor models (Henao et al., 2016), tensor factorization and non-negative matrix factorization

(Ho et al., 2014), and deep exponential families (Miscouridou et al., 2018). These approaches,

although more flexible than aforementioned statistical models, are less interpretable and are highly

computationally intensive, requiring substantial work for data engineering and model tuning. More

importantly, none of these approaches can account for irregular but informative measurement

patterns as seen in EHRs.

In this chapter, we seek to strike a balance between the complex statistical modelling and flexible

machine learning methods, while accounting for the unique challenges in EHRs. To conduct an

integrative analysis of EHRs, we extend the multivariate GLMs by assuming appropriate distribution

and link functions depending on the marker type. We allow the effects of covariates on health

markers to be time-varying. Moreover, to account for the time-varying dependence among health

markers, we introduce latent Gaussian processes into the models, where the covariance matrix is

assumed to vary over time. For estimation, we adopt kernel smoothing method to pool information

across time points and patients and apply weights to account for the heterogeneous patterns of

measurement times. The inferred latent processes represent patients underlying health status, so in

order to integrate these mixed-type health markers, we use the inferred latent processes to calculate

the distances between any two patients using the Mahalanobis distance (De Maesschalck et al.,

2000). Finally, we apply hierarchical clustering to identify patients health patterns and characterize

between-group heterogeneities.

The remaining parts of this chapter are organized as follows. In Section 2.2, we propose our

models and describe main ideas. We then provide inferences on estimating model parameters

and procedures to perform numerical computations. In Section 2.3, we derive the asymptotic

distributions of the estimators. We conduct simulation studies in Section 2.4. In Section 2.5, we

apply our method to an integrative analysis on health markers for T2D patients using EHRs from

the OSU-WMCIW.
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2.2 Methodologies

2.2.1 Statistical Models for Integrative Analysis

Suppose EHR data are obtained from n patients. For the ith patient, let Xi be m-dimensional

baseline covariates. Among p health markers, let Yik(t) denote the measurement of the kth health

marker at time t. We suppose Yik(t) is measured at time points tik1, tik2, . . . , tiknik
, where nik is

the total count of observations on the kth health marker for the ith patient. The total number of

observations up to time t can be represented by a counting process Nik(t) ≡
∑nik
j=1 I(tikj ≤ t), where

I(·) is the indicator function. Since the documentation times are patient’s clinical encounters in the

EHR system, patterns of these documentation/measurement time points may carry information on

patients health status. Thus, we model the intensity of Nik(t) as

E [dNik(t)|Xi] = λk(t) exp
{
XT
i γk

}
dt, (2.1)

where λk(t) is a baseline intensity function, and γk is a vector of intensity parameters. By modeling

the intensity of EHR measurement rates, one can adjust for the bias of informative measurement

patterns and account for between patient heterogeneity.

We further assume Yik(t) follows a distribution in an exponential family model as follows:

fik(y; θik, φik, t) = exp
{
yθik(t)− bk (θik(t))

ak (φik(t))
+ ck (y, φik(t))

}
, (2.2)

where θik(t) and φik(t) are the canonical parameter and the dispersion parameter, respectively,

specific to each patient and each health marker. ak(·), bk(·), and ck(·) are known functions. Let

θik(t) = gk(µik(t)), where gk(·) is the canonical link function, and µik(t) is the mean of Yik(t). To

capture the patient heterogeneity and dependence, we assume, at time t,

gk(µik(t)) = XT
i βk(t) + εik(t),

εi(t) ∼ Np (0,Ω(t)) , (2.3)

where βk(t) is a vector of regression coefficients for covariates Xi. εik(t) is the kth element of the

latent Gaussian process εi(t) = {εi1(t), εi2(t), . . . , εip(t)}T . εi(t) is independent of Xi, and it follows
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a mean-zero multivariate Gaussian distribution with a covariance matrix Ω(t). Estimating variances

locally will requires dense measurements from the same health marker, which is not the case for the

EHRs. Moreover, in our empirical application the estimated variances do not vary much across time

(Section 2.6). Thus, to ensure numerical stability in subsequent analysis, we assume each latent

process to have a constant variance and the constant is estimated using historical records. Hence,

in Ω(t), only the correlations among health markers, that is, the off-diagonal elements need to be

estimated.

Under the proposed models (2.2) and (2.3), each measurement Yik(t) can be uniquely represented

by the latent process εik(t). Since εik(t) has the same scale for different k, one can integrate the

latent processes {εik(t) : k = 1, 2, . . . , p} as an alternative way to integrate the mixed-type health

markers. The integration can use the Mahalanobis distance as follows,

Dij =
{∫

t
[εi(t)− εj(t)]T Ω−1(t) [εi(t)− εj(t)] dt

}1/2
. (2.4)

Thus, there are several important advantages of using the proposed models to perform an integrative

analysis of mixed-type health markers. First of all, despite the health markers are irregularly

measured and mixed-type, we can map them onto the same scale to align patients and characterize

the between-patients heterogeneity. In addition, the dimension of latent processes can be further

reduced to some lower dimensional subspaces than the number of health markers. Therefore, through

the representation of latent processes, we achieve a dimension reduction.

2.2.2 Model Parameter Estimation

First, we use marker-specific Anderson-Gill intensity models (Andersen and Gill, 1982) to

estimate γk in (2.1). With the estimator γ̂k, we normalize the counting process Nik(t) by letting

Ñik(t) = Nik(t) exp
{
−XT

i γ̂k
}
. Thus, the normalized counting process is homogeneous across

different patients and different health markers.

Next, to estimate βk(t) for any fixed time point t, we solve the following kernel-weighted local

estimating equation

Un,k(βk(t)) ≡
1
n

n∑
i=1

∫
Xi [Yik(s)− E [Yik(t)|Xi]]Kh1n(s− t)dÑik(s) = 0, (2.5)
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where Kh(z) = h−1K(z/h) with K(z) being a symmetric kernel function, and h1n is the bandwidth

of Kh(z). Essentially, we assign weights to the observed measurements Yik(s) near t, and we pool

them together across all patients to estimate the mean (first moment) of Yik(t). This pooling process

relies on the kernel smoothing. Also, pooling information across observations nearby and across

patients overcomes the difficulty in parameter estimations that some sparsely measured health

markers do not have sufficient samples at some time points. Moreover, using dÑik(s) instead of

dNik(s), we remove the heterogeneity of informative measurement time points among patients in a

similar spirit as inverse probability weighting.

Similarly, to estimate the correlation between two latent processes, σkl(t) = Cov(εik(t), εil(t)),

we propose to solve the following kernel-weighted local estimating equation, for k 6= l,

Un,k,l(σkl(t)) ≡
1
n2

n∑
i=1

∫∫ [
Yik(s)Yil(s′)− E [Yik(t)Yil(t)|Xi]

]
K̃h2n(s− t, s′ − t)dÑik(s)dÑil(s′) = 0,

(2.6)

where K̃h(z1, z2) is a bivariate kernel function with bandwidth h2n.

2.2.3 Numerical Computation

When the link functions in (2.3) take some simple forms, E [Yik(t)|Xi] in (2.5) and E [Yik(t)Yil(t)|Xi]

in (2.6) can be explicitly computed. Specifically, for gk(z) = gl(z) = z,

E [Yik(t)|Xi] = XT
i βk(t),

and

E[Yik(t)Yil(t)|Xi] = XT
i βk(t)XT

i βl(t) + σkl(t).

When gk(z) takes a general form, we can compute the above expectations using the Gauss-Hermite

quadrature method (Abramowitz and Stegun, 1965).

Since Un,k(βk(t)) is only related to the parameter βk(t), we can solve (2.5) and obtain β̂k(t)

for each health marker k, separately. Similarly, plugging β̂k(t) and β̂l(t) to (2.6), we can solve the

equation and obtain σ̂kl(t) for each pair of health markers, separately. Therefore, even with many

health markers, that is, p is moderate or large, our algorithm can efficiently handle the computation

burden by solving the estimating equations separately. Finally, we apply the above procedures for

time grids t1, t2, . . . , tN to obtain the parameter estimators over the whole range of the follow-up.
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A distance matrix D can be obtained by computing the Mahalanobis distance in (2.4) between

each pair of patients. In particular, with the estimated latent processes, the distance is approximated

by

Dij =


tN∑
t=t1

[ε̂i(t)− ε̂j(t)]T Ω̃−1(t) [ε̂i(t)− ε̂j(t)]


1/2

, (2.7)

and

ε̂i(t) = E
[
εi(t)

∣∣∣Yi(t), β̂k(t), σ̂kl(t)] , (2.8)

where Ω̃(t) is the covariance matrix of ε̂i(t). In particular,

E
[
εi(t)

∣∣∣Yi(t), β̂k(t), σ̂kl(t)] =

∫
P
(
Yi(t)

∣∣∣εi(t), β̂k(t), σ̂kl(t))P (εi(t)|σ̂kl(t)) εi(t)dεi(t)∫
P
(
Yi(t)

∣∣∣εi(t), β̂k(t), σ̂kl(t))P (εi(t)|σ̂kl(t)) dεi(t)
.

The subsequent steps can be calculated using the Gauss-Hermite quadrature method as well, and

the details are given in Appendix A.1.

2.2.4 Data-adaptive Selection of Bandwidths

Our asymptotic results in Appendix A suggest the bandwidths h1n and h2n can be chosen,

respectively, on the order of n−1/3 and n−1/4. However, for practical applications, we consider a

data-adaptive method for selecting the bandwidths (Cao et al., 2015). The key idea is using observed

data to obtain the empirical bias and variability of the estimators in terms of the bandwidths.

Consequently, we search for the bandwidths that minimize the empirical mean squared error of

selecting them.

Specifically, to choose the optimal bandwidth h1n for estimating β̂k(t), we first consider a

reasonable range of bandwidths. For a fixed bandwidth h and a fixed time point t, we denote

β̂kh(t) to the estimator for βk(t). To estimate the bias of β̂kh(t), we fit a least squares regression

by regressing β̂kh(t) on h2. We denote the regression coefficient of h2 as Ĉk(t). Since the bias of

β̂kh(t) is on the order of h2, as shown in the asymptotic result,
∥∥∥Ĉk(t)∥∥∥h2 is an estimator for the

bias of β̂kh(t). Next we investigate the variability of β̂kh(t). We randomly split the data into two

equal parts. Using either one of the split data, we obtain β̂∗1kh(t) as the estimator for βkh(t) in this

case. Similarly, using the other half, we obtain β̂∗2kh(t). Thus, 1
4

∥∥∥β̂∗1kh(t)− β̂∗2kh(t)
∥∥∥2

can be used as

an unbiased estimator of the variance of β̂kh(t). Finally, given all the time points, we select the
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optimal bandwidth as arg minh
∑
t MSEhβ(t), where

MSEhβ(t) =
p∑

k=1

{
V̂ar

[
β̂kh(t)

]
+
(
B̂ias

[
β̂kh(t)

])2
}

=
p∑

k=1

{1
4

∥∥∥β̂∗1kh(t)− β̂∗2kh(t)
∥∥∥2

+
∥∥∥Ĉk(t)∥∥∥2

h4
}
.

(2.9)

We denote the optimal h1n as H1 and denote the corresponding estimators for βk(t) as β̂kH1(t).

Next, given h1n = H1 and βk(t) = β̂kH1(t), we select the optimal h2n, the bandwidth for estimating

σkl(t)’s, by minimizing the empirical mean squared error of the corresponding estimators, which is

numerically calculated in the similar way to above.

2.3 Theoretical Results

We first state the following required conditions.

Condition 1. True parameters λ0
k(t), β0

k(t), and σ0
kl(t) are continuously twice differentiable for any

t ∈ [0, τ ], where k, l = 1, 2, . . . , p and k 6= l. In addition, λ0
k(t) is strictly positive. Furthermore, the

second moments of Cov(dNik(t), dNik(s)|Xi)/dtds and temporal covariances Cov(εik(t), εil(s)) are

continuously twice-differentiable.

Condition 2. The vector of baseline covariate X is bounded. If there exists a vector b such that

XTb = 0, then b = 0.

Condition 3. h1n, h2n → 0 and nh1n, nh
2
2n →∞. Furthermore, nh5

1n, nh
6
2n → 0.

Condition 4. The kernel function K(z) is a symmetric density function satisfying
∫
z2K(z)dz <∞.

Similarly, K̃(z1, z2) is a symmetric bivariate density function with bounded fourth moments.

Condition 1 is used to give the asymptotic distribution for the parameter estimators in (2.1),

and it assumes some smoothness properties of the time-varying coefficients and covariance matrices.

From condition 3, the choice of h1n and h2n can be n−1/3 and n−1/4, respectively. A potential

choice of the kernel satisfying condition 4 can be the Gaussian kernel or the Epanechnikov kernel.

Theorem 2.3.1 states the asymptotic distribution of parameters β̂k(t), k = 1, 2, . . . , p. Theorem 2.3.2

establishes the asymptotic distribution of parameters σ̂kl(t), k, l = 1, 2, . . . , p, and k 6= l.

Theorem 2.3.1 (asymptotic distribution of β̂k(t)). Under conditions 1 to 4, for any fixed t,

(nh1n)1/2Ak(t)
[
β̂k(t)− β0

k(t)
]
→d Nm (0,Σk(t)) , (2.10)
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where

Ak(t) = λ0
k(t)E

[
XXT

∫ [
g−1
k (XTβ0

k(t) + εk(t))
]′
f(εk(t))dεk(t)

]
,

and the asymptotic variance

Σk(t) = λ0
k(t)E

[
XXTσ2(t,X, εk(t)) exp

{
XTγ0

k

}] ∫
z
K2(z)dz,

where σ2(t,X, εk(t)) is a function of εk(t). Its definition and the proof of theorem 2.3.1 are given in

Appendix A.2.

Theorem 2.3.2 (asymptotic distribution of σ̂kl(t)). Under conditions 1 to 4, for any fixed t,

(nh2
2n)1/2Bkl(t)

[
σ̂kl(t)− σ0

kl(t)
]
→d N (0,Σkl(t)), (2.11)

where

Bkl(t) = λ0
k(t)λ0

l (t)E
[∫∫

g−1
k (XTβ0

k(t) + εk(t))g−1
l (XTβ0

l (t) + εl(t))

×
∂f
(
εk(t), εl(t);σkl(t)

)
∂σkl(t)

∣∣∣
σkl(t)=σ0

kl
(t)
dεk(t)dεl(t)

]
,

is assumed to be nonsingular, and the asymptotic variance

Σkl(t) = λ0
k(t)λ0

l (t)E
[
ψ2(t, t,X, εk(t), εl(t)) exp

{
XTγ0

k

}
exp

{
XTγ0

l

}] ∫∫
K̃2(z1, z2)dz1dz2,

where ψ2(t, t,X, εk(t), εl(t)) is a function of εk(t) and εl(t). Its definition and the proof of theo-

rem 2.3.2 are given in Appendix A.3.

Since the asymptotic variances in theorem 2.3.1 and theorem 2.3.2 do not have simple expressions,

we use the bootstrap method to estimate the asymptotic variances in practice.

2.4 Simulation Studies

In the simulation studies, we simulated data of six health markers for 5,000 subjects. For the ith

subject, we generated two covariates Xi1 ∼ Uniform(−1, 1) and Xi2 ∼ Bernoulli(0.5)− 0.5. Thus,

Xi = (1, Xi1, Xi2)T was a three-dimensional vector of baseline variables. The maximum observation

time Ti for each subject was set to 12. The measured time points for simulated markers were generated
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from a Poisson process whose intensity function was E [dNik(t)|Xi] = 0.5 exp {0.5Xi1 + 0.25Xi2} dt.

For the variances of latent processes, we assumed ck = 1, k = 1, 2, . . . , 6. Suppose there were Ni

unique measured time points ti1, ti2, . . . , tiNi for all latent processes of the subject i, we sampled

εi(ti1), εi(ti2), . . . , εi(tiNi) from a mean-zero multivariate Gaussian distribution with a covariance

matrix Ω(ti) = Σ2(ti)⊗Σ1, where ti = (ti1, ti2, . . . , tiNi),

Σ1 =



1 0.34 0.48 0.58 0.03 0.05

0.34 1 0.80 −0.49 −0.78 0.80

0.48 0.80 1 −0.16 −0.36 0.53

0.58 −0.49 −0.16 1 0.80 −0.69

0.03 −0.78 −0.36 0.80 1 −0.85

0.05 0.80 0.53 −0.69 −0.85 1


,

and

Σ2(ti) =



1 e12 . . . e1Ni

e21 1 . . . e2Ni

...
... . . . ...

eNi1 eNi2 . . . 1


,

where ekl = exp
{
−(tik − til)2}, k, l = 1, 2, . . . , Ni. Thus, at each measured time point, Ω(t) is

constant and equals to Σ1, but there exist underlying dependencies in the time intervals between

these time points.

The values of simulated markers were generated according to (2.2) and (2.3). To assess the

ability of our models in Section 2.2.1 to handle mixed-type markers, we assumed Yi1(t) and Yi4(t)

were Gaussian distributed. Yi2(t) was Poisson distributed. Yi3(t), Yi5(t), and Yi6(t) were Bernoulli

distributed. Thus, g−1
1 (z) = g−1

4 (z) = z, g−1
2 (z) = ez, and g−1

3 (z) = g−1
5 (z) = g−1

6 (z) = ez/(1 + ez).

Furthermore, since the distributions of Yi1(t) and Yi4(t) had dispersion parameters, we set φi1(t) =

φi4(t) = 0.5. The true values of (β1(t),β2(t),β3(t),β4(t),β5(t),β6(t)) were assumed to be


−0.44− t

8 −0.93 + t
9 0.35 + t

10 −1.36 + t
10 cos(−0.25 + t) 0.91 + (t−6)3

216

0.6 +
√
t

3 −0.53−
√
t

2 −2 +
√
t sin(0.76 + t) 0.37 + t

10
t

10

−0.5 +
3√t
2 0.4 +

3√t
2 1.9− 3√t cos(−0.3 + t) sin(−0.68 + t) 1.23 + (t−6)2

36

 .
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The scaled Epanechnikov kernel was chosen as the kernel function in (2.5), that is,

Kh1n(z) = 3
4h1n

[
1−

(
z

h1n

)2
]

+
. (2.12)

Furthermore, the kernel function in (2.6) was set to the product of two scaled univariate Epanechnikov

kernels, that is,

K̃h2n(z1, z2) = 9
16h2

2n

[
1−

(
z1
h2n

)2
]

+

[
1−

(
z2
h2n

)2
]

+
. (2.13)

Since the data-adaptive method for selecting bandwidths was computationally intensive, we first

conducted a preliminary study on the simulated data. We used the method in Section 2.2.4

and selected the optimal bandwidths among h = cn−1/z, where n = 5000, c = {5, 10, 20, 30},

and z = 1, 2, . . . , 10. Hence, the potential bandwidths ranged from 0.001 to 12.800. We found

h1n = 5n−1/3 = 0.292 and h2n = 10n−1/3 = 0.585 were close to the optimal. This set of h1n and

h2n was used in all subsequent simulations.

For time points t = 0, 1, . . . , 12, we solved (2.5) and (2.6), and we obtained β̂k(t) and σ̂kl(t). We

evaluated the accuracies of the asymptotic approximations by calculating the average bias and the

sample standard deviation of β̂k(t) and σ̂kl(t), respectively. In addition, using the bootstrap method,

we calculated the bootstrap estimators for standard errors of β̂k(t) and σ̂kl(t). Specifically, for each

dataset, we resampled 5000 observations with replacement from X to produce a bootstrap dataset

X∗1. We could use X∗1 to produce a new bootstrap estimator for βk(t), which we called β̂∗1k (t).

This procedure was repeated B times in order to produce B different bootstrap datasets, X∗1, X∗2,

. . . , X∗B, and B corresponding βk(t) estimators, β̂∗1k (t), β̂∗2k (t), . . . , β̂∗Bk (t). Next we computed

the sample variance of these bootstrap estimators and treated it as the estimated variance. Similar

procedures were also applicable to σ̂kl(t). Afterwards, 95% confidence intervals of each parameter

were constructed. Finally, we counted how many times true parameters βk(t) and σkl(t) fell in their

confidence intervals to obtain coverage probabilities.

Table 2.1 and Table 2.2 summarize the main results over 100 simulations at t = 1. From

Tables 2.1 and 2.2, we can conclude that, at t = 1, our method yields estimators β̂k(t) which are

close to the true parameters. All the estimators deviate from true parameters by less than 0.03.

On the other hand, the absolute values of biases between estimators σ̂kl(t) and true parameters
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become a little greater, but most of them are still less than 0.1. In addition, the bootstrap based

standard errors are reasonable estimators for the standard deviations of β̂k(t) and σ̂kl(t). Almost all

the differences between SD and SE are smaller than 0.03, except for σ̂34(t). Also, excluding σ̂13(t),

all the coverage probabilities are greater than or equal to 0.9, and the majority of them are around

0.95.

Table 2.1: Summary statistics for βk(t) at t = 1 based on 100 simulations.

Marker Parameter True value Bias SD SE CP
Y1 β10 -0.565 0.002 0.035 0.039 0.98
Continuous β11 0.933 0.001 0.059 0.067 0.98

β12 0.000 -0.002 0.085 0.078 0.94
Y2 β20 -0.819 0.007 0.050 0.058 0.98
Count β21 -1.030 0.026 0.112 0.112 0.95

β22 0.900 -0.010 0.117 0.132 0.97
Y3 β30 0.450 -0.006 0.074 0.077 0.94
Binary β31 -1.000 0.013 0.112 0.136 0.99

β32 0.900 0.011 0.157 0.151 0.93
Y4 β40 -1.260 -0.006 0.038 0.039 0.93
Continuous β41 0.982 -0.010 0.063 0.068 0.97

β42 0.765 -0.005 0.078 0.077 0.93
Y5 β50 0.732 0.001 0.077 0.074 0.95
Binary β51 0.470 0.001 0.149 0.134 0.92

β52 0.315 -0.014 0.163 0.150 0.92
Y6 β60 0.331 -0.018 0.085 0.077 0.90
Binary β61 0.100 0.004 0.144 0.136 0.95

β62 1.924 -0.021 0.163 0.156 0.94

Note: “Bias” is the bias of the average estimates; “SD” is the sample standard deviation of the
estimates; “SE” is the average of the estimated standard errors based on 100 bootstrap samples;
“CP” is the coverage probability of the 95% confidence intervals.

After examining the estimators at a fixed time point, we also investigated the estimation

performance as time changes. For instance, Figure 2.2 presents true parameters vs estimators across

the 13 time points for β52(t) and σ34(t), respectively. From Figure 2.2, we can conclude β̂52(t) is

very close to the true parameter at each time point, and it well captures the underlying smooth

function of β52(t) across time. Although the bias between σ34(t) and σ̂34(t) is greater than that

between β52(t) and β̂52(t), all of σ34(t) are in the interquartile range of σ̂34(t). Thus, the estimators

perform consistently and the deviations are reasonable.
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Figure 2.2: Top panel: true β52(t) versus β̂52(t) across 13 time points based on 100 simulations.
Bottom panel: true σ34(t) versus σ̂34(t) across 13 time points based on 100 simulations. Red
triangles: true values of the parameter. Blue triangles: average estimators of the parameter. Red
curve: the true function of the parameter.
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Table 2.2: Summary statistics for σkl(t) at t = 1 based on 100 simulations.

Parameter True value Bias SD SE CP
σ12 0.342 -0.061 0.149 0.136 0.91
σ13 0.484 -0.058 0.202 0.213 0.98
σ14 0.578 -0.086 0.127 0.121 0.87
σ15 0.034 0.030 0.216 0.218 0.95
σ16 0.047 -0.009 0.210 0.207 0.96
σ23 0.799 -0.150 0.388 0.382 0.90
σ24 -0.493 0.065 0.232 0.233 0.95
σ25 -0.779 0.078 0.241 0.242 0.94
σ26 0.796 -0.143 0.371 0.366 0.91
σ34 -0.163 0.048 0.216 0.252 0.97
σ35 -0.363 -0.024 0.252 0.261 0.97
σ36 0.530 -0.024 0.257 0.249 0.95
σ45 0.802 -0.076 0.212 0.219 0.94
σ46 -0.686 0.089 0.228 0.244 0.94
σ56 -0.846 -0.019 0.160 0.181 0.97

Note: “Bias” is the bias of the average estimates; “SD” is the sample standard deviation of the
estimates; “SE” is the average of the estimated standard errors based on 100 bootstrap samples;
“CP” is the coverage probability of the 95% confidence intervals.

2.5 Real Data Application

2.5.1 Data Prepocessing

We applied the proposed method to analyze EHRs of T2D patients from the OSU-WMCIW. In

our application, we included three baseline variables Xi: baseline age, race (1: white; 0: non-white),

and sex (1: male; 0: female). Besides, there were five health markers Yik(t) related to T2D: HBP,

TC, HbA1c, HDL, and medications prescribed at each clinical encounter. Here, we dichotomized

HBP as HBP=1 if a patient’s systolic blood pressure is higher than 140 mmHg and 0, otherwise.

The medications served as one strong indicator of patient’s comorbidity and they could be T2D

related or not. Thus, the health markers in the analysis consisted of three continuous markers (TC,

HbA1c, HDL), one binary marker (HBP) and one count marker (number of medications).

For analysis, we split the data into three parts for different purposes. The first data consisted of

the records collected between 2011 and 2012 and was used to estimate the variances of individual

latent processes by fitting univariate generalized linear mixed models. The second part included the

records from 24,975 patients between 2013 and 2017 who had at least one marker measurement.

This part of the data was used for training our models and learning latent groups among the
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patients. The third part was the data collected in 2018 and would be used for validation purpose.

The flow-chart for this application is illustrated in Figure 2.3.

Dataset Workflow Method 

Estimate the variance for each latent 
Gaussian process, 𝑐𝑘.

Estimate the parameter for the intensity of 
each health marker, 𝛾𝑘 .

Andersen-Gill model.

Generalized linear mixed-effects model. 2011-2012 EHRs

2013-2017 EHRs

Estimate the regression coefficient for each 
health marker, 𝛽𝑘(𝑡).

Kernel weighted smoothing, method of moments, 
Gauss-Hermite quadrature.

Estimate the correlation coefficient each pair 
of health markers, 𝜎𝑘𝑙(𝑡).

at 61 points

𝑡1 = 1 (day). The other time points are the time 
differences (in days) between the last day of each 
month in the five-year window and 12/31/2012.

Compute the similarity between each pair of 
subjects, 𝐷𝑖𝑗 .

Mahalanobis distance, Gauss-Hermite quadrature.

Identify patient subgroups. Clustering analysis, dendrogram.

Validate the identified patient subgroups.
Average value of the normalized health markers for 
each patient group. 2018 EHRs

Figure 2.3: Flow-chart of the proposed analysis framework of EHRs to dissect patient heterogeneity
using a diverse set of health markers.

In our model fitting using the second part of the data, after checking normal ranges for the

health markers (Stone et al., 2014; Whelton et al., 2018; American Diabetes Association, 2018), we

removed extreme records such as TC ≤ 0 or ≥ 500 mg/dL, HbA1c ≤ 3 or ≥ 20%, and HDL ≤ 0 or

≥ 120 mg/dL. This led to a deletion of 1% of the data and a total number of 24,655 patients for

analysis. Among these patients, 52.08% were female, 63.42% were white, and their ages in years

ranged from 18.30 to 97.67 with a mean of 56.06. All of them had at least one observation for at

least one health marker in the 5 years, but not necessarily for other health markers. Specifically, the

average numbers of records for HBP, TC, HbA1c, HDL, and the number of medications per patient

during these 5 years were 17.50, 4.01, 5.95, 3.64, and 53.21, respectively. In order to minimize the

influence of different scales on the numeric stability, we normalized all continuous variables before

identifying patient subgroups. Each of them has zero mean and unit variance.

2.5.2 Results

Table 2.3 shows the effect of each demographic variable on the pattern of the measurement times

for each marker. From Table 2.3, we conclude that elder patients tend to have more observations

for all health markers and females appeared to have more observations for HBP, HbA1c, and the

19



number of medications, while males tend to have more TC measurements. Finally, whites have

significantly less observations for HBP, HbA1c, and the number of medications than non-whites.

Table 2.3: Effects of demographic variables on the frequency of health marker measurements

Marker Demographic Est HR SE Z P-value
HBP age 0.065 1.067 0.006 10.552 < 0.001

sex 0.064 1.066 0.013 4.813 < 0.001
race -0.129 0.879 0.014 -9.425 < 0.001

TC age 0.035 1.035 0.006 6.238 < 0.001
sex -0.035 0.965 0.012 -3.000 0.003
race -0.012 0.988 0.013 -0.968 0.333

HbA1c age 0.008 1.008 0.005 1.721 0.085
sex 0.034 1.034 0.009 3.678 < 0.001
race -0.044 0.957 0.009 -4.650 < 0.001

HDL age 0.047 1.048 0.005 10.090 < 0.001
sex -0.010 0.990 0.010 -1.007 0.314
race -0.007 0.993 0.010 -0.715 0.475

Medications age 0.042 1.043 0.006 7.262 < 0.001
sex 0.086 1.090 0.012 7.069 < 0.001
race -0.113 0.893 0.013 -8.988 < 0.001

Note: “Est” is the regression coefficient estimator; “HR” is the hazard ratio; “SE” is the standard
error of the coefficient estimator; “Z” is the statistic for a z-test; “P-value” is the p-value for the
z-test.

To estimate the parameters in the joint models, we first implemented the adaptive method of

bandwidth selection as stated in Section 2.2.4, and results are shown in Figure 2.4. We ended up to

choose h1n = 564.112 days and h2n = 494.687 days as the optimal bandwidths. Using the optimal

bandwidths, we estimated βk(t) and σkl(t) at 61 time points. The results are presented in Figure 2.5

and Figure 2.6, respectively. The salmon-colored ribbons in these two figures are 95% confidence

intervals for the parameters based on 100 bootstrap datasets.

Figure 2.5 presents the relationships between each pair of health markers and covariates. In

general, all health markers exhibit changes over time. Mean HbA1c (β̂30(t)) decreases during the

first 1.5 years and has an increasing trend afterward, which may suggest the difficulty to achieve

long-term control of glycemic levels in a chronically ill patient population. Mean HDL (β̂40(t)) shows

a similar quadratic pattern over time, suggesting difficulty of long-term TC control. The estimated

regression coefficients for covariates, i.e., the estimated effects of covariates on health markers, do not

show any pattern of drastic changes over time. Instead, the estimated values across time fluctuate
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Figure 2.4: Bandwidth selection results for the real data application. (a): the plot for
∑
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β (t)
vs. h1. The optimal h1n = 564.112 days. (b): the plot for

∑
t MSEh2

σ (t) vs. h2. The optimal
h2n = 494.687 days. Red triangles: optimal bandwidths.

around mean values. However, we can observe decreasing trends for β̂20(t) and β̂50(t), suggesting

that as time increases, the expected means of TC and the number of medications decrease. β̂11(t)

and β̂41(t) are positive across time, while β̂21(t) and β̂31(t) are negative. β̂51(t) is negative but close

to 0. Hence, estimators β̂·1(t) suggest that elder subjects on average have higher HBP and HDL,

but they have lower TC and HbA1c. There is no apparent difference in the average number of

medications between elder subjects and younger subjects. Similarly, estimators of sex effect, β̂·2(t),

suggest that compared with men, women tend to have higher expected means of TC and HDL, but

they have lower values of HBP and the number of medications. Although women have slightly lower

expected means of HbA1c than men, the difference is inapparent. For race, the estimators of β̂·3(t)

indicate that white people have lower or equal expected means than non-white people in almost all

five health markers.

Figure 2.6 presents the correlations between each pair of health markers. The results suggest

the concurrent correlations between HBP and TC, HBP and medications, TC and HbA1c, TC

and HDL are positive and moderate. Moreover, there exist negative and observable concurrent

correlations between HbA1c and HDL, HDL and medications. The correlation between HbA1c

21



●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●
●●
●●
●●
●●●●

●●●●●●●

−1.200
−1.175
−1.150
−1.125

0 500 1000 1500
Time (days)

HBP, Intercept

β10(t)

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

0.18

0.20

0.22

0 500 1000 1500
Time (days)

HBP, Age

β11(t)

●●●●●
●●●●●●●●●●

●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−0.125

−0.100

−0.075

−0.050

0 500 1000 1500
Time (days)

HBP, Sex

β12(t)

●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−0.45

−0.40

−0.35

−0.30

0 500 1000 1500
Time (days)

HBP, Race

β13(t)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−0.25

−0.20

−0.15

−0.10

0 500 1000 1500
Time (days)

Cholesterol, Intercept

β20(t)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●

−0.16

−0.15

−0.14

0 500 1000 1500
Time (days)

Cholesterol, Age

β21(t)

●●●●
●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●

●●
●●
●●●

●●●●

0.34

0.36

0.38

0.40

0 500 1000 1500
Time (days)

Cholesterol, Sex

β22(t)

●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−0.08

−0.04

0.00

0 500 1000 1500
Time (days)

Cholesterol, Race

β23(t)

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●
●●
●●
●●
●●
●●●

●●●
●●
●●●

●●●●●●●●●●

0.06

0.08

0.10

0.12

0 500 1000 1500
Time (days)

HbA1c, Intercept

β30(t)

●●●●
●●●●

●●●●●
●
●
●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

−0.19

−0.18

−0.17

0 500 1000 1500
Time (days)

HbA1c, Age

β31(t)

●●●
●●●●●●

●●●●●
●●●
●●●●●●●●●●●●

●●●●●●●●●
●●●
●●●
●●●●

●●●
●●
●●
●●●
●●●

−0.050

−0.025

0.000

0 500 1000 1500
Time (days)

HbA1c, Sex

β32(t)

●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●
●
●●●●

●●●
●●
●●
●

−0.14

−0.12

−0.10

−0.08

0 500 1000 1500
Time (days)

HbA1c, Race

β33(t)

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●

●●
●●
●●

−0.25
−0.20
−0.15
−0.10

0 500 1000 1500
Time (days)

HDL, Intercept

β40(t)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●
●●●

●●
●●
●●●●●●●●●●●●●●

0.06

0.07

0.08

0 500 1000 1500
Time (days)

HDL, Age

β41(t)

●●●●●●●●●●●●●●
●●●●●●

●●●
●●
●●●
●●●

●●●
●●●

●●●
●●●●●

●●●●
●●●●●

●●●●●
●●

0.525
0.550
0.575
0.600

0 500 1000 1500
Time (days)

HDL, Sex

β42(t)

●●●
●●●
●●●

●●●
●●
●●
●●
●●
●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−0.18
−0.16
−0.14
−0.12
−0.10

0 500 1000 1500
Time (days)

HDL, Race

β43(t)

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●1.28

1.30

1.32

0 500 1000 1500
Time (days)

Medications, Intercept

β50(t)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●
●●●

●●
●●
●●
●●
●●●
●●●

●●●
●●●

−0.03

−0.02

−0.01

0 500 1000 1500
Time (days)

Medications, Age

β51(t)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●
●●●●●●●●

−0.12
−0.11
−0.10
−0.09
−0.08
−0.07

0 500 1000 1500
Time (days)

Medications, Sex

β52(t)

●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●

−0.01

0.00

0.01

0.02

0 500 1000 1500
Time (days)

Medications, Race

β53(t)

Figure 2.5: Estimated regression coefficients β̂k(t) across 61 time points using h1n = 564.112 days
and h2n = 494.687 days from EHRs at the OSU-WMCIW. Salmon-colored ribbons: 95% confidence
intervals for the estimators.
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Figure 2.6: Estimated correlations σ̂kl(t) across 61 time points using h1n = 564.112 days and
h2n = 494.687 days from EHRs at the OSU-WMCIW. Salmon-colored ribbons: 95% confidence
intervals for the estimators.
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and HDL decreases as time increases. On the opposite, the positive correlation between TC and

HDL decreases at the beginning, but increases after about 1 year. The positive correlation between

TC and HbA1c has a similar pattern as it decreases at first and increases after 1000 days. The

correlations of HBP and TC, HbA1c and number of medications increase in first 500 days, but they

start to decrease during 500 to 1000 days, and bounce back afterward. The correlations of HBP

and HbA1c, HBP and HDL, HDL and number of medications decrease in first 500 days, and then

increase, but decrease again after 1000 days.

One interesting observation from Figure 2.6 is that the estimated correlation between the number

of medications and HBP is as high as 0.6 but its correlations with TC and HDL are both negative,

fluctuating around -0.30. However, there does not appear to be a strong association between the

number of medications and HbAc1 over time. This may suggest that the patients in this cohort

were most likely to take medications that aimed to control the levels of TC and HDL, but not

necessarily for controlling the level of HbA1c. The latter is consistent with the fact that over

90% of drugs recorded in this database are non-diabetic drugs. One possible interpretation of the

observed time-dependent correlation pattern is that there might exists another unobserved disease

health marker that influences the two observed markers temporally. Thus, the estimated correlation

pattern could be potentially useful to identify such “common cause” health markers so as to better

understand the mechanism of disease progression.

Finally, we computed the similarity between each pair of patients using the distance defined

in (2.7). To compute ε̂i(t) as (2.8), we substituted Ŷi(t) with the nearest neighbor observation of

time t for patient i. Using the between-patient similarity matrix, we performed a cluster analysis on

the 24,655 patients, and the results are given in Figure 2.7. We observed 4 clusters within which

patients had similar health marker profiles.

To better understand the health patterns of patients in each subgroup, we calculated the average

of normalized measurements for each health marker in each group, as shown in Figure 2.8. In the

top panel of Figure 2.8, the value in each cell is averaged over all patients and all clinical encounters

between January 1, 2013 and December 31, 2017. We compared these values to the average of each

health marker in the entire study sample. A higher value of HDL and a lower value of HBP, TC,

and HbA1c represent healthier T2D status. The number of medications prescribed at each clinical

encounter does not directly reflect the disease status, but a lower count usually indicates a less
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Figure 2.7: Dendrogram of Mahalanobis distances for 24,655 patients at the OSU-WMCIW. Group
index numbers are assigned according to group sizes.

severe state. Group 4 contains 2,163 patients, whose TC was slightly higher than the overall average.

Their HBP, HDL, and the number of medications were lower than the overall averages. In addition,

they had the highest HDL and it was substantially higher than the overall average. Thus, group 4

is the relatively healthy group in which patients did not take many medications. Group 1 contains

10,705 patients who were less healthy since they had lower-than-average HDL, but other health

markers were favorable or roughly neutral. The TC of 6,930 patients in group 2 was higher than the

overall average, while other health markers were lower or around the averages. We conclude that

group 2 is a moderately ill group. For the 4,857 patients in group 3, their TC levels were slightly

lower than the overall average, however, they had the highest HbA1c. Also, other markers indicated

bad health status. Therefore, group 3 patients were in the most severe state of T2D.

To examine whether the subgroups inferred by the clustering truly represent patients health

profiles, we validated the detected patterns using the third fold of the split data that consisted of

the EHR data collected after January 1, 2018. These data were not used in any other analyses of

this application. The average values of normalized measurements for each health marker in each

group are shown in the bottom panel of Figure 2.8. We conclude that the patients health patterns

identified prior to year 2018 are consistent with those patterns afterward. Therefore, the patient

groups are not only meaningful, but also represent some true underlying patient patterns over time.

This robustness is particularly important to the long-term health management of T2D patients.
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Figure 2.8: Averages of normalized measurements by health markers and patient subgroups. (a):
using data from 1/1/2013 to 12/31/2017. (b): using data after 1/1/2018. Red: more severe status
than the overall sample average in terms of a health marker; blue: healthier status than the overall
sample average in terms of a health marker; white: overall sample average status in terms of a
health marker.
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2.6 Discussion

In this chapter, we proposed a latent temporal process model to integrate health markers

in EHRs and characterize patient heterogeneities. The proposed method is capable of handling

unbalanced records and informative visits, that is, patients can have missing health markers at some

encounters or with visit times depending on their health status. Additionally, our model can both

fit different types of health marker, capture the dependence structures among health markers, and

takes into account informative patterns of visit times, via the intensity function of health markers.

The real data application shows the capability of the proposed method on addressing the data

challenges of EHRs, integrating different types of health markers, and identifying meaningful and

robust patient subgroups. Therefore, the proposed method may shed lights on the detection of

patient homogeneities and heterogeneities, and serve as a step towards applications of personalized

medicine.

In the parameter estimation process, we assumed that variances of the latent variables εi(t)

were fixed and they were estimated using the EHR data of 2011 and 2012. To study whether

the constant variance was reasonable, we estimated the changes in variances from six different

time periods in windows of 2 years as well as using the whole 5-year data, and the results, as

shown in Tables A.1 and A.2, indicate that the estimates varied little. Thus, the constant variance

assumption seems to be reasonable for our application. In addition, we re-estimated βk(t) and σkl(t)

using the same proposed parameter estimation approach but with the 5-year variance estimates

in Table A.2. Figures A.1 and A.2 reveal slight changes in the estimated coefficients. In fact, the

absolute percentage changes between the two sets of coefficients are less than 1%, except for β̃1·(t)

and σ̃1·(t) which have changes of up to 3%. Therefore, we could conclude that the estimation results

are robust to the constant variance estimates.

Moreover, to investigate the effect of bandwidth selection on parameter estimation, we report

βk(t) using two suboptimal bandwidths that are close to the optimal bandwidth in Section 2.5.2.

Figure A.3 shows that the suboptimal estimators preserve the similar pattern to β̂k(t). The Canberra

distances (Lance and Williams, 1966) between the optimal estimators and suboptimal estimators of
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βkj(t) across time, k = 1, . . . , p, j = 0, . . . ,m, are calculated as

d(βkj,H1 ,βkj,H′1
) = 1

N

tN∑
t=t1

∣∣∣βkj,H1(t)− β
kj,H

′
1
(t)
∣∣∣

|βkj,H1(t)|+
∣∣∣βkj,H′1(t)

∣∣∣ , (2.14)

where βkj,H1 is the vector of estimated {βkj(t) : t = t1, . . . , tN} using the optimal bandwidth H1

and β
kj,H

′
1
is the vector of these estimators using a suboptimal bandwidth H ′1. Most of the distances

are as smaller than 0.05 as given in Table A.3, confirming the estimates using the optimal and

suboptimal bandwidths are close. The conclusions could also be drawn for estimating σkl(t) (cf.

Figure A.4 and Table A.4).

In our models, we assumed that the intensity function of the counting process only depended

on the baseline covariates. This assumption can be violated if the intensity also depends on the

historical marker values. However, directly incorporating time-dependent marker values, which are

missing for most of time points, is challenging. To examine how this assumption may affect our

results, we included an ad hoc marker value, defined as the mean value of HbA1c in the past 12

months, in the intensity model (2.1). From Table A.5, the effects of the historical HbA1c level

on frequencies of HBP, TC, and HbA1c are significant, while the historical HbA1c level has lower

impacts on frequencies of HDL and the number of medications. Figures A.5 and A.6 also reflect

this phenomenon that there are slight differences between two versions of estimators for HDL and

the number of medications. Although differences between two versions of estimators for HBP and

TC are moderate, the new estimators still locate within or around the 95% bootstrapped confidence

intervals for the original estimators. However, for HbA1c, the differences could not be ignored

since the estimated curves present some unusual shapes. Therefore, further investigation is needed

regarding what time-dependent marker values should be used and how missing data issues should

be addressed.

As stated in Section 2.1, the latent processes can be also viewed as projections of the health

markers onto a lower dimensional space. Therefore, our method can be used for identifying latent

clusters among patients as illustrated in our application, and at the same time can also play a role

in learning personalized disease prognosis and personalized disease management. For example, the

summary of latent processes can be used to improve the understanding of treatment propensity

scores in EHRs when learning individualized treatment rules. Lastly, the latent processes can be
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included in disease outcome models as prognostic or predictive health markers, and we will show

this extension in Chapter 3.
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CHAPTER 3: ESTIMATING INDIVIDUALIZED TREATMENT RULES FOR
MULTICATEGORY TYPE 2 DIABETES TREATMENTS USING

ELECTRONIC HEALTH RECORDS

3.1 Introduction

T2D is the most common type of diabetes which causes millions of people to suffer from severe

diabetes-related complications such as heart attacks, stroke, blindness, and kidney failure (Roglic,

2016). To treat T2D, American Diabetes Association (2018) recommended to use metformin

monotherapy as the initial treatment and select additional therapies based on patient-centered

considerations. A treatment guideline from the United Kingdom also suggested metformin as the

first-line drug, unless it is contraindicated or not tolerated (McGuire et al., 2016). Palmer et al.

(2016) summarized 301 clinical trials (1.4 million patient-month) in which metformin and other 8

available classes of glucose-lowering drugs were compared. This meta analysis reported that when

compared with other drugs given as monotherapy, metformin only had better or similar effects on

managing HbA1c levels among adults with T2D. Nevertheless, there was no significant difference in

all-cause mortality or other complications between any glucose-lowering drugs alone or combined.

There is a lack of conclusive evidence for the best T2D management strategy from clinical trials.

With the emergence of large-scale electronic systems such as EHRs, which usually contain patient

demographics, vital signs, laboratory test results, medications, diagnosis, and medical insurances

documented at the point of care, there has been an increasing trend of using EHRs as an observational

database to study T2D treatment patterns in real world practices. For example, Montvida et al.

(2018) selected 1.02 million adults with T2D from the U.S. Centricity Electronic Medical Records

and concluded that, from 2005 to 2016, first-line use increased for metformin (60% to 77%) and

decreased for sulfonylureas (20% to 8%). Canivell et al. (2019) used a 5-year-EHR for 15,205 patients

with T2D from the SIDIAP database and assessed glycemic controls after treatment intensification.

Compared to experiments such as RCTs, observational studies use real-world information from

larger patient populations and contain a longer duration of observations, and thus may offer valuable

complements to RCTs. Studies using large-scale EHRs may reflect real-world patterns of treatment
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pathways which can neither be conducted nor observed in RCTs (Hripcsak et al., 2016). More

importantly, EHRs provide a great opportunity to study the heterogeneity of treatment responses in

a large population so that we can learn optimal ITRs for T2D patients to fulfill the goal of precision

medicine, a medical paradigm that utilizes individual patient’s characteristics such as demographics,

lab test results, and genetic information, to optimize treatments (Ginsburg and Phillips, 2018).

There has been intensive methods development for precision medicine in the fields of statistics

and machine learning over the last decade (Mesko, 2017). These methods include regression model-

based methods such as Q-learning (Watkins and Dayan, 1992; Murphy, 2005; Qian and Murphy,

2011), A-learning (Murphy, 2003; Robins, 2004), regret-regression (Henderson et al., 2010), and

subgroup analysis (Foster et al., 2011; Lipkovich et al., 2011; Fu et al., 2016). Through directly

optimizing ITR-related value functions, Zhao et al. (2012) proposed an outcome weighted learning

approach that converted the estimation of ITRs to a weighted classification problem. Similar

methods were later developed in contrast weighted learning (Tao and Wang, 2017) and augmented

outcome weighted learning (Liu et al., 2018). More recently, Wu et al. (2020) proposed a matched

learning approach, called M-learning, to learn ITRs based on pairs of patients who shared similar

pre-treatment health profiles. This approach was demonstrated to be more robust than weighting

methods.

However, the above methods are confronted by the following challenges when applied to EHRs.

First, characterizing individual patient’s pretreatment condition is difficult since their health

markers measured over time are multivariate and the measurements can be continuous (e.g., lab

measures), binary (e.g., disease diagnoses) or counts (e.g., number of medications). Moreover, these

measurements are taken at patient’s clinical encounters which potentially depend on their underlying

health status. Thus, not accounting for informative measurement patterns of health markers may

cause selection bias (Haneuse, 2016; Haneuse and Daniels, 2016). Second, there are often many

observed treatment options and patient’s propensity to receive one specific treatment is complex

and heterogeneous, which may not be captured by parametric models. Furthermore, there presents

substantial heterogeneity among patients in terms of treatments and outcomes that need to be

accounted for when learning ITRs. Standard weighting methods suffer from numerical instability

due to low representation of patients with some treatments.

In this chapter, to address the challenges in EHRs, we propose a general framework for learning
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ITRs for T2D patients and use one concrete dataset as an example to demonstrate the framework.

Specifically, we propose a multivariate longitudinal model to model the time-trajectory of different

types of health markers through a generalized exponential family of distributions, while accounting

for their dependence through a latent multivariate Gaussian temporal process. We also adopt inverse

intensity weighting to adjust for potential informative times of measurements. Through the joint

models, we can identify several T2D patient subgroups using clustering algorithm to summarize

patients’ health profiles based on their pre-treatment EHRs. To learn ITRs within each subgroup,

we create a few classes of treatments and apply nonparametric methods to estimate treatment

propensity scores. Finally, to handle the challenge of multiple treatments, we extend matched

learning method in Wu et al. (2020) to multicategory treatments. Particularly, we develop an

one-versus-one matched learning method to estimate ITRs. The derived rules are further validated

through cross-validation.

The remaining part of this chapter is organized as follows. In Section 3.2, we provide the details

of the proposed models and learning methods. In Section 3.3, we demonstrate an implementation of

our methods to EHRs from the OSU-WMCIW. In Section 3.4, we describe the estimated ITRs for

T2D patients and compare with the observed treatments in EHRs. Concluding remarks are given in

Section 3.5.

3.2 A General Framework to Learn Optimal ITRs Using EHRs

We use A, Z, and R to denote a T2D patient’s treatment at a decision time (referred to as

time zero), pre-treatment features, and reward outcome, respectively. We assume no unobserved

confounding and stable unit treatment value assumption, which are two crucial assumptions to allow

using the EHRs for learning the optimal treatment rules. The first assumption implies that the

treatment assignment is independent of potential outcomes given Z, so there will not be any hidden

bias due to unobserved confounding; while the second assumption implies that there is no treatment

interference between the patients. The assumptions are not testable due to the observational nature

of the EHRs but may be plausible if Z contains sufficient information about why each patient

received one particular treatment and one patient’s response does not depend the other patients’

treatments or responses. Under these assumptions, it is known that the optimal ITR is a function

mapping Z to A’s domain and it is given as the treatment that yields the maximum value of

E (R|Z, A = a). Many methods have been developed to estimate such optimal ITR using RCTs,
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but our goal is to instead use EHRs to estimate the optimal ITR.

Data from EHRs consist of patient’s health marker measurements, for example, body mass index

(BMI), cholesterol level, and HbA1c for T2D patients, as well as received medications, at clinical

encounters over a span of calendar time windows. Time zero is usually set to be the index date when

a patient received treatment A, and the reward outcome, R, is a pre-defined measure indicating

disease improvement since time zero (for example, HbA1c reduction within 6 months after taking the

treatment). However, obtaining a reasonable set of feature variables for Z is challenging, since they

not only include patient’s demographics (age, gender, race), but more importantly, should reflect

patient’s preconditions that are useful for the treatment decision. The latter must be extracted

from patient’s longitudinal health markers before time zero.

In the following sections, we first extend the method in Chapter 2 to extract patient’s pre-

treatment health profiles using EHRs that will be included as feature variables for learning ITRs.

We then propose a matching-based learning algorithm to estimate optimal treatment rules that will

maximize patient’s outcomes.

3.2.1 Characterizing Patient’s Pre-treatment Health Conditions

Given the heterogeneity among patients in EHRs, it is important to characterize patient’s

pre-treatment conditions based on longitudinal marker measurements in EHRs. We present methods

to handle two challenges: the first challenge is that patterns of measurement time points may depend

on patients’ underlying health status and thus are informative; the second challenge is that health

markers are of mixed types and collected at different time points.

We use the same notations of n, p, Xi, Yik(t), and Nik(t) as those in Section 2.2.1. However, in

this framework, we extend the equation (2.1) to

E [dNik(t)|observed data up to t] = λk(t) exp
{
XT
i γk +LTik(t)ηk

}
dt, (3.1)

where λk(t) is a baseline intensity function, Lik(t) is a vector of observed health history up to time

t, and γk and ηk are intensity parameters. For example, in real data, Lik(t) can take the value of

average blood pressure measurements in past 3 months, and a patient with higher blood pressures

is likely to have a revisit in a shorter time than a patient with normal blood pressures. This effect

is measured by the intensity parameter ηk. We still assume Yik(t) follows a generalized exponential
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family model as (2.2). Also, the regression coefficients βk(t) and the covariance matrix Ω(t) are

defined and modeled as (2.3).

The parameters in the intensity model for Nik(t) can be estimated by fitting a standard

Andersen-Gill proportional intensity model. We denote the coefficient estimators as γ̂k, and η̂k. To

estimate the parameters in model (2.3) and further account for irregular time intervals, we define

dÑik(s) = dNik(s)/ exp
{
XT
i γ̂k +LTik(s)η̂k

}
, and then we solve the following kernel-weighted local

estimating equations for each health marker to pool information across times and patients:

Un,k(βk(t)) = 1
n

n∑
i=1

∫
Kh1n(s− t)Xi[Yik(s)− Eik(t)]dÑik(s) = 0, (3.2)

where Eik(t) = E
[
g−1
k

(
XT
i βk(t) + εik(t)

) ∣∣∣Xi

]
, Kh(u) = K(u/h)/h with K(u) being a symmetric

kernel function, usually taken to be the Epanechnikov kernel or Gaussian kernel, and h is its

bandwidth.

Denote the estimators obtained by solving (3.2) as β̂k(t). Similarly, for each element in

Ω(t) = (σkl(t)), we solve the following kernel-weighted local estimating equations

Un,k,l(σkl(t)) = 1
n2

∫∫
K̃h2n(s− t, s′ − t)

[
Yik(s)Yil(s′)− Eikl(t)

]
dÑik(s)dÑil(s′) = 0, (3.3)

where the double integration excludes s = s′ if k = l. In (3.3),

Eikl(t) = E
[
g−1
k

(
XT
i β̂k(t) + εik(t)

)
g−1
l

(
XT
i β̂l(t) + εil(t)

) ∣∣∣Xi

]
,

and K̃h(u1, u2) = K̃(u1/h, u2/h)/h2. Here, K̃(u1, u2) is a bivariate kernel function, usually taken to

be the product of univariate Epanechnikov or Gaussian kernel, and h is its bandwidth. Denote the

estimators as σ̂kl(t). Unlike (2.6), in this case, we estimate the diagonal elements of Ω(t) directly

from the data instead of historical records or external resources. The bandwidths in the estimating

equations (3.2) and (3.3) are determined using the same approach in (2.9). In Appendix B.1, we

provide numerical evidence through a simulation study to demonstrate the good performance of the

proposed estimation method.

Finally, to characterize patient’s pre-treatment health status into clusters where patients within
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the same cluster share similar health profiles, we compute the similarity distance between each pair

of patients as (2.7), and then we perform a hierarchical clustering based on the distance matrix.

Because the Mahalanobis distance naturally accounts for the between-marker correlation, the use of

such distance can effectively remove the redundant information regarding the patient’s health status.

We choose the hierarchical clustering because it is a powerful approach to identify homogeneous,

interpretable groups of the patients. Thus, even though the original heath markers are measured

irregularly and are of very different data types, our joint models enable one to combine them using

the latent processes on the same scales and account for dependence over time. With the estimated

subgroups from clustering, the subsequent ITRs will be estimated for each subgroup separately.

3.2.2 Matched Learning for Multicategory Treatments

When estimating ITRs for binary treatments, Wu et al. (2020) showed that M-learning could

outperform other commonly used methods for observational databases. Thus, we generalize M-

learning to handle multicategory treatments which are commonly seen in EHRs. First, in each

patient subgroup s ∈ {1, . . . , S} that was identified before, the comparison among a total of K

treatments can be converted to K(K − 1)/2 comparisons between two treatments, which can be

integrated using the one-versus-one method to yield an optimal ITR for all treatments.

Specifically, for each patient i in each subgroup s, let Zi denote the baseline covariates Xi and

some additional pre-treatment health marker information, for example, the average BMI in the

past year. We let Ai and Ri be the treatment at time zero and the reward outcome post-treatment.

For each treatment pair (u, v), let Ti = 1 if Ai = u and Ti = −1 if Ai = v. Assume there are

N s
u,v patients who received treatment u or v in group s. Antonelli et al. (2018) and Wu et al.

(2020) proposed a doubly robust matching method to improve the efficiency of matching methods.

This method uses not only covariates but also propensity scores and prognostic scores, denoted by

π(Zi) ≡ P (Ti = 1|Zi) and ψ(Zi) ≡ E [Ri|Zi], respectively, to create matched sets. Thus, for the ith

patient, the improved matched set, denoted by Mis, has an expression as follows:

Mis = {j : Aj 6= Ai, d(Hj ,Hi) ≤ δ} ,

where d(·, ·) is a distance function, Hi =
(
Zi, π̂(Zi), ψ̂(Zi)

)
, and δ is a threshold which may vary

with i. In our implementation, we use random forests (Ho, 1995) to perform a multicategory
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classification for Ti given Zi to obtain π̂(Zi) and use gradient boosting machines (Friedman, 2001)

to estimate Ri given Zi to obtain ψ̂(Zi). As suggested by Antonelli et al. (2018) and Wu et al.

(2020), the doubly robust method may lead to the optimal treatment rules even if the model for the

propensity score, or the model for the prognostic score is misspecified, but not both, and including

prognostic scores was empirically shown to perform better than the methods without using them.

Following Wu et al. (2020), we adopt a weighted SVM (Cortes and Vapnik, 1995) with weights

for estimating ITR when comparing treatments u and v. Specifically, we minimize the following

objective function

V s
u,v(f ; g) = (N s

u,v)−1 ∑
i∈subgroup s,A∈{u,v}

|Mis|−1 ∑
j∈Mis

|Rj −Ri|

×φ (−f(Zi)Tisign(Rj −Ri)) + λsu,v ‖f‖Hk
, (3.4)

where φ(x) is the hinge loss given by max(1− x, 0), f(·) is a function such that the decision rule

D(Z) = sign(f(Z)), |Mis| is the size of matched set Mis, λsu,v is a tuning parameter, and Hk is a

reproducing kernel Hilbert space with a kernel function k(·, ·). Using the weight |Rj −Ri| ensures

that the estimated treatment rule is driven by comparing the pairs of patients who have large

outcome differences. Using a weighted SVM to minimize V s
u,v(f ; g), we obtain the optimal ITR,

D∗su,v, for comparing treatment u to v in group s. Similarly, for the remaining treatment pairs, we

estimate the corresponding decision rules. Therefore, for the ith patient in group s, we derive the

optimal ITR, D∗s(Zi), as the majority vote recommended by
{
D∗su,v(Zi) : u, v ∈ {1, . . . ,K} , u 6= v

}
.

In the above learning algorithm, the tuning parameters are chosen using cross-validation. The

ITRs estimated from a training sample (i.e., D̂∗s(·)) are evaluated using an independent testing

sample by calculating an empirical value function defined as

∑K
u=1

∑
i∈test sample I(Ai = D̂∗s(Zi) = u)Ri/P̂ (Ai = u|Zi)∑K

u=1
∑
i∈test sample I(Ai = D̂∗s(Zi) = u)/P̂ (Ai = u|Zi)

, (3.5)

where P̂ (Ai = u|Zi) is the estimated probability of Ai = u from the propensity score estimation.
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3.3 Implementation Using OSU-WMCIW EHRs

3.3.1 Data Preparation

The EHRs from OSU-WMCIW contain demographics, laboratory test measures, vital signs, and

diagnosis codes for 58,490 patients diagnosed with T2D between 2011 and 2018. We set time for

the treatment decision for each patient (time zero) as the last clinical encounter in year 2016 when

he or she received T2D medications. This choice was based on two facts in order to learn ITRs

from data with limited time periods: we needed a sufficient time window of the longitudinal history

before time zero to precisely characterize patient’s health status and subgroups; and we needed a

reasonable follow-up period after time zero to precisely calculate the outcome variable, the HbA1c

level at 6 months after time zero.

In the EHRs, there were four health markers Yik(t) associated with T2D: systolic blood pressure

(SBP), HbA1c, HDL, and BMI. After checking normal ranges for the health markers (Stone et al.,

2014; Whelton et al., 2018; American Diabetes Association, 2018), we removed missing, duplicated,

and extreme entities such as SBP≥250 mmHg, HbA1c≤3 or ≥20 %, HDL≤0 or ≥120 mg/dL, and

BMI≤10 or ≥60 kg/m2. In addition, we created a binary variable to denote whether diabetic drugs

were prescribed at a clinical encounter (DD) and a continuous variable as the logarithm of the

number of medications prescribed at each encounter (logMed). Both variables were considered as

an important indication of T2D patient’s comorbidity status. Therefore, our analysis included one

binary longitudinal marker and other 5 continuous health markers over time (SBP, HbA1c, HDL,

BMI, logMed). We require that at least one measurement for at least one marker is available before

time zero. With this restriction, there were a total of 8,456 subjects with 497,763 longitudinal

records before time zero date and they were used to learn patient’s pre-treatment subgroups using

the method in Section 3.2.1. Among these patients, 53.43% were female, 62.03% were white, and

their ages in years ranged from 17.89 to 100.84 with a mean of 59.67. The number of records for

SBP, HbA1c, HDL, BMI, and DD was 9.8, 2.3, 4.0, 2.2, 14.6, and 29.3, respectively, when averaged

all the patients.

The medications at time zero were considered to be treatments, Ai, for learning ITRs. There

were 3,978 types of medications observed in the EHRs, and we classified the medications to either

the 163 diabetic drugs for T2D (Drugs.com, 2019) or the remaining non-T2D medications before
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further grouping them. As stated in Section 3.1, metformin is commonly considered as the first-line

drug for T2D and it may have a better control of HbA1c levels than other T2D drugs given as

monotherapy. On the other hand, there is some evidence that basal insulin also serves as an

important T2D treatment. Thus, we compared four classes of treatments: metformin monotherapy,

insulin monotherapy, other T2D monotherapy or combinations of other T2D drugs, and combinations

of at least two classes of treatment among the aforementioned three classes. We referred the third

class as “other T2D drugs” and the fourth class as “multiple T2D drugs”. Thus, Ai was one of four

treatments including metformin, insulin, other T2D drugs and multiple T2D drugs.

We were interested in the treatment effects on reducing HbA1c level after time zero. For the

ith patient, we constructed the outcome variable Ri as the expected HbA1c level 6 months after

the date of time zero. In particular, we first collected all available HbA1c measures from lab tests,

which were conducted from time zero to up to one year after. For each patient, we performed a

linear interpolation model as αi + βi(tij − ti,baseline), where tij was the date (in years) for the jth

measurement for patient i, ti,baseline was the date for time zero, and αi and βi were respectively the

intercept and slope for the patient’s trajectory. Finally, based on the least-square estimates, we

defined the outcome as the expected HbA1c level at 6 month after treatment for each patient, which

was given as Ri = α̂i + 0.5β̂i. In OSU-WMCIW data, only 5,458 patients had at least two HbA1c

measurements during the year after time zero so their outcomes could be calculated. Furthermore,

we excluded 333 patients whose estimated slope coefficient was either greater than 5 or less than

−5, which were not sensible clinically.

To construct the feature variables, Zi, we first used the proposed method in Section 3.2.1 to

obtain subgroups of all patients using all available heath markers before time zero. More specifically,

when fitting the joint models, the covariates entering the intensity models (3.1) for the measurement

times included the demographics and time-dependent covariates indicating whether there was any

measurement of longitudinal marker k in the past 6 months and if there was, what was the average

marker value. Using about 2-year data prior to time zero, we estimated the intensity parameters

γk and ηk, along with βk(t) and Ω(t) at 25 equally spaced time points (in days), where the time

length between two consecutive time points were 30 days. Given β̂k(t) and Ω̂(t), in this particular

application, we integrated health markers over time by calculating ε̂i(t) through the 20-point

Gaussian quadrature. Using the between-patient similarity matrix, we performed a hierarchical
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clustering analysis on all 8,456 patients. Appendix B.2 presents parameter estimation and clustering

analysis results on identifying patient subgroups.

The derived groups using our models represented patient’s chronic preconditions so might not

capture patient’s most recent health status before the treatment. Therefore, we also included in Zi

the average values of the heath markers during the most recent year before time zero. Consequently,

Zi consisted of the derived group membership, the average values of SBP, HbA1c, HDL, BMI, DD,

and logMed in the past one year before time zero, as well as age, gender, and race variables. Finally,

we had data of (Ai,Zi, Ri) from 5,125 patients for learning optimal ITRs.

3.3.2 Learning ITRs Using Proposed Method

Figure 3.1 describes the flow-chart of our proposed framework, along with methods used at each

step. As illustrated in this figure, we used EHRs before time zero (last clinical encounter in year

2016) to fit joint models and learn subgroups for these patients. After using the 12-month-data

of HbA1c after time zero to define the outcome, we applied the multicategory matched learning

method in Section 3.2.2 to estimate optimal ITRs in each subgroup.

Figure 3.1: Flow-chart of learning optimal ITRs using the EHRs at the OSU-WMCIW.

Before estimating propensity scores, prognostic scores, and ITRs, we normalized all the continuous

variables to alleviate the bias introduced by scaling. Propensity scores, π(Zi), were estimated by

a 10-fold cross-validation random forest with 3 repeats. The misclassification rates on the whole
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training data were 3.1%, < 0.001%, 16.4%, 11.0% and 15.2% for each of groups 1 to 5, respectively.

The 5th and 95th percentiles of estimated propensities are around 0.01 and 0.80. To avoid extreme

weights in the calculation of value functions, we truncated probabilities less than 1% or greater than

80%. Similarly, prognostic scores, ψ(Zi), were estimated by a gradient boosting model with 5, 000

trees of which maximum depth was 4 in each patient subgroup. The model provided a good fit to

the clinical outcome with a mean squared error less than 10−4. The most important covariate in

estimating both propensity and prognostic scores is the recent one-year HbA1c.

Finally, in the doubly robust matching step in Section 3.2.2, we used the Euclidean metric as

the distance function d(·, ·) and the 1-nearest neighbor to create matched pairs. In other words,

for the ith patient, among other patients with the same gender and race but different baseline

treatments, we searched for the patient who has the closest Euclidean distance to him/her in terms

of demographics variables, recent measurements of health markers, and two estimated scores. We

applied the radial basis function (RBF) kernel to optimize the objective function (3.4) in the matched

learning model and 2-fold cross-validation with 100 repeats were used to learn optimal ITRs. The

tuning parameter was selected from
{

2k : k = 0,±1, . . . ,±15
}
using 2-fold cross-validation. We

calculated the bandwidth parameter of each RBF kernel according to a data-driven method which

could be implemented using the kernlab (Karatzoglou et al., 2004) R package.

Given ITRs, we used (3.5) in Section 3.2.2 to evaluate the optimal ITR and compare with the

universal rules of the four classes of treatments. In addition to the universal rules, we also compared

the model performance of our method with Q-learning. In Q-learning, we used all the feature

variables and the treatments in the model. Random forests and SVMs with RBF kernels were applied

to obtain parameter estimates through 2-fold cross-validation with 100 repeats via the caret (Kuhn,

2020) R package. The cost parameter in SVMs was also selected from
{

2k : k = 0,±1, . . . ,±15
}

using 2-fold cross-validation. The parameter that controls the number of features being randomly

selected at each node in random forests was chosen from a pool of 10 potential values which were

automatically determined by the caret package, using 2-fold cross-validation.
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3.4 Analysis Results of OSU-WMCIW EHRs

3.4.1 Identified Latent Subgroups

We identified 5 subgroups in the EHR datasets and patients in each cluster have similar health

profiles. Figure 3.2 shows the averages of normalized health marker measurements for patients

in each cluster. The value in each cell is averaged across all patients and clinical visits for the

corresponding health marker and patient subgroup. A higher value of HDL and a lower value of

HbA1c, HDL, and BMI indicate a healthier status. The value of DD and logMed do not directly

reflect the disease state. However, a lower value indicates that physicians tend to prescribe less

medications to this group of patients, and thus a less severe state. We compared these values to the

sample average of each health marker. A healthier T2D status is indicated in blue and a severe

condition is indicated in red.

Figure 3.2: Averages of normalized measurements by health markers and patient subgroups using
24-month-data before baseline treatment dates. Red: more severe status than the overall sample
average in terms of a health marker; Blue: healthier status than the overall sample average in terms
of a health marker; White: overall sample average status in terms of a health marker.

Group 5 is comprised of 1,231 patients. All the health markers convey the information that this
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group of people is relative healthier. Compared to other groups, patients in this group did not take

excessive number of medications. Group 2 contains 3,360 patients whose HDL is slightly lower than

the average. This suggests that they might have some difficulties in controlling the cholesterol level.

However, other health markers reflect a relatively healthy status of patients in this group. The SBP

of 737 patients in group 1 is apparently higher than the average, while other health markers are

below or around the averages. This pattern indicate that these patients might have hypertension

and a moderate status of T2D. Group 3 have 2,446 patients and their BMIs are above the average.

Besides BMI, the value of HDL in this group represent a bad signal as well. Thus, patients in

group were at a moderately severe state. For the 682 patients in group 4, almost all the health

markers show the most severe severe state of T2D. In particular, their HbA1c level is much higher.

Another interesting fact is physicians had prescribed more-than-average diabetic drugs and ancillary

medications to this group of patients, but their diseases were not controlled well. This result implies

that this group might not have received the optimal treatments, and, therefore, we would focus on

this group in the following analysis.

3.4.2 ITRs for Multicategory Treatments

As described in Section 3.3.1, we used 5,125 patients out of 8,456 patients in the finalized dataset

for learning optimal ITRs. Before estimating optimal ITRs on the whole dataset, we compared

the performance of the proposed method with the universal rules of four treatment classes and

Q-learning. The results of 100 cross-validation repetitions are displayed in Figure 3.3, and the

summary statistics are listed in Table B.1.

In general, the empirical HbA1c value of estimated ITRs is lower than any universal rules (i.e.,

“one-size-fits-all" rules) in any of the 100 repetitions. Compared to Q-learning using random forests

and SVMs, the proposed method has lower average empirical values in the majority of cases as well.

For example, in group 4, the weighted mean outcomes in (3.5) are 8.479, 9.199, 8.866, and 9.121

for patients prescribed metformin only, insulin only, other T2D drugs, and multiple treatments,

respectively. ITRs estimated by the proposed approach achieve a mean empirical value function of

7.752, which is lower than that for Q-learning using random forests (9.052) and Q-learning using

SVMs with RBF kernels (7.794). Furthermore, the standard deviations of our ITRs are relatively

small across all patient subgroups. Thus, we conclude the proposed M-learning model outperforms

universal rules and Q-learning on estimating ITRs for HbA1c control with a higher value and a
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Figure 3.3: The empirical value function for the expected HbA1c level using 2-fold cross-validation
with 100 repeats (a lower value means more beneficial).

lower variance.

After evaluating the model performance, we estimated the ITRs using the whole dataset. The

distributions of four treatment classes in baseline assignments and ITRs are displayed in Figure 3.4.

Taking group 4 as an example, there are 53 (14.2%) patients who received metformin only; 152

(40.8%) patients received insulin only; 88 (23.6%) received other T2D drugs; and 80 (21.4%) received

at least two treatments. However, in other patient subgroups, 25% to 35% of patients were assigned

metformin monotherapy, insulin monotherapy, and other T2D drugs, respectively. The proportion

of multiple treatments is around 8% to 15%. Thus, the proportion of patients in group 4 receiving

metformin monotherapy is much lower than that in other groups, while the normalized HbA1c level

of group 4, as shown in Figure 3.2, is the highest among all groups.

Compared to the observed baseline treatments, the proportion of assigning either metformin

monotherapy or other T2D drugs increases in almost every patient group. In contrast, the estimated

ITRs suggest to prescribe insulin to less patients than observed. The proportions of metformin

monotherapy and other T2D drugs recommended by the ITRs are fairly close; however, in group 4,

metformin has a drastic increment in the assignment proportion from 14.2% to 40.2%. Similarly,

in group 5, the proportion of insulin monotherapy decreases from 38.1% to 20.4%, together with
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Figure 3.4: The distribution of observed treatments vs treatments recommended by estimated ITRs
within each subgroup.

observable increases in the assignment of metformin monotherapy and other T2D drugs.

Table 3.1 displays the contingency table of observed treatments and the estimated ITRs recom-

mendations. For metformin monotherapy, observed treatments and ITRs are matched by about

50% to 60% times. The proportion of other T2D drugs ranges from 40% to 60% across patient

groups. Nevertheless, the observed insulin monotherapy merely has about a 30% to 40% match

rate with ITRs. Particularly, in group 3, 4 and 5 of which patients have the highest HbA1c

measurements, ITRs tend to assign metformin and other T2D drugs to more than 65% of patients

who originally received insulin. We also investigated the agreement of the observed prescriptions

and estimated ITRs using the Cohen’s kappa coefficient κ (Cohen, 1960). As shown in Table 3.2,

all of the κ coefficients for the 4× 4 contingency tables of group 1 to 5 (rows “overall”) are between

0.179 and 0.247. McHugh (2012) suggested any κ value below 0.4 indicates at least moderate

disagreement between the two categorical variables. Therefore, this result reveals the moderate

disagreement between the observed prescriptions and estimated ITRs in all the identified patient

subgroups. Moreover, we decomposed the “overall” disagreement to individual treatment class level

by comparing each of the four treatment classes versus the rest. The κ values for all comparisons

are less than 0.4, suggesting the consistent disagreement of all treatment classes. Particularly, for
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Table 3.1: Contingency tables of four treatment classes by observed prescriptions (rows) and
estimated ITRs (columns).

Group Other Insulin Metformin Multiple Total in
drugs only only drugs prescriptions

Group 1 Other drugs 42 41 5 12 100
Insulin only 43 55 38 9 145
Metformin only 21 38 68 4 131
Multiple drugs 11 28 15 15 69
Total in ITRs 117 162 126 40 445

Group 2 Other drugs 242 200 55 40 557
Insulin only 160 199 124 27 510
Metformin only 319 17 342 7 685
Multiple drugs 44 44 109 40 237
Total in ITRs 765 480 630 114 1989

Group 3 Other drugs 168 82 116 19 385
Insulin only 183 152 95 13 443
Metformin only 69 127 237 14 447
Multiple drugs 71 46 40 46 203
Total in ITRs 491 407 488 92 1478

Group 4 Other drugs 52 20 10 6 88
Insulin only 13 50 87 2 152
Metformin only 20 2 28 3 53
Multiple drugs 23 5 25 27 80
Total in ITRs 108 77 150 38 373

Group 5 Other drugs 93 30 38 34 195
Insulin only 115 94 88 23 320
Metformin only 37 36 156 25 254
Multiple drugs 17 11 25 18 71
Total in ITRs 262 171 307 100 840
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Table 3.2: Cohen’s kappa coefficients for the agreement of observed prescriptions and estimated
ITRs.

Group Treatment Value SE Z P-value
Group 1 Overall 0.179 0.032 5.576 <0.001

Other drugs 0.191 0.051 3.757 <0.001
Insulin only 0.022 0.047 0.463 0.643
Metformin only 0.338 0.048 6.973 <0.001
Multiple drugs 0.182 0.060 3.052 0.002

Group 2 Overall 0.180 0.015 11.877 <0.001
Other drugs 0.062 0.022 2.818 0.005
Insulin only 0.204 0.024 8.477 <0.001
Metformin only 0.284 0.022 12.622 <0.001
Multiple drugs 0.163 0.031 5.318 <0.001

Group 3 Overall 0.181 0.018 10.314 <0.001
Other drugs 0.129 0.026 4.886 <0.001
Insulin only 0.099 0.027 3.696 <0.001
Metformin only 0.280 0.026 10.610 <0.001
Multiple drugs 0.247 0.036 6.872 <0.001

Group 4 Overall 0.247 0.031 7.851 <0.001
Other drugs 0.366 0.053 6.839 <0.001
Insulin only 0.224 0.047 4.744 <0.001
Metformin only 0.083 0.042 1.957 0.050
Multiple drugs 0.371 0.060 6.163 <0.001

Group 5 Overall 0.218 0.022 9.835 <0.001
Other drugs 0.192 0.036 5.396 <0.001
Insulin only 0.160 0.033 4.917 <0.001
Metformin only 0.337 0.034 9.970 <0.001
Multiple drugs 0.124 0.044 2.794 0.005

Note: In column “Treatment”, for each group, “Overall” represents the 4× 4 contingency table in
Table 3.1. The other four labels represent the 2× 2 contingency tables for each of the four treatment
classes versus the rest, respectively; “Value” is the value of Cohen’s kappa coefficient κ for the
corresponding contingency table; “SE” is the asymptotic standard error of κ; “Z” is the test statistic
for a z-test with the null hypothesis κ = 0; “P-value” is the p-value for the z-test.
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the assignments of insulin monotherapy in group 1 and metformin monotherapy in group 4, the κ

coefficients are not significantly different from 0 (p-values are 0.643 and 0.050, respectively), so we

could not reject the null hypothesis that the agreement is the same as chance agreement in these

two cases.

Bringing all the comparisons together, we can conclude that metformin monotherapy has the

optimal effect on HbA1c control, i.e., with the smallest HbA1c level at 6 months, especially for

patients with low or moderate HbA1c levels. Whereas, the insulin monotherapy does not have

noticeable advantages over other T2D drugs, and may even have worse HbA1c management when

the baseline HbA1c level is high. Also, the insulin monotherapy may not be optimal to people

who are relatively healthy and do not suffer from T2D complications. In this case, physicians may

consider to prescribe either metformin monotherapy or other T2D drugs. These conclusions agree

with the findings in Palmer et al. (2016) and may provide new directions to test treatment effects of

T2D drugs.

3.4.3 Interpretable ITRs

To improve the interpretability of optimal ITRs, we employed the SHAP value approach

(Lundberg and Lee, 2017) to examine the importance of features by each patient group. For each

of the six binary classifiers in the weighted SVM in the M-learning model, we used the fastshap

(Greenwell, 2020) R package to compute the approximate Shapley values using 10 Monte Carlo

simulations for each row in the dataset and each feature. Taking the absolute value of all Shapley

values, we computed the average across all incidences for each value, and treated these averages as

the importance of features. The results are presented in Figure 3.5.

The most informative features in estimating ITRs are the prognostic scores and three propensity

scores. The propensity scores summarize the observed treatment patterns that patients received.

This result suggests that incorporating the propensity and prognostic scores is crucial to not only

the doubly robust matching estimator framework but also the determination of ITRs. Gender and

race have less important effects on optimal treatments, while age and the remaining six features

related to health markers have moderate and non-negligible impacts on the estimated ITRs.

3.5 Discussion

In this chapter, we propose a general framework to estimate optimal ITRs for multicategory

treatments using EHRs. Our first contribution is to create a novel latent process model, which
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Figure 3.5: Importances for feature variables based on the absolute values of Shapley values. Prog:
prognostic score. PropI: propensity score for insulin monotherapy. PropO: propensity score for
other T2D drugs. PropM: propensity score for metformin monotherapy.

jointly analyzes different types of health markers and accounts for informative measurement patterns.

Using patient similarities estimated from the latent process model, we identify subgroups of patients

with homogeneous health profiles. The identified patient subgroups show different health patterns,

and the cluster membership of patients is an important feature in M-learning to match patients

among a more homogeneous pool.

The second contribution is the generalization of M-learning to multicategory treatments. We

reduce the problem of selecting the optimal option among multicategory treatments into multiple

binary classification problems using the one-versus-one strategy, and use the majority voting to

integrate the results of the binary classification problems. Using this doubly robust multicategory

M-learning, which incorporates propensity scores and prognostic scores, we reduce the confounding

due to both covariates and recent patterns of health markers. Thus, our approach tackles the

challenges in EHRs, and takes full advantage of information available from the health markers.

Compared to any universal rules, our ITRs lead to a better control of the HbA1c level up to 13%.

This result suggests our method is practical, and assists in the prescription of T2D treatments for

HbA1c management.
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We proposed a general pipeline (Figure 3.1) to learn the optimal treatment rules using the EHR

data. However, there are certainly alternative ways to use in each component of this pipeline. For

example, instead of using the hierarchical clustering, other clustering methods such as k-means

(Forgy, 1965) or Gaussian mixture models may be used to identify the latent patterns in the EHRs.

Also, the optimal number of patient subgroups may be selected by objective statistics (Rousseeuw,

1987; Tibshirani et al., 2002) using automated algorithms (Kassambara and Mundt, 2020). Another

potential extension is that the outcome, HbA1c level at 6 months, was interpolated based on a

linear function using one-year data since the HbA1c value changes slowly and smoothly. However,

more sophisticated interpolation models such as splines may be useful if the measurements are taken

intensively or over multiple years. In our application, there is a significant difference in the patients

that are recommended metformin monotherapy between the observed prescriptions and estimated

ITRs, especially for the patient group with the highest baseline HbA1c level. One possible reason

for the discrepancy is we merely focus on glycaemic control, while, in real world, clinicians have

to concern about other clinical outcomes or dose-related adverse events such as hypoglycaemia,

gastrointestinal disorders, and renal failure. Thus, we can extend our work by considering the

balance control of clinical outcomes and adverse events. Finally, our proposed framework focuses on

finding the optimal treatment in a short period of time at a single decision point (e.g., at a patient

visit). The method is not designed to optimize the long-term outcome over years and after multiple

treatment phases. To adjust for the delayed effect in sequential decision making or long-term health

management, our methods can be extended to learn the optimal dynamic treatment regimes to

maximize the long term reward.
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CHAPTER 4: IDENTIFICATION OF OBJECTIVE BIOMARKERS FOR
ADVERSE POSTTRAUMATIC NEUROPSYCHIATRIC SEQUELAE USING

MOBILE SENSOR DATA

4.1 Introduction

Adverse posttraumatic neuropsychiatric sequelae (APNS) are common among trauma survivors

after experiencing traumatic events such as car crash, physical and sexual assault, and natural

disasters (Kessler, 2000). Common APNS disorders include posttraumatic stress disorder (PTSD),

depression, post-concussion syndrome, and regional or widespread pain (McLean et al., 2020).

Similar to many other mental health disorders, APNS classification and diagnosis are mainly

based on subjective self-report measures that are not well mapped to underlying neurobiological

mechanisms. Consequently, patients diagnosed with the same APNS disorder often experience very

heterogeneous symptoms. Another issue of the self-report measures stems from the fact that more

than half of people with any mental illness do not receive treatments or avoid treatments (Mental

Health America, 2020). Even people who seek help often have a delay between the occurrence of

the illness and clinical visits. In this case, the self-report measures, laboratory tests, and clinical

diagnoses at a single point of time are probably inaccurate due to the delay. As a result, lack of

objective measures has greatly impacted the research for APNS disorders, and the identification of

objective biomarkers is critical to advancing APNS and mental health research.

Jain et al. (2015) firstly attempted to define the concept of digital phenotyping and described

the opportunities in incorporating mobile sensor data into healthcare. They argued that if a person

suffered from any disease, the mobile sensors they wear could trace the disease expressions, so the

patterns in digital data could reflect disease symptoms. Later, Insel (2018) discussed the future

of digital phenotyping and its potential functions in psychiatry and mental health. He stated

the primary merit of digital phenotyping was that the digital phenotyping continuously recorded

the objective signals of a person in their daily life, which could be different from the information

they reported to clinicians later. Thus, besides the traditional clinical data, additional sources of

continuous measurements can provide psychiatrists new insights into the assessment, treatment,
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and prevention of mental illnesses. On the other hand, the development in sensor technology

and information science makes digital data become an objective and ecological source of such

measurements. In the past decade, a large variety of portable and interconnected mobile devices,

such as smartphones, smartwatches, and wristband activity trackers, have been developed and

widely used in daily activities by individuals of all ages and ethnicities around the world (Reinertsen

and Clifford, 2018). Various types of sensors are built into these mobile devices, and massive amount

of objective psychophysical signals are collected continuously by passive sensing from mobile device

users over time. For example, smartphones have seven physical sensors which monitor the physical

activity, sleep, and heart rate signals of users (Cornet and Holden, 2018).

Mobile sensor data provide invaluable information about the daily behaviors of users and have

attracted an increasing attention from researchers in the field of mental health since 2010. For

instance, Moshe et al. (2021) recruited 60 adult participants to explore the use of daily-life behaviour

markers in the prediction of symptoms of depression and anxiety, using smartphones and wearable

devices. Participants were continuously monitored over a 2-week period during which measures

related to GPS, phone usage, activity, sleep, and HRV were recorded. The findings based on these

data demonstrated a number of features had significant correlations with symptoms of depression

and anxiety. Furthermore, smartphone features, wearable device features, and patient self-reported

mood scores together provided the strongest prediction of depression. Depp et al. (2019) conducted

a research to check the association between GPS data and symptom clusters in schizophrenia. Depp

and colleagues collected GPS locations, which were tracked every 5 minutes by smartphones, and

ecological momentary assessment reports of locations and behaviors from a total of 142 participants

with schizophrenia (n=86) or healthy comparison subjects (n=56). They found the less GPS mobility

was related to negative symptoms of schizophrenia. Thus, they concluded passive GPS sensing could

be used for interventions for schizophrenia. Haines-Delmont et al. (2020) recently published an

implementation of digital phenotyping in the suicide risk prediction. 66 qualified patients consented

to participate the experiment, and their health information such as sleep behavior, mobility, and

phone usage were collected up to a week through a smartphone application (“app”), which was linked

to commercial wristbands and social networks. As a result, the research team proposed an algorithm

that revealed the potential for discriminant suicide risk predictions, utilizing smartphone-generated

and passive sensing data. Other representative research using mobile sensor data, classified by
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mental illnesses, can be found in the fields of bipolar disorder (Faurholt-Jepsen et al., 2015; Abdullah

et al., 2016; Beiwinkel et al., 2016; Palmius et al., 2017; Faurholt-Jepsen et al., 2019), schizophrenia

(Wang et al., 2016; Staples et al., 2017; Barnett et al., 2018), depression (Saeb et al., 2015; Canzian

and Musolesi, 2015; Ben-Zeev et al., 2015; Jacobson et al., 2019), PTSD (Karstoft et al., 2015;

Minassian et al., 2015; Pyne et al., 2016; Place et al., 2017; Bourla et al., 2018), suicidal thoughts

(Husky et al., 2014; Hallensleben et al., 2017; Kleiman et al., 2017, 2018), and stress (Muaremi et al.,

2013; Sano and Picard, 2013; Sano et al., 2018; Goodday and Friend, 2019; DaSilva et al., 2019).

However, Linnstaedt et al. (2020) pointed out that there had been few progresses on the

classification and ontology of APNS, and this was partially due to the lack of large-scale longitudinal

studies that tracked APNS in large populations to achieve a sufficient statistical power and replicable

findings. To help address these challenges, the National Institutes of Mental Health, collaborating

with the US Army Medical Research and Material Command and several foundations, institutions,

and companies, developed the AURORA study (McLean et al., 2020). The AURORA study is

an ongoing large-scale (n=5000 target sample) cohort study that enrolls trauma survivors at the

emergency department and follows them for one year. During the 1-year period, self-report indicator

variables, genomic, neuroimaging, psychophysical, physiological, neurocognitive, and mobile sensor

data are collected. These multi-layered longitudinal data from the AURORA study provide the field

with unparalleled opportunities to advance the research on the classification and ontology of APNS.

According to McLean et al. (2020), one of the primary goals of the AURORA study was to develop

clinical decision tools for multidimensional APNS outcomes using the range of biobehavioral data

collected. Motivated by this, we aimed to build a framework to predict construct scores, which were

based on self-report indicator variables, and identify objective biomarkers related to APNS.

Although mobile sensor data provide great opportunities to advance mental health research, they

also bring some unique analytical challenges. First of all, mobile sensor data are often in the form

of high-frequency high-dimensional time series data. For example, the heart rate measurements

traditionally are monitored every minute, so the number of features is 1440 for each day without

any feature engineering. Additionally, mobile sensor data can be highly correlated. For instance,

the heart rate measurements of different days have cyclic patterns for the same person. Finally,

multimodal sensing may cause different time scales in mobile sensor data across domains. Again,

heart rate measurements are monitored every minute, while measurements of sleep quality are
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collected daily or every 12 hours. As a result, the features with finer resolutions will overwhelm

others. These challenges make the modeling techniques for mobile sensor data be different from

those for the data used by clinicians, which are subjective, infrequently sampled, and small-scale

(Reinertsen and Clifford, 2018).

To overcome aforementioned data challenges, existing literature in mobile sensor data applications

have adopted various data-mining techniques to solve formulated supervised learning tasks as ours.

Among these literature, the most commonly used analytical methods are support vector network

models (Ferdous et al., 2015; Abdullah et al., 2016; Wahle et al., 2016; Kelly et al., 2017; Sano et al.,

2018), decision tree based models (Stütz et al., 2015; Garcia-Ceja et al., 2016; Jacobson et al., 2019;

Faurholt-Jepsen et al., 2019), and variations of linear models (Saeb et al., 2015; Place et al., 2017;

DaSilva et al., 2019; Moshe et al., 2021). Support vector network models consist of SVMs and SVRs,

and they have been proved to be powerful methods for handling high dimensional data and solving

classification/regression problems. Common passive sensing features considered by support vector

network models are extracted from ECG and photoplethysmography (PPG). However, support

vector network models require careful data preprocessing and parameter tuning. Furthermore, an

increase in the sample size or the number of features can drastically increase the computing source

of running support vector network models. Lastly, it can be difficult to explain the support vector

network models to non-statisticians and identify the informative biomarkers if the linear kernel is

not chosen. Decision tree based models, including random forests and gradient boosting methods,

have been employed for handling classification/regression tasks on a mixture of categorical and

continuous features. Thus, they are suitable for data collected from multiple digital sensors across

domains. Additionally, compared to support vector network models, decision tree models are simpler

and easier to interpret. Nevertheless, the performance of decision tree models can be limited under

the case of overwhelming noise features. Therefore, decision tree models are not usually applied

to high-frequent and/or high-dimensional sparse data. Linear models have been well studied and

they can serve as the baseline models for most tasks. The generalized forms of linear models enable

them to handle different types of outcomes. It is fast to train a linear model and make predictions.

Also, it is easy to understand and explain the prediction results of linear models. Moreover, in

high-dimensional spaces, linear models often have a powerful performance. The use of regularization

parameters (L1, L2, elastic net) gives linear models the capability of performing feature selection.
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In particular, LASSO (Tibshirani, 1996) is appropriate for using when the interpretability of the

model is given the greatest consideration. The primary downside of linear models is the complexity

of specifying interaction terms between features. Hence, the nonlinear relationship between the

outcome and features can hardly be captured, and the predictions probably are biased.

Accounting for the challenges of using mobile sensor data and the findings in existing literature,

it is unreasonable to simply input raw features from all types of mobile sensors into any single

model or just use the features filtered by marginal screening methods (Lo et al., 2015). Instead,

we propose a two-stage model to predict the continuous construct scores and identify objective

biomarkers. In the first stage, we use a linear regression model with LASSO penalties to perform

variable selection so that we improve the model interpretability. Specifically, in the linear model, we

assign weights to features measured on different days and in different hours, and then we penalize

the objective function for these weights and estimate the weights. Purposes of the first stage are to

reduce the dimension of feature sets and select those features carrying the majority of the model

effect. Also, the use of weights unifies the heterogeneous time scales of different domains of features,

while keeping the most representative time-lag signals as much as possible. However, it is possible

that the linear structure between construct scores and features is misspecified. Hence, to capture

the nonlinear interactions between different domains of features, we apply a SVR model in the

second stage. In this step, we plug the weights estimated from the first stage into a customized

kernel function to further reduce the heterogeneity of different scales. Using the two-stage model,

we not only select the most informative features but also combine the effects of various resolutions

and temporal patterns. Therefore, we strike a balance between the prediction accuracy and model

explainability.

The remaining part of this chapter are organized as follows. In Section 4.2, we introduce the

data source of this chapter. In specific, we explain, in the AURORA study, the procedures of

collecting raw data from mobile sensors, creating constructed scores, and selecting mobile sensor

feature sets. In Section 4.3, we define the proposed model and describe our step-by-step algorithm

for estimating model parameters. In Section 4.4, we illustrate an implementation of our method

to a mobile sensor dataset collected by the AURORA study. We explore the relationship between

three sets of features – demographic, activity, HRV features – and construct scores related to the

pain experience of participants. Finally, we compare the performance of our method with three
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alternative models and report the result.

4.2 Materials

4.2.1 Data Collection

The AURORA study has collected a large amount of digital sensing data, including HRV, activity,

and sleep data from Verily’s smartwatches, as well as keystroke, GPS, text, and voice data from the

Mindstrong Discovery™ app on smartphones. The current research focuses on the identification of

objective biomarker of APNS based on HRV data and activity data collected from smartwatches.

The unprocessed HRV data and constructed HRV features were derived based on PPG signals on

5-minute sliding windows, which overlapped continuously for four and a half minutes. Meanwhile,

the raw data and features of physical activities were obtained daily from accelerometer signals.

In this chapter, we used the Research Domain Criteria (RDoC) framework (National Institute of

Mental Health, 2021) to classify APNS, and we defined 10 RDoC related constructs - pain, loss, sleep

discontinuity, nightmare, anxiety, hyperarousal, avoidance, re-experience, somatic and mental fatigue

- by self-report indicator variables of participants. Self-report indicator variables were selected by

domain experts from a rotating battery of smartphone-based survey. Each survey was administered

at 6 different time points within the first 8 weeks after the traumatic event of each participant.

To create factor scores for the 10 constructs, a joint measurement model (factor analysis model)

across all 6 time points were developed for each construct, and then the performances of model fit

were evaluated by different indices such as the comparative fit index (Bentler, 1990), standardized

root mean square residual (Hooper et al., 2008), and Tucker-Lewis index (Tucker and Lewis, 1973).

Finally, construct (factor) scores at all 6 time points were calculated for each construct using the

joint measurement model.

4.2.2 Construct Scores

Preliminary results of the AURORA study revealed, among the 10 RDoC constructs, pain

had a relatively strong association with the collected mobile sensor data, especially those from

smartwatches. Thus, for this chapter, we selected the construct scores of pain as the outcome

variables. The scale of the self-report indicator variable for pain ranged from 0 to 10, representing

no pain to severe pain. The details of self-report indicator variable for pain in smartphone-based

follow-up surveys can be found in Table 4.1.
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Table 4.1: Questions for the self-report indicator variable for pain in smartphone-based follow-up
surveys.

Outcome
Variables

Timepoints Questions

Pain Days:
1,9,21,31,43,53

a. How would you rate your pain in the past 24 hours at its
worst?
b. How would you rate your pain in the past 24 hours on
average?

4.2.3 Feature Sets

To predict the outcome scores, we used two fields of feature variables collected from mobile

sensors: activity features and HRV features. 8 activity features in Table 4.2 were extracted from

the preprocessed accelerometer signals, and these features were extracted daily. In particular, the

activity feature set consisted of descriptive statistics of activity counts, cosinor-based rhythmometry

(Cornelissen, 2014) metrics, and movement measurements. The mean of activity counts (meanACC)

and standard deviation of activity counts (stdACC) were calculated for each 24-hour epoch of the

accelerometer data, and they belonged to descriptive statistics of activity counts. After fitting

a cosine model to the accelerometer data, the acrophase of cosinor rhythmometry (Acrophase)

and amplitude of cosinor rhythmometry (Amplitude) were estimated. Acrophase represented the

difference between the time point when daytime/nighttime switched and the starting time point

of the 24-hour epoch. Amplitude indicated the difference between activity counts during daytime

and nighttime. Finally, movement measurements included the wake percentage (wakePercentage),

sleep-wake fragmentation (SWfragmentation), least active five hours (L5), and relative amplitude

(RA). wakePercentage and SWfragmentation revealed the restfulness or restlessness due to sleep

disturbances, while L5 and RA quantified the average activity in the waking and sleeping periods.

11 HRV features in Table 4.3 were derived from PPG signals, and these features were computed

over 5-minute time windows and updated every 30 seconds. Specifically, the HRV feature set

consisted of time-domain measures, frequency-domain measures, and non-linear measures (Shaffer

and Ginsberg, 2017). Most HRV time-domain measurements were related to the descriptive

statistics of interbeat intervals from which artifacts have been removed (NN intervals) and intervals

between all successive heartbeats (RR intervals). For instance, we used the mean of NN Intervals

(NNmean), interquartile range of NN Intervals (NNiqr), skewness of NN Intervals (NNskew),
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Table 4.2: Activity feature set

Feature Name Description
meanACC Mean of actigraphy in a 24-hour time window.
stdACC Standard deviation of actigraphy in a 24-hour time window.
Acrophase* Parameter in the cosine model which fits to actigraphy data.
Amplitude* Parameter in the cosine model which fits to actigraphy data.
wakePercentage** Number of waking epochs divided by data length.
SWfragmentation** Number of transitions between waking and sleeping epochs

divided by data length.
L5 Least active 5 hour period in an the average 24 hour pattern.
RA Normalized difference between the most active 10h period

and least active 5h period in an average 24h pattern.

*: The cosine model was fitted following Cornelissen (2014).
**: The waking and sleeping epochs were classified by the Cole-Kripke algorithm (Cole et al., 1992).

kurtosis of NN Intervals (NNkurt), average Signal-Quality-Index (avgsqi), standard deviation of NN

Intervals (SDNN), root-mean square differences of successive RR intervals (RMSSD), and heart rate

deceleration capacity (dc) as time-domain measurements. These features quantified the short-term

variability of heartbeats. Meanwhile, using the Fast Fourier Transformation or autoregressive model,

the variability of heart rates were separated into different rhythms that operated in ultra-low-

frequency, very-low-frequency, low-frequency, and high-frequency bands (Task Force Report, 1996).

Consequently, frequency-domain measures were created to estimate the distribution of signal energy

in these four frequency bands. We included one such measurement into our model, and it was the

ratio of low and high frequency spectral contents (LF/HF). Lastly, two non-linear measures - the

ratio of two standard deviation measures for a Poincare plot (SD1/SD2) and approximate entropy

(ApEn) - helped us evaluate the unpredictability, regularity, and complexity of RR time series.

Figures 4.1 and 4.2 display the scatter plots and correlations of the activity and HRV feature

variables of 1000 randomly selected entries. Most of the feature variables have weak or moderate

correlations between each other, but none of the absolute values of the correlations exceeds 0.85.

4.3 Methods and Algorithms

In this section, we build a regression model to predict the construct scores, using HRV and

activity data collected before/on each of the 6 time points. By looking for informative features in

the finalized model, we could identify the objective biomarkers for APNS related constructs. Figure
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Table 4.3: HRV feature set

Feature Name Description
NNmean Mean of NN intervals calculated in five-minute windows.
NNiqr Interquartile range of NN intervals calculated in five-minute

windows.
NNskew Skewness of NN intervals calculated in five-minute windows.
NNkurt Kurtosis of NN intervals calculated in five-minute windows.
avgsqi Average Signal-Quality-Index in five-minute windows.
SDNN Standard deviation of NN intervals calculated in five-minute

windows.
RMSSD Root-mean square differences of successive RR intervals.
LF/HF Ratio of frequency activities in the low frequency (0.04 -

0.15Hz) range to the high frequency (0.15 - 0.40Hz) range.
dc Average capacity of an autonomic nervous system to decel-

erate heartbeats (Jänig, 1989).
SD1/SD2 The ratio of SD1 to SD2 (Tulppo et al., 1996).
ApEn Entropic measurement to quantify the regularity of medical

data (Pincus et al., 1991).

Note: for each feature, we calculated four hourly summary statistics (mean, max, min, standard
deviation). We used labels such as NNmeanmean, NNmeanmax, NNmeanmin, and NNmeanstd to
denote these metrics.

Figure 4.1: Scatter plots and correlations of activity feature variables.
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Figure 4.2: Scatter plots and correlations of HRV feature variables.

4.3 describes the flow-chart of our proposed framework and the method used at each step.

4.3.1 Penalized Least Squares Estimation

Suppose there are N subjects in the mobile sensor dataset, and the finest time points for

outcomes are T1, T2, . . . , Tn. Let Yt = (Y1t, . . . , YNt)T be the outcome for all subjects at time t,

and Xt = (Xt1, . . . ,Xtp)T , where Xtj contains sj feature variables from the jth domains at time t.

In this specific example, Yt is the vector of construct scores of pain (see Section 4.2.2), and Xtj

represents the activity features and HRV features as described in Section 4.2.3.

To quantify the relationship between outcome Yt and feature Xtj , we propose the following

working model: for the ith subject,

Yit = ZT
i γ +

p∑
j=1

kj∑
l=1

ωjlX̃
T
itjlβj + εit, (4.1)

where Zi is the vector of baseline covariates, which are set to demographic variables in this example.

εit ∼ N (0, σ2
t ), i = 1, . . . , N , are i.i.d. random errors. ωjl indicates the time-lag weight for the jth

domain at l days before time t. X̃itjl is the vector of feature variables measured l days before time
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Data resource Methods/Models Details/Explanations

Calculate HRV hourly summary statistics 
𝑋𝑋𝐻𝐻𝐻𝐻𝐻𝐻

Create HRV daily features �𝑋𝑋𝐻𝐻𝐻𝐻𝐻𝐻
For each day, if all 𝑋𝑋𝐻𝐻𝐻𝐻𝐻𝐻𝑏𝑏 of the first 6 hours are non-missing, let 
�𝑋𝑋𝐻𝐻𝐻𝐻𝐻𝐻 = ∑𝜆𝜆𝑏𝑏𝑋𝑋𝐻𝐻𝐻𝐻𝐻𝐻𝑏𝑏 . Time scale weights 𝜆𝜆𝑏𝑏 ≥ 0 and ∑𝜆𝜆𝑏𝑏 = 1.

For each hour, if there are more than 20 HRV 5-min-window 
data, calculate hourly mean/std/min/max.  

HRV 5-min-window data, 
measured every 30 seconds

Assume 𝑌𝑌 = 𝛾𝛾𝑇𝑇𝑍𝑍 + ∑𝑗𝑗∑𝑘𝑘𝜔𝜔𝑗𝑗𝑘𝑘𝛽𝛽𝑗𝑗𝑇𝑇 �𝑋𝑋𝑗𝑗𝑘𝑘 + 𝜖𝜖, and 
estimate 𝛾𝛾, 𝜔𝜔, 𝛽𝛽, 𝜆𝜆

Use the selected features to train SVM 

Time lag weights 𝜔𝜔𝑗𝑗𝑘𝑘 ≥ 0 and ∑𝑘𝑘𝜔𝜔𝑗𝑗𝑘𝑘 = 1. Apply lasso penalty 
to 𝛽𝛽 and fused lasso to 𝜔𝜔.

ACT daily features, �𝑋𝑋𝐴𝐴𝐴𝐴𝑇𝑇
Demographics, 𝑍𝑍

Pain scores, 𝑌𝑌

Determine sample size, and split data to 
training (80%) and test sets (20%).

𝑗𝑗 = 𝐻𝐻𝐻𝐻𝐻𝐻,𝐴𝐴𝐴𝐴𝐴𝐴. 𝑘𝑘 = 1,2. For 2 consecutive days prior to an 
observed pain score 𝑌𝑌, if �𝑋𝑋𝑗𝑗𝑘𝑘 are non-missing, include this 𝑌𝑌
into the sample. Denote the dimension of �𝑋𝑋𝑗𝑗⋅ to 𝑠𝑠𝑗𝑗.

Feature selection Exclude features (demographics, ACT, HRV) with regression 
coefficients |𝛽𝛽| < 0.01.

Exploit a custom kernel on two samples 𝐻𝐻 and 𝐻𝐻′,

𝐾𝐾 𝐻𝐻,𝐻𝐻′ = exp −
1

2𝜎𝜎2 𝑍𝑍 − 𝑍𝑍𝑍 2 + �
𝑗𝑗

∑𝑘𝑘 �𝜔𝜔𝑗𝑗𝑘𝑘 �𝑋𝑋𝑗𝑗𝑘𝑘 − �𝑋𝑋𝑗𝑗𝑘𝑘′
2

𝑠𝑠𝑗𝑗
Use 5-fold cross-validations to tune hyperparameters.Predict pain scores, �𝑌𝑌, on test sets

Repeat the above procedures for 10 times 
and take average results. Compare the 
results with sophisticated ML methods

Evaluation metric: 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 1
𝑁𝑁
∑𝑖𝑖=1𝑁𝑁 1

𝑡𝑡𝑖𝑖
𝑌𝑌𝑖𝑖𝑡𝑡 − �𝑌𝑌𝑖𝑖𝑡𝑡

2 1/2

Stage 1

Stage 2

Figure 4.3: Flow-chart of predicting construct scores of pain using mobile sensor data in the
AURORA study.

t. Here, X̃itjl = Xitjl if feature variables from the jth domain are measured on the same time scale

as the outcomes. Otherwise, if the measurement time scale of feature variables are finer, X̃itjl is an

aggregated value of Xitjl given as

X̃itjl =
mj∑
b=1

λjbXitjlb, (4.2)

where Xitjlb is the value of Xitjl at grid b, and mj is the ratio of the time unit of outcome

measurements to the time unit of feature measurements.

We assume kj , γ, βj , ωj , and λj are unknown and need to be estimated. kj = 1, . . . ,Kj (that

is, for daily outcomes, retrieve the feature variables of previous Kj days at most). γ is a vector

of length m + 1. βj is a vector of length sj . ωj is a vector of length kj . λj is a vector of length

mj . To estimate these parameters, we apply the following penalized least squares method with the

LASSO and fused LASSO (Tibshirani et al., 2004) penalty terms:

arg min
k,γ,β,ω,λ

1
N

N∑
i=1

1
|ti|

∑
t

Yit −ZT
i γ −

p∑
j=1

I(mj = 1)
kj∑
l=1

ωjlX
T
itjlβj

−
p∑
j=1

I(mj > 1)
kj∑
l=1

ωjl

(mj∑
b=1

λjbX
T
itjlb

)
βj

2

+α1

p∑
j=1

sj∑
l=1
|βjl|+ α2

p∑
j=1

kj∑
l=1
|ωjl − ωj,l−1| , (4.3)
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subject to

ωjl ≥ 0,
kj∑
l=1

ωjl = 1, λjb ≥ 0,
mj∑
b=1

λjb = 1.

The detailed algorithm for estimating the parameters in (4.3) is described in Algorithm 1.

The proposed model has important advantages on handling the challenges of mobile sensor

data. Firstly, for each of the 6 time points at which surveys from participants were collected, we

estimate the relationship between construct scores and temporal features. Thus, it is unnecessary to

assume the construct scores of the same subject were identically distributed. Instead, the proposed

model takes into account the potential heterogeneities of instances due to the change in time

points. Additionally, we use the time-scale weights λj to rescale the effects of different domains of

temporal features on construct scores, so the effects become comparable and the bias introduced

by different domains can be alleviated. Moreover, we use the time-lag weights ωj to account for

the auto-correlation among temporal features observed at nearby time stamps and quantify the

lagged effects of temporal features on the construct scores. Another advantage of the proposed

method is that the use of the LASSO penalty on βj can select the most informative features and

overcome the curse of dimensionality. For example, βj = 0 implies the features in the jth domain

do not have observable effects on the outcome. Thus, the model has the function of group-typed

feature selection. Lastly, the use of fused LASSO penalty on ωj guarantees the smoothness in lagged

observations of temporal features.

4.3.2 Prediction through SVR with Customized Kernel

The parameter estimation in Section 4.3.1 assigns weights to each modality but does not consider

between-modality interactions. Thus, we next use kernel machines and apply the SVR to incorporate

potential nonlinear interactions and improve predictions. In this method, the key step is to define

the between-subject distance based on the vector of features HT
it =

(
ZT
i , X̃

T
itjl

)
. For our purpose,

we employ the time-lag weights to define the kernel distance

K(Hiti ,Hi′ti′
) = exp

− 1
2σ2

‖Zi −Zi′‖2 +
p∑
j=1

1
√
sj

kj∑
l=1

ω̂jl
∥∥∥X̃i,ti,jl − X̃i′,ti′ ,jl

∥∥∥2
 , (4.4)

where ω̂jl are the estimators of time-lag weights obtained from (4.3). In (4.4), we firstly compute the

lagged differences between rescaled temporal features, which are on the same scale across domains,
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Algorithm 1: Algorithm for estimating parameters in (4.3).
Result: Estimates of kj , γ, βj , ωj , and λj , j = 1, . . . , p.
Denote set K = {(k1, . . . , kp)} and set A = {(α1, α2)}.
for (α1, α2) ∈ A do

for (k1, . . . , kp) ∈ K do
1. Initialize θ. Fit a linear regression of Y on Z to obtain γ(0). Set ω(0)

j = Ikj
/kj ,

λ
(0)
j = Imj/mj , j = 1, . . . , p. Minimize (4.3) w.r.t β to obtain β(0)

j . Denote
θ(s) =

(
γ(s),β(s),ω(s),λ(s)

)
. In this step, s = 0.

2. Update θ. while
∥∥∥θ(s+1) − θ(s)

∥∥∥
2
< 10−4 or s ≤ 100 do

(a) Given β(s)
j , ω(s)

j , and λj , minimizing (4.3) w.r.t γ is equivalent to solving a
least square problem. Denote the estimates to γ(s+1).

(b) Given β(s)
j , ω(s)

j , and γ(s+1), minimizing (4.3) w.r.t λj is equivalent to solving
a least square problem under nonnegativity and linear constraints. Denote the
estimates to λ(s+1)

j .
(c) Let δj1 = ωj1 and δjl = ωjl − ωj,l−1. Then

∑kj

l=1 ωjl = 1 yields∑kj

l=1
∑l
c=1 δjc = 1. Thus, δj1 = [1−

∑kj

l=2(kj + 1− l)δjl]/(kj + 1). Substitute
ωj1, . . . , ωjkj

with δj2, . . . , δjkj
in (4.3). Given β(0)

j , γ(1), and λ(1)
j , minimizing

(4.3) w.r.t δj is equivalent to solving a least square problem with LASSO
penalties and linear constraints. According to Gainesa et al. (2018), this
problem can be converted to a quadratic programming. Denote the estimates to
δ̂j , and then transform δ̂j to ω(s+1)

j .
(d) Given γ(s+1), ω(s+1)

j , and λ(s+1)
j , minimizing (4.3) w.r.t βj is equivalent to

solving a least square problem with LASSO penalties. Denote the estimates to
β

(s+1)
j .

end
3. Denote the estimates at the end of step 2 to γ̂, β̂j , ω̂j , and λ̂j , j = 1, . . . , p.

(a) Obtain Ŷit = γ̂TZi +
∑p
j=1

∑kj

l=1 ω̂jlβ̂
T
j X̃itjl.

(b) Estimate the variance of εt as the sample variance of Yit − Ŷit. Denote it to σ̂2
t .

(c) Calculate the joint likelihood of model (4.1) as

L =
N∏
i=1

∏
t

 1√
2πσ̂2

t

exp

−
(
Yit − Ŷit

)2

2σ̂2
t


 .

end
4. Choose (k1, . . . , kp) which minimizes BIC = [P ln(

∑
i

∑
t 1)− 2 ln(L)], where

P = 1 +m+
∑p
j=1(sj + kj +mj), the number of parameters estimated by the model.

Denote the optimal values to k̂j , j = 1, . . . , p.
end
Select the optimal α1 and α2 from A by cross-validation (for each fold of data, conduct step
1 to 4). The corresponding estimates of kj , γ, βj , ωj , and λj , j = 1, . . . , p, are the final
estimates.
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of two subjects. Next, within each domain, we use time-lag weights ωj to integrate all the lagged

differences, and we normalize the differences by dividing them by the squared root of the dimension

of features in the domain, √sj . A critical advantage of (4.4) is that we take into account the delayed

effects of features on the outcome by implementing the time-lag weights ωj . Without the time-lag

weights, then the feature measurements taken at different days have equal weights, so the model

cannot utilize the informative time patterns. Also, compared to common kernel functions such as

the linear kernel and RBF kernel, the proposed kernel distance can alleviate the bias introduced by

different time scales of features through the normalization procedure. Otherwise, features with finer

resolutions tend to dominate the computation of between-subject distances such that the outcome

may heavily rely on the corresponding domains. Therefore, considering the effects of time-lag and

time scales, the kernel distance can be regarded as a composite score which comprehensively reflects

the difference between two samples.

4.4 Applications

4.4.1 Data Preparation

The database of the AURORA study contained 3139 participants. For the ith participant, at

time point t, the outcome variable, Yit, in (4.1) was the construct score of pain. The two domains

of feature variables in this application, Xt1 and Xt2, were activity features in Table 4.2 and HRV

features in Table 4.3, respectively. We set the maximum number of days of retrieving previous

feature variables to 2 days for both activity and HRV feature variables, so we investigated the

time-lag effect in a short term.

As the pattern in Figure 4.4 suggests, HRV features were often available during the first a few

hours of each day. During the remaining hours, the HRV features had a great proportion of missing

values. Considering the pattern of missing data, we created 4 summary statistics that calculated

the hourly mean, max, min, and standard deviation of each HRV feature. We used labels such as

NNmeanmean, NNmeanmax, NNmeanmin, and NNmeanstd to denote these metrics. We used the 44

hourly HRV features instead of the 11 original HRV features in (4.3) and (4.4).

We only treated a summary statistic as non-missing if it was calculated from one of the first 6

hours in an epoch and, in any of the 6 hours, at least 10 minutes of the original HRV features were

available. Also, we excluded construct scores whose previous records of activity or HRV features
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Figure 4.4: Missing data pattern of HRV features for 100 randomly selected participants. Mobile
devices were refreshed at 4am or 5am UTC of each day.

were missing. Therefore, the finalized dataset included 1285 construct scores of pain collected from

632 participants. Besides activity and HRV features, we used 5 demographic variables Zi to help

predict construct scores of pain. The description and distribution of demographic variables are

listed in Table 4.4.

Finally, to overcome the problem of over-fitting, we randomly divided 80% of the participants

into training data and 20% of the participants into validation data. We adopted training data

and the technique of cross-validation to derive optimal estimates, and then we used the validation

data to evaluate our method and compare it with selected machine learning models in the existing

literature.

4.4.2 Implementation of Proposed Methods

Before implementing the proposed method, we transformed the original construct scores of pain

using the ordered quantile normalization in the bestNormalize (Peterson and Cavanaugh, 2019) R

package to fulfill the normality assumption of (4.1). In addition, we normalized all the continuous

feature variables to alleviate the bias introduced by scaling. To estimate time-lag weights, ωj , and

regression parameters, βj and γ, in (4.3), we minimized the objective function using the pracma
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Table 4.4: Demographic information of participants for predicting construct scores.

Demographic Variable Statistic Value
Highest Grade mean(sd) 15.7(2.4)

median(min, max) 15.0(9.0, 21.0)
Age mean(sd) 38.6(13.9)

median(min, max) 36.0(18.0, 74.0)
Marital Status sample size(proportion) Never married: 327(51.7%)

Other: 305(48.3%)
Gender sample size(proportion) Female: 462(73.1%)

Male: 170(26.9%)
Race sample size(proportion) Black: 235(37.2%)

Other: 397(62.8%)

(Borchers, 2019) and ADMM (You and Zhu, 2018) R packages. The tuning parameters α1 and α2

were selected from {2k : k = 0,±1, . . . ,±15} using a 5-fold cross-validation. Informative feature

variables were selected if the absolute values of their coefficients exceeded 0.01. Given the selected

featuresHit, we refit (4.3) and updated parameter estimates k̂j , γ̂, β̂j , ω̂j , and λ̂j . Next, we plugged

the time-lag weights ω̂j to (4.4) and employed the SVR model with this kernel function. In the

SVR model, tuning parameters C and ε were selected from {2k : k = 0,±1, . . . ,±15} using a 5-fold

cross-validation. The model fitting was conducted on training data by kernlab (Karatzoglou et al.,

2004) R package, and we evaluated the model through a weighted mean squared error (WMSE)

metric as follows:

WMSE =
(

1
N

N∑
i=1

1
|ti|

∑
t

(
Yit − Ŷit

)2
)1/2

. (4.5)

We chose the SVR model with the minimum WMSE as the final model. Subsequently, we applied

the finalized model to the validation data and obtained predicted construct scores of pain of the

validation data. Finally, we conducted the inverse transformation on the predicted outcome scores

and calculated the WMSE for the proposed approach.

As a comparison of the proposed method, we used five alternative models. The first two models

were linear regression models with no predictor variables and with only demographic variables.

These two models served as baseline models. The third approach was the “naive” SVR model

which treated all of the activity and HRV features at different time as independent predictors. This

approach represented a typical way to handle mobile sensor data in the existing literature. The
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fourth model was the linear regression model in (4.1), but we used the informative features remained

after feature selection instead of the whole feature set. Through this model, we tested whether

the proposed approach captured the nonlinear between-domain interactions between features. The

last candidate was the same as the proposed method, however, with the RBF kernel in the second

stage. By comparing with this model, we verified the necessity of using the proposed kernel (4.4) to

integrate different domains and improve the prediction accuracy.

Table 4.5 presents the parameter estimation and feature selection results for construct scores

of pain. We selected γ and β parameters whose absolute values were greater than 0.01. After

the filtering, we reconstructed the linear model in (4.1) with the left features and estimated their

parameters again using (4.3). As shown in Table 4.5, all the demographic variables remain in the

model. On average, less educated, elder, currently married, female, and black people have greater

construct scores of pain, and this result indicates such participants have experienced more severe

pain. Among all the activity and HRV features, Amplitude, RMSSDmean, SDNNmax, NNskewmin,

SDNNstd, and ApEnstd have relatively greater effects on construct scores of pain, and the effects are

all negative. From another aspect, we could learn the time-lag effects of mobile device features on

construct scores of pain from estimates of ωjl in Table 4.5. Since all the ωjl estimates are close to

0.5, we conclude, within each set of mobile sensor features, the features monitored on the same day

as the outcome observation and those monitored one day before have roughly equal daily effects on

the construct scores of pain. In addition, λ25 = 1 indicates the summary statistics of HRV features

of the fifth hour in an epoch fully determine the daily effect.

Finally, we used the selected features to fit the second stage model and predict the construct

scores of pain on the validation data. The prediction results of the proposed method as well as the

five alternative models are listed in Table 4.6. Compared with the intercept-only regression model,

the use of demographic features reduces the WMSE of predicted construct scores of pain from 3.100

to 2.803. Meanwhile, the models employing mobile sensor features further improve the WMSE by

0.067 to 0.283. Thus, in our data, not only demographic features but also mobile sensors features

are informative to the prediction of construct scores. The WMSE for the “naive” SVR model is

2.575 and the model includes 549 feature variables. The proposed method achieves a WMSE of

2.520, but it only uses 67 feature variables.

Also, Figure 4.5 reveals a moderate linear correlation between predicted and observed construct
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Table 4.5: Estimated parameters of features left in (4.1) for predicting construct scores of pain

Domain Feature Parameter Before selection After selection
Demographics Intercept γ0 -0.1803 -0.1994

Highest Grade γ1 -0.1608 -0.1662
Age γ2 0.2172 0.2210
Marital Status γ3 0.1453 0.1470
Gender γ4 0.1510 0.1615
Race γ5 0.2577 0.2915

Activity Amplitude β1,4 -0.1358 -0.1445
Lagged days K1 2 2
1 day ago ω11 0.4648 0.4712
Today ω12 0.5352 0.5288
Daily λ11 1 1

HRV RMSSDmean β2,7 -0.0288 -0.0183
SDNNmax β2,17 -0.0106 -0.0855
NNskewmin β2,25 -0.0375 -0.0264
SDNNstd β2,39 -0.0596 -0.0509
ApEnstd β2,44 -0.0102 -0.0075
Lagged days K2 2 2
Today ω21 0.5000 0.5000
1 day ago ω22 0.5000 0.5000
1st hour λ21 0 0
2nd hour λ22 0 0
3rd hour λ23 0 0
4th hour λ24 0 0
5th hour λ25 1 1
6th hour λ26 0 0

Note: estimators in the full model with |γ| < 0.01 and |β| < 0.01 are not listed in this table.

Table 4.6: Predicted results of construct scores on validation data for four models.

Model WMSE Number of features
Proposed model 2.520 67
Linear regression model (intercept only) 3.100 0
Linear regression model (demographic features) 2.803 5
“Naive” SVR model 2.575 549
Linear regression model (selected features) 2.736 67
2-stage model with RBF kernel 2.626 67
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scores of pain (the Pearson correlation coefficient ρ = 0.4219). If we ignore the nonlinear interactions

among features and use the linear regression model (4.1) with features left in Table 4.5 to predict

construct scores of pain, the WMSE increases from 2.520 to 2.736. Also, compared to the RBF kernel,

the proposed kernel in (4.4) improves the prediction and reduce the WMSE by 0.106. Therefore, we

draw the conclusion that the proposed method has a close performance to the sophisticated SVR

model, but has much fewer feature variables. Lastly, the use of the second stage model handles the

potential issues of the linear model, and the proposed kernel has advantages over the commonly

used RBF kernel.

Figure 4.5: Scatter plots of predicted construct scores versus observed construct scores in validation
data. Red dashed lines: lines y=x. The Pearson correlation coefficient between predicted and
observed values, ρ, is 0.4219.
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4.5 Discussion

In this chapter, we proposed a framework to estimate RDoC construct scores and identify

objective biomarkers related to APNS, using mobile sensor data from the AURORA study. The

major contribution of this framework is to create a novel two-stage model, which jointly implements

different domains of features and accounts for complicated interactions between them. In the

first stage, we select the most informative features to the estimation of outcomes through a linear

regression model with LASSO and fused LASSO penalties. To adjust for the heterogeneity between

different domains of features on different time scales, we aggregate the measurements and unify them

to the same level. We also incorporate the effect of historical feature information on the current

observations of outcomes by estimating the time-lag weights. In the second stage, we employe

the SVR model to account for between-domain interactions and estimate the possible non-linear

relationship between outcomes and features. Especially, we apply a customized kernel function

as (4.4) in the SVR model. Compared to common kernel functions such as the RBF kernel, our

kernel function reduces the heterogeneities between different domains of features by normalizing

time-lag weights and time scales. Thus, our approach tackles the challenges in the high-dimensional,

correlated, and multimodal measured mobile sensor data and takes full advantage of the available

information. Compared to popular nonparametric methods which treat features observed at different

time as independent predictors, our model leads to a better prediction accuracy but only requires

12% of the feature variables. This result suggests our method is a practical assist in the prediction

of RDoC constructs and identification of objective biomarkers.
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CHAPTER 5: EXTENSIONS AND FUTURE WORK

5.1 Identify Patient Subgroups

In Chapter 2, the estimation of both regression coefficients and correlations among latent

processes only relies on one or two health markers, so our method can be easily extended to handle

a large number of health markers. In this case, one can perform the computation by parallel

computing to save computing time and cost. Inferences on the estimators can be made based on

subsampling subsets of the data. Another extensions to the proposed method is to estimate all

regression coefficients β’s simultaneously by incorporating the entire covariance matrix Ω(t) to the

estimating equations for β’s, or to allow the marker-specific and time-sensitive bandwidth selection

during the parameter estimation (especially when the smoothness of health marker trajectories are

expected to be substantially different). Lastly, instead of the nonparametric estimation, explicitly

modeling the temporal dependence within the same health marker as well as across health markers

probably will improve the estimation. Despite the increased computational burden, an advantage of

this extension is the potential to obtain a more precise assessment of the latent process given the

entire history of health markers.

5.2 Matched Learning Model for Multicategory Treatments

As discussed in Section 3.5, the matched learning model still has room to extend and handle

with more complicated observatory data. Firstly, to better interpret the obtained results, we will

consult with physicians about the clinical meanings of identified patient subgroups and ITRs. Also,

we plan to establish theoretical properties for the proposed method. For example, proving the Fisher

consistency of the estimated decision rules. Moreover, we will further validate the proposed method

by comparing with newly published methods (Lou et al., 2018; Huang et al., 2019; Zhang et al., 2020;

Qi et al., 2020). In addition, we consider to test and incorporate the proposed method using other

data resources such as the high-dimensional measurements of biomarkers collected by mobile sensors

to recommend individual treatments. Another extension is to take other aspects of T2D control

into consideration. For instance, besides lowering the level of HbA1c, we will take into account the
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balance control of adverse events such as hypoglycemia. Lastly, considering the potential switch of

treatments after time zero and the research interest in the long-term health management, we plan

to extend the proposed method to learn the optimal dynamic treatment regimes. This extension

can be realized by substituting the value function in (3.4) with a matching-based value function for

multiple stages and using a backward induction (Liu et al., 2018).

5.3 Analysis of Mobile Sensor Data

For this topic, we applied the SVR model to capture between-modality interactions as the SVR

model performs stable for high-dimensional data. However, other nonparametric models such as

random forests, gradient boosting methods, and neural networks can be similarly implemented. In

future research, we will also verify our approach on simulated datasets, additional RDoC constructs,

and different types of outcome variables such as binary or categorical outcomes. Another extension

is to take other domains of feature variables into consideration such as GPS and phone usage

data. Finally, to further improve the explainability of the model, we will explore more meaningful

summary statistics for HRV features and use the SHAP value approach (Lundberg and Lee, 2017)

to evaluate the importance of features in the final model.
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APPENDIX A: APPENDIX FOR CHAPTER 2

A.1 Gauss-Hermite Quadrature Method for Parameter Estimation

When g−1
k (z) takes a general form, we can compute E [Yik(t)|Xi] and E [Yik(t)Yil(t)|Xi] using

the Gauss-Hermite quadrature method (Abramowitz and Stegun, 1965). Suppose Q is the number

of mass points, pq are the mass points, and wq are weights. Then

E [Yik(t)|Xi] ≈
Q∑
q=1

wq√
π
g−1
k (XT

i βk(t) +
√

2ckpq),

E [Yik(t)Yil(t)|Xi] ≈
Q∑

q1=1

Q∑
q2=1

wq1√
π

wq2√
π

×g−1
k

(
XT
i β̂k(t) +

√
2ckpq1 [Rkl(t)]1,1 +

√
2ckpq2 [Rkl(t)]2,1

)
×g−1

l

(
XT
i β̂l(t) +

√
2clpq1 [Rkl(t)]1,2 +

√
2clpq2 [Rkl(t)]2,2

)
,

where Rkl(t) is chosen as the 2× 2 square-root matrix of Σkl(t), and [Rkl(t)]i,j denotes the entry in

the ith row and jth column of Rkl(t).

On the other hand, we can compute E
[
εi(t)

∣∣∣Yi(t), β̂k(t), σ̂kl(t)] as follows,
E
[
εi(t)

∣∣∣Yi(t), β̂k(t), σ̂kl(t)]
=

∫
P (Yi(t)|εi(t))P (εi(t)) εi(t)dεi(t)∫
P (Yi(t)|εi(t))P (εi(t)) dεi(t)

=

∫
D

p∏
k=1

[
fik
(
yik(t);XT

i β̂k(t) + εik(t), φ̂ik
)
εik(t)

]
f
(
εi(t); Ω̂(t)

)
dεi(t)

∫
D

p∏
k=1

fik
(
yik(t);XT

i β̂k(t) + εik(t), φ̂ik
)
f
(
εi(t); Ω̂(t)

)
dεi(t)

≈

Q∑
q·=1

p∏
k=1

[
fik
(
yik(t);XT

i β̂k(t) + hk
(
pq, Ω̂(t)

)
, φ̂ik

)
hk
(
pq, Ω̂(t)

)
wqk

]
Q∑
q·=1

p∏
k=1

[
fik
(
yik(t);XT

i β̂k(t) + hk
(
pq, Ω̂(t)

)
, φ̂ik

)
wqk

] ,

where
Q∑
q·=1
≡

Q∑
q1=1
· · ·

Q∑
qp=1

. Furthermore, fik(·) is the density function of Yik(t), and f
(
εi(t); Ω̂(t)

)
is

the density function of a multivariate normal distribution with mean 0 and covariance matrix Ω̂(t).

Lastly, hk
(
pq, Ω̂(t)

)
=
√

2ck
π

∑p
l=1 pql

[
R̃(t)

]
k,l

with R̃(t) being the square-root matrix of Ω̂(t), and

[R̃(t)]k,l is the entry in the kth row and lth column of R̃(t).
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A.2 Proof of Theorem 2.3.1

Without loss of generality, we prove the theorem 2.3.1 for one health marker k, and the results

can be generalized to other health markers. The key idea is to establish the following relationship,

for
∥∥βk(t)− β0

k(t)
∥∥ < M(nh1n)−1/2,

sup
βk(t)

(nh1n)1/2
∣∣∣∣Un,k(βk(t))− {Un,k(β0

k(t))− E
[
Un,k(β0

k(t))
]}
−Ak(t)

[
βk(t)− β0

k(t)
] ∣∣∣∣

= Op
(
n1/2h

5/2
1n

)
+ op

(
1 + h

1/2
1n + (nh1n)1/2

∥∥∥βk(t)− β0
k(t)

∥∥∥) , (A.1)

where Ak(t) is defined in (2.10).

We introduce notations Pn and P to denote the empirical and true probability measure

respectively. Then we obtain

Un,k(βk(t)) = (Pn − P )
[∫

Kh1n(s− t)X[Yk(s)− Ek(βk(t), t)]dÑk(s)
]

+E
[∫

Kh1n(s− t)X[Yk(s)− Ek(βk(t), t)]dÑk(s)
]

= I + II, (A.2)

where Ek(βk(t), t) = E [Yk(t)|X] = Eε
[
g−1
k

(
XTβk(t) + εk(t)

)]
.

For the second term on the right-hand side of (A.2), we have

E
[∫

Kh1n(s− t)X[Yk(s)− Ek(βk(t), t)]dÑk(s)
]

=
∫
Kh1n(s− t)E

[
X [Yk(s)− Ek(βk(t), t)] exp

{
−XT γ̂k −LTk (s)η̂k

}
dNk(s)

]
=

∫
s
Kh1n(s− t)E

[
X [Yk(s)− Ek(βk(t), t)] exp

{
−XT γ̂k −LTk (s)η̂k

}
λ0
k(s)

× exp
{
XTγ0

k +LTk (s)η0
k

}]
ds

=
∫
s
Kh1n(s− t)E

[
X

{∫
g−1
k

(
XTβ0

k(s) + εk(s)
)

exp
{
LTk (s)(η0

k − η̂k)
}
f(εk(s))dεk(s)

−
∫
g−1
k

(
XTβk(t) + εk(t)

)
f(εk(t))dεk(t)

∫
exp

{
LTk (s)(η0

k − η̂k)
}
f(εk(s))dεk(s)

}
×λ0

k(s) exp
{
XT (γ0

k − γ̂k)
} ]
ds, (A.3)

where f(εk(s)) is the density function of a normal distribution with mean 0 and variance ck. To

simplify the expressions in the following proofs, we denote εk(s), f(εk(s)), and h1n to ε, fk,s(ε)),
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and h, respectively. Let s = t + hz and perform the Taylor expansion of (A.3) at t. Noticing∫
K(z)dz = 1 and

∫
zK(z)dz = 0, we have

E
[∫

Kh(s− t)X[Yk(s)− Ek(βk(t), t)]dÑk(s)
]

=
∫
z

K(z)
h

λ0
k(t)E

[
X

{∫
ε
g−1
k

(
XTβ0

k(t) + ε
)

exp
{
LTk (t)(η0

k − η̂k)
}
fk,t(ε)dε

−
∫
ε
g−1
k (XTβk(t) + ε)fk,t(ε)dε

∫
ε
exp

{
LTk (t)(η0

k − η̂k)
}
fk,t(ε)dε

}
× exp

{
XT (γ0

k − γ̂k)
} ]
hdz +Op

(
h2
)

= λ0
k(t)E

[
X exp

{
XT (γ0

k − γ̂k)
}{∫

ε
g−1
k

(
XTβ0

k(t) + ε
)

exp
{
LTk (t)(η0

k − η̂k)
}
fk,t(ε)dε

−
∫
ε
g−1
k (XTβk(t) + ε)fk,t(ε)dε

∫
ε
exp

{
LTk (t)(η0

k − η̂k)
}
fk,t(ε)dε

}]
+Op

(
h2
)
. (A.4)

After the Taylor expansion of (A.4) at γ0
k , η0

k, and β0
k(t), we have

E
[∫

Kh(s− t)X[Yk(s)− Ek(βk(t), t)]dÑk(s)
]

= λ0
k(t)E

[
X
[
1−XT

(
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k
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∫
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(
η̂k − η0

k
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(∥∥∥η̂k − η0
k
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. (A.5)

From Zeng and Lin (2006), we know

n1/2
{

(γ̂k − γ0
k)T , (η̂k − η0

k)T
}T
→d N (0,V ). (A.6)
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Hence, n1/2 ∥∥γ̂k − γ0
k

∥∥ = Op(1) and n1/2 ∥∥η̂k − η0
k

∥∥ = Op(1). By (A.5) and (A.6), we have

(nh)1/2II = −(nh)1/2Ak(t)
[
βk(t)− β0

k(t)
]

+ op
(
(nh)1/2

∥∥∥βk(t)− β0
k(t)

∥∥∥)
+Op

(
n1/2h5/2

)
+ op

(
h1/2

)
, (A.7)

where Ak(t) = λ0
k(t)E

[
XXT

∫
ε

[
g−1
k

(
XTβ0

k(t) + ε
)]′

fk,t(ε)dε
]
. For any fixed t, if there exists a ζ

such that ζTAk(t)ζ = 0, then ζTX = 0, so ζ = 0 from condition 2. Thus, Ak(t) is a non-singular

matrix. Furthermore, using the similar arguments in Cao et al. (2015), we could obtain the first

term in the right-hand side of (A.2), for a M > 0 and
∥∥βk(t)− β0

k(t)
∥∥ < M(nh)−1/2, is equal to

(nh)1/2(Pn − P )
[∫

Kh(s− t)X
[
Yk(s)− Ek(β0

k(t), t)
]
dÑk(s)

]
+ op(1)

= (nh)1/2
{
Un,k(β0

k(t))− E
[
Un,k(β0

k(t))
]}

+ op(1). (A.8)

Combining (A.7) and (A.8), we obtain (A.1). From (A.1), we conclude that there exists a

solution to Un,k(βk(t)) = 0, say, β̂k(t), which is (nh)−1/2 consistent. Moreover,

(nh)1/2
{
Un,k(β0

k(t)− E
[
Un,k(β0

k(t))
]}

= (nh)1/2Ak(t)
[
β̂k(t)− β0

k(t)
]

+ op
(
(nh)1/2

∥∥∥β̂k(t)− β0
k(t)

∥∥∥)
+Op

(
n1/2h5/2

)
+ op

(
1 + h1/2

)
. (A.9)

It remains to obtain the distribution of (nh)1/2 {Un,k(β0
k(t)− E

[
Un,k(β0

k(t))
]}
. For s, t ∈ [0, τ ],

where τ is the maximum observation time, denote

Wi(t) =

√
h

n

{∫
Kh(s− t)Xi

[
Yik(s)− Eik(β0

k(t), t)
]
dÑk(s)

−E
[∫

Kh(s− t)Xi

[
Yik(s)− Eik(β0

k(t), t
]
dÑk(s)

]}
. (A.10)

Then (nh)1/2 {Un,k(β0
k(t)− E[Un,k(β0

k(t))]
}

=
∑n
i=1Wi(t). Since (Xi, Yik), i = 1, . . . , n are i.i.d,

we can calculate Var(
∑n
i=1Wi(t)) =

∑n
i=1 Var(Wi(t)) as follows:

n∑
i=1

Var [Wi(t)] =
n∑
i=1
{E [Var [Wi(t)|Xi, εik(s), Nik(s)]] + Var [E [Wi(t)|X, εik(s), Nik(s)]]} . (A.11)
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Since

Var [Wi(t)|Xi, εik(s), Nik(s)]

= h

n
Var

[∫
Kh(s− t)X

[
Yik(s)− Eik(β0

k(t), t)
]
dÑik(s)

∣∣∣Xi, εik(s), Nik(s)
]

= h

n
Var

[∫
Kh(s− t)XiYik(s)dÑik(s)

∣∣∣Xi, εik(s), Nik(s)
]

= h

n

[∫∫
Kh(s1 − t)Kh(s2 − t)XiX

T
i E

[
Yik(s1) exp

{
−XT

i γ̂k −LTik(s1)η̂k
}

×Yik(s2) exp
{
−XT

i γ̂k −LTik(s2)η̂k
}
|Xi, εik(s1), εik(s2)

]
dNik(s1)dNik(s2)

]
−h
n
XiX

T
i

[∫
Kh(s− t)E

[
Yik(s) exp

{
−XT

i γ̂k −LTik(s)η̂k
}
|Xi, εik(s)

]
dNik(s)

]2
.(A.12)

We assume, for s1 6= s2, P {dNk(s1) = 1|Nk(s2)−Nk(s2−) = 1} = pk(s1, s2)ds1, where pk(s1, s2)

is continuous for s1 6= s2, and pk(s1±, s2±) exists. To simplify the expressions in (A.12), we denote

Fk(t) = Yik(t) exp
{
−XT

i γ̂k − LTik(t)η̂k
}
,

Gk(t) = g−1
k (XT

i β
0
k(t) + εik(t)) exp

{
−XT

i γ̂k −LTik(t)η̂k
}
,

Λk(t) = λ0
k(t) exp

{
XT
i γ

0
k +LTik(t)η0

k

}
. (A.13)

We further denote

Var [Fk(t)|X, εk(t)] = σ2 (t,X, εk(t)) ,

Cov [Fk(s), Fk(t)|X, εk(s), εk(t)] = r (s, t,X, εk(s), εk(t)) . (A.14)
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Using conditioning arguments, the expectation of (A.12) is

E [Var [Wi(t)|Xi, εik(s), Nik(s)]]

= h

n
E
[
XiX

T
i

∫∫
Kh(s1 − t)Kh(s2 − t) [r(s1, s2,Xi, εik(s1), εik(s2)) +Gk(s1)Gk(s2)]

×dNik(s1)dNik(s2)
]
− h

n
E
[
XiX

T
i

[∫
Kh(s− t)Gk(s)dNik(s)

]2
]

= h

n

∫
s2

∫
s1
Kh(s1 − t)Kh(s2 − t)E

[
XiX

T
i [r(s1, s2,Xi, εik(s1), εik(s2)) +Gk(s1)Gk(s2)]

×pk(s1, s2)Λk(s2)
]
ds1ds2

+h

n

∫
s1
K2
h(s1 − t)E

[
XiX

T
i

[
σ2(s1,Xi, εik(s1)) +G2

k(s1)
]

Λk(s1)
]
ds1

−h
n

∫
s
K2
h(s− t)E

[
XiX

T
i G

2
k(s)Λk(s)

]
ds

= I11 + I12 − I2. (A.15)

Let s1 = t+ hz1, s2 = t+ hz2, and s = t+ hz , do the Taylor expansion of (A.15) at t. Since∫∫
K(z1)K(z2)dz1dz2 = 1,

∫∫
z1K(z1)K(z2)dz1dz2 =

∫∫
z2K(z1)K(z2)dz1dz2 = 0,

∫
K(z)dz = 1,∫

zK(z)dz = 0, and pk(t, t) = 1, we have

I11 = h3

n

∫
z2

∫
z1

K(z1)K(z2)
h2 E

[
XiX

T
i

[
σ2(t,Xi, εik(t)) +G2

k(t)
]
pk(t, t)Λk(t)

]
dz1dz2

+Op
(
h2
)

= h

n
E
[
XiX

T
i

[
σ2(t,Xi, εik(t)) +G2

k(t)
]

Λk(t)
]

+Op
(
h2
)

= C1
h

n
+Op

(
h2
)
,

I12 = h2

n

∫
z1

K2(z1)
h2 E

[
XiX

T
i

[
σ2(t,Xi, εik(t)) +G2

k(t)
]

Λk(t)
]
dz1 +Op (h)

= 1
n
XiX

T
i

∫
z
K2(z)dzE

[
XiX

T
i

[
σ2(t,Xi, εik(t)) +G2

k(t)
]

Λk(t)
]

+Op (h) ,

I2 = h2

n

∫
z

K2(z)
h2 E

[
XiX

T
i G

2
k(t)Λk(t)

]
dz +Op (h)

= 1
n

∫
z
K2(z)dzE

[
XiX

T
i G

2
k(t)Λk(t)

]
+Op (h) . (A.16)
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By (A.12), (A.16), and condition 3, we have

E [Var [Wi(t)|Xi, εik(s), Nik(s)]]

= 1
n

∫
z
K2(z)dzE

[
XiX

T
i σ

2(t,Xi, εik(t))Λk(t)
]

+Op (h) . (A.17)

For the second term on the right-hand side of (A.11), we have

Var [E [Wi(t)|Xi, εik(s), Nik(s)]]

= h

n
Var

[ ∫
Kh(s− t)XiE

[
[Yik(s)− Eik(β0

k(t), t)] exp
{
−XT

i γ̂k −LTik(s)η̂k
} ∣∣∣Xi, εik(s)

]
×dNik(s)

]
= h

n
Var

[ ∫
Kh(s− t)Xi

[
g−1
k (XT

i β
0
k(s) + εik(s))− g−1

k (XT
i β

0
k(t) + εik(t))

]
× exp

{
−XT

i γ̂k −LTik(s)η̂k
}
dNik(s)

]
. (A.18)

Denote Dk(s, t) = exp
{
−XT

i γ̂k −LTik(s)η̂k
} [
g−1
k (XT

i β
0
k(s) + εik(s))− g−1

k (XT
i β

0
k(t) + εik(t))

]
,

and then (A.18) can be calculated as

h

n
Var

[∫
Kh(s− t)XiD(s, t)dNik(s)

]
= h

n
E
[∫∫

Kh(s1 − t)Kh(s2 − t)XiX
T
i Dk(s1, t)Dk(s2, t)dNik(s1)dNik(s2)

]
−h
n
E
[
XiX

T
i

[∫
Kh(s− t)Dk(s, t)dNik(s)

]2
]

= h

n

∫
s2

∫
s1
Kh(s1 − t)Kh(s2 − t)E

[
XiX

T
i Dk(s1, t)Dk(s2, t)pk(s1, s2)Λk(s2)

]
ds1ds2

+h

n

∫
s1
K2
h(s1 − t)E

[
XiX

T
i D

2
k(s1, t)Λk(s1)

]
ds1

−h
n
E
[
XiX

T
i

[∫
s
Kh(s− t)Dk(s, t)Λk(s)ds

]2
]

= I31 + I32 − I4. (A.19)

Letting s1 = t+hz1, s2 = t+hz2, and s = t+hz , we do the Taylor expansion of (A.19) at t. Since∫∫
K(z1)K(z2)dz1dz2 = 1,

∫∫
z1K(z1)K(z2)dz1dz2 =

∫∫
z2K(z1)K(z2)dz1dz2 = 0,

∫
K(z)dz = 1,
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∫
zK(z)dz = 0, pk(t, t) = 1, and Dk(t, t) = 0, we have

I31 = h

n

∫
z2

∫
z1

K(z1)K(z2)
h2 E

[
XiX

T
i D

2
k(t, t)pk(t, t)Λk(t)

]
h2dz1dz2 +Op

(
h2
)

= h

n
E
[
XiX

T
i · 0 · Λk(t)

]
+Op

(
h2
)

= Op
(
h2
)
,

I32 = h

n

∫
z1

K2(z1)
h2 E

[
XiX

T
i Dk(t, t)Λk(t)

]2
hdz1 +Op (h)

= 1
n

∫
z
K2(z)dzE

[
XiX

T
i · 0 · Λk(t)

]2 +Op (h)

= Op (h) ,

I4 = h

n
E
[
XiX

T
i

[∫
z

K(z)
h

Dk(t, t)Λk(t)hdz
]2]

= h

n
E
[
XiX

T
i · 02

]
+Op

(
h2
)

= Op
(
h2
)
. (A.20)

By (A.18), (A.20), and condition 3, we have

Var [E [Wi(t)|Xi, εik(s), Nik(s)]] = Op (h) . (A.21)

Therefore, by (A.17) and (A.21), we obtain

n∑
i=1

Var [Wi(t)]

= λ0
k(t)

∫
z
K2(z)dzE

[
XXTσ2(t,X, εk(t)) exp

{
XTγ0

k +LTk (t)η0
k

} ]
+Op (h)

= Σk(t) +Op (h) . (A.22)

Thus, for each fixed time point t,
∑n
i=1 Var [Wi(t)] converges to a constant Σk(t) as h→ 0. To

prove the asymptotic normality, we verify the Lyapunov condition. Through the similar calculations

to Σk(t), we could obtain

n∑
i=1

E
{
‖Wi − E(Wi)‖3

}
= nOp

{
(nh)3/2n−3h−2

}
= Op

{
(nh)−1/2

}
.
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Therefore, by the Lyaponov central limit theorem,

(nh)1/2
{
Un,k(β0

k(t)− E[Un,k(β0
k(t))]

}
→d N (0,Σk(t)) . (A.23)

By proving (A.9) and (A.23), we conclude that for any fixed t,

(nh)1/2
[
β̂k(t)− β0

k(t)
]
→d N

(
0,
[
A−1
k (t)

]
Σ(t)

[
A−1
k (t)

]T)
. (A.24)

A.3 Proof of Theorem 2.3.2

Without loss of generality, we prove the theorem 2.3.2 for two health markers k and l, and

the results can be generalized to other health markers. The key idea is to establish the following

relationship, for
∣∣σkl(t)− σ0

kl(t)
∣∣ < M(nh2

2n)−1/2,

sup
σkl(t)

(nh2
2n)1/2

∣∣∣∣Un,k,l(σkl(t))− {Un,k,l(σ0
kl(t)− E[Un,k,l(σ0

kl(t))]
}
−Bkl(t)

∣∣∣σkl(t)− σ0
kl(t)

∣∣∣ ∣∣∣∣
= Op

(
n1/2h3

2n
)

+ op
(
1 + h2n

∣∣∣σkl(t)− σ0
kl(t)

∣∣∣) , (A.25)

where Bkl(t) is defined in (2.10).

We introduce notations Pn and P to denote the empirical and true probability measure

respectively. Then we obtain

Un,k,l(σkl(t)) = (Pn − P )
[∫∫

K̃h2n(sk − t, sl − t) [Yk(sk)Yl(sl)− Ekl(σkl(t), t)]

×dÑk(sk)dÑl(sl)
]

+E
[∫∫

K̃h2n(sk − t, sl − t) [Yk(sk)Yl(sl)− Ekl(σkl(t), t)] dÑk(sk)dÑl(sl)
]

= I + II, (A.26)

where Ekl(σkl(t), t) = E[Yik(t)Yil(t)|Xi] = Eε
[
g−1
k (XT β̂k(t) + εk(t))g−1

l (XT β̂l(t) + εl(t))
]
.
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For the second term on the right-hand side of (A.26), we have

E
[∫∫

K̃h2n(sk − t, sl − t) [Yk(sk)Yl(sl)− Ekl(σkl(t), t)] dÑk(sk)dÑl(sl)
]

=
∫∫

K̃h2n(sk − t, sl − t)E
[

[Yk(sk)Yl(sl)− Ekl(σkl(t), t)]

× exp
{
−XT γ̂k −LTk (sk)η̂k

}
exp

{
−XT γ̂l −LTl (sl)η̂l

}
dNk(sk)dNl(sl)

]
=

∫
sl

∫
sk

K̃h2n(sk − t, sl − t)E
[[
g−1
k (XTβ0

k(sk) + εk(sk))g−1
l (XTβ0

l (sl) + εl(sl))

−g−1
k (XT β̂k(t) + εk(t))g−1

l (XT β̂l(t) + εl(t))
]

×λ0
k(sk) exp

{
XT (γ0

k − γ̂k) +LTk (sk)(η0
k − η̂k)

}
×λ0

l (sl) exp
{
XT (γ0

l − γ̂l) +LTl (sl)(η0
l − η̂l)

} ]
dskdsl.

(A.27)

To simplify the expressions in the following proofs, we denote h2n to h. Using the similar

calculations as those in proving theorem 2.3.1, we apply the Taylor expansion of (A.27) at γ0
k(t),

γ0
l (t), η0

k(t), η0
l (t), β0

k(t), β0
l (t), and σ0

kl(t). Combining the conclusions in (A.6) and (A.24), we

obtain

(nh2)1/2II

= −(nh2)1/2λ0
k(t)λ0

l (t)
∫∫

g−1
k (XTβ0

k(t) + εk(t))g−1
l (XTβ0

l (t) + εl(t))

×
∂f
(
εk(t), εl(t);σkl(t)

)
∂σkl(t)

∣∣∣
σkl(t)=σ0

kl
(t)
dεk(t)dεl(t)

∣∣∣σkl(t)− σ0
kl(t)

∣∣∣
+Op

(
n1/2h3)+ op

(
h
∣∣∣σkl(t)− σ0

kl(t)
∣∣∣)

≡ −(nh2)1/2Bkl(t)
∣∣∣σkl(t)− σ0

kl(t)
∣∣∣+Op

(
n1/2h3)+ op

(
h
∣∣∣σkl(t)− σ0

kl(t)
∣∣∣) . (A.28)

Furthermore, we could obtain the first term in the right-hand side of (A.26) for a M > 0 and∣∣σkl(t)− σ0
kl(t)

∣∣ < M(nh2)−1/2 is equal to

(nh2)1/2
{
Un,k,l(σ0

kl(t))− E[Un,k,l(σ0
kl(t))]

}
+ op(1)

= (nh2)1/2(Pn − P )
[∫∫

K̃h(sk − t, sl − t)
[
Yk(sk)Yl(sl)− Ekl(σ0

kl(t), t)
]

×dÑk(sk)dÑl(sl)
]

+ op(1). (A.29)
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Combining (A.28) and (A.29), we obtain (A.25). From (A.25), we conclude that there exists a

solution to Un,k,l(σkl(t)) = 0, say, σ̂kl(t), is (nh2)−1/2 consistent and moreover,

(nh2)1/2
{
Un,k,l(σ0

kl(t))− E[Un,k,l(σ0
kl(t))]

}
= (nh2)1/2Bkl(t)

∣∣∣σkl(t)− σ0
kl(t)

∣∣∣+Op
(
n1/2h3)+ op

(
1 + h

∣∣∣σkl(t)− σ0
kl(t)

∣∣∣) . (A.30)

It remains to obtain the distribution of (nh2)1/2{Un,k,l(σ0
kl(t))− E[Un,k,l(σ0

kl(t))]}. Denote

Vi(t) =

√
h2

n

{∫∫
K̃h(sk − t, sl − t)

[
Yik(sk)Yil(sl)− Eikl(σ0

kl(t), t)
]
dÑik(sk)dÑil(sl)

−E
[∫∫

K̃h(sk − t, sl − t)
[
Yik(sk)Yil(sl)− Eikl(σ0

kl(t), t)
]
dÑik(sk)dÑil(sl)

]}
.

(A.31)

Then (nh2)1/2{Un,k,l(σ0
kl(t))− E[Un,k,l(σ0

kl(t))]} =
∑n
i=1 Vi(t). Since (Xi, Yik), i = 1, . . . , n are

i.i.d, we can calculate Var [
∑n
i=1 Vi(t)] =

∑n
i=1 Var [Vi(t)] as follows:

n∑
i=1

Var [Vi(t)] =
n∑
i=1

E [Var [Vi(t)|Xi, εik(sk), εik(sl), Nik(sk), Nil(sl)]]

+
n∑
i=1

Var [E [Vi(t)|Xi, εik(sk), εik(sl), Nik(sk), Nil(sl)]] . (A.32)

For t1, t2, s1, s2 ∈ [0, τ ], we denote

Var [Fk(t1)Fl(t2)|X, εk(t1), εl(t2)] = ψ2(t1, t2,X, εk(t1), εl(t2)) (A.33)

and

Cov [Fk(t1)Fl(t2), Fk(s1)Fl(s2)|X, εk(t1), εl(t2), εk(s1), εl(s2)]

=u(t1, t2, s1, s2,X, εk(t1), εl(t2), εk(s1), εl(s2)). (A.34)
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Similarly to the calculation of Σk(t), we obtain

E [Var [Vi(t)|Xi, εik(sk), εik(sl), Nik(sk), Nil(sl)]]

= h2

n
E
[

Var
[ ∫∫

K̃h(sk − t, sl − t)Yik(sk)Yil(sl) exp
{
−XT

i γ̂k −LTik(sk)η̂k
}

× exp
{
−XT

i γ̂l −LTil(sl)η̂l
}
dNik(sk)dNil(sl)

]]

= h2

n
E
[ ∫∫∫∫

K̃h(tk − t, tl − t)K̃h(sk − t, sl − t)
[
u(tk, tl, sk, sl,Xi, εik(tk), εil(tl),

εik(sk), εil(sl)) + {Gk(tk)Gl(tl) + r(tk, tl,Xi, εik(tk), εil(tl))} {Gk(sk)Gl(sl)

+r(sk, sl,Xi, εik(sk), εil(sl))}
]
× dNik(tk)dNil(tl)dNik(sk)dNil(sl)

]

−h
2

n
E
[[ ∫∫

K̃h(sk − t, sl − t) {Gk(sk)Gl(sl) + r(sk, sl,Xi, εik(sk), εil(sl))}

×dNik(sk)dNil(sl)
]2]

= h2

n

∫
z2

∫
z1

K̃2(z1, z2)
h4 E

[
ψ2(t, t,Xi, εik(t), εil(t))Λk(t)Λl(t)

]
h2dz1dz2 +Op

(
h2
)

= 1
n

∫
z2

∫
z1
K̃2(z1, z2)dz1dz2E

[
ψ2(t, t,Xi, εik(t), εil(t))Λk(t)Λl(t)

]
+Op

(
h2
)
. (A.35)

Denote

Dkl(sk, sl, t)

= exp
{
−XT

i γ̂k −LTik(sk)η̂k
}

exp
{
−XT

i γ̂l −LTil(sl)η̂l
} [
g−1
k (XT

i β
0
k(sk) + εik(sk))

×g−1
l (XT

i β
0
l (sl) + εil(sl))− g−1

k (XT
i β

0
k(t) + εik(t))g−1

l (XT
i β

0
l (t) + εil(t))

]
.
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We have

Var
[
E
[
Vi(t)|Xi, εik(sk), εik(sl), Nik(sk), Nil(sl)

]]
= h2

n
Var

[ ∫∫
K̃h(sk − t, sl − t) exp

{
−XT

i γ̂k −LTik(sk)η̂k −XT
i γ̂l −LTil(sl)η̂l

}
×
[
g−1
k (XT

i β
0
k(sk) + εik(sk))g−1

l (XT
i β

0
l (sl) + εil(sl))− g−1

k (XT
i β

0
k(t) + εik(t))

×g−1
l (XT

i β
0
l (t) + εil(t))

]
dNik(sk)dNil(sl)

]
= h2

n
E
[ ∫∫∫∫

K̃h(tk − t, tl − t)K̃h(sk − t, sl − t)Dkl(tk, tl, t)Dkl(sk, sl, t)

×dNik(tk)dNil(tl)dNik(sk)dNil(sl)
]

−h
2

n

[ ∫
sl

∫
sk

K̃h(sk − t, sl − t)E[Dkl(sk, sl, t)Λk(sk)Λl(sl)]dskdsl
]2

= Op
(
h2
)
. (A.36)

Therefore, by (A.35) and (A.36) , we obtain

n∑
i=1

V ar(Wi(t))

= E
[
ψ2(t, t,X, εk(t), εl(t)) exp

{
XTγ0

k +LTk (t)η0
k

}
exp

{
XTγ0

l +LTl (t)η0
l

} ]
×λ0

k(t)λ0
l (t)

∫
z2

∫
z1
K̃2(z1, z2)dz1dz2 +Op(h2)

= Σkl(t) +Op(h2). (A.37)

Thus, for each fixed time point t,
∑n
i=1 Var [Wi(t)] converges to a constant Σkl(t) as h→ 0. To

prove the asymptotic normality, we verify the Lyapunov condition. Through the similar calculations

to Σkl(t), we could obtain

n∑
i=1

E
{
|Vi − E(Vi)|3

}
= nOp

{
(nh2)3/2n−3(h2)−2

}
= Op

{
(nh2)−1/2

}
.

Therefore, by the Lyaponov central limit theorem,

(nh2)1/2
{
Un,k,l(σ0

kl(t))− E[Un,k,l(σ0
kl(t))]

}
→d N (0,Σkl(t)). (A.38)
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By proving (A.30) and (A.38), we conclude that for any fixed t,

(nh2)1/2
[
σ̂kl(t)− σ0

kl(t)
]
→d N

(
0, B−2

kl (t)Σkl(t)
)
. (A.39)

A.4 Validation on Assumption of Constant Variance

Table A.1: Estimated variances using different 2-year data from EHRs at the OSU-WMCIW.

Marker Start Time End Time Estimated Variance
HBP 01/01/2011 12/31/2012 1.9177

01/01/2012 12/31/2013 1.8068
01/01/2013 12/31/2014 1.9136
01/01/2014 12/31/2015 1.9112
01/01/2015 12/31/2016 1.8812
01/01/2016 12/31/2017 1.8301

TC 01/01/2011 12/31/2012 0.4766
01/01/2012 12/31/2013 0.5346
01/01/2013 12/31/2014 0.5120
01/01/2014 12/31/2015 0.5192
01/01/2015 12/31/2016 0.5502
01/01/2016 12/31/2017 0.5631

HbA1c 01/01/2011 12/31/2012 0.6387
01/01/2012 12/31/2013 0.7135
01/01/2013 12/31/2014 0.7175
01/01/2014 12/31/2015 0.6707
01/01/2015 12/31/2016 0.6515
01/01/2016 12/31/2017 0.6860

HDL 01/01/2011 12/31/2012 0.6578
01/01/2012 12/31/2013 0.7238
01/01/2013 12/31/2014 0.7057
01/01/2014 12/31/2015 0.7278
01/01/2015 12/31/2016 0.7199
01/01/2016 12/31/2017 0.7520

Number of Medications 01/01/2011 12/31/2012 0.3301
01/01/2012 12/31/2013 0.3496
01/01/2013 12/31/2014 0.3640
01/01/2014 12/31/2015 0.3558
01/01/2015 12/31/2016 0.3439
01/01/2016 12/31/2017 0.3447
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Table A.2: Estimated variances using 5-year data from EHRs at the OSU-WMCIW.

Marker Start Time End Time Estimated Variance
HBP 01/01/2013 12/31/2017 1.681
TC 01/01/2013 12/31/2017 0.513
HbA1c 01/01/2013 12/31/2017 0.648
HDL 01/01/2013 12/31/2017 0.721
Number of medications 01/01/2013 12/31/2017 0.308

−1.20
−1.18
−1.16

0 500 1000 1500
Time (days)

HBP, Intercept

β10(t)

0.19
0.20
0.21
0.22

0 500 1000 1500
Time (days)

HBP, Age

β11(t)

−0.100
−0.095
−0.090
−0.085
−0.080

0 500 10001500
Time (days)

HBP, Sex

β12(t)

−0.44
−0.42
−0.40
−0.38
−0.36
−0.34

0 500 1000 1500
Time (days)

HBP, Race

β13(t)

−0.200
−0.175
−0.150
−0.125
−0.100

0 500 10001500
Time (days)

Cholesterol, Intercept

β20(t)

−0.156
−0.152
−0.148
−0.144

0 500 10001500
Time (days)

Cholesterol, Age

β21(t)

0.35

0.36

0.37

0 500 1000 1500
Time (days)

Cholesterol, Sex

β22(t)

−0.04
−0.02

0.00

0 500 1000 1500
Time (days)

Cholesterol, Race

β23(t)

0.08
0.09
0.10
0.11

0 500 1000 1500
Time (days)

HbA1c, Intercept

β30(t)

−0.185
−0.180
−0.175

0 500 10001500
Time (days)

HbA1c, Age

β31(t)

−0.05
−0.04
−0.03
−0.02
−0.01

0.00

0 500 1000 1500
Time (days)

HbA1c, Sex

β32(t)

−0.13
−0.12
−0.11
−0.10

0 500 1000 1500
Time (days)

HbA1c, Race

β33(t)

−0.25
−0.20
−0.15

0 500 1000 1500
Time (days)

HDL, Intercept

β40(t)

0.0650
0.0675
0.0700
0.0725
0.0750
0.0775

0 500 10001500
Time (days)

HDL, Age

β41(t)

0.54

0.56

0.58

0 500 1000 1500
Time (days)

HDL, Sex

β42(t)

−0.16
−0.15
−0.14
−0.13
−0.12

0 500 1000 1500
Time (days)

HDL, Race

β43(t)

1.27
1.28
1.29
1.30
1.31
1.32

0 500 1000 1500
Time (days)

Medications, Intercept

β50(t)

−0.025
−0.020
−0.015
−0.010

0 500 10001500
Time (days)

Medications, Age

β51(t)

−0.11
−0.10
−0.09
−0.08

0 500 1000 1500
Time (days)

Medications, Sex

β52(t)

0.000
0.002
0.004

0 500 1000 1500
Time (days)

Medications, Race

β53(t)

Figure A.1: Blue curves: new estimators for regression coefficients βk(t) across 61 time points
using variances estimated from 2013 to 2017 EHRs data at the OSU-WMCIW. Red curves: original
estimators β̂k(t).
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Figure A.2: Blue curves: new estimators for correlation coefficients σkl(t) across 61 time points
using variances estimated from 2013 to 2017 EHRs data at the OSU-WMCIW. Red curves: original
estimators σ̂kl(t).
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A.5 Validation on Selection of Optimal Bandwidth
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Figure A.3: Blue curves: new estimators for regression coefficients βk(t) across 61 time points
using a suboptimal bandwidth h1n = 429.864 days. Green curves: new estimators for regression
coefficients βk(t) across 61 time points using a suboptimal bandwidth h1n = 604.132 days. Red
curves: original estimators β̂k(t) from EHRs at the OSU-WMCIW using the optimal bandwidth
h1n = 564.112 days.
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Figure A.4: Blue curves: new estimators for correlation coefficients σkl(t) across 61 time points
using a suboptimal bandwidth h2n = 429.864 days. Green curves: new estimators for correlation
coefficients σkl(t) across 61 time points using a suboptimal bandwidth h2n = 564.112 days. Red
curves: original estimators σ̂kl(t) from EHRs at the OSU-WMCIW using the optimal bandwidth
h2n = 494.687 days.

89



Table A.3: Canberra distances between estimators of regression coefficients βk(t) using optimal and
suboptimal bandwidths.

Marker Parameter Distance Distance
(H1 = 564.112 days) (H ′1 = 429.864 days) (H ′1 = 604.032 days)

HBP β10 0.0022 0.0005
Binary β11 0.0094 0.0019

β12 0.0123 0.0039
β13 0.0091 0.0025

TC β20 0.0160 0.0042
Continuous β21 0.0046 0.0009

β22 0.0038 0.0009
β23 0.1722 0.0500

HbA1c β30 0.0207 0.0062
Continuous β31 0.0059 0.0016

β32 0.0923 0.0214
β33 0.0199 0.0049

HDL β40 0.0254 0.0061
Continuous β41 0.0105 0.0028

β42 0.0020 0.0006
β43 0.0115 0.0028

Number of Medications β50 0.0007 0.0002
Count β51 0.0277 0.0072

β52 0.0094 0.0029
β53 0.2615 0.2525

Table A.4: Canberra distances between estimators of correlation coefficients σkl(t) using optimal
and suboptimal bandwidths.

Parameter Distance Distance
(H2 = 494.687 days) (H ′2 = 429.864 days) (H ′2 = 564.112 days)

σ12 0.0168 0.0139
σ13 0.0458 0.0502
σ14 0.0338 0.0356
σ15 0.0171 0.0156
σ23 0.0131 0.0111
σ24 0.0116 0.0108
σ25 0.0739 0.0664
σ34 0.0080 0.0067
σ35 0.1856 0.1951
σ45 0.0268 0.0242
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A.6 Validation on Structure of Intensity Function

Table A.5: Effects of demographic variables and historical HbA1c levels on the frequency of health
marker measurements.

Marker Demographic Est HR SE Z P-value
HBP age 0.062 1.064 0.006 9.820 < 0.001

sex 0.060 1.062 0.014 4.290 < 0.001
race -0.132 0.876 0.015 -9.011 < 0.001
historical HbA1c -0.029 0.971 0.009 -3.110 0.002

TC age 0.015 1.015 0.006 2.251 0.024
sex -0.058 0.944 0.013 -4.336 < 0.001
race -0.020 0.981 0.015 -1.356 0.175
historical HbA1c -0.077 0.926 0.010 -7.606 < 0.001

HbA1c age 0.020 1.020 0.005 4.314 < 0.001
sex 0.026 1.026 0.010 2.704 0.007
race -0.021 0.979 0.010 -2.213 0.027
historical HbA1c 0.094 1.098 0.005 18.345 < 0.001

HDL age 0.046 1.047 0.005 9.624 < 0.001
sex -0.011 0.989 0.010 -1.068 0.285
race -0.008 0.992 0.010 -0.822 0.411
historical HbA1c -0.012 0.988 0.007 -1.807 0.071

Medications age 0.043 1.044 0.006 7.308 < 0.001
sex 0.086 1.090 0.012 7.074 < 0.001
race -0.113 0.893 0.013 -8.960 < 0.001
historical HbA1c 0.006 1.006 0.008 0.703 0.482
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Figure A.5: Blue curves: new estimators for regression coefficients βk(t) across 61 time points using
historical HbA1c levels. Red curves: original estimators β̂k(t) from EHRs at the OSU-WMCIW.
Salmon-colored ribbons: 95% confidence intervals for original estimators β̂k(t).
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Figure A.6: Blue curves: new estimators for correlation coefficients σkl(t) across 61 time points using
historical HbA1c levels. Red curves: original estimators σ̂kl(t) from EHRs at the OSU-WMCIW.
Salmon-colored ribbons: 95% confidence intervals for original estimators σ̂kl(t).
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APPENDIX B: APPENDIX FOR CHAPTER 3

B.1 Simulation Study for Multivariate Latent Modelling Method

We conducted a simulation study to examine the finite sample performance of the proposed latent

modelling approach in Chapter 3 of the main text. In this simulation study, we simulated 100 datasets

of two health markers for 10,000 subjects. We assumed Yi1(t) was Gaussian distributed and Yi2(t)

was Bernoulli distributed. Thus, g−1
1 (z) = z and g−1

2 (z) = ez/(1+ez). Since the distribution of Yi1(t)

had a dispersion parameter, we set φi1(t) = 0.1. For the ith subject, we generated two covariates

Xi1 ∼ N (0, 1/3) and Xi2 ∼ Bernoulli(0.5)− 0.5. Thus, Xi = (1, Xi1, Xi2)T was a 3-dimensional

vector of baseline variables. The maximum observation time Ti for each subject was set to 12 days.

The measured time points for simulated markers were generated from two Poisson processes, and their

intensity functions were E [dNi1(t)|Xi] = exp {0.5Xi1 + 0.25Xi2 + 0.3Li11(t)− 0.1Li12(t)} dt and

E [dNi2(t)|Xi] = 1.2 exp {0.5Xi1 + 0.25Xi2 + 0.3Li21(t)− 0.1Li22(t)} dt. In the intensity functions,

we let Lik1(t) = 1 if there existed measurements of kth marker in [t− 3, t); otherwise, Lik1(t) = 0.

If Lik1(t) = 1, then Lik2(t) was the average value of all Yik(t) in [t − 3, t); otherwise, Lik2(t) = 0.

The true values of βk(t) were assumed to be

βT1 (t)

βT2 (t)

 =

 −1.36 + t
10 sin(0.76 + t) cos(−0.3 + t)

cos(−0.25 + t) 0.37 + t
10 sin(−0.68 + t)

 .
Furthermore, we assumed the correlation structure of multivariate latent processes to be

Ω(t) =

 0.5 −0.25

−0.25 0.5

+ 1
20

 sin(t+ 2) cos(t− 0.5)

cos(t− 0.5) sin(t+ 3)


and

Cov(ε(t), ε(s)) = exp
{
−
(
t− s
b

)2
}

Ω(t) + Ω(s)
2 ,

where b = 0.5.

The scaled Epanechnikov kernel was chosen as the kernel function to estimate βk(t), i.e.,

Kh1n(u) = 3
4h1n

[
1−

(
u

h1n

)2
]

+
.
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Similarly, the kernel function for estimating σkl(t) was set to the product of two scaled univariate

Epanechnikov kernels, i.e.,

K̃h2n(u1, u2) = 9
16h2

2n

[
1−

(
u1
h2n

)2
]

+

[
1−

(
u2
h2n

)2
]

+
.

We extended the data-adaptive method in Cao et al. (2015) and selected the optimal bandwidths

among 0.1, 0.2, . . . , 0.5. We found h = 0.3 for βk(t) and h = 0.2 for σkl(t) were close to the optimal

values. This set of bandwidth was used in all subsequent simulations. Since the proposed estimation

method was expected to have more stable performance at time points that not on two ends, we

estimated βk(t), σkl(t), and correlation coefficients ρkl(t) at time points t = 3, 4, . . . , 11 days.

Detailed examples on the code scripts of this simulation study can be accessed via https:

//github.com/jitonglou/EHR_ITR. Using one of the 100 simulated dataset, we provide explanatory

codes and corresponding R workspaces which follow the workflows shown in Figure B.1.

Explanatory R scripts Workflow Outputs

Generate simulated data for the workflow. TRule_simdata_GenerateData_
seed72_workspace.RData

Estimate regression parameters, 𝛽𝛽𝑘𝑘 𝑡𝑡 , and the 
covariance matrix of latent processes, Ω(𝑡𝑡).

Compute the similarity between each pair of 
subjects, 𝑆𝑆𝑖𝑖𝑖𝑖.

Identify subject subgroups.

TRule_simdata_GenerateData_
seed72.R

Estimate intensity parameters, 𝛾𝛾𝑘𝑘 and 𝜂𝜂𝑘𝑘. TRule_simdata_GenerateData_
seed72_intensity_est.RData

TRule_simdata_est_case0_see
d72_tp10.R

TRule_simdata_DistMat_case0
_seed72.R

TRule_simdata_est_case0_see
d72.RData

TRule_simdata_DistMat_case0
_seed72_dendrogram.RData

TRule_simdata_DistMat_rectd
end.png

Use �𝛾𝛾𝑘𝑘, �𝜂𝜂𝑘𝑘. 

Use �𝛾𝛾𝑘𝑘, �𝜂𝜂𝑘𝑘, �̂�𝛽𝑘𝑘(𝑡𝑡), �Ω(𝑡𝑡). 

Use 𝑆𝑆𝑖𝑖𝑖𝑖. 

Figure B.1: Flow-chart of identifying latent subject subgroups using a simulated dataset.

Figure B.2 presents the true parameters versus estimators across the nine time points for βk(t),

k = 1, 2. From Figure B.2, we can conclude β1·(t) are close to the true parameters at each time point

of interest, and they well capture the underlying smooth function of βk(t) across time. Compared

with β̂1·(t), the biases and variations of β̂2·(t) seem greater. However, all of β2·(t) are in the

interquartile ranges of β̂2·(t), indicating reasonable estimation results.

Figure B.3 displays the true parameters versus estimators across the nine time points for σ12(t)
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Figure B.2: Estimated regression coefficients β̂1(t) and β̂2(t) across 9 time points, based on 100
simulated datasets. Red: true parameters and functions. Blue: estimators.
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on 100 simulated datasets. Red: true parameters and functions. Blue: estimators.

97



and ρ12(t). In both panels of Figure B.3, the mean and median of estimators are close to the true

parameters. Also, σ12(t) and ρ12(t) are in the interquartile ranges of the estimators. The results

in Figure B.3 suggest we can use σ̂12(t) and ρ̂12(t) to approximate the covariance and correlation

structure of the simulated latent processes. Therefore, the proposed estimation method performs

consistently and the biases of estimators are fairly acceptable.

B.2 Results from Latent Models in EHRs Analysis

To estimate the parameters in the joint models, we first implemented the adaptive method of

bandwidth selection as stated in Cao et al. (2015) and chose optimal bandwidths among 3, 6, and 9

months. We ended up to select h = 9 months for regression coefficients, h = 3 months for variances,

and h = 9 months for correlations as the optimal bandwidths. Using the optimal bandwidths, we

estimated βk(t), σ2
k(t), and σ2

kl(t) at 25 time points.

The results are presented in Figure B.4, Figure B.5, and Figure B.6, respectively. The salmon-

colored ribbons in these two figures are 95% confidence intervals for the parameters based on 100

bootstrap datasets.

Figure B.4 presents the relationships between each pair of health markers and covariates. In

general, all health markers exhibit changes over time. Mean HbA1c (β̂20(t)) has an increasing trend

after about 200 days, which may suggest the difficulty to achieve long-term control of glycemic levels

in a chronically ill patient population. Mean SBP (β̂10(t)) and BMI (β̂40(t)) show decreasing trends

over time, suggesting relatively good control of blood pressure and body mass. Mean HDL (β̂30(t))

increases during the first one year and has an decreasing trend afterwards, which may suggest

the improvement in control of cholesterol in this patient population. The estimated regression

coefficients for covariates, i.e., the estimated effects of covariates on health markers, do not show

any pattern of drastic changes over time. Instead, the estimated values across time fluctuate around

mean values. β̂11(t) and β̂31(t) are positive across time, while β̂21(t), β̂41(t), β̂51(t), and β̂61(t) are

negative. Hence, estimators β̂·1(t) suggest that elder subjects on average have higher SBP and

HDL but they have lower HbA1c, HDL, DD, and logMed. Similarly, estimators of sex effect, β̂·2(t),

suggest that compared to men, women tend to have higher expected means of HDL and BMI, but

they have lower accesses to DD and logMed. There is no apparent difference in the average values

of SBP and HbA1c between elder subjects and younger subjects. For race, the estimators of β̂·3(t)

indicate that white people have lower expected means than other races of people in SBP, HbA1c,
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Figure B.4: Estimated regression coefficients β̂k(t) across 25 time points. Salmon-colored ribbons:
95% confidence intervals for the estimators based on 100 bootstrapped datasets.
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HDL, and logMed. However, on average, white people have higher values of BMI and DD, compared

with non-white people.
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Figure B.5: Estimated variance parameters σ̂2
k(t) across 25 time points. Salmon-colored ribbons:

95% confidence intervals for the estimators based on 100 bootstrapped datasets.

Figure B.5 presents the estimated variances of the latent process of each health marker. The

results suggest, in general, the variances fluctuate across time, and they do not have apparent

patterns. However, there is one fact worth mention that the variances of HbA1c and logMed have

observable increases after 1.5 years. This phenomenon may reflect the outcome of long-term control

of HbA1c varies a lot among the population, so that the number of prescribed medications are

different among patients.

Figure B.6 presents the correlations between each pair of latent processes of health markers

at three time points. The results suggest the concurrent correlations between SBP and HbA1c,

SBP and BMI, HbA1c and DD, DD and logMed are positive and moderate. Moreover, there exist

negative and observable concurrent correlations between HDL and BMI, BMI and logMed. One

interesting observation from Figure B.6 is that the estimated correlation between DD and logMed is

as high as 0.8 and increases from t = 6 months to t = 12 months. This result is understandable
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Figure B.6: Estimated correlation parameters σ̂kl(t) at t = 6, 12, 18 months prior to baseline
treatment dates.
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since as a patient receives more medications then the prescription is more likely to contain diabetic

drugs. In addition, the estimated correlation between HbA1c and DD fluctuates around 0.4. This

may suggest that the patients in this cohort had a greater possibility to receive diabetic drugs if

their HbA1c levels are high.

0
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n=1231

group 3 
n=2446

group 4 group 1 
n=682 n=737

group 2 
n=3360

Figure B.7: Dendrogram of Mahalanobis distances for 8,456 patients.

Finally, we computed the similarity between each pair of patients using the Mahalanobis distance

defined in (2.7). To compute ε̂i(t), we substituted Yi(t) with the nearest neighbor observation

of time t for patient i. Using the between-patient similarity matrix, we performed a hierarchical

clustering on the 8,456 patients, and the results are given in Figure B.7. We observed 5 clusters

within which patients had similar health profiles.

B.3 Coding Examples for Learning ITRs

In the github repository https://github.com/jitonglou/EHR_ITR, we also provide coding

examples for learning ITRs as Figure B.8.

Since we were not allowed to release the EHR dataset, we illustrated the proposed method

using the same simulated dataset in section B.1. After the estimation of parameters βk(t) and Ω(t),

we calculated the similarity between each pair of subjects and performed a hierarchical clustering
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Explanatory R scripts Workflow Outputs

Calculate pre-treatment covariates and 
variables reflecting recent patterns of health 

markers, 𝑍𝑍𝑖𝑖.

Create clinical outcomes 𝑅𝑅𝑖𝑖.

Estimate propensity and prognostic scores, and 
construct feature variables 𝐻𝐻𝑖𝑖.

Learn ITRs within each identified subgroup.

TRule_simdata_ITRpreprocess
_case0_seed72.R Determine treatment classes, 𝐴𝐴𝑖𝑖.

TRule_simdata_ITRpreprocess
_case0_seed72_df.RData

TRule_simdata_ITRlearn_case
0_seed72_group3.R

TRule_simdata_ITRlearn_case
0_seed72_group3_workspace.
RData

TRule_simdata_ITRlearn_case
0_seed72_group3_est.RData

Use 𝐴𝐴𝑖𝑖, 𝑅𝑅𝑖𝑖, 𝐻𝐻𝑖𝑖. 

Use 𝑍𝑍𝑖𝑖, 𝐴𝐴𝑖𝑖, 𝑅𝑅𝑖𝑖. 

TRule_simdata_ITRlearn_distr
ibution.png

Predict ITRs for a new simulated dataset using 
the learned ITRs.

TRule_simdata_ITRpredict_ca
se0_seed72_group3.R

Figure B.8: Flow-chart of learning optimal ITRs in a simulation study.

analysis on the similarity matrix. Some subjects had no measurement for both health markers

or had outliers. Thus, we excluded these subjects and the sample size for the dataset was 8,337

subjects. Subsequently, we clustered these subjects into three subgroups. Next, we prepared a

dataset for learning ITRs. In particular, for the ith subject, we created two variables reflecting

recent patterns of health markers by calculating the average value of Yi1(t) and Yi2(t) between t = 3

and t = 11. We denoted these two variables to Vi1 and Vi2. Then, we simulated the outcome reward

Ri = 1 +Xi1 −Xi2 + 2Vi1 − 2Vi2 + ei,

where ei ∼ N (0, 1/3). Afterwards, the ith subject was randomly assigned a treatment Ai in

{A,B,C} with equal probabilities, and the resulting dataset had 8,330 subjects of three treatments

in three subgroups. We let Zi = (Xi1, Xi2, Vi1, Vi2)T and denoted u to a certain treatment selected

from {A,B,C}. Within each subgroup, we estimated the propensity scores π(Zi) = P (Ai = u|Zi)

by a 10-fold cross-validation random forests with 3 repeats. Similarly, we estimated the prognostic

scores ψ(Zi) = E (Ri|Zi) by a gradient boosting model with 5,000 trees of which the maximum

depth was 4. Lastly, we used Hi = (Zi, π̂(Zi), ψ̂(Zi)), Ai, and Ri to estimate ITRs. After the

estimation, a certain treatment rule D(·) can be evaluated by its empirical value function, which is
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defined as ∑
u

∑
i I (Ai = D(Zi)) = u)Ri/π̂(Zi)∑

u

∑
i I (Ai = D(Zi)) = u) /π̂(Zi)

B.4 Empirical HbA1c Values of Estimated ITRs

Table B.1: Comparison of ITRs using M-learning and Q-learning in terms of the empirical value
function for the expected HbA1c level using 2-fold cross-validation with 100 repeats (a lower value
means more beneficial).

Group Model Mean (sd) Median (Q1,Q3)
Group 1 M-learning, SVM RBF kernel 6.362 (0.070) 6.359 (6.322, 6.400)

Q-learning, random forest 7.042(0.098) 7.034 (6.977, 7.106)
Q-learning, SVM RBF kernel 6.696 (0.073) 6.572 (6.524, 6.626)

Universal rules: MET: 6.911, INS: 7.335, Other: 7.162, Multiple: 7.375

Group 2 M-learning, SVM RBF kernel 6.397 (0.018) 6.398 (6.384, 6.407)
Q-learning, random forest 7.284(0.051) 7.286 (7.251, 7.320)
Q-learning, SVM RBF kernel 6.776 (0.031) 6.775 (6.761, 6.794)

Universal rules: MET: 6.922, INS: 7.472, Other: 7.329, Multiple: 7.473

Group 3 M-learning, SVM RBF kernel 6.597 (0.045) 6.592 (6.564, 6.629)
Q-learning, random forest 7.550(0.068) 7.554 (7.514, 7.597)
Q-learning, SVM RBF kernel 6.712 (0.057) 6.705 (6.673, 6.749)

Universal rules: MET: 7.073, INS: 7.711, Other: 7.560, Multiple: 7.792

Group 4 M-learning, SVM RBF kernel 7.752 (0.117) 7.765 (7.670, 7.810)
Q-learning, random forest 9.052(0.163) 9.071 (8.947, 9.166)
Q-learning, SVM RBF kernel 7.794 (0.131) 7.793 (7.708, 7.879)

Universal rules: MET: 8.479, INS: 9.199, Other: 8.866, Multiple: 9.121

Group 5 M-learning, SVM RBF kernel 6.464 (0.057) 6.462 (6.429, 6.502)
Q-learning, random forest 7.393(0.082) 7.389 (7.338, 7.441)
Q-learning, SVM RBF kernel 6.697 (0.041) 6.694 (6.672, 6.724)

Universal rules: MET: 6.943, INS: 7.717, Other: 7.378, Multiple: 7.443
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