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Abstract

The grammars of natural languages may be learned by using genetic algo-

rithms that reproduce and mutate grammatical rules and part-of-speech tags,

improving the quality of later generations of grammatical components. Syntac-

tic rules are randomly generated and then evolve; those rules resulting in im-

proved parsing and occasionally improved retrieval and �ltering performance

are allowed to further propagate. The LUST system learns the characteris-

tics of the language or sublanguage used in document abstracts by learning

from the document rankings obtained from the parsed abstracts. Unlike the

application of traditional linguistic rules to retrieval and �ltering applications,

LUST develops grammatical structures and tags without the prior imposition

of some common grammatical assumptions (e.g., part-of-speech assumptions),

producing grammars that are empirically based and are optimized for this

particular application.

�

The author wishes to thank Stephanie Haas for discussions during the course of this research.
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1 Introduction

A language contains a set of terms and rules capable of manipulating the terms, pro-

ducing the \grammatical" statements permitted by the language. Using the LUST

(Linguistics Using Sexual Techniques) genetic algorithm system, we have developed

and evaluated grammars based, not on their degree of similarity to grammars in-

tellectually developed by human grammarians, but, instead, on how well a system

performs a task using the genetically developed grammar. The progressive improve-

ment of the grammar produced by LUST will gradually increase the performance

of the retrieval task on which LUST was trained. The grammar used here to parse

natural language text is represented as a \gene" that evolves through a process

similar to that found in natural selection, where those creatures in an environment

that have an advantage over other creatures are more likely to survive and prolifer-

ate. LUST allows for rules to be generated, propagate, or \die o�," depending on

how well the retrieval or �ltering task is performed that uses LUST's grammatical

rules and part-of-speech assignments. In a document retrieval or �ltering system,

applying grammatical tags to the list of terms representing a document provides

additional information about the semantic content and structure of the document

that is not present in the untagged document. One parse may fail to distinguish

between two di�erent uses for the same term, resulting in conventional retrieval

performance, while an improved parse may note the distinction and produce better

retrieval than would be produced by the �rst parse.

Information retrieval and �ltering systems can retrieve or predict the usefulness

of document information given bibliographic descriptions of the document. These

retrieval and �ltering systems may be studied using traditional retrieval and �l-

tering performance measures such as precision and recall (Salton & McGill, 1983;

Van Rijsbergen, 1979) or measures such as average search length (Losee, 1991).

Each retrieval performance measure can serve as a �tness function for a genetic

algorithm system, such as LUST, providing a measure by which grammatical rules

developed by LUST may be evaluated. Those rules whose application results in

improved disambiguation are expected to produce improved retrieval and �ltering

performance, or, in the worst case, we expect that such knowledge will not hurt

retrieval performance.

Human grammarians usually assume that individual terms used in natural lan-

guage may be grouped into categories, which we refer to as parts-of-speech, and

then labeled with grammatical tags, and that linguistic rules can be used to manip-

ulate any term having certain characteristics. Commonly accepted parts-of-speech

include such categories as verb, object, and noun, among many others. The basis

for de�ning and using these grammatical components has always been a loose one,

based on how well the grammatical categories seem to \�t" grammarians' intuitions

about the fundamental structure of a language.

With the formalization of syntactic rules by Zellig Harris (Newmeyer, 1986) and
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Noam Chomsky (1965), various sets of syntactic rules and criteria for such rules

have been proposed and can serve as the basis for the grammars described below.

One may also examine the parsing or understanding of phrases and small parts of

sentences, in lieu of parsing entire sentences. Some approaches describe the statis-

tical relationships existing between terms using hidden Markov models (Charniak,

1993). Other work emphasizes the examination of phrases or term clumps bounded

by term windows (Haas & Losee, 1994; Losee, 1994). The research described be-

low begins by viewing sentences in terms of their grammatical components rather

than by taking a more statistical approach. Future research will attempt to study

more limited structures that the author believes may be learned and modeled more

precisely than can whole sentences.

Genetic algorithms can be used to learn the characteristics of a wide variety

of phenomena, both inside and outside linguistic and document retrieval domains.

In addition to being applied in a variety of biological and industrial environments,

they have been used to model and study the historical changes in a language (Clark

& Roberts, 1993). The nature of linguistic phenomena may be learned through the

application of other techniques, such as neural networks capable of learning to

associate events with other events. Genetic algorithms were chosen for this work

because at each stage in the evolutionary process, a full grammar and set of part-of-

speech tags is provided by the gene, making easier the qualitative and quantitative

evaluation of the derived language.

In this work, we empirically study how genetic algorithms may be used to

assign parts-of-speech tags to a set of terms. These part-of-speech assignments

are allowed to evolve, with those part-of-speech assignments leading to gains in

the value of a �tness measure (e.g. improved retrieval results) contributing to a

greater chance of the part-of-speech assignment surviving. Those part-of-speech

assignments resulting in poor retrieval are less likely to survive and are instead

replaced by other part-of-speech assignments.

2 Syntactic Genes

A grammar describing a language may be understood as consisting of a set of

grammatical rules and a set of part-of-speech tags for terms. These syntactic

rules and the relationships between grammatical tags and terms may be stored as

alleles, individual elements within genes, for analysis with a genetic algorithm. A

rule, such as A! BC; may represent grammatical component A being composed

of grammatical components B and C; in that order. (Within LUST, there are

provisions for using the IDLP grammar described in (Gazdar, Klein, Pullum, &

Sag, 1985), which uses some unordered rules unlike those used in more traditional

studies of syntax and is attracting increasing interest in the linguistics community

(Briscoe & Carroll, 1993; Chitrao & Grisham, 1990)).

For the purposes of the LUST system, each gene contains a set of syntactic
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rules (a constant number of rules for each possible part-of-speech on the left hand

side of a syntactic rule). Each non-terminal symbol on the left hand side of a

rule could have n di�erent rules describing its direct composition, where n = 5 is

the default value for the experiments described below. Each term has two (not

necessarily di�erent) part-of-speech assignments. Thus, the term run might evolve

to being tagged as a verb or a noun or both. Note that for our purposes, part-

of-speech labels are arbitrary and have no \meaning" to the system. The system

does not label a term as being a noun, for example, or a verb; instead, a label

number is attached to several terms. These may be understood by a human to be

members of a certain category of term. For example, all terms of category 5 might

be understood by a grammarian to be verbs, but LUST does not need or use this

information.

Syntactic production rules may vary in the number of terms on the right hand

side of the rule, or each production rule may have a �xed number of terminal and

non-terminal symbols, e.g. 2. LUST features may be produced by a truncated

Poisson process, generating an average of 1:8 terms per rule (an arbitrarily chosen

number) and never producing 0 terms. There frequently will be 1 or 2 terms per

rule, and seldom over 5 terms in a rule. A similar distribution has been recently

proposed by Lankhorst (1994b).

3 Parsing and the Retrieval Process

The parsing and retrieval process in the LUST system begins with the parsing of

each sentence with a chart parser (Charniak, 1993). Given a set of grammatical

rules and part-of-speech tags, the chart parser produces the set of parses that

can produce the sentence. Disambiguation is accomplished by selecting the parse

produced by applying the fewest number of rules. The chart parser produces for

each term the accompanying grammatical tags, each term having attached to it

all those grammatical markers found when moving up a conceptual parse tree for

n levels. Thus if n = 1, the term dog in dog bites man might be stored as the

unit dog|noun while if n = 2 (the LUST default) it might be stored as dog|

noun|subject. Each term complex is treated as a unit, and dog|noun|subject is

treated as a di�erent term complex than dog|noun|object. In most cases below,

it is obvious whether we are describing an individual term or a term complex

and thus refer to both as a term; when confusion might arise, we will use either

the expressions \term" or \term complex." Note that n = 0 provides essentially

untagged terms, such as is found in document retrieval or �ltering systems having

no linguistic knowledge.

LUST uses document abstracts for parsing and retrieval. In some experiments

described below, only the �rst sentence of each abstract is used, while in others, all

sentences are used. Document titles are not currently used. Often, multiple parses

are obtained for each grammatical component and disambiguation is used to select
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one of the parses as the parse to be used for the remainder of the processing.

Documents are weighted using a traditional probabilistic weighting formula

(Robertson & Sparck Jones, 1976; Bookstein, 1983; Losee, 1988). Each document

j is assigned a value based on the sum of term or term complex weights, based on

probabilities of terms occurring in a given class of documents:

RSV

j

=

n

X

i=1

d

i

log

p

i

=(1� p

i

)

q

i

=(1� q

1

)

;

where p

i

is the probability that a binary feature i is present in relevant documents,

and q

i

is the probability that binary feature i is present in non-relevant documents.

Documents are ranked for retrieval or examination in order of their retrieval status

value (RSV). The average search length (ASL), the average number of documents

retrieved when retrieving a document in the average position of a relevant docu-

ment, may then be computed from this ranking and from knowledge the system

has about the relevance values for each document (given the query).

When a term complex contains more than the single term, that is, it contains

a grammatical tag, the same term may occur in di�erent complexes. Probabili-

ties of term complexes may be di�cult to estimate accurately, since, for example,

there may be two types of dog occurrences, one as subject, and one as object,

both occurring with a lower frequency than the untagged term dog. In a realis-

tic retrieval or �ltering system, these probabilities must be estimated, and having

fewer occurrences of a term complex (as compared to what would be obtained in

conventional systems without tagging) will usually result in less accurate estimates

because of fewer data points being included when making each estimate. It re-

mains to be seen whether making lower quality estimates of probabilities of more

accurately tagged text features will result in improved or possibly even diminished

performance (Losee, Bookstein, & Yu, 1986).

4 Evaluative Criteria

When modeling evolutionary processes using genetic algorithms, it is necessary to

use a �tness function to evaluate the performance or \�tness" of an individual gene.

Those genes that are most �t are most likely to survive, with less �t genes dying

o�, being replaced by the �tter genes. Several possible functions may be used in

determining the �tness and e�cacy of a grammar. One function that the author

has used previously (Losee, 1994) is the average search length (ASL). Evaluating

the performance of a �ltering or retrieval process with the ASL satis�es many of

the needs of retrieval researchers, in that it provides a single number measure of

performance, the ASL is capable of being predicted analytically (Losee, 1995), and

the ASL is easily understood by a system's end users. This is unlike most of the

other retrieval and �ltering measures based on precision and recall that are used
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to evaluate retrieval systems. Other measures may be useful in determining the

�tness of a grammar. One measure is the number of rules applied during the

parsing process. Another �tness function is the average (over a set of sentences)

of the largest number of terms in a parse for each sentence, the average maximum

parse length (AMPL).

Because properly assigning the part-of-speech to a term is not expected to

improve greatly retrieval and �ltering performance, measures combining the ASL

and a second measure that does not depend on retrieval performance may be useful.

In the work below, a useful �tness measure was obtained by weighting the ASL

value and the AMPL so that one hundredth of the AMPL was added to the negation

of the ASL. The greater the value for this combined function, the �tter the gene

that produced it. It is common for di�erent genes to produce the same ASL value,

and adding the AMPL allows for a �ner level of discrimination between genes.

The modi�cation acts to break ties that exist when using ASL alone as the �tness

function. When two genes with identical ASLs are compared, the gene with the

larger AMPL is selected. This weighting has the side e�ect of selecting a new gene

if the new gene has an inferior ASL but a much superior maximum parse length.

This computational method is useful when the ASL is not a very good measure of

the quality of parsing performance due to the limited improvements obtained with

disambiguation.

5 The LUST System

The LUST system has been developed as a rapid prototyping system that can be

easily modi�ed as the experimenter gains insights into the application of genetic

algorithm techniques to linguistic analysis. All code was written using Unix Bourne

shell scripts and gawk, a version of awk. Execution time for programs was slower

than would have been obtained with code in a lower level language such as C or

C++. However, Unix shell scripts are particularly e�cient at handling natural

language text such as that studied here, allowing the programs to be easily coded

and modi�ed for di�erent tests.

A database of 108 abstracts was developed containing 988 sentences. These

abstracts are in �ve groups, each being an extract from one of �ve larger databases

on psychology developed by Stephanie Haas for sublanguage analysis (Losee and

Haas, 1994). Each of the �ve groups was originally retrieved with a single query,

thus all documents in a group are similar in a topical sense. Documents abstracts

were manually placed into a regular linguistic form, with parenthetical comments

removed in some cases, abbreviations expanded, spellings made consistent, etc.

The approximately twenty documents in each of the �ve groups, for a total

of 108; were treated as \relevant" to an information retrieval query. Thus, doc-

uments in group 1 were considered relevant (and documents in the other groups

non-relevant) to a particular query, and the documents' rankings were then mea-
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sured. This was done iteratively for documents in each of the other four groups,

and the performance �gures for retrieving the relevant documents in each of the

�ve groups was averaged. Performance was measured by the ASL.

Terms used in the retrieval process are labeled by LUST as to their part-of-

speech. Labels are arbitrary, indicating for example that two terms such as run

and walk have a common part-of-speech, rather than indicating that a term has a

part-of-speech that might be found in a grammar text (e.g. verb). To simplify the

grammar, only ten parts-of-speech were used (and twenty non-terminal symbols

were used).

Mutations take place in LUST by producing new rules, combining fragments

from the right hand side of \�t" rules with the same left hand side as the rule it

replaces, as well as occasionally producing fragments with random contents. Those

\�t" rules that contribute fragments toward producing the new rule are referred

to here as the \parents," with the new gene being referred to as an \o�spring"

or \child." Rules that are most useful when the parents' grammars serve as the

basis for the parse may be included with greater frequency in whole or in part in

the o�spring, while rules that are seldom used may be more likely to be replaced

with a new, random rule (with the same left hand side as the rule it replaces). A

similar procedure may be used for the rules governing terms and their dominating

non-terminal symbols (grammatical tags). This would have the e�ect of weighting

the o�spring by those parts of a parent that have been most useful to the parent

(Clark & Roberts, 1993). To simplify the interpretation of genes in LUST, the

results described below were derived from a system with a constant probability

assigned to the possibility of each rule changing

There are always three genes in use by the LUST system, numbered 1; 2; and

3. Genes 1 and 2 are always parents, genes found previously to be the most �t,

while gene 3 is the o�spring produced by the parents mating. The �tness of gene

3 is determined by examining the sentences being parsed, the document rankings,

and the resulting performance). After assigning a �tness value to Gene 3, the three

genes are then sorted in order of the value of each of their �tness functions to

get an ordered set of genes, with the �ttest two becoming the parents of the next

generation.

Unlike some evolutionary systems, LUST only produces a single o�spring. Each

gene contains a set of alleles, or rules, and when o�spring are produced, the o�spring

contain some alleles from one parent and some from another. For example, a

human child may inherit the shape of its ears from one parent and hair color from

another parent. In LUST, an o�spring has some of the characteristics of each

parent, with some characteristics being randomly generated. The parsing function

takes up the vast majority of the LUST system's time, and evaluating the �tness

function (parsing) is to be minimized because parsers are generally not very fast.

Rather than two parents having two o�spring, each of which would need to be

fully evaluated, we produce only a single o�spring, which has the capability to be
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incorporated into the process of producing the next o�spring if it is a �tter gene.

This introduces superior genes into the parsing process more quickly than if two

genes were produced each generation. This increases the rate of learning, although

valuable rules from one of the parents can be lost if there are other rules in the

children that are \better" than the lost rule.

The initial grammar is made using random processes that produce rules consis-

tent with the procedures above and the parameters of each particular experiment.

Copies of this initial grammatical gene become both parents and the initial o�-

spring when the system begins running. The o�spring is then evaluated and the

mutation/reproduction { parsing { retrieval cycle begins.

6 Results

Results from simulations using the LUST system suggest that the system can learn

information about linguistic structures, as evidenced by the consistent increase

in retrieval performance as syntactic genes evolve. Each simulation runs for a

particular number of generations, with the probability that a syntactic rule will

be changed during a generation having a default value of :20 and the probability

that a term will be assigned a new part-of-speech tag having a default value of :20.

Two part-of-speech tags are assigned to each term and 5 rules govern the possible

productions or transformations that can take place for each non-terminal symbol.

The default number of terms on the right hand side of a syntactic rule was 2.

Each �gure shows the smoothed values for a data set from the �rst generation

up to the last useful value obtained in the simulation. These graphs compare the

average maximum parse length (AMPL) over the set of databases and the number

of generations that have elapsed, up to the last generation for which we know

that all data is available. The last performance value that was obtained in each

simulation might (or might not) have been the value for the next generation if the

simulation had been allowed to continue. For this reason, the average generation

for a particular performance level could not be determined for the �nal generation

and these values were not used in determining the performance data graphed here.

This data was truncated, having the e�ect of making some plots appear shorter

than others, although results are from the same experiment.

All the experimental results may best be viewed against a baseline AMPL

obtained from randomly generated genes of 3:9 to 4, with the variance being due

to variations in system options. Similarly, the ASL obtained when no parsing

is used is 49:914. This can be interpreted as saying that the user would need

to examine an average of 49:914 documents when getting to the average relevant

document in this test database.
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Figure 1: Learning of syntactic rules alone, part-of-speech tags alone, and both

types of rules. The data for learning syntactic rules alone runs concurrently for

much of this data set with learning syntactic rules and tags together.
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6.1 Learning Syntactic Rules and Part-of-Speech Tags

Figure 1 shows the results from one set of simulations where only syntactic rules

were learned and allowed to mutate, that is, where the tag values were kept con-

stant. Another simulation allowed only the part-of-speech component to be learned,

forcing the syntactic production rules to remain constant. A third experiment

shows what happens when both syntactic and tagging rules are learned. The �g-

ure shows that learning either the tagging rules or the syntactic rules separately

does result in improved parsing. Learning both tagging rules and syntactic rules

together appears to add little to learning the syntactic rules alone for this case,

but since learning tagging rules alone does improve performance, it was decided to

learn both syntactic rules and tags for the experiments below.

6.2 Parts of Speech

These experiments were intended to learn grammatical components \from scratch,"

that is, they use virtually no prior knowledge about the parts-of-speech of individual

terms and the syntactic rules of the language. One area of interest is how much

assistance is provided to the parsing process when some limited prior information

is available. This was done by labeling all the following terms on each line below

as being of the same part-of-speech when the �rst gene is produced:

1 above below on in near through with

2 or and

3 I you he she it we they

4 a an the

5 all numeric data

The system does not tell the parser that below or near are prepositions; instead

these terms are only initially assigned the same part-of-speech. The parts-of-speech

for each of these term groups may change during the mutation process. These

initial similar part-of-speech assignments merely coax the evolutionary system in

a direction given some assumptions that we feel won't be too controversial.

An analysis of the labeling of these terms after a run involving �fty genera-

tions found that at least half of the rules for term's part-of-speech label in each

of the categories above were still grouped together with the original label. That

these terms remained with their original label is probably not signi�cant; what is

important is that the similar terms remain clustered together. Given that 20% of

the part-of-speech labels mutated each generation, one would expect far fewer of

the terms to remain clumped together into similar parts-of-speech after the �fty

generations.
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Figure 2: The rate of performance improvement increases as the mutation rate

rises.

6.3 Mutation Rate

A separate set of simulations examined what happens when the mutation prob-

ability for either a syntactic rule or a tagging rule is allowed to vary. Only the

�rst sentence from each abstract is used for these tests to speed up the system,

producing results in the time available with the hardware available.

Figure 2 shows how parsing performance varies as the probabilities that a tag

or syntactic rule can mutate is allowed to vary from :005 to :20. The perfor-

mance increased more rapidly as the probability of change was allowed to increase,

suggesting that as the mutation rate increases, the �ltering results produced by

using the genes more rapidly increase and approach their �nal values. Intermedi-

ate values, not shown in the �gure, support this general trend, although there are

situations where the performance for one probability of mutation breaks from this

trend for several generations. The general trend was something of a surprise to the

author, as anecdotal evidence about other genetic algorithm system designers sug-

gested that much smaller probabilities worked better in other tested evolutionary

environments.
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Figure 3: Performance improves as the number of rules per left hand side increases.

6.4 Syntactic Rules

Figure 3 shows how parsing performance improves as the number of syntactic rules

for which a particular part-of-speech is in the left hand side of the production rule

is allowed to vary from 3 to 9. Fifty generations of mutations were used to produce

these results. The probability that a given rule or term tag was changed during a

mutation was set to :03: The �gure shows that as the number of right hand sides

per left hand side increases, that is, the number of productions or transformations

per non-terminal symbol increases, the performance improves. This is due in part

to the increased number of possible rules with which to parse a sentence.

The experiments described above all use two non-terminal symbols on the right

hand side of each syntactic rule, except for those that involve a single non-terminal

symbol on the left and a term on the right (tagging rules). While these �xed rule

formats allow for some degree of control in experiments, most grammatical systems

proposed by linguists use varying numbers of non-terminal symbols on the right

hand sides of syntactic rules.

If the number of terms is allowed to vary, we may model the number of non-

terminal symbols as described by the Poisson distribution. This was an arbitrary
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distribution chosen by the author. Recent research by Lankhorst (1994b) has used a

similar model for the distribution of non-terminal symbols. Our work has produced

a set of non-terminal symbols where this number is Poisson distributed with the

average number of terms generated being 1:8: The Poisson distribution produces

some instances where zero terms will be generated. To avoid this problem, a new

number of terms is generated if a 0 is produced by the Poisson random number

generator. The distribution is a truncated Poisson distribution. Further research

will involve testing this distribution and determining appropriate parameter values.

6.5 Fitness Measures

The relative performance of LUST was examined using di�erent �tness measures

to evaluate the quality of a gene. It was erroneously expected that the retrieval

performance would serve as an adequate �tness function. Knowing the parts-of-

speech and using the resulting disambiguation improved retrieval performance a

very small amount. For this reason, measures besides raw retrieval performance

(ASL) were used.

A second �tness measure is the average number of terms in the largest phrase

parsed from each sentence. the average maximum parse length (AMPL). A third

measure is a weighted combination of the �rst two measures, with the weighting

e�ectively choosing the ASL alone in most cases. In the case of a tie in ASLs, the

gene that produces the larger parse receives the higher weight.

Experiments here began with the same gene, and each gene then evolved

through 100 generations. Using the ASL alone resulted in the gene progression

from an ASL of 49:92 to an ASL of 49:90; a relatively small improvement in re-

trieval performance. At the same time, the AMPL increased from 4:656 to 6:034:

The ASL level of 49:90 was reached by generation 4, and no better performance is

obtained with additional mutated syntactic rules.

When the AMPL alone was used as the �tness function, the AMPL increased

from 4:656 to 10:092, with the latter being reached at generation 61. The ASL

went from 49:92 to 49:9; with the latter being obtained from generations 6 to 14

and from generations 27 to 100.

When the ASL was combined with the AMPL so that ties in the ASL were

broken by the AMPL, the AMPL increased from 4:656 to 9:912 with the ASL

moving from 49:92 down to 49:9 with a considerable amount of uctuation.

The number of successful parses (NSP), the number of rules that were applied

when parsing a set of sentences, was examined as a �tness function. It was noticed

that while using the AMPL as a �tness function, a new value was often obtained

for the AMPL at the same time that one of the highest values was obtained for

the NSP. This NSP value associated with the best AMPL had usually only been

exceeded once or twice before and it is obvious that there was a strong relationship

between AMPL and NSP. If this is the case, and an NSP this high had occurred

previously, it was reasoned that perhaps using NSP as the �tness function would
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result in the system learning from these earlier high NSP genes rather than from

early genes with lower NSPs that had the (then highest) AMPL.

In a sense, the NSP can be understood as having a �ner grain than the AMPL,

with the NSP assigning a greater range of values to genes, allowing �ne degrees

of di�erence to be rewarded or discouraged, through evolutionary techniques, that

would otherwise not be detected with a coarser grained measure like AMPL. If the

AMPL and NSP measures are strongly (but not perfectly) related, it is likely that

using the NSP will result in a more rapid development of �tter genes. Using the

AMPL as a �tness function results in the two parents being essentially randomly

selected from the moderately sized pool of genes with this particular AMPL value.

Using the NSP, however, results in more rapid changes in parents due to the smaller

(and better) pool of parents from which o�spring are produced. Parents at any

point can be expected to be slightly better than would be the case with AMPL,

resulting in more �t o�spring and, in general, more rapid learning.

Using the same initial parent genes, a sample run produced seven di�erent

AMPL values during the �rst �fty generations when AMPL was used as the �tness

function. However, when using NSP as the �tness function, �fteen di�erent AMPL

were observed. In addition, the AMPL of 9:35223 was obtained after the �rst

hundred generations when AMPL was used as the �tness function; a better AMPL

of 9:50202 was achieved during the same period when NSP was used as the �tness

function. This provides some preliminary evidence that NSP may be a better

�tness function for LUST.

7 Derived Syntactic Rules

The results presented in the preceding section suggest that the LUST system pro-

duces linguistic rules that are superior to the random rules with which each run

begins. For example, the AMPL may be easily doubled over the �rst one hundred

generations, evidence that superior rules are being produced through the applica-

tion of evolutionary processes. However, the rules that are produced after one or

two hundred generations as a result of mutation are nowhere near as good as those

that would be produced by a human (or as might be produced by a larger system

with more data and with access to greater computational power).

Changes in the parsing ability of the system can be observed after evolution

occurs, although the improvements are di�cult to characterize in a systematic

way because they are so irregular. We had originally expected that very widely

applicable rules would be learned �rst, such as that a sentence may be constructed

of a noun phrase and a verb phrase (e.g. NP=The girl VP=climbed the tree), or

that a prepositional phrase may be composed of a preposition followed by a noun

phrase (e.g. on the table).

Instead, the rules that developed were far less general and far more di�cult

to interpret. Figure 4 shows a parse tree for part of a sentence after one hundred
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Figure 4: A parse tree for part of a sentence. This was produced after one hundred

generations.
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Figure 5: A parse tree for the part of a sentence shown in Figure 4 after another

one hundred generations have passed.
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generations of mutation, with an AMPL of about 10. An examination of this parse

tree shows relatively little that corresponds to the grammatical rules that a rational

human would produce! After another one hundred generations, the best gene to

that point produced the parse shown in Figure 5 for the same part of a sentence.

While the syntactic rules are obviously very di�erent, as is indicated by the di�erent

numbers representing arbitrary grammatical components, the structures have an

obvious similarity.

These parse trees suggest that LUST fails to produce in one or two hundred

generations the quality of parses that would make us leave human-generated parses

to use machine-generated parses. It is likely that running LUST for thousands of

generations will produce grammars that are closer to human-developed grammars

or that may begin to approach an optimal grammar. Producing an optimal gram-

mar will require a greater amount of computing power than is commonly available.

Better results might also have been obtained if learning was based on a fully tagged

set of terms, making additional (conventional) assumptions about parts-of-speech.

8 Conclusions

The performance of systems �ltering documents into two groups, documents of

probable interest and those the user probably does not want to see, may be im-

proved if document components are labeled as to their grammatical parts-of-speech.

This will make more precise the relationships between terms, allowing statements

like \boy bites dog" and \dog bites boy" to be di�erentiated when searching for

\boy" as biter, \boy" as bitten, and so forth. While scholars have studied dis-

ambiguation using grammatical techniques consistent with traditional linguistic

parts-of-speech and syntactic rules (Burgin & Dillon, 1992), the use of genetic al-

gorithms such as the one provided by LUST produce grammars optimized for the

particular �ltering and retrieval application of interest, as well as for a particular

sublanguage (Bonzi, 1990; Damerau, 1990; Grishman & Kittredge, 1986; Haas &

He, 1993; Losee & Haas, 1995). Learning the characteristics of a sublanguage has

an obvious utility in supporting the discrimination between documents from di�er-

ent disciplines or with di�erent stylistic characteristics (e.g. academic research vs.

general non-�ction, or literature reviews vs. more traditional research articles).

The data presented here shows that the LUST system learns grammatical rules

and part-of-speech tags, improving the quality of the initial randomly generated

syntactic rules and part-of-speech labels. An original assumption of the author,

that �ltering performance could be used as a �tness function, measuring the quality

of the parsing produced by a grammar, has proved to have little supported. As

with the earlier work of Burgin and Dillon (1992), relatively little improvement

was noted when additional linguistic knowledge becomes available about document

components, although any �ltering or retrieval improvement is welcome, no matter

how small! While using retrieval performance as a �tness function does work, we
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believe that other functions will allow for more rapid learning of the characteristics

of natural language. AMPL appears to be very useful in producing the desired

knowledge, allowing us to produce genes that result in improved retrieval and

allow us to better capture the rules of a grammar.

Experimental results suggest that further research might want to address several

considerations. Future genetic algorithm systems supporting information retrieval

and �ltering need to use multiprocessing systems or parallel processing arrays if

they are to allow for the tens of thousands of generations necessary if both syntactic

rules and parts-of-speech are to be studied and accurately learned. In addition,

larger databases need to be used in experiments if a greater variety of linguistic

structures are to be incorporated into the grammar. This will require more rapid

parsing.

If one is willing to assume that parts-of-speech are known accurately, the learn-

ing of syntactic rules can occur at a much higher rate than that experienced here.

These tags might be provided by existing taggers. A compromise would be to ac-

cept the parts-of-speech for many but not for all terms. For example, following the

technique used above, most or all terms might be forced into certain human devel-

oped categories initially, allowing the system to change the categories if it was \�t"

to do so. Certain terms might be categorized as being of the same part-of-speech,

without placing any semantic restrictions on the nature of this part-of-speech. For

example, run and jump have a certain similarity; suggesting to the system that this

similarity holds may prove a powerful form of prior knowledge without imposing

additional grammatical ideas of what a \verb" is on the system.

Formal analytic techniques have been developed relating queries and �lter char-

acteristics to retrieval performance (Losee, 1995). This model needs to be expanded

to include the formal characteristics of a grammar and the e�ects of grammatical

tagging and disambiguation on performance. A stochastic model of the produc-

tion of the grammar through evolutionary procedures may assist us in developing

a formal model of all aspects of the LUST system.
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