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Abstract
Both structured and unstructured data, as well as structured data representing

several different types of tuples, may be integrated into a single list for brows-
ing or retrieval. Data may be arranged in the Gray code order of the features
and metadata, producing optimal ordering for browsing. We provide several
metrics for evaluating the performance of systems supporting browsing, given
some constraints. Metadata and indexing terms are used for sorting keys and
attributes for structured data, as well as for semi-structured or unstructured doc-
uments, images, media, etc. Economic and information theoretic models are
suggested that enable the ordering to adapt to user preferences. Different rela-
tional structures and unstructured data may be integrated into a single, optimal
ordering for browsing or for displaying tables in digital libraries, database man-
agement systems, or information retrieval systems. Adaptive displays of data are
discussed.

�
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1 Introduction

Browsing an adaptive database system with both structured and unstructured data can
be achieved through simplifying data structures and using subject carrying indexing
information to order the data. The indexing terms or metadata may be assigned prob-
abilities, costs, and benefits, and a system then may adapt its internal organization and
its output to these user-based probabilities or costs, as well as to other metaphors (e.g.,
information theoretic) for user needs and interests. Information retrieval systems have
been developed that can manipulate structured data, as have relational and object ori-
ented database systems that manipulate text fragments or multimedia (Borkar et al.,
2001; Sabin and Yap, 1998; Vasanthakumar et al., 1996; Yan and Annevelink, 1994),
as well as XML encoded media (Blanken et al., 2003). Our system integrates the in-
formation in a structure that can be optimally ordered for browsing, regardless of the
type of source and the type of data, e.g., structured, semi-structured, or unstructured.

Facts may be retrieved and presented consistent with minimizing the dissimilar-
ity between adjacent facts, as well as the degree to which the facts match with the
query. If we conceptualize the output of a structured database as a table of rows and
columns, a system can learn the characteristics of rows and columns of interest of a
user or group of people and display a table consistent with the user’s or users’ pref-
erences. Similarly, if the user wishes to retrieve documents or other media, the data
can be arranged to reflect the user’s expressed interests as a table for browsing or re-
trieval. Our purpose here is to integrate these structured and unstructured models to
provide integrated output that might contain, for example, factual numeric data about
the population and average temperature for a country, along with a picture of the capi-
tol building, an audio recording of the country’s national anthem, and a journal article
about that country’s economy.

In the case of an adaptive database system with stored information, the organiza-
tion of the data for ultimate use by a query producer is the primary means of optimiz-
ing the data for a given user or group of users. By allowing systems to adapt to these
user-preference-based aspects of structured, semi-structured, or unstructured data, a
system may improve the user’s experience in a variety of ways. We integrate data for
the user, with data being organized and presented based on the user’s needs, not on
the type of database structure used to store the information, e.g. a relational database
or a set of HTML web pages.
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2 Representing Data

Surrogates for documents or facts may be consistent with any of a number of repre-
sentational methods (Cover and Thomas, 1991; Hamming, 1986; Losee, 1990). As-
signing indexing representations and metadata features may have several inconsistent
goals: to best represent the author’s intent; to best represent the needs of the individ-
ual user or a group of users; or to best represent what is most special or unique about
the data (Losee, 1998).

The representations of data may be viewed as structured, semi-structured, or
unstructured. Structured data is organized in a highly regular way, such as in ta-
bles and relations, where the regularities apply to all the data in a particular dataset.
Semi-structured data would contain this same information, but instead of having reg-
ular structures applying to all items in the dataset, data might be interpreted with
structural information supplied as tags, such as name=“Bob”, city=“Chapel Hill”,
state=“North Carolina”. In such a case, one can move the name, city, and state com-
ponents around as one moves from information about one person to another. The
structural regularity across data items is gone. Missing data may be represented by
the presence of a label with a null attribute or an attribute indicating “missing”, or the
label may be omitted completely. Unstructured data, such as text or images, contain
information but contain no explicit structuring information, such as tags. However,
these tags may be assigned using manual or automatic techniques, converting the un-
structured data to semi-structured data.

Tags representing index terms or metadata may be assigned by humans, or may
be produced or selected through automated procedures. The term metadata is often
applied to index features that are part of a formal indexing system that is meant to be
used beyond a single academic or institutional environment. Metadata is a more recent
term than indexing, being applied most frequently to recent systems for representing
characteristics of entities, often based on the Dublin Core or RDF (Resource Descrip-
tion Framework) (Greenberg, 2002; McCray et al., 1999; Moens, 2000; Salminen
et al., 1995).

The metadata used to describe a topic, fact, relation, or an entire document may be
produced from combining the individual metadata items assigned to specific features.
Index terms or metadata may be arranged a number of ways to represent a single topic.
A simple linear list includes all index terms and can be used to indicate whether the
data being indexed is or is not about the topic in question.

A different, hierarchical, arrangement is used in many topical classification sys-
tems. If the books in a library were divided into history and non-history books, with
history being the primary binary feature, the second feature for history books might
represent something historically specific, such as pre- or post-1950, or northern or
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southern hemispheres. The second feature for non-history books may be something
else, such as social science vs. non-social sciences. Libraries usually use hierarchi-
cal classification systems with context-sensitive feature meanings. This hierarchical
method is used in CART (Duda et al., 2001). Each feature may represent a different
level in a decision or regression tree or the output from a similar technique, with many
of our features having multiple semantic values corresponding to the set of features
at a particular regression tree level. In the case where meaning depends upon con-
text, the probabilistic feature ordering techniques described below will perform at a
lower level than would occur if all features were unambiguous and their values were
independent of their context. User preferences may be treated as factors (e.g. eco-
nomic) in the feature selection algorithms within procedures such as regression trees,
producing user oriented classification and ordering.

For applications below, we assume a simple linear arrangement (Gaede and Gun-
ther, 1998; Jagadish, 1990), or feature vector, for browsing (Cover and Walsh, 1988;
Hearst et al., 2002; Losee, 1992; Losee, 1993; Losee, 1997a; Morse, 1970) or retrieval
(Kowalski, 1998; Losee, 1998) purposes. In most cases, the presence or absence of
a feature is indicated in the representation with a 1 or a 0. This may be enhanced by
using statistical techniques such as Latent Semantic Indexing (LSI) (Deerwester et al.,
1990; Hull, 1994; Manning and Schutze, 1999) to reduce the dimensionality of the
feature space and to produce statistically independent features. A wide range of sys-
tems have been developed that assume binary independent features and that perform
successfully (Lewis, 1998), and we continue with this assumption. A system using
all available characteristics is expected to outperform a system using a limited set of
human developed (and more intuitive) index terms or metadata.

3 Representing Facts

Representing and organizing data is an important factor in effectively storing and re-
trieving information. The choice of an organizing principle that supports both struc-
tured and unstructured data and that also inherently adapts to user preferences will
allow for the development of a more general model for data storage systems.

Attributes can represent values from a domain of all possible values. Attributes
and key attributes, those attributes that serve as the entry points to relations, are de-
scribed more fully in traditional database and information retrieval texts, to which the
reader is referred if they are unfamiliar with these topics. We assume that structured
and semi-structured data is organized for our purposes consistent with best practice in
relational manipulation, so that there are no insertion, update, or deletion anomalies
occur, and the relations are fully normalized (Arenas and Libkin, 2003; Lee, 1987).
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Such anomalies would have little direct impact upon browsing, but are considered
desirable features in database design for management purposes. The availability of
properly normalized data would make it much easier to extract key-attribute pairs for
ordering below.

We denote a minimal fact as the representation of the relationship between two
informational representations, one referred to as the key,

���
and the other referred to

as the attribute, ��� The key is the representation of an attribute about whose referent
the non-key attribute provides information (Losee, 1997b). The key and the attribute
are representations, and themselves may be described or represented by indexing or
metadata. The metadata representations for the key and attribute are denoted as ���
and �
	 � respectively. Each metadata set � contains a vector of � individual meta-
data items �� through ��� : � ������ � ��� � ����� � ������ � ������� These are the indexing
features used in our description below; all are assumed to be binary for this analysis,
although more complex systems are available for non-binary representations (Losee,
2003).

The representation or code for a factual representation is the � -tuple

� � ����! � �
� �"��� �
	 � ����#
the metadata associated with the union of the metadata for the relation, �
!$# the meta-
data associated with the key, �%�&# the key’s value,

� # the metadata associated with the
attribute, �
	'# and the attribute’s value, ��� The structure of a factual representation
contains:

( the Gray code for the logical union of the relation’s metadata vectors (key and
attribute),

( the Gray code for the factual representation’s key vector,

( the key (often text),

( the Gray code for the factual representation’s attribute vector,

( the factual representation attribute (often text).

When we refer to the Gray code for an application, we refer to the binary represen-
tation of the metadata vector, e.g., the presence or absence of each feature, with the
Gray code providing an ordering for the vectors. This ordering is discussed below
and examples are given in the next section. The proposed ordering provides a differ-
ent and superior ordering for browsing purposes than that obtained with traditional
binary ordering (e.g., 00, 01, 10, 11).
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4 Organizing Data as Factual Representations for Brows-
ing and Display Applications

Using the structures suggested above for factual representations, we may place ex-
isting structured and unstructured data into a common data structure suitable for inte-
grated browsing and retrieval.

Structured data may be easily represented using factual representations, although
complex relations may need to be decomposed into a series of ������� ���
	�	��������	 ����
-tuples. Possibly the simplest data structure for structured data consists of a

�
-tuple

containing a single key and a single attribute. For example, cats are of particular type,
suggesting the relationship ��� �
	 ��� ��� 	����� � ��� � �
	 	 � �!� " � with one instantiation being
�$# ��%&% � ��� #(' �)	� � " � Here, the cat identifier is the key for the relation, which is used to
access the relation, while the attribute (in this instance, of Tigger) is Tortie.

When storing a structured relation as a factual representation, it might be stored
as before with the metadata for the key, the metadata for the non-key attribute, and
the union of these two metadata sets in a factual representation. The � -tuple relation
described above might then appear as � (cat, identifier, type), (cat, identifier), Tigger,
(cat, type), Tortie � , where sets of metadata are shown here in parentheses.

In the case where there are multiple attributes for a single key, the relationship
between each attribute and the key is stored as a separate factual representation.
In the case of a compound attribute, a synthetic and unique identifier is placed as
the attribute, and new compound facts are developed so that the unique identifier
is the key for each attribute in the original compound attribute in the new factual
representations. Ideally, these unique identifiers shouldn’t be presented on a display,
being replaced with the compound attributes, or placed into a fuller version of the
relation, as described later in this paper.

As an example, consider the case where Caitlyn is the key and her father’s first
name is Bob and his last name is Losee. The compound attributes could be represented
as two different compound facts: that Caitlyn has a father whose first name is Bob and
a second fact, that Caitlyn has a father whose surname is Losee. The preferred method
here is to assign a unique identifier to Bob Losee and indicate that Caitlyn has father
12345, while there are two relationships, one indicating that father 12345 has the
first name of Bob and a second relation indicating that father 12345 has the surname
of Losee. One can also represent this unique identifier for notational purposes by
combining the attribute fields, e.g., using Bob Losee instead of 12345. We may find
the following factual representations:

( � (name, daughter, father, firstname, surname), (name, daughter), Caitlyn, (name,
father, firstname, surname), Bob Losee �
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( � (name, father, firstname, surname), (name, father, firstname, surname), Bob Losee,
(name, father, firstname), Bob �
( � (name, father, firstname, surname), (name, father, firstname, surname), Bob Losee,

(name, father, surname), Losee �
Unstructured data are stored with the image, document text, or other binary large

objects (“blobs”) being a single large attribute, and the metadata associated with the
attribute being derived automatically or manually from the attribute. Other attributes
about the document, such as title, author, etc., can be treated as additional attributes
in added factual representations with the same key as the factual representation
containing the document.

Consider an audio file of cat howls stored at a particular URL. The factual repre-
sentation for this would contain the following: � (url,cat, howls, mp3), (url), “http://cat.howls.us”,
(cat, howls, mp3), [audio file here] � .

We propose that structured, semi-structured, and unstructured data be converted
into factual representations and then organized using the Gray code so as to achieve
an interleaved ordering of data of all original types.

5 Ordering Metadata with the Gray Code

Information and factual representations may be represented using binary forms, as
discussed above. The information may then be sorted using any of a number of tech-
niques. The Gray code to be discussed here is a binary representation system: we use
it because it has several desirable techniques for ordering data.

Ordering consistent with the Gray code allows binary data to be placed near sim-
ilar data (Faloutsos, 1988; Losee, 1992; Losee, 1997a). When the traditional Gray
code is combined with probabilistic or economic conditions, adaptive systems may
be developed consistent with particular circumstances, reflecting particular character-
istics of users, as well as specific utilities for a user or group of users.

The binary Gray code is an ordering system by which, when counting, one num-
ber’s representation differs from the next number’s representation (adjacent to it) by
one bit position. When using the binary Gray code (all Gray codes are assumed below
to be binary codes to simplify discussion), the Hamming distance, or number of bits
by which two adjacent representations differ, is always one when enumerating. Simi-
larly, when ordering existing data using the Gray code, the distance between adjacent
representations will be � when all possible representations are present once. When
there are missing representations, ordering by the Gray code may not be optimal (al-
though it is still likely to be highly effective and may still be optimal).
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True Decimal Binary Gray Code
Number Representation Representation Representation

0 0 000 000
1 1 001 001
2 2 010 011
3 3 011 010
4 4 100 110
5 5 101 111
6 6 110 101
7 7 111 100

Table 1: Decimal numbers, “regular” binary numbers, and binary Gray coded num-
bers.

Considering Table 1, we can see that the Gray code does allow for each representa-
tion to differ from its immediate neighbors by one position. Counting using the Gray
code can be envisioned as moving from � to � for the first two lines of Table 1, and
then placing a 1 in the second (the “two”s) column as the Gray code representation
for the decimal numbers 2 and 3 reflect (as would a mirror) the Gray code representa-
tion for the decimal numbers 0 and 1. The Gray code representation for 4 through 7
then reflect the numbers for 0 through 3 with a 1 in the “four’s” column, and so forth.
This reflected Gray code is the most commonly discussed Gray code, but there may
be times when a non-reflective Gray code may be useful (Losee, 2002). An example
of a non-binary non-reflective Gray code is provided in the following order for Base
3 numbers: (00, 01, 02, 22, 21, 11, 12, 10, 20).

Factual representations may be ordered by using the Gray code. The key used
in sorting is the concatenation of the data as presented in the structure of a factual
representation: ��� ! � �
� �"��� �
	 � ����� This has the effect of placing all

�
-tuples of

the same type, i.e., with the same metadata, together. Then, within tuples of the same
type, those with the same metadata for the key and the same key value are placed
together. Then, among the

�
s of the same type and with the same key, the � -tuples

are ordered so that similar types of attributes are placed together, and then within
those, � -tuples are ordered by the value of the attribute.

Once the factual representations have been ordered this way, users may browse
through data, both integrated structured, semi-structured and unstructured data, by
beginning at a starting point, usually the point that is most relevant or closest to the
original information need or expressed query. Users can then move around the dataset,
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both in terms of columns and rows in a traditional display of the data. Browsing
may support the same ordering for everybody, as is done in most libraries with static
classification systems. Dynamic classification allows for the ordering of data based
on individual preferences, such as will be discussed below.

Retrieval can be implemented by beginning at the starting point and then retriev-
ing those

�
s that have the highest probability of relevance, given the query treated as

providing information about a Bayesian prior, with relevance feedback being incorpo-
rated when available (Losee, 1988). This is what occurs in probabilistic information
retrieval. Information needs and facts may also be treated as vectors, and the facts
that are most similar to the expressed information need, as measured by the cosine
between the two vectors, are retrieved (Salton and McGill, 1983).

6 Expected Distance between Adjacent Facts

The distance between two adjacent facts may be computed, consistent with the mea-
surement of the information of an event � as � ��������	 �
��" � We suggest that the expected
information dissimilarity, denoted as � ����� " � is the expected information associated
with a feature times an indicator variable showing the presence or absence of a differ-
ence between features. For two metadata vectors, this is computed as

� ������ � ��� � ��� " " ��� ����� �����
�
� �����

� �! �
� �"�#� �

��$
� �%� �

�
" ���#� � �%���

�
"'& � (1)

where �(���
�

is the value for metadata feature � in metadata vector �)� and �
�

is the
probability of feature � occurring. The differences in values for � ��*�� " for a single
feature are shown in Figure 1.

Metadata features may be ordered within each column’s metadata feature vector so
as to help minimize the expected distance between features (Losee, 1992). Features
may be ordered randomly, but this leads to suboptimal ordering of facts. Consider
a situation where, given a list of foods, the closer a food was to the beginning of
the list, the more likely you were to prefer that type of food. Clearly, a random
ordering of food will result in the suboptimal (in terms of preferences) serving of
food. If, however, the list was ordered by decreasing relative preference of the food,
the ordering would be optimal in terms of preference.

We minimize the expected information dissimilarity � ��+�� " between two meta-
data vectors ��� and ��� by placing those individual features in each metadata vector
with the lowest expected information dissimilarity furthest to the right in the meta-
data feature vector, that is, they are placed in the least significant digits positions.
Thus, the features with the greatest expected information similarity (as changes oc-
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Figure 1: � ����� " , the difference in information content over the range of probabilities
for a single feature. Logarithms are computed to base

� �
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cur) are changed most frequently, rather than the features whose changes would cause
an overall decrease in expected information similarity.

Metadata features on the right (least significant digit) side change most frequently
when counting or traversing a list ordered by an enumerating principle, as can be seen
informally by counting in the decimal number system and noting how often changes
occur in the rightmost column and how often changes occur in the column to its left.

When all the metadata features occur with � � � � � � ���+�� � �����
�
� ���'�

�
" will be lower

for neighboring columns
�

and � when the rarer terms (with the lower dissimilarity
values) are on the right side of the vector and it is most likely that the difference
between the neighboring metadata features will be due to a smaller difference on the
right rather than a larger difference on the left.

7 Costs of Data Organization

We may optimize feature ordering consistent with economic considerations. A cost,
denoted by � , is associated with features having different values in metadata features
that are located more than an arbitrarily chosen distance apart. The economic loss of
having a � for a feature value in the metadata feature � ���

�
in metadata � � and a � for
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that feature in a ��� is denoted as ��� �  � with a similar cost, �  � � , for the feature � in
��� having a value of � and � � having a value of � .

We suggest that the expected cost of feature � being different in two metadata
vectors may be computed as

� � � �� " � �  � ���
�
� �%� �

�
"
$

��� �  � �%� �
�
"$�
�

� � �  � �
$

��� �  " �
�
� �%� �

�
" � (2)

the expected cost of dissimilarities associated with feature � . We assume that ��� � � and
�  �  equal � and that ��� �  � �  � � �

The cost of placing metadata vectors � � and ��� adjacent to each other, each of
length � � is

�  � �� � ��� � ��� " & � �� � � 
� �����

�
� ���'�

� �
�

�
�

(3)

assuming that features are independent of each other. This represents the sum of
costs for metadata features that differ in value between � � and ��� . For notational
simplicity, we have denoted the loss �  � � as �

�
for feature � .

The relationships between different costs and probabilities are shown in Figure 2.
When features were ordered within a metadata vector based on the feature’s � ��� �� " �

the ordering of metadata vectors consistent with the Gray code minimized the ex-
pected information dissimilarity between the vectors. If we similarly order features
by the expected cost associated with dissimilar metadata features � � � �� " so that meta-
data features with the lowest � � � �� " loss values are placed furthest to the right in the
metadata vectors, with features with the highest � � � �� " loss values are placed furthest
to the left, we find that the expected cost of the arrangement has been minimized.

When using the information theoretic expected information dissimilarity, � ��*�� " �
the probabilities may be easily inferred from the existing data. Costs, however, re-
flect user values and preferences, and must be obtained directly or inferred from user
input to the system. Users might, for example, state that cost for feature

�
is greater

than the cost for feature � � One may also infer user costs by retaining information
about user preferences, such as which screen icon was clicked-on first. By averaging
these preferences and ordering over time, the preference ordering of the user may be
inferred.

8 Measuring Ordering Performance

To study the effectiveness of browsing and retrieval when using ordering, consistent
with the Gray code, it is desirable to be able to evaluate the ordering in a repeatable
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Figure 2: Expected cost � � � �� " associated with a one feature document being adjacent
to a document with a different feature frequency, with the cost differences being � and
���
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and objective manner. One method of evaluating browsing is to study Average Brows-
ing Distance (ABD), the average distance from one relevant item to the next relevant
item going in one direction on the browsing path. If we assume that the person is
rationally moving in an optimal fashion on the shortest path, the ABD is computed
from the length of the browsing path minus the longest gap between relevant items.
If we can imagine the 4 letters C, O, K, and E on a single logo on a can or bottle
of soda and the distance between the letters, we are ignoring the longest distance,
which is probably from the E, around the back of the bottle or can, to the C. This is
much longer than the other inter-letter distances between C and O, between O and
K, and between K and E. ABD is thus the entire length of the browsing path minus
the longest distance between relevant items on the path, divided by one less than the
number of items on the path.

One can also examine the dissimilarity between adjacent documents using the
techniques for computing expected dissimilarity described earlier. The Average Dis-
similarity (AD) represents the average of the dissimilarity between pairs of factual
representations around the entire browsing path, with the dissimilarity measured as
the Hamming distance. Smaller average dissimilarities indicate that adjacent docu-
ments are more alike, providing better browsing performance.

Related to this, we have the Average Information Dissimilarity (AID) which rep-
resents the average information difference between adjacent documents, computed
over the set of documents. The Average Cost of Dissimilarity (ACD) represents the
average economic value associated with the differences between adjacent documents,
computed over the set of documents.

9 An Example

Integrating data may be best understood by considering an example showing both
structured and non-structured data. The numeric results have been produced from
software developed in Mathematica

���

which has the ordering capabilities for the
probabilistic, information theoretic, and economic models described in the paper.
While the data is stored in the Mathematica program, data could be stored in XML for-
mat (Blanken et al., 2003) as it is in the author’s Nyltiac system (http://Nyltiac.com or
http://ils.unc.edu/nyltiac), that allows Gray code based browsing for a variety of uses,
such as retrieval, digital libraries, and question answering.

In Table 2 we provide some sample structured data containing two relations. The
first has persons’ names, their cats’ names, and the number of years owner and pet
have been together. There is also a second relation containing the cats’ names and
their favorite foods. Table 3 show the same data placed into the form for factual
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Type 1 Record: Person, Cat, Years

Person Name Cat Name Years Together
(person, name, owner) (cat, name) (yearstogether)

Lee Tigger 2
Caitlyn Sweet Tea 3
Marcia Sox 1

Type 2 Record: Cat, Favorite Food

Cat Name Favorite Food
(cat, name) (favoritefood)

Tigger Tuna
Sweet Tea Chicken
Alice Chicken

Table 2: Type 1 and 2 Structured records. Below headers are the metadata assigned
to the column and below that the data.

representations, as discussed above. The metadata are shown within parentheses. The
metadata for the union ( � ! ) is not shown but is simply the union of � � and �
	 .

The feature vector being used here contains the following features: owner, au-
thor, textblob (binary large object), name, person, cat, yearstogether, favoritefood,
and SBN (standard book number). The features author and textblob are used for a
following example, and are included here to provide compatibility across examples
so that we can merge structured and unstructured data below.

We may add some unstructured data by including the data in Table 4 into the data
produced from Table 2.

The browsing performance may be computed using this data and the measures
described earlier. The probabilities for features are used to order the features for
placement in the feature vector, which becomes (with associated probabilities): name
( � � �
� � ), cat ( � � ��� � � � ), person ( � ������� � ), owner ( � ��������� � ), sbn ( � � � � � ), yearstogether
( � � ���	��� � ), favoritefood ( � � �	�	��� � ), textblob ( ��� � �
� � ), and author ( ��� � �
� � ).

When ordering features by their probability, the Average Browsing Distance, ABD,
is 1 and the Average Dissimilarity, AD, is 1.125 when the variables are placed in de-
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Factual Representations

Record Record Type �%� Key �
	 Attribute
1. 1 � � � � � � � � � � " Lee-Tigger � � � � � � � � � � " Lee
2. 1 � � � � � � � � � � " Lee-Tigger � � � � � � � � � � " Tigger
3. 1 � � � � � � � � � � " Lee-Tigger � � � � � � � � � � " 2
4. 1 � � � � � � � � � � " Caitlyn-SweetTea � � � � � � � � � �
" Caitlyn
5. 1 � � � � � � � � � � " Caitlyn-SweetTea � � � � � � � � � �
" Sweet Tea
6. 1 � � � � � � � � � � " Caitlyn-SweetTea � � � � � � � � � �
" 3
7. 1 � � � � � � � � � � " Marcia-Sox � � � � � � � � � � " Marcia
8. 1 � � � � � � � � � � " Marcia-Sox � � � � � � � � � � " Sox
9. 1 � � � � � � � � � � " Marcia-Sox � � � � � � � � � � " 1

10. 2 � � � � � � � � � � " Tigger � � � � � � � � � � " Tuna
11. 2 � � � � � � � � � � " Sweet Tea � � � � � � � � � � " Chicken
12. 2 � � � � � � � � � � " Alice � � � � � � � � � � " Chicken

Table 3: The feature vector being used here contains the following features: owner,
author, textblob (binary large object), name, person, cat, yearstogether, favoritefood,
and SBN.
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Type 3 Record: SBN, Author, Text

SBN Author Text
(SBN) (person,name,author) (textblob)

1234 Seuss The cat in the hat
9876 Caitlyn I love my cats

Factual Representations

Record Record Type �%� Key �%	 Attribute
13. 3 � � � � � � � � � � " 1234 � � � � � � � � � � " Seuss
14. 3 � � � � � � � � � � " 1234 � � � � � � � � � � " The cat in the hat
15. 3 � � � � � � � � � � " 9876 � � � � � � � � � � " Caitlyn
16. 3 � � � � � � � � � � " 9876 � � � � � � � � � � " I love my cats

Table 4: The feature vector used in the metadata is: owner, author, textblob (binary
large object), name, person, cat, yearstogether, favoritefood, and SBN.
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scending order of probability. When the order of features is changed to ascending,
the performance drops so that the ABD is � � ��� and the AD is � ����� � . In this situation,
ordering features in descending order of probability (from left to right) is superior to
ordering features in ascending order of probability, supporting the arguments above.

When using the information theoretic model suggested above, features may be
ordered consistent with Equation 1 so as to improve performance. The ABD is � and
the Average Information Dissimilarity, AID, is � � � � � bits when features are ordered
consistent with the information theoretic ordering principle suggested above. When
the features are placed in ascending order, performance drops and we find an ABD of

� � ��� and an AID of � ��� ��� bits.
Costs were arbitrarily assigned to the features so that author was assigned a cost

of � � and all other features were assigned a value of � � We find that the ABD is �
when the features are ordered in terms of descending weight and � � � � when placed in
ascending order. The Average Cost of Dissimilarity, ACD, is

� � � � when features are
in descending order and an ACD of

� � � � � when in ascending order.
In all the cases above, we have found that ordering features based on the principles

suggested earlier results in superior organization; placing features in descending order
of the appropriate weight produces better browsing.

10 The Adaptive Display of Data

What information should be displayed on a screen? Clearly, the information most
likely to be relevant to a user should be displayed, whether the data are facts, images,
or movies. By accepting positive or negative user preferences about specific data
items, e.g. Tigger from Table 2, or preferences about metadata items, e.g., a greater
interest in favorite pet foods than in the number of years a pet and owner have been
together, systems may adapt their output to present those items most likely to be of
interest to an individual user or group of users.

Which material would be preferred by a given user may be inferred from economic
feedback, such as that gathered for the purposes above. Using this, specific fields may
be seen as being of greater or lesser benefit to the user. If we assume that metadata
items are statistically independent of each other, it is reasonable to use economic
information about the benefit or cost of each individual metadata item to estimate
the relative benefit of an attribute with a specific set of metadata characterizing the
attribute. Similarly, changes in databases may provide information theoretic feedback
to update collection statistics and feature ordering.

Displays may be viewed as � by � elastic tables. The tables may be generated
dynamically, with factual representations being placed appropriately in adjacent rows
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or columns. Larger images and textual units may be displayed in a thumbnail form or
by using a surrogate, with a “click” on the thumbnail or surrogate producing the full
object. The table may be resized based on expressed user preferences, as well as the
system’s estimate of those preferences.

The system needs to choose either the best � columns for display or choose the
single best column as the center column, with those columns placed next to the center
column being those that are the successors and predecessors (in the Gray code enu-
meration) of the best column, or some combination of these two methods. Columns
chosen for display may be those with metadata having the highest economic benefit,
or those that have the highest probability of being used by the individual or by mem-
bers of a group to which the individual belongs (an organization). For example, the
ordering � � ��� � � � ��� � �
with the displayed columns shown between the vertical bars, might be changed to

� � � � � � � ��� � �
when E is assigned a different location in the second, preference-based ordering be-
cause of user feedback, effectively changing what is shown in the display window
as E is removed (from this display), with D and F becoming adjacent and E shifting
to the left between A and B. By arranging columns consistent with the Gray code
based ordering, related information may be displayed, both information specifically
requested by users as well as information related to a request, as determined by Gray
code ordering (Losee, 2003).

Rows chosen for display may be those that the user has indicated to be of relevance
because at this point, or in the past, the user has indicated that specific attributes, e.g.,
Bob, or tuples with specific metadata, e.g., person, are of interest. Several factual
representations may be joined and placed onto a single line for display; those items
whose placement in the table is consistent with the Gray code ordering should be
inserted into the table.

Through the ordering of rows and columns for display, a table may be generated
from those rows and columns with the highest usability values, along with other re-
lated columns. Further research will be needed to determine the exact nature of user
preferences for adaptive displays. While the focus of this work is on what we have
referred to as an elastic table, users may prefer to have a single fact from a table dis-
played, joining other related facts from other tables for display, rather than those facts
that are most similar.
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11 Summary and Conclusions

Placing factual representations into an order consistent with the Gray code and model-
determined feature ordering enables us to organize data for browsing. This order de-
creases the amount of browsing necessary to examine a given amount of information
from that consistent with random feature ordering. By using factual representations,
structured, semi-structured, and unstructured data can be browsed or displayed to-
gether. This technique also allows for the integration of various kinds of solely struc-
tured data or solely unstructured data, enabling a number of different tuples to be
integrated into a single conceptual linear ordering of all tuples.

Features used in a system which orders factual representations consistent with the
Gray code may be placed into different orders. Different criteria for ordering features
have been suggested, including probabilistic, information theoretic, and economic.
Empirical evidence has been derived from the ordering of the sample data provided
in Tables 2 and 3. We were able to show that, when using this data, and for the eco-
nomic and information theoretic models, placing features in descending order of their
weights, as suggested by the arguments earlier, produces the best Average Browsing
Distance, ABD, the Average Dissimilarity, AD, the Average Information Dissimilar-
ity, AID, and the Average Cost of Dissimilarity, ACD, values.
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