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Abstract J6k-O8)

Efficiently maintaining history data on line together with current data is difficult. This paper discusses one
promising approach, the temporally partitioned store. The current store contains current data and
possibly some history data, while the history store holds the rest of the data. The two stores can utilize
different storage formats, and even different storage media, depending on the individual data
characteristics. We discuss various issues on the temporally partitioned store, investigate several formats
for the history store, and evaluate their performance on a set of sample queries.

1. Introduction
Databases model the real world, which is constantly changing. But conventional databases lack the capability

to record and process the dynamic aspects of the changing world. They store only the latest snapshot of the
enterprise being modeled. If something changes, update is made in place destroying the existing information.
Using these snapshot databases, one cannot inquire about past information, nor perform trend analysis over a
sequence of history data. Retroactive changes, error correction, audit trail, or version management must all be
supported by applications in an ad-hoc manner.

If temporal support is supported in a database management systems, users can make historical queries to ask
the status of an enterprise valid at a past or even future moment, or perform rollback operations to shift the
reference point back in time and access the state of a database in the past. These capabilities help us understand the
dynamic process of state evolution in an enterprise, and identify temporal or causal relationships among events or
entities.

Steady progress in the disk technology, both magnetic and optical, continues to make larger and larger storage
capacity available at a lower cost [Copeland 1982]. Hence there has been a growing interest in database systems
with temporal support or version management. Bibliographical surveys, however, show that most effort has
focussed on conceptual aspects such as modeling, query languages, and the semantics of time (Bolour et al. 1982,
McKenzie 1986]. Little has been written on issues concerning the implementation of temporal databases.

This paper investigates new access methods tailored to the particular characteristics of database management
systems with temporal support. We review previous work in Section 2, and discuss the characteristics of temporal
databases that motivate the needs for the new access methods in Section 3. In Section 4, we discuss various issues of
a temtporally partitioned store that divides data into separate storage areas based on the time attribute. Section 5
presents various formats for the temporally partitioned store, and Section 6 discusses issues on secondary indexing
for temporal databases. In Section 7, we evaluate and compare the performance of various access methods on a set
of sample queries.

2. Previous Work
There has been a massive amount of research on the design and analysis of specific file structures with various

characteristics. The resulting access methods can be categorized as either static or dynamic, depending on how they
function as data accumulates.
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Access methods such as sequential, hashing, indexing, and ISAM are static in the sense that they do not
accommodate growth of files without significant loss in performance. Accessing data in a sequential file requires
sequential scanning, which is often too expensive. Access methods such as hashing and ISAM also suffer from
rapid degradation in performance due to ever-growing overflow chains caused not only by key collisions but also by
the existence of multiple versions for a single key, as will be demonstrated in Section 7. Reorganization does not
help to shorten overflow chains, because all versions of a tuple share the same key. Hence performance will
deteriorate rapidly not only for temporal queries but also for non-temporal queries [Ahn & Snodgrass 1986].

Dynamic access methods, such as B-trees [Bayer & McCreight 1972], virtual hashing [Litwin 1978], linear
hashing [Litwin 19801, dynamic hashing [Larson 1978], extendible hashing [Fagin et al. 1979], K-D-B trees
[Robinson 19811, or grid files (Nievergelt et al. 19841, adapt to dynamic growth better. These methods maintain
certain structures as records are added or deleted. But the performance is still proportional on the count of all
versions, which is significantly higher than the count of current versions. Furthermore, a large number of versions
for some tuples will require more than a bucket for a single key, causing similar problems to those exhibited in
conventional hashing. It is also difficult to maintain secondary indices for these methods, because they often split a
bucket and rearrange its records. Performance problems of conventional access methods in the environment of
databases with temporal support will be further discussed in Section 7.

Secondary storage cost has been decreasing steadily, and various new technologies are emerging in recent
years. In particular, optical disks are becoming commercially available from several manufacturers at a reasonable
cost [Fujitani 1984, Hoagland 1985]. Though optical disks provide enormous capacity at a low cost, one limitation
is that they are currently write-once, not allowing reorganization or rewriting of data once they are stored. This
peculiarity makes many of the conventional storage structures, especially the dynamic ones such as B-trees or
dynamic hashing, unsuitable for optical disks, and requires new storage structures to utilize their potential benefits
[Christodoulakis 1987].

Storage structures for temporal databases have been the topic of only a few papers. Ben-Zvi introduced the
concept of the temporally-partitioned store and briefly examined reverse chaining (discussed below), future chaining
(for proactive data, also discussed below), and secondary indexing of the current and history stores [Ben-Zvi 1982].
Lum, et al. also advocated reverse chaining and multiple indices, and delved further into the related topics of
schema evolution, space reclamation, and index maintenance [Lum et al. 19841. In later papers, they considered
support for transaction time (Dadamn et al. 1984] and integrated support for text, temporal data, and nested relations
[Lum et al. 1985]. Finally, Katz and Lehman proposed a temporally-partitioned store for VLSI design files [Katz &
Lehman 1984]. However, none has enumerated the possible variations of a temporally partitioned store, nor
analyzed its performance.

3. Characteristics of Temporal Databases
The term temporal database in a generic sense refers to a database with some support for processing temporal

or time-dependent data. Examples are a personnel database with a history of employee records, or an engineering
database with a collection of design versions. We have identified three kinds of time to be supported in databases
with different semantics, valid time, transaction time, and user-defined time [Snodgrass & Ahn 1985, Snodgrass &
Ahn 1986]. Valid time is the time when an event occurs in a real world. Transaction time is the time when a
transaction occurs in a database to record the event. User-defined time is defined by a user, and its semantics is up
to each application. Depending on the capability to support transaction time and valid time, we have four types of
databases: snapshot, rollback, historical, and the temporal database in a narrower sense. Each of the four types has
different capabilities, and faces different issues for implementation.

For the purpose of discussion, we assume that, when transaction time is supported, each datum is associated
with two timestamps: the transaction identifier (an integer assigned at commit time) specifying when the datum was
stored in the database (transaction start) and the transaction identifier specifying when the datum was logically
removed from the database (transaction stop). When valid time is supported, each datum is associated with two
timestamps: the time when the datum began to be valid in reality (valid from) and the time when the datum ceased
to be valid in reality (valid to). We do not consider user-defined time. We do not assume either tuple or attribute
timestamping; most of the storage methods presented below are relevant to both, though the performance
ramifications of one over the other may be substantial [Ahn 1986A].
orTemporal databases follow the non-deletion policy to preserve past information needed for historical queries
or rollback operations. No record will ever be deleted once it is inserted. For each update operation, a new version
is created without destroying or over-writing existing ones. This srategy solves many of the problems caused by

2



the update-in-place practice common in conventional DBMS's [Schueler 1977], but also introduces several new
problems.

An immediate concern is the large volume of data to be maintained on line. Storage requirements will
increase monotonically, potentially to an enormous amount, no matter what data compression technique is utilized.
This problem is one of the major reasons why databases with temporal support have not been put into practice even
though their benefits have been long recognized. Mechanisms must be devised to effectively deal with the ever-
growing storage size, and to represent temporal versions into physical storage in such a way that past states of a
database can be maintained with little redundancy.

The large amount of data to be maintained also causes long delays in accessing information. For example, the
numbcr of block accesses to get a record from an unordered file with m blocks is 0 (mn). Storing temporal data in
such a file will require a large number of blocks, significantly degrading the performance. Unless temporal
information is utilized as part of a key, there will be multiple versions for each single key value. However, time
attributes are in general not suitable to be used as a key for storing and accessing records, for several reasons. A
time attribute alone cannot be used as a key in most applications. Including time attributes in a key results in a
multi-attribute key, which complicates the maintenance of the key. Even though time attributes are maintained as a
part of a key, it is difficult to formulate point queries (also termed exact match queries), especially when the
granularity of time values is fine. Thus, we should be able to support a range query on time attributes, which is not
possible with many access methods, such as various forms of hashing.

On the other hand, there are several interesting characteristics unique to databases with temporal support.
There are two distinct types of data, current data and history data, which exhibit clear differences. There is only
one current version for each tuple at one time, yet multiple versions exist for some tuples in history data Storage
requirements for history data may be potentially enormous, while the size of current data is relatively static once it
has stabilized. Unlike current data, history data need not be updated except when errors are corrected in the case of
historical databases, which makes write-once optical disks attractive as the storage media.

There is also a correlation between the age of data and their access frequency. History data are needed less
urgently than current data. While retaining history data for temporal support will encourage new applications to
process history data along with current data, we still expect that new applications will be dominated by manipulation
of current data. It is a challenge to exploit these unique characteristics to achieve better performance.

Considering these characteristics, conventional access methods such as hashing or ISAM are not expected to
be effective for such databases with a large number of temporal versions. as was shown in an earlier study [Ahn &
Snodgrass 1986]. Therefore, new access methods and storage structures tailored to the particular characteristics of
database management systems with temporal support need to be developed to provide fast response for a wide range
of temporal queries without penalizing conventional non-temporal queries.ma

The solution investigated in this paper is the temtpo rally partitioned store that divides current data and history
data into two storage areas. The following sections address the design decisions implied by this structure, then
discuss the details of various formats for the history store. Relative advantages and disadvantages of the various
formats are evaluated to determine the cost of supporting temporal queries. Issues on how to support secondary
indexing for the temporally partitioned storage structure are also discussed.

4. Issues for Temporally Partitioned Store
The temporally partitioned storage structure has two storage areas, the current store and the history store.

The current store contains current versions which can satisfy all non-temporal queries, and possibly some of
frequently accessed history versions. The history store holds the remaining history versions. Separating current -

data from the bulk of history data can minimize the overhead for conventional non-temporal queries, and at the r
same time provide a fast access path for temporal queries. It is possible to use different access methods for each
store. The current store may utilize any conventional access method suitable for a snapshot relation, such as
hashing, ISAM, or B-tree. The history store may also use any conventional access method, but several variations-
are conceivable to exploit the concept of version inherent in history data. It is even possible to use different types of
storage media; for example, history data may be stored on optical disks, while current data are kept on magnetic

dikThe temporally partitioned storage structure can also be regarded as the reverse differential file [Lumn et al.
1985]. The scheme of differential file represents two versions of data with the main file and the differential file
[Severance 1976]. The main file contains the reference version (R), and is never modified. All changes to the main
filec are recorded in The differential file, which are either additions (A) or deletions (D). Thus, the current version
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(C) can be found by R ,j A - D. Note that accessing the current version is slower than accessing the old version.
On the other hand, thc scheme of reverse differential file directly represents the current version in the file C. It also
records additions (A) and deletions (D) to and from a reference version in a separate file. 'Men, the current version
is readily available from C, and the reference version (R) can be found by C Q D - A. Since A Q C, A need not be
stored separately. They can, instead, be represented as a part of C by marking them with appropriate information,
e.g. attaching time attributes to each record to show when it was appended. Attaching time attributes to each record
also generalizes the number of versions from two to any number.

There are many issues to be investigated about the temporally partitioned storage structure. This section
discusses criteria for splitting data between the current and the history store, update procedures for each type of
databases with temporal support, methods to handle retroactive changes, proactive changes, and key changes, and
the performance with regard to the update count.

4.1. Split Criteria
The main objective of the temporally partitioned storage structure in this paper is to separate current data from

history data so that the overhead for supporting temporal queries can be minimized. Hence the basic criterion is to
keep current versions in the current store, and to keep history versions in the history store. All non-temporal queries
can be evaluated by consulting only the current store without any interference from the bulk of history versions.
This criterion appears to be quite simple, but there are many complications especially with a historical or a temporal
database.

The term current version has different implications depending on the temporal type of databases. The version
set identifies the versions associated with a single entity. A version set usually has a single key value for all of its
versions, unless thcre have been key changes, as will be discussed in Section 4.4. For a rollback database, the
current version of a version set is the version entered into the database most recently for the version set, and has an
transaction stop attribute value of undefined (''.Such tuples are put into the current store, and the other tuples are
put into the history store.

But determining current versions for a historical or a temporal database is complicated by retroactive or
proactive changes, which will be discussed further in Section 4.3. For a historical database, the current version has
the attributes valid from and valid to overlapping with the current time. For a temporal database, the current version
has the attributes valid from and valid to overlapping with the current time, and an undefined transaction stop value.
If we ignore retroactive or proactive changes for the moment, the current store keeps tuples with a valid to value of
'0-' for a historical database, and tuples with a valid to value of '-s' and an undefined transaction stop value for a
temporal database. An extension to the temporally partitioned storage structure With the current and the history
stores would be to add the third store, called the archival store, which contains tupics with specific transaction stop
attribute values. The archival store will be consulted only for queries as of some moment in the past.

As discussed in Section 3, current data are in general smaller in volume than history data. Thus, the current
store can be more efficient than the history store in accessing data. To take advantage of this property, we can relax
the basic criterion by keeping some history data, which tend to be accessed rather frequently, in the current store. In
this case, care should be taken to limit the amount of history data in the current store so that the performance of
non-temporal queries would not suffer from the increased size of the current store. For example, the current store
may keep up to two, instead of one, most recent versions for each version set. Furthermore, deletions or proactive
changes can be handled following this criterion, as will be discussed later.

It is also possible to adopt the strategy of vertical partitioning [Ceri & Pelagatti 1984] which moves some of
the current versions, with relatively low access frequencies, to the history store. A special case related with this
scheme is mentioned later for proactive changes. Another factor affecting the criterion is the availability of an
access path to history versions, since a version in t history store needs an access path either through some index or
through a corresponding version in the current store. In conclusion, the choice of an appropriate split criterion
depends in part on the number of stores supported, the access patterns to subsets of the history data, the volume of
current data the access patterns to subsets of the current data, and the access paths provided in the current and
history stores.

4.2. Update Procedures
Unlike snapshot databases relying on update in place, databases with temporal support update existing

information in a non-destruictive way, and maintain out of date information as history data. Hence the semantics of
the append, delete and replace statements are particularly important in databases with temporal support.
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Handling the delete statement (abbreviated as delete) and the replace statement (replace) is more
complicated with the temporally partitioned storage structure, which divides data between the current and the
history store according to a split criterion.

This section discusses the update procedures for the temporally partitioned storage structure in each type of
database. We first examine the append, delete, and replace procedures for rollback relations, then consider each in
turn for historical, rollback and temporal relations. For concreteness, we discuss the update procedures in terms of
the constructs available in the temporal query language TQuel [Snodgrass 19871, which is an extension of the
snapshot query language Quel [Held et al. 1975]. The where clause, which is common to both Quel and TQuel,
selects tuples satisfying a predicate over the non-temporal attributes; the when clause selects tuples satisfying a
predicate over their valid time; and the valid clause determines the period of validity of the modification. The when
and valid clauses may be used only when modifying historical or temporal relations. The details of these constructs
arc not important to this discussion.

For a rollback relation, append inserts a tuple with time attributes:
transaction start -- the current transaction identifier
transaction stop <-

meaning that the tuple is effective from this transaction on.
Delete finds a tuple that has a transaction stop value of '-' and satisfies the where predicate, then terminates it

by changing the transaction stop attribute to the current transaction identifier. The deleted tuple has been in the
current store, and may or may not be moved to the history store depending on the split criterion. Deletion or
correction of past tuples, whose transaction stop attribute is not '-', is not allowed in a rollback relation.

According to the basic split criterion of current data on the current store and history data on the history store,
deleted tuples ought be moved to the history store. This reduces the size of the current store, but it becomes
necessary to provide an access path to the version set which has no current version, lest the whole history store be
scanned to locate it. The path may be a separate index of deleted tuples, or a combined index involving both the
current and the history store, as will be discussed in Section 6. If the basic criterion is relaxed so that the current
store may hold some of history data, deleted tuples may be left in the current store. In this case, there is no need to
maintain a separate access path for deleted tuples.

Replace can be described as delete followed by append in any database. In this delete and append scheme,
the base tuple is first deleted (in the sense of non-snapshot databases) as described above, then a copy of the base
tuple with some attributes changed according to the replace statement is appended. This scheme works well with
conventional storage structures, and is used by the prototype described in Section 7. But the delete and append
scheme is not strictly applicable to a rollback database with the temporally partitioned storage structure. The
problem is that the base tuple still stays in its place, while the newer version is put into a different location. An
alternative is to append into the history store a copy of the base tuple with its transaction stop attribute changed to
the current transaction identifier, then change the base tuple according to the replace statement. This append and
change scheme works well for a rollback database with the temporally partitioned store, and is also better than the
delete and append scheme for concurrency control and error recovery in that it reduces the critical period while the
base tuple is not available.

range of h is historical h

append historical h
valid from "1/1/82" to "1/1/83"
where (h.id - 500)

delete h
valid from tj t~o 12
where (h.id - 500)

Figure 1: Append and Delete Statements

For a historical relation, append, delete, and replace statements employ the valid clause to specify the period
while any of the modification statements will be in effect. A TQuel statement in Figure 1 can be regarded as having
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the update interval (t1, t2), effective between t I and t2 (in this case, t1 is January 1, 1982 and 12 is the first day of
1983). If no valid clause is specified for any modification statement, the default update interval is [now, oc), where

'0 stands for forever. Let's call an existing tuple with the same values of the data attributes the base tuple, and
assume it has the base interval [tq, t,,), effective between t/ and t,, where t, and t., are the values of the valid
from and valid to attributes. Since t l<t2 and <t, there are six possible relationships between the base interval
and the update interval as shown in Figure 2.

tvf tvi tv tyf t41 tv
base

t1 t tI t2 t t2
update - I I

t:j t 2 t4f t, 17 t1 t1 t'2
result -- II I I

(1) (2) (3)

tqft~ t~f 41t 41fv

base H -1

1 I  t t2 11 12

update

t ' tvf tg /1 t2

result 2

(4) (5) (6)

Figure 2: Base Interval vs. Update Interval for append

Append needs to be handled differently for each case.

ocase (1): t2 < t
The base interval and the update interval do not overlap, so a new tuple, valid during [tI, t2) is simply
physically appended.

" ecase (2): [1 <ty Attf < t2^t 2 <t,,

The portion [ti, t, ) gets appended. The result is to change the valid from attribute of the base tuple to t.
The base tuple still stays in its place, whether it is in the current or the history store.

"case (3): tI < t 4 A t, <12
Two portions, (tI, tq,) and [t,,, t2) get appended. The result is to change the valid from attribute of the base
tuple to t and the valid to attribute to t2. If the base tuple is in the history store, it may be necessary to move
it into the current store depending on the split criterion.

*case (,4): t,,€ < tl I At2 < t,1
Since the base tuple completely overlaps the appended tuple, nothing needs to be done.
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*case (5): tf <tj A t,, <t2
The portion [t,, t2) gets appended, which changes the valid to attribute of the base tuple to t2.

ocase (6): t, <tI
The base interval and the update interval do not overlap, so the update tuple is simply physically appended.

Thus append in a historical database is similar to append in a snapshot database for cases (1), (4), and (6), and is
similar to replace in a snapshot database for cases (2), (3), and (5). Append in a rollback database is similar to case
(5), except that the time axis represents transaction time.

Delete for historical relations is equally complex, and depends on the interaction between the base and update
intervals (see Figure 3). Here the base tuple is an existing tuple satisfying the where and when predicates.

tvf 4f Vt tVf
base I- 4

11 t2 t2 tj 12
update -t I

tyf let t'2 lyE
result H-- (none)

(1) (2) (3)

tt tIfV, tf t
base ,I

t t2  t 2 t 2
update - l--

tifti t:2 I, I rtt !  ;
result I'I 1-4 l-4

(4) (5) (6)

Figure 3: Base Interval vs. Update Interval for delete

Delcte needs to be handled differently for each case, except for cases (1) and (6) which require no action.

ocase (l): t 2 <,f
The base interval and the update interval do not overlap, so nothing needs to be done.

"ocase (2): 11 < tfl A tIq  < t12A t12 < t,

The portion (tf, t) gets deleted. The result is to change the valid from attribute of the base tuple to t 2. The
base tuple still stays in its place, whether it is in the current or the history store.

"ocase (3): 11 < ty AtIV < 12

The base tuple is physically deleted. But the immediate predecessor version of the base tuple, if any, needs to
be recognized as the most recent version of the version set in order to maintain an access path to history
versions. If the base tuple is in the current store, and deleted tupies are kept in the current store, then the
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immediate predecessor needs to be moved from the history store to the current store.
e case (4): tf <t11 A t 2 < t4

The portion ft 1, t 2). which falls on the middle of the base interval, gets deleted. First, the valid from attribute
of the base tuple, which stays in its place, is changed to t 2 . Then a new tuple, which is the same as the base
tuple but with the valid to attribute of t1, is inserted into the history store.

,,case (5): tq! < t I A t v < t2

The portion [t , t,,) gets deleted, which changes the valid to attribute of the base tuple to t 1. If the base tuple
is in the current store, it may be necessary to move it into the history store depending on the split criterion.

*case(6): t, <tI

The base interval and the update interval do not overlap, so nothing needs to be done.

Thus delete in a historical database is similar to replace in a snapshot database, except for the case (4) which also
involves a physical append, and for the cases (I) and (6) which require no action. Delete in a rollback database is
similar to case (5), except that the time axis represents transaction time.

t4f 41 1-f t4tf t41
base

tl 12: . 1 2  Ii 2

update H - - 4 I I

t, tf r2 t, t~f

result F i - - -- -- -.----

(1) (2) (3)

tf t, ttf t, ,
base l - l

tl t2  t1  t2  t1  t2

update

tvf t: 1 t 2 t4 , t, f 1:1 t4 1t /
result - - - -

(4) (5) (6)

Figure 4: Base Interval vs. Update Interval for replace

Handling replace is more complicated in a historical database than in a rollback database, especially with the
temporally partitioned store. To perform replace in a historical database with the temporally partitioned store. there
are also six cases to be examined as shown in Figure 4, depending on the relationship between the base interval and
the update interval. However, handling replace is more complicated than delete, because we need to determine the
proper location of the current version and to maintain a history chain, whether explicit or not, for each version set.
Basically, we follow the append and change scheme, but detailed steps vary significantly for each case.
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a case (1): (2 < t/
The base interval and the update interval do not overlap, so nothing needs to be done.

*case(2): tI <tf At 1 <t At2 <t1,
The portion tf;, t9 gets replaced. First, the new version changed by replace is put into the history store. Its
valid from attribute is set to tf, and its valid to attribute is set to 12. Then, the base tuple gets its valid from
attribute changed to t2, but still stays in its place, whether it is in the current or the history store.

.case(3): t, < "tf , t, < t 2
The new version changed by replace is put into the place of the base tuple. Its valid from attribute is set to tf,
and its valid to attribute is set to t,.

e case (4): twf <1 'Nt2< t41
The portion ft1, t,), which falls on the middle of the base interval, gets replaced. First, the new version
changed by replace is put into the history store. Next, a copy of the base tuple is inserted into the history store
with the valid to attribute set to tl. Then, the base tuple gets its valid from attribute changed to t2, but still
stays in its place, whether it is in the current or the history store.

a case (5): t~f < tI A t , <t 2
The portion (tI, t,,) gets replaced. First, a copy of the base tuple is inserted into the history store with the
valid to attribute set to t1. Then, the new version changed by replace is put into the place of the base tuple,
whether it is in the current or the history store, with t,, as the value of its valid to attribute. This case is
particularly troublesome to the conventional delete and append scheme, because the base tuple needs to be
moved to the history store. This case also conesponds to the only case for a rollback database, except that the
time axis for the rollback database represents transaction time. Note that this corresponds to the case of the
default valid clause for a historical database.

o case (6): t,, <t
The base interval and the update interval do not overlap, so nothing needs to be done.

Case (5) also corresponds to a replace for a rollback database, except that the time axis represents transaction time.
Though a temporal database supports transaction time in addition to valid time, modification statements for a

temporal database have the same format as those for a historical database. Since the as of clause is not allowed in
modification statements, transaction time does not participate in append, delete, or replace, except that the
transaction stop attribute of the base tuple to be deleted or replaced should have the value of '-'. There are also six
possible relationships between the base interval and the update interval in terms of valid time, as shown in Figures 2
through 4. For each case, append, delete and replace for a temporal database are handled in a similar manner to
those for a historical database, but with two exceptions. First, a copy of the base tuple is inserted into the history
store with the transaction stop attribute set to the current time, before the base tuple is changed in any manner. This
results in adding up to three versions for each replace, but provides the capability to capture the history of
retroactive and proactive changes completely, as described in the next section. Second, any tuple inserted in the
process, except for the copy of the base tuple mentioned above, has the transaction start and transaction stop
attributes set to the current time and '-', respectively. In addition, we need to maintain a chain of history versions
for each version set, which is further complicated by the fact that each replace in a temporal database inserts at least
two versions. We order versions affected in each update in reverse order of valid from time, then, for those versions
with the same valid from time, in reverse order of transaction start time. This ordering allows us to retrieve recent
versions more quickly, especially for queries with the default clause an of "now".

4.3. Retroactive or Proactive Changes

For a rollback database, each change is effective from the moment of the transaction, but not so for a
historical or a temporal database with the valid clause. In the delete statement in Figure 1 for a historical or a
temporal database, if t I is earlier than the current time, the change is a retroactive from change, and if t 2 is earlier
than the current time, the change is a retroactive to change. If t1 is later than the current time, the change is a
proactivefrom change, and if t2 is not '-' but later than the current time, the change is a proactive to change. Thus
a change may be retroactive from and proactive to at the same time, e.g., the query in Figure 1 if executed, say, in
June, 1982.

Retroactive changes deal with both current and past versions, and can be handled by following the steps
outlined for each case of the delete and replace statements in the previous section. However, proactive changes may
involve future versions or versions to be expired which require special treatment for the temporally partitioned store.
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For a proactive from change, the base tuple is still current for the moment, but will expire in time. Proactive from
append or replace introduces a future version which will become current some Lime later. Proactive to replace
introduces both a future version and a version to be expired. A question is how to handle future versions and
versions to be expired. It is possible but expensive to maintain a separate index for future versions. and to monitor
constantly which versions are becoming current or expired. An alternative is to keep future versions and versions to
be expired together with current versions in the current store. When any of those versions is accessed in the course
of query processing, it is possible to determine if it has changed its status from future to current or from curr ent to
expired, then move the expired version to the history store.

4.4. Key Changes
A key of a relation is a smallest set of attributes whose values uniquely identify a tuple. Formally, a key of a

snapshot relation r over scheme R is defined as a subset K of R such that for any distinct tuples tj and t, in r,
t I (K) * 12 (K), and no proper subset of K has this property [Maier 19851. Thus a relation in a conventional
snapshot database should not hold two tuples that agree on all the attributes of the key. However, databases with
temporal support, which maintain a sequence of versions for each entity, can contain multiple tuples that agree on
all the attributes of the key. Hence, the definition of the key needs to be extended for databases with temporal
support.

A key of a relation r over scheme R in databases with temporal support is a subset K of R such that for any
distinct tuples tj and t, overlapping in time in r, tj (k) * t 2(K), and no proper subset of K has this property. T\&O
tuples t , and t 2 overlap in time if-

* for a rollback relation
t[ transaction start] t52 [transaction stop] A

t 2 [transaction start 1 :5 t1 [ transaction stop]

" for a historical relation
t I[valid from ISt, [valid to]I A

t2 [valid from ] :51 t[ valid to]I
" for a temporal relation

t I[valid from1 5 t2 [valid to]I A
t 2 [1Valid from1: 1 [valid to]I A
t[ transaction start] S t 2 [transaction stop] A

t2 [transaction start] 5 t I [transaction stop]

The create data definition statement in both Quel and TQuel does not enforce the concept of the key, in
that it does not specify what attributes constitute a key for a relation. Though the formal semantics for append
defined for TQuel prevents two tuples identical in all the explicit attributes from overlapping in time [Snodgrass
1987], it is still up to discretion of users to observe the key constraint that any new key value entered into a relation
either through append or replace does not overlap with any existing tuple with thc same key value. If append or
replace does not insert a new key value overlapping with any existing tuple with the same key value, update
procedures for the temporally partitioned store described in Section 4.2 ensure that there is at most one activc
version for each key value at any moment, and thus no two tuples with the same key value overlapping in time.

Though dhe key value identifying an entity is not supposed to change, there are always exceptions, which
cause nasty problems in conventional databases when tracking the history of changed identities. However the
problem can be handled gracefully in the databases with temporal support, where a sequence of versions for each
entity is maintained through physical or virtual links. If the key value of a tuple changes, a new version with the
changed key becomes the current version, and the old version is kept as a history version. Thus the history of key
values is captured in the same way as the history of other attribute values. But it may be necessary to rearrange the
storage structure for the changed key value, if the storage structure depends on the key attributes.

4.5. Performance

A query is called current or non-temporal if it involves only current data and does not conccrn history data.
A non-temporal query for a rollback database has the clause an of "now". For a historical database, a non-
temporal query has the clause when (t, overlap ... overlap tj ) overlap "now" for all the tuple

t variables tj . For a temporal database, a non-temporal query has the clause when (11 overlap ... overlap
ti,) overlap "now" for all the tuple variables ti, and the clause as of "now". Hence it is possible to
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determine at compile time if a query is non-temporal.

According to the split criterion discussed in Section 4.1, all non-temporal queries can be evaluated hv
consulting only the current store. Therefore, maintaining history versions for temporal support does not affect the
performance of conventional non-temporal queries. The only overhead is the extra space to hold implicit time
attributes and possibly a physical link to history versions, which may increase the relation size and hence the cost to
scan the relation.

For a temporal c uery, it is usually necessary to retrieve history versions from the history store. The basic
algorithm accesses the current version first through the primary access path. If the temporal predicate of the query
does not contain a tuple variable, we can determine the interval which satisfies the predicate. If the interval is found
to be a subset of the interval denoted by the time attributes of the current version, there is no need to access the
history store, because members of a version set in the history store do not overlap in time with the members of the
version set in the current store. Otherwise, it is necessary to follow tie chain of history versions through physical or
virtual links depending on the format of the history store. However, many variations are conceivable for the
structure of the history store, which greatly affects the performance of temporal queries. We can organize the
history store in such a way that the cost of accessing the history store can be reduced significantly, as will be
discussed next.

5. Structures of the History Store

The algorithms and the performance for accessing or updating relations with the temporally partitioned store
vary significantly depending on the format ot the history store. This section investigates various forms of the history
store which can enhance the performance for various types of temporal queries, and analyzes their characteristics.
Note that some formats can be combined together, though each format is discussed here individually. Relative
advantages and disadvantages of the various formats are evaluated to determine the cost of supporting - nporal
queries. Section 7 analyzes the performance of these structures on a benchmark database.

5.1. Reverse Chaining

If history data are stored as a heap without any secondary access mechanism, each request for a history
version must scan the whole store, which is often impractical. One solution is reverse chaining: all history versions
of each version set are linked in reverse order starting with the current version (see Figure 5). Once the current
version is located in the current store, its predecessors can be retrieved without scanning the whole history store.
Each retrieval may or may not require a disk access, depending on how the versions are placed on disk. This
storage structure was introduced by Ben-Zvi [Ben-Zvi 1982] and further developed by Lumn, et al. [Lum et al. 1984,
Lum et al. 1985].

Current Store History Store

Y" 81

1  86

K1  83

1  84

Figure 5: Reverse Chaining

For this purpose, each tuple is augmented with an extra field nvp (next version pointer). When a tuple is first
inserted into a relation, it is put into the current store with the nvp field value of null. When a tuple is replaced, the



version existing in the current store is moved to some other place as described in Section 4,2, then a new version is

put into its place with the nvp field containing a tuple identifier referencing the predecessor just moved. This
scheme maintains the chain from the most recent to the oldest, and does not change any of exisung versions in the
history store, except for error correction in historical databases. Since the history store in this scheme works in an
append-only mode, it can use write-once media like optical disks. If it is possible to identify attributes which %kill
remain unchanged, e.g. keys; those attributes may be excluded from history versions to save space. Of course, kc%
changes would cause complications in that case.

For a retrieve operation, the current version is located using any access mechanism available for the curreni
store. If the query is temporal, the nvp field is examined. If the pointer is null or the query is non-temporal, there is
no need to go through the history store. Otherwise, all its predecessors can be found by following the chain oi
pointers, until a version with the nvp of null is reached.

If the interval represented by the temporal predicate can be evaluated as constant, then the performance can
be improved by exploiting the fact that all versions are ordered in the reverse order. Instead of following the chain
to the end, we can stop traversing history versions when a history version is retrieved whose interval denoted by its
time attributes exceeds the constant interval specified b,- the temporal predicate.

n

The lower bound for the number of block accesses to perform retrieve is -n, when there are n history versions

to be retrieved and b is the blocking factor of the history store. This occurs when all history versions are clustered
together in the minimum number of blocks. The upper bound for the same case is n, when no two versions are on
the same block.

When a single version set with n history versions is retrieved, the average number of block accesses,
assuming uniform distribuuon, can be evaluated by the formula given by [Yao 1977].

Average Block Accesses (nf b) L f b i

where f is the number of records in the history store, and b is the number of records in a block of the history store.
Note that reverse chaining maintains an ordering among versions belonging to the same version set, so there is no
need to access a block more than once while scanning a chain of versions for a version set.

When several version sets are retrieved to process a query, the procedure to access a chain of versions is
repeated for each version set. In this case, a block which contains versions belonging to several version sets may be

accessed more than once. Hence the number of block accesses can exceed L, which is the cost to scan the history
b

store sequentially. Let's assume that each version set has m versions, and that v version sets are retrieved. >From
the formula above, it is possible determine the breakeven point when repeated traversal of history chains is still
better than scanning the history store.

V'×xL I- f -b- L_
b ,=o f -i b

Thus the number of version sets v" to favor repeated traversal of history chains can be calculated numerically for a
given m, the number of versions for each version set.

5.2. Accession Lists

If the length of the chain grows long in reverse chaining, it may be too slow to traverse the chain, even when
only a small portion of the history versions are of interest. An alternative is to maintain accession lists between the
current store and the history store, as shown in Figure 6.
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Current Store History Store

Figure 6: Accession List

A tuple is first ertered into the current store, with an extra field alp (accession list pointer) of null. When a
new %ersion replaces the current version, the new version is put into the current store with the alp field pointing to
ain accession list, which is initialized to point to the history version just inserted into the history store. If another
'version is added into the version set, an entry corresponding to the version is also added into the accession list.
Thus thie accession list is a full index to history versions for each version set.

It is desirable to include some temporal information for each entry in accession lists, so that temporal
predicates can be evaluated without actually accessing history versions. Deciding on the amount of temporal
information to be included into accession lists is the classic space time tradeoff.

For a rollback relation, accession lists may contain both the transaction start and transaction stop attributes
termed a full accession list). Space can be saved by storing only the transaction start attribute (termed a partial

daccesston list) without significant loss of performance, because most version sets are contiguous, meaning that the
'..due of the transaction stop attribute is the same as the value of the transaction start attribute of its successor.
Similar arguments apply to a historical relation, considering the valid from and valid to attributes.

For a temporal relation, accession lists may contain up to four time attributes, or some subset of the four
aittributes, for each version. If two time attributes are included, the valid from and transaction start attributes are
recommended for the reason of contiguity mentioned above. If only one time attribute is included, the valid from
attribute is preferable, assuming that the selectivity of the when clause is smaller than that of the as of clause, which
is 01 ten the case.

For full accession lists, only those versions that satisfy the given temporal constraints need to be retrieved
rom the history store. For partial accession lists, it is not possible to evaluate the temporal constraints completely.

Hence, all versions which can satisfy the constraints based on the partial information are retrieved from the history
,tore to resolve the missing information. Still, the ratio of false hits can be significantly reduced compared with the
case of no temporal information in accession lists.

Ordering of history versions in accession lists is less critical than reverse chaining, but we still recommend
that they be kept in such an order that allows recent versions to be accessed more easily. Hence for a rollback
database, versions are maintained in reverse order of transaction start time. For a rollback database, versions are
maintained in reverse order of valid froim time. For a temporal database, versions are maintained in reverse order of
valid from time, then in reverse order of transaction start time.

Including temporal information in accession lists is not an overhead, as it may appear to be. When some time
attributes are siorcd in accession lists as described above, it is not necessary to store the same information in the
history store. History versions do not need an extra nvp field, as in reverse chaining. Accession lists are also useful
to handle future versions resulting from proactive changes. The future version may be put either in the current or
the history store, pointed to by an entry with appropriate temporal information in accession lists.

Since acccssion lists are accessed more frequently than history versions, and may be clustered or reorganized
for performance reasons, it is better to keep them on magnetic disks. History versions are append only, so they may
be stored on optical disks.
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The upper bound for the number of block accesses to retrieve all n records is one bigger than that of reverse
chaining, owing to an extra disk access for accession lists. Since temporal predicates can be evaluated without
accessing the history store, the lower bound for the number of block accesses is just two including a block access for
an accession list. On the average, the number of history versions actually retrieved will be much smaller than
reverse chaining; determining the access cost for arbitrary queries is difficult due to the variety of temporal
predicates.

5.3. Clustering
One problem with the schemes discussed thus far is that history versions belonging to a version set are

scattered over several blocks. A solution is to cluster all versions of each version set into the minimum number of
blocks (see Figure 7). Clustering significantly reduces the number of disk accesses to retrieve history versions, and
thereby improves the performance of temporal queries. However, maintaining clustering while achieving a high
degree of storage utilization is difficult. Clustering can be combined with other schemes described earlier, such as
reverse chaining, accession lists, or indexing. Since this scheme requires splitting of blocks when overflow occurs, it
is not strictly applicable to optical disks.

Current Store History Store

Figure 7: Clustering

There are many variations on this scheme. The simplest method is to assign a whole block to each version set
with history versions. This method is a special case of cellular chaining to be described later, where a cell is a whole
block. Unfortunately, allocating an entire block results in unacceptably low storage utilization in most cases. A
better method is to share the same block for history versions of several version sets. When an overflow occurs, the
block is split into two, moving all versions of some selected version sets to a new block. If all versions in the
overflowed block belong to one version set, a new block is added as a successor and chained to the original block.
In this scheme, - blocks need to be accessed to retrieve n history versions, where b is the number of records in a

b
block.

In the temporally partitioned storage structure, there needs to be a link between the current version and its
history versions to avoid scanning the whole history store. The link may De either physical or virtual. A physical
link is a pointer physically stored as an implicit attribute of the current version. If some history versions are moved
to another location as a result of a block overflow, physical pointers in the current store pointing to those versions
need to be adjusted accordingly. It is better to move the version sec that has caused the overflow in this case.
because it is easier to identify the version in the current store which corresponds to the versions being moved in the
history store. If it is still necessary to move or compact other versions remaining in the original block, history
versions need to maintain back pointers to the corresponding versions in the current store to adjust their pointers.

A virtual link is a conceptual link implied by some structural information. For example, history versions can
be hashed on the primary key so that all versions belonging to a version set are put into one block or its overflow
blocks. But the performance of conventional hashing with reasonable storage utilization deteriorates rapidly, as will
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be discussed further in Section 7, if there are excessive key collisions causing long overflow chains.

One way to resolve this problem is to introduce a scatter table between the current store and the history store,
which can serve as a combination of the physical link and the virtual link [Morris 1968]. A scatter table may have
the form of an index or a directory. Each entry in a scatter table corresponds to a value hashed from the primary
key of tuples in the current store, and holds a pointer to a block in the history store. When an overflow occurs to a
block in the history store, the block is split into two according to a hash function which generates a sequence of
different values for each occurrence of overflows. Then a new entry pointing to the new block is added to a scatter
table. A scatter table plays a similar role to accession lists, but an entry in a scatter table is shared by several
synonymous tuplcs through a hash function, while an accession list is associated with each tuple om the current
store through a physical link.

Actual implementation of this scheme using a scatter table may adopt one of variable size hashing methods
based on an index or a directory which can accommodate dynamic growth of a file by splitting a block upon
overflow. Examples of such Methods are dynamic hashing, extendible hashing, and grid files, where an index or a
directory can be regarded as a scatter table described above. All three methods make it possible to retrieve a record
at the cost of one block access by locating the index or directory entry for a given key, assuming that the index or
the directory is small enough to reside in the main memory. If the index or the directory does not fit into the main
memory, one additional disk access is necessary.

There are other variable size hashing methods which can accommodate dynamic growth of the file without
maintaining an index or a directory. They are virtual hashing, linear hashing, and modified dynamic hashing. A
new method of hashing termed adaptive hashing has been also developed [Ahn 198613, Ahn 1987]. It can retrieve
records at the cost of exactly one block access, even when the file size grows or shrinks dynamically. It maintains a
list of overflow addresses, called the ovelow list. Since the overflow list stores an address only when an overflow
occurs, it is smaller than a directory or an index which maintains the addresses of all the buckets, and is expected to
fit into the main memory. If the size of the overflow fist grows too big, it is possible to reduce its size by
reorganization.

5.4. Stacking
Stacking is a two dimensional implementation of a conceptual cube where all the version sets have an equal

number of versions. This is useful when we are interested in the fixed number of most recent versions, where
updates are rather periodic and uniformly distributed. For example, Postgrcs stores history data, but discards data
older than a specified amount of time (Stonebraker & Rowe 1986].

Current StoreHitrSoe

Figure 8: Stacking (depth d = 3)

When the first history version is put into the history store for a version set, space for d versions is allocated,
where d is termed the depth of stacking (see Figure 8). Subsequent versions are put into the remaining portion of
the allocated space. After the predetermined limit d to the number of versions is reached, the next version is put into
the place of the oldest version, which becomes lost as if being pushed through the bottom of a stack.



Since the number of history versions to be maintained is predetermined, it is simple to cluster all versions
belonging to a version set. Thus, the number of block accesses for retrieving n history versions is just one,

assuming the entire stack fits in one block. Storage utilization is -! with the maximum of 100%, where u is the
d

average update count. Increasing the depth d enables a larger number of versions to be maintained, but the storage

utilization can be as low as -. The data being replaced by newer versions may not actually be lost, but can be

archived to a lower level storage. Another interesting possibility is to organize the current store as a shallow stack,
a stack with a small d, then store overflow data into the history store which may use any of the formats discussed in
this section.

5.5. Cellular Chaining
Cellular chaining is similar to reverse chaining, but attempts to improve the performance by collecting several

versions into one cell. The current version initially has an extra field nvp (next version pointer) of null (see Figure
9). When the first version is inserted into the history store for a version set, a cell is allocated with the size of c ! I
in the history store. The nvp field of the current version now points to the cell, arnd subsequent versions will be put
into the remaining space of the cell. If this space is filled up, another cell is allocated and chained to the predecessor
cell. Since the history store operates in the append only mode, this scheme can use optical disks as well.

Current Store History Store

K, 86

Figure 9: Cellular Chaining (cell size c =3)

Cellular chaining can be regarded as a combination of reverse chaining and stacking. It also has the benefit of
the clustering scheme, in that the number of blocks to be accessed is reduced by as much as a factor of c. The lower

bound for the number of block accesses in retrieving n history versions is -1, where b is the blocking factor of the

history store. The upper bound is -1, where c is the cell size of the history store. Thus increasing the cell size c
improves the performance. However, a larger cell size tends to lower storage utilization. If the number of version
sets are uniformly distributed, expected storage utilization can be calculated as:

E(Storage Utilization) -12 + + -E) X 1 C += I~

(- c c c C2  2 c

This shows that the average storage utilization is 100% for c 1 , which is the same as reverse chaining, ignoring
the partially filled block at the end of the history store But the storage utilization falls to about 50% for a reasonably
large c. It is possible to improve storage utilization by adjusting the cell size dynamically. The size of the cell can

* be increased linearly. For example, the first cell of each version set has the size of one, but each time a new cell is
allocated for one version set, the cell size increases by one. Or the cell size may be multiplied by some factor,
whenever a new cell-is allocated for one version set.

16



6. Indexing

Performance of queries can be improved significantly by indexing. This section discusses the types and the
structures of primary and secondary indices for databases with temporal support.

6.1. Primary Indexing
For a snapshot relation, the index is a set of <value, pointer> pairs where value is a key value and pointer is

the unique identifier or the address of a tuple containing value as the key. For databases with temporal support, the
index can be extended to include pointers to history versions. Each entry is of the form <value, p,, p,., Pk,>,
where p, points to the current version, and pl, with 15~ i 5 n points to the i-th history version.

The index entry may include temporal information so that temporal predicates can be evaluated Without
actually accessing data Luples. The space Lime tradeoff on the amount of temporal information discussed for
accession lists applies in this scheme. For example, a temporal relation may have an index with a pointer and four
time attributes for each version, or an index with a pointer and just one attribute, e.g.. valid from, for each version.
Figure 10 illustrates this scheme, which can be regarded as a combination of conventional indexing and accession
lists described above.

Figure 10: Indexing

Indexing is also useful to handle deleted tuples: or future versions. Since history versions have an independent
access path without going through the current store, all deleted tuples can be put into the history store. The future
version may be put either in the current or the history store, pointed to by an index entry.

Instead of maintaining a pointer for each history version, space can be saved by storing only one entry for the
list of history versions. Then each entry is of the form <value, p,, ,h>, where pc points to the current version. p',
may be the starting address of the chain of history versions, or the address of an accession list for history versions.

A generalization of this scheme is to apply the temporally partitioned structure to the index itself, maintaining
two separate indices, one for the current store and the other for the history store. The benefits of the temporally
partitioned store considered for storing data similarly apply to this tenkporally partitioned indexing. By separating
current entries from the bulk of history entries, the current index be'omes smaller and more manageable,
minimizing the overhead of maintaining history versions on non-temporal queries. The history index can utilize any
form developed for the history stare to enhance the performance of temporal queries. For example, the current
index may be hashed, while the history index has the format of accession lists. Then each entry in the current index
is of the form <value. p, ph >, as mentioned above. In any case, history versions are append-only for a rollback or a
temporal relation, so they may be stored on optical disks.

Performance characteristics of the indexing scheme are similar to that of accession lists. The upper bound for
the number of block accesses to retrieve all n records is n,. one less than that of accession lists, without counting the
cost to access the index itself. The lower bound for the number of block accesses is just one, without counting the
cost to access the index itself. Since temporal predicates can be evaluated by using temporal information included
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in the index, the number of history versions actually retrieved may be much smaller than reverse chaining.

One problem with indexing is that the format of the current store is tied to indexing, while other schemes
allow any format for the current store. Another problem is accessing records through non-key attributes. It is
necessary to maintain the same ordering for the index and the current store, so that the current store can be scanned
synchronously with teindex.

6.2. Secondary Indexing

For a snapshot relation, a secondary index is a set of <value, pointer> pairs, where value is a secondary key
and pointer is the unique identifier or the address of the corresponding tuple. Since the value is not expected to be
unique, there may be several entries for a single value. There will be more entries for each value in a secondary
index for a relation with temporal support, because it maintains history versions in addition to current data. A
typical query retrieves only a small subset of all the versions for a given value, but temporal predicates to determine
which versions satisfy the query can be evaluated only after accessing the data themselves. The number of false hits
can be reduced if some or all of temporal information is also maintained in a secondary index. Therefore, extension
of the conventional secondary index is desirable for each type of databases with temporal support.

For a rollback database, a secondary index itself can be a rollback relation augmented with transaction start
and transaction stop attributes. Then each index entry is a quadruple <value, pointer, transaction start, transaction
stop>. There is the overhead of 8 bytes for each entry, but the as of clause can be evaluated from the information in
the secondary index. Only the tuples satisfying the as of clause need to be retrieved, significantly enhancing the
performance. If the version sets are contiguous or nearly contiguous, storing only the transaction start attribute can
save space without significant loss of performance. The same argument applies to a historical database, when the
valid clause is substituted for the as of clause, and the valid from and valid to attributes are used.

For a temporal database, a secondary index may be a rollback relation, a historical relation, or a temporal
relation itself. If the index is a rollback relation, the as of clause can be evaluated from the information in the index.
Then those versions that satisfy the as of clause are retrieved from the current or the history store to resolve the
valid predicate. If the index is a historical relation, those wuples that fail the valid clause need not be accessed to
resolve the as of predicate. If the index is itself a temporal relation, each index entry is a sextuple <-alue, pointer,
valid from, valid to, transaction start, transaction stop>. There is the overhead of 16 bytes for each entry, but
temporal predicates of the valid and the as of clauses can be evaluated completely from the information in the
secondary index. It is also possible to store some subsets of the four time attributes, e.g., valid from and transaction
start, or only one of the two. Storing only a subset saves space, but the number of false hits will increase. The type
of secondary indices available for each type of databases is summarized in the Figure 11. Deciding which type of
secondary index to use for a database with temporal support is a tradeoiff of space versus time.

Snapshot Rollback Historical Temporal

Snapshot Database '

Rollback Database'44

Historical Database'44

Temporal Database 4''44

Figure 11: Types of Secondary Indices for Each Type of Databases
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7. Performance Evaluation
In this section, we present a preliminary performance evaluation of the access methods discussed in Sections

5 and 6. Disk read counts for sixteen queries executed on rollback, historical and temporal relations for a variety of
access methods were analytically derived using a model described elsewhere [Ahn & Snodgrass 19881. The model
consists of four transformations through a series of intermediate expressions based on the characteristics of
database/relations and storage devices. A temporal query is mapped to an algebraic expression which is
transformed to a file primitive expression. A file primitive expression, in turn, is transformed to an access path
expression, and finally to the access cost. Since conventional databases are subsets of temporal databases, the
model can be used to analyze the performance of conventional databases as well.

To validate the model, we also ran the same queries on a prototype temporal DBMS built by extending the
snapshot DBMS Ingres [Stonebraker et al. 1976]. We compared these derived disk read counts with those measured
on the prototype. The results indicate that the cost, expressed as number of disk accesses, of a query on a relation
supporting transaction or valid time can be estimated quite accurately, within 1% for query executions under
controlled circumstances (e.g., ignoring buffering artifact) [Ahn & Snodgrass 19881.

7.1. The Prototype
The prototype supports TQuel and handles all four types of databases: snapshot, rollback, historical and

temporal. It also supports append, delete, and replace statements of TQuel for the four temporal types. Each tuple
of a rollback or a temporal relation is augmented with two timestamp attributes (each a 32-bit integer) for
transaction time, and each tuple of a historical or temporal relations is augmented with one or two timestamp
attributes (each also a 32-bit integer) for valid time.

The default storage format of a relation in INGRES, and hence in the prototype, is a heap. The modify
statement in Quel converts the storage structure of a relation from one format to another. Major storage options
available in INGRES are:

heap : for a sequential file
hash for a hashed file
isam :for an ISAM file

For example, the statement

modify Temporalh to hash on id where fillfactor - 100

converts the Temporalh relation to a hashed file with the loading factor of 100%.
In the prototype, new options were added to the modify statement to specify the format of the history store for

the temporally partitioned storage structure. They are:
chain : for reverse chaining
accessionlist : for accession lists
cluster : for clustering
stack : for stacking
cellular : for cellular chaining
index : for primary indexing

For example, the statement

modify Temporalh to chain on id

changes the Temporal h relation to the temporally partitioned store, if it is not already in such a structure. The
history store uses reverse chaining with the id attribute as the key, while the current store maintains the previous
format.

Some formats require additional parameters. Accession lists and indexing have the parameter time to
specify the amount of temporal information to be maintained in accession lists or index entries. Allowed values for
the tme parameter are all to maintain information on all the time attributes, or a list of time attributes such as
valid from, valid to, transaction start, and transaction stop. For example, we use the
following statement to change the history store to the format of accession lists with all the time attributes:

modify Temporal h to accessionlist on id where time - (all)

Stacking and cellular chaining have the parameter cellsize to specify the stacking depth or the size of a cell. To
change the history store to the format of cellular chaining with up to four tuples in each cell, we use the statement:
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modify Temporal h to cellular on id where ceilsize - 4

issuing another modify statement with one of the options heap, hash, or 13am will change the format of
the current store accordingly, but the history store will be unaffected. The option single was also added to
convert a relation from the temporally partitioned structure to the single file structure. Therefore, we can specify
that the structure of a relation be changed from a single file to another single file structure, from a single file
structure to a temporally partitioned store, from a temporally partitioned store to another temporally partitioned
Store, or from a temporally partitioned to a single file structure. In this process, we can change the formats Of the
current and the history store independently of each other.

We can determine at compile Lime if a query is non-temporal. For a rollback database, a query is non-
temporal if it has the clause as of "now". For a historical database, a query is non-temporal if it has the clause
when (t, overlap ... overlap ti) overlap "now" for all the range variables t,. For a temporal
database, a query is non-temporal if it has the clause when t I overlap ... overlap t,) overlap "now"
for all the range variables i,, and the clause an of "now". For a non-temporal or current query, the query is
evaluated by consulting only the current store without going through the history store, using the conventional access
methods provided by INGRES.

For the delete or the replace statement on a rollback database, there is only one case to be examined for Lhe
relationship between the base interval and the update interval. For the delete or the replace statement on a historical
or a temporal database, there are four cases to be examined, ignoring two null cases, for the relationships between
the base interval and the update interval as discussed in Section 4.2.

The delete and append scheme was found to be inapplicable to the temporally partitioned store, because the
base tuple remains in its place, while the newer version is put into a different location. Thus, the system was
changed to follow the append and change scheme as discussed in Section 4.2. We had to examine each case of the
relationships between the base interval and the update interval carefully to determine the proper location of the
current version, and to maintain a history chain. Whether explicit or not, for each version set. Maintaining a chain of
history versions for each version set is more complicated for a temporal database, since each replace inserts at least
two versions. We ordered versions affected in each update in reverse order of vaiid from time, then in reverse order
of transaction start time. Thus, we can retrieve recent versions more quickly, especially for queries with the default
clause as of "now".

Accessing a relation with the single file structure involves two steps: one for the main block and the other for
overflow blocks. Accessing a relation with the temporally partitioned structure involves another step: tollowing the
history chain, whether explicit or implicit. Hence we need to maintain global information on which store provides
the tuple being processed now and the tuple to be retrieved next. Algorithms to handle the delete and the replace
statements on different types of relations are given elsewhere (Ahn 1986B].

For simplicity, the split criterion adopted in implementing the temporally partitioned store was:
* The current store contains current versions, while the history store holds history versions.

* Deleted tuples are kept in the current store.
* Versions to be expired, discussed in Section 4.3, are kept in the current store until a new version is inserted.

* Future versions are stored in the current store.
At present, the structure of reverse chaining has been implemented. The prototype's parser accepts the full BNF
syntax, but the remaining components do not support the other options.

We assume that accession lists and indexing maintain complete temporal information, both transaction time
and valid timie as appropiriate, separate from history data. The index itsef is assumed to be a hashed file, but note
that indexing restricts the format of the current store to indexing, as discussed in Section 5.2. We also assume that
the depth for stacking is four, and the cell size for cellular chaining is four. Finally, for hashing we assume that the
hash function is well-behaved (a badly-behaving hash function would create many more overflow blocks).

For clustering, we use the method of adaptive hashing. The average storage utilization for adaptive hashing is
69.3 % [Ahn 1987]. However, databases considered in this analysis have high update counts, so each version set
consists of more versions than a block can hold. When a block gets full with versions belonging to a single version
set, we need to maintain a chain of overflow blocks. As a result, storage utilization becomes 100% except for the
last block of each chain.
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7.2. The Benchmark
The benchmark queries reference two temporal relations, one hashed on the i attribute and one structured

as an ISAM file on the id attribute (see Figure 12).

range of h is Temrporalh /* hashed on id */
range of i is Temporali /* ISAM on id '/

Q01 retrieve (h.id, h.seq) where h.id - 500

Q02 retrieve (i.id, i.seq) where i.id = 500

Q03 : retrieve (h.id, h.seq) as of "08:00 1/1/80"

Q04 retrieve (i.id, i.seq) as of "08:00 1/1/80"

Q05 : retrieve (h.id, h.seq) where h.id - 500
when h overlap "now"

Q06 : retrieve (i.id, i.seq) where i.id - 500
when i overlap "now"

Q07 : retrieve (h. id, h.seq) where h.amount = 69400
when h overlap "now"

:CS retrieve (i.jd, i.seq) where i.amount = 73700
when i overlap "now"

C09 retrieve (h.id, i.id, i.amount) where h.id - i.amount
when h overlap i and i overlap "now"

1,0 retrieve (i.id, h.id, h.amount) where i.id - h.amount
when h overlap i and h overlap "now"

Qi : retrieve (h.id, h.seq, i.id, i.seq, i.amount)
valid from begin of h to end of i
when begin of h precede i
as of "4:00 1/1/80"

Q12 retrieve (h.id, h.seq, i.id, i.seq, i.amount)
valid from begin of (h overlap i) to end of (h extend i)
where h.id - 500 and i.amount - 73700
when h overlap i
as of "now"

Q13 : retrieve (h.id, h.seq) where h.id - 455
when "1/1/82" precede end of h

Q14 : retrieve (h.id, h.seq) where h.amount - 10300
when "1/1/82" precede end of h

Q15 : retrieve (h.id, h.seq) where h.amount - 10300
as of "1/1/83"

Q16 retrieve (h.id, h.seq) where h.amount - 10300
when "1/1/82" precede end of h
as of "1/1/83"

Figure 12: Benchmark Queries
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With these queries, we were able to examine the following types of accesses:
* version scanning (all versions of a tuple),

* rollback queries,

* historical queries,

* key versus non-key access,

* ISAM versus hashed key access, and

* temporal and non-temporal joins.

The sixteen queries on these relations allowed us to compare 196 query executions, resulting in a fairly
comprehensive evaluation of the model. We now discuss the storage and accessing costs for the various storage
structures. We only consider temporal relations and assume a loading factor of 100%.

7.3. Space Requirements

Space requirements for update counts of 0 and 14 are shown in Figure 13 for the Temporalh relation in
hashing (the sizes for ISAM are similar), and for the same relation with various formats of the temporally
partitioned structure. Space requirements for the Temporal_i relation are similar to the Temporalh reiauon
except that the ISAM file requires additional space for directories. The table also shows the growth rate, which is
obtained when the growth per update is divided by the size for the update count of 0. In the case of stacking, the
size stabilizes when an update count of 4 is reached.

Tye Hashing Reverse Accession CluaType _ashing Chaining Lists Clustering Stacking Chann Indexing

Size, UC=0 129 147 147 147 147 1 147 141

Size. UC=14 3717 4243 3957 4243 (733) 4243 4802

Growth perGpwtter! 256.3 292.6 272.1 292.6 (41.9) 292.6 281.5
Update

Growth 1
Rate 1.99 1.99 1.85 1.99 (0.28) 1.99 2.0

Notes:
'UC' denotes Update Cowu.
"(n)' denotes that only a partial history is stored.

Figure 13: Space Requirements for the Temporalh Relation

7.4. Input Costs
From Figure 13, we can make the following observations on the storage requirements of a temporal relauon

with the temporally partitioned storage structure:

* The temporally partitioned storage structures consume slightly more space than the single file structure when
the update count is 0, due to extra space for a physical link to the history chain.

* The temporally partitioned storage structures consume more space than the single file structure when the
update count is not 0, due to extra space for maintenance of chaining, indexing or accession lists.
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* When the update count is not 0, space requirements for reverse chaining, accession lists, indexing, and
clustering are about the same.

" When the update count is not 0, space requirements for cellular chaining can be larger than the other formats
if there are unfilled cells.

" When the update count is not 0, storage size for stacking remains the same, but older versions are lost due to
stack overflows.

Figure 14 shows the input costs for the benchmark queries of Figure 12 on the temporal database; the queries
and benchmark relations were crafted so that the output costs were similar for all queries. The input costs do not
take into account the benefits of buffering; hence, they are probably overestimated in some cases. Two columns
under the label Conventional show the queries costs for the update count of 0 and 14. The remaining six columns
show the costs of queries for the update count of 14 for various formats of the history store. When the update count
is 0, the cost for any of the temporally partitioned structures is the same as the cost for the convenuonal case. The
figures in the first column were derived from the model then validated by executing the queries on the prototype
[Ahn & Snodgrass 1988]. The figures in the remaining columns were derived from the model. Details of the analysis
arc available elsewhere [Ahn 1986B].

I Conventional Temporally Partitioned Store for Update Count = 14

Query Update Count Reverse Accession Cellular
0 14 Chaining Lists r Stacking Chaining Indexing

Q01 1 29 29 30 5 (2) 8 30
Q02 2 30 31 30 6 (3)' 9 30
Q03 129 3717 4243 776 4243 X 4243 787
Q04 128 3712 4243 776 4243 X 4243 787
Q05 1 29 1 1 1 1 1 2
Q06 2 30 2 2 2 2 2
Q07 129 3717 147 147 147 147 147 141
Q08 128 3712 147 147 147 147 147 141
Q09 1 1200 33350 1227 1227 1227 1227 1227 2218
Q1O 2233 34493 2251 2251 2251 2251 2251 2218
Q11 385 11141 12729 2317 12729 X 12729 2350
IQ2 131 3743 4274 3989 4250 (737) 4253 4114
Q13 1 29 29 8 5 X 8 8
Q14 129 3717 4243 3957 4243 X 4243 4082

QI5 129 3717 4243 3957 4243 X 4243 4082
Q16 129 3717 4243 3957 4243 X 4243 4082

Notes :
* X' denotes not applicable.
'(n)' denotes that only a partial answer is retrieved.

Figure 14: The Temporal Database with 100% Loading

The advantage of the temporally partitioned store is evident in processing current queries such as Q05 through
QIO. For queries Q05 through Q10 on any temporally partitioned structure other than indexing, the cost remains
constant regardless of the update count. For example, QI0 on the temporal database costs 2251 block accesses
instead of 34493 block accesses when the update count is 14. Note, however, that the costs of queries Q07 through
QIO on a temporally partitioned structure are slightly higher than the corresponding costs on a conventional
structure with the update count of 0, because the size of the current store is bigger than the conventional structure
with the update count of 0. As for query Q09 or Q10 on the temporal database with indexing, we need to scan the
index and the current store of the Temporali relation, then repeatedly access the Temporalh relation
through the index. The resulting cost is significantly higher than other formats, but is still lower than the
conventional case.
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The performance of temporal queries like QOl and Q02 can be improved by clustering, which collects histor\
versions of each version set into a minimum number of blocks. Cellular chaining also provides the benefit of
clustering to a certain degree. Seven cells are required to hold 28 history versions assuming the cell size of four.
Hence, QO1 Ists eight block accesses, and Q02 costs nine block accesses.

By stacking, we can retrieve history versions for each version set at the cost of one block access, but only a
limited number of the most recent versions are maintained. Thus, QO1 costs two block accesses, and Q02 costs
three block accesses, but those figures are put in parentheses to denote that the answers are only partial. Note that
stacking cannot answer queries Q03 and Q04 inquiring the old status of the database, because older versions of
history data were discarded due to stack overflow.

Accession lists with temporal information can facilitate temporal queries Q03 and Q04 by evaluating the
temporal predicate without accessing history data. Similar improvement is also achieved by indexing, where each
index entry maintains complete temporal information for transaction time. We need not scan the current store in
indexing, so entries satisfying the as of clause are extracted while canning the index for the Tempo ra ! _ relation.

As for query Q11 which requires a join operation on time attributes, the performance can be improved by
accession lists, where each accession list maintains complete temporal information for all the time attributes. Since
each entry with four time attributes and a pointer to a history version consumes 20 bytes, and there are 28 history
versions times 1024 version sets for the update count of 14, the size of the collected accession lists is 624 blocks. By
scanning the current store and the entries in the accession lists for the Temporal h relation, the entries satisfying
the as of clause are extracted. If we assume that the number of such entries is two, and that tuple substitution is used
to perform a join (as in the case in Ingres and in the prototype), then the current store and the accession lists for the
Temporal 5i relation are scanned twice to find entries satisfying the as of and the when clauses. Thus we end up
with scanning the current store and the accession lists three times: once for the Temporalh relation and twice
for the Temporal _i relation. If we assume that two entries in the accession lists for the Temporal_i relation
sausfy the as of and the when clause, then four history versions are actually retrieved from the history store: two
from the Temporal h relation and two from the Temporal i relation. So the total cost is 2317 block
accesses (= (147 + 624) x 3 + 4), which is a marked improvement from 11141 of the conventional method. The
improvement results from performing a temporal join on the accession lists, whose size is much smaller than the
history data.

Similar improvement is also achieved by indexing, where each index entry maintains complete temporal
information for the four time attributes. Since each entry with four time attributes plus a key and a pointer takes 2-t
bytes, and there are 29 versions times 1024 version sets for the update count of 14, the size of the entire index is 782
blocks. Scanning the index for the Temporalh relation, the index entries satisfying the as of clause are
extracted. Under similar assumptions to the case of accession lists above, the index for the Temporal _i relation
is scanned twice to find the entries satisfying the as of and the when clauses. Then the total cost is 2350 block
accesses (= 782 x 3 + 4).

Query Q12 is facilitated by clustering or cellular chaining for the portion of scanning a version set, as
discussed for queries QO1 and Q02, but the overall performance is dominated by scanning the Temporal:i
relation sequentially. Secondary indexing is necessary to improve the performance of query Q12. Note that
stacking cannot answer query QI 1, and provides only a partial answer to query Q12.

Query Q13 is similar to QO1, but Q13 can be improved by accession lists or indexing. The when clause can
be evaluated without accessing history data, then only the tuples satisfying the temporal predicate are retrieved. If
we assume there are seven such tuples, the cost is eight block accesses, where one extra block accounts for
accessing an accession list or an index entry.

Queries Q14 through Q16 retrieve tuples through a non-key attribute, which requires sequential scanning ot
the entire relation. Maintaining a secondary index can improve the costs of these queries, as will be discussed in the
next section.

7.5. Secondary Indexing

Queries retrieving records through non-key attributes can be facilitated by secondary indexing. For example,
we can create a secondary index, Temp_h_inx, on the amount attribute of the Temporal h relation using
the index statement in Quel:

index on Temporalh is Temp_h_inx (amount)

Maintaining a secondary index on the attribute amount can improve the performance of queries such as Q07,
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Q08, Q12, and Q14 through Q16.
As discussed in Section 6.2, there are several types of secondary indices, especially for a temporal relation. A

secondary index for a temporal relation may be any of snapshot, rollback, historical, or temporal. To specify the
type of a secondary index, we extend the index statement with the as type clause, where the type can be any of
snapshot, rollback, historical, and temporal. For example, a statement:

index on Temporalh is Temp_h_inx (amount) as temporal

creates a secondary index as a temporal relation.
The default storage structure for a secondary index is a heap, but like any regular relation, its structure can be

changed to other format using the modify statement. An index may be stored into a single file for all the versions
(single file), or may itself be maintained as a temporally partitioned structure having a current index for current dau
and a history index for history data. In each case, we may choose any access methods such as a heap, hashing,
ISAM, etc. At present, our prototype supports only the secondary indices as snapshots. The other options were not
implemented into the prototype.

Space requirements for various types of secondary indices on the Temporal h relation are shown in Figure 15,
when the update count is 0 or 14. The table also shows the growth rate, which is obtained when the growth per
update is divided by the size for the update count of 0. Compared with the table in Figure 13, a secondary index
consumes from 8% to 21% of the space required by the relation itself.

Type as Snapshot as Rollback as Historical as Temporal

p Size, UC= 0 11 19 19 27

Size, UC=14 295 531 531 782

Growth per 20.3 36.6 36.6 53.9
Update

Growth
Rate 1.85 1.93 1.93 2.0

Note: 'UC' denotes Update Count.

Figure 15: Space Requirements for a Secondary Index

For the snapshot index, each entry needs eight bytes, four for the secondary key and four for a pointer. Since
a block of 1024 bytes can store 101 entries, 11 blocks are needed for 1024 tuples when the update count is 0. When
the update count is 14, there are 29 versions multiplied by 1024 tuples; hence 295 blocks are needed for the single
tile index.

For the rollback or the historical index, each entry needs 16 bytes, four for the secondary key, four for a
pointer, and eight for two attributes of transaction time or valid time. So a block of 1024 bytes can store 56 entries,
and there are 29 versions multiplied by 1024 tuples when the update count is 14; hence 531 blocks are needed for
the single file index.

For the temporal index, each entry needs 24 bytes, four for the secondary key, four for a pointer, eight for two
attributes of valid time, and eight for two attributes of transaction time. So a block of 1024 bytes can store 38
entries, and there are 29 versions multiplied by 1024 tuples when the update count is 14; hence 782 blocks arc
needed for the single file index.
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Figure 16 compares the snapshot index with the rollback index in terms of the costs of sample queries on the
temporal database with the update counlt of 14. Performance figures in this table were derived analytically. The
existence or the structure of secondary indices do not affect the performance of othe r queries which do not involve
the secondary access path.

Conventional Indexed as Snapshot FIndexed as Rollback
Query: Update Count as Single as Patioe as Single a attoe

0 lt14a Hear) as Hash as Hear) as Hash las Heap as Hash as Heap as Hash

Q07' 129 3717 324 30 12. 2 560 30 20 2
Q08 128 3712b 324 30 12 2 1560 30 20 2
Q 12 131 37431 355 61 355 62i591 61 591 62

kQ1_1 129 37171 32.4 30 324 31 560 30 560 31
Q15 129 3717 324 30 324 31 543 13 543 14
Q 16 129 37t7l 324 30 324 31 5.43 13 543 14

Note: All values are for a temporal database with an update count of 14.

Figure 16: Secondary Indexing as Snapshot or Rollback

If the index is stored as a heap, queries Q07 and Q08 cost 324 block accesses each, 295 index blocks plus 29
data blocks. This is in fact more expensive than the simple temporally partitioned store without any index, though
ctcr than the conventional structure. Hence, we must take care that the cost of using an index does not overwhelm

the saving obtained from using the temporally partitioned store. If the index is hashed, the cost is reduced to 30
block accesses with 1 index block and 29 data blocks.

If we follow the temporally partitioned scheme maintaining a separate index for current data, there are only
1024 entries in the current index, requiring I1I index blocks. Each of Q07 and Q08 costs 12 blocks with a heap
index, while it costs only 2 blocks with hashing. Note the difference between 3717 blocks and 2 blocks for
processing the same query.

Quem Q12 can also benefit from secondary indexing, since it is no longer necessary to scan the
7 emporai .i relation sequentially. If the index is stored as a single heap, Q12 costs 355 block accesses, where
295 block accesses are needed to scan the index. If the index is stored as a single hash, the cost is reduced to 61
block accesses.

Queries Q14 through Q16 are similar to queries Q07 and Q08 in that they are one relation queries and their
costs can be reduced significantly with secondary indexing. However, queries Q14 through Q16, like Q12, are
temporal queries, and need to access history data regardless of the storage structure. Thus the temporally
partitioned index is not better than the single file index for queries Q12 and Q14 through Q16. In fact, the index as a
temporally partitioned hash costs one more block access than the index as a single hash, because each index needs
to be hashed separately.

The rollback index is effective for processing queries with the as of clause, such as Q15 and Q16. The as of
predicate can be evaluated with information from index entries, and only the tuples that satisfy the predicate need to
be- retrieved.

If the index is stored as a single hash, query Q15 costs 13 block accesses, assuming that there are 12 tuples
sauisfying the as of clause among 29 candidates. Storing the index as a temporally partitioned hash, query QI15
costs 14 block accesses, one block access more than as a single hash, since each index needs to be hashed
separately. However, storing the rollback index as a heap increases the query costs over the snapshot index, due to
the bigger size of the rollback index.

Figure 17 compares the historical index with the temporal index in terms of the costs of sample queries on the
temporal database with the update count of 14. The discussion on the rollback index similarly applies to the
hisiorical index, except that the historical index maintains two attributes of valid time instead of transaction time,
and that the historical index is effective for processing queries with the when clause like Q 14 and Q 16. If the index
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is stored as a single hash, Q14 or Q16 costs 8 block accesses, assuming that there are 7 tuples satisfying the when
clause among 29 candidates.

Conventional Indexed as Historical Indexed as Temporal
Query: Update Count as Single as Partitioned as Single as Partitioned

0 14 !a et sHs as Heat) as Hash as Heav as Hash Ias Heapi as Hash

Q07 129 371711 532 2 20 2 783 2 282
Q08 128 37121I 532 2 20 2 783 2 28 2
Q12 131 3743i 563 61 563 62 1814 61 814 62
Q1.4 129 3717' 538 8 1538 9,1789 8 789 9
Q 15 129 37171 560 30 560 31 794 13 1 794 14
Q16 129 _3717 538_ 8 1538 9 786 5 786 6

Note: All values are for a temporal database with an update count of 14.

Figure 17: Secondary Indexing as Historical or Temporal

The temporal index combines the benefits of the rollback index and the historical index, effective for
processing queries with the as of or when clause. The temporal predicate can be evaluated completely with
information from index entries, and only the tuples that satisfy the predicate need to be retrieved.

If the index is stored as a single hash, Q16 costs only 5 block accesses, assuming that there are 4 tuples
satisfying both the when and the as of clauses among 29 candidates. However, storing the temporal index as a heap
L ncreases the cost of queries over any other types of indices, due to the bigger size of the temporal index.

Now we can make the following observations on the types of secondary indices, based on the analysis of
query costs as shown in Figures 16 and 17.
* The temporally partitioned index is good for non-temporal queries.
* For temporal queries, the cost of a query for the temporally partitioned heap index is equal to the cost of the

query for the single heap index.
* For temporal queries, the cost of a query for the temporally partitioned hash index is more expensive by one

block access than the cost of the query for the single hash index.
* The rollback secondary index is good for queries with the as of clause.

* The historical secondary index is good for queries with the when clause.

* The temporal secondary index is good for queries with either or both of the when and the as of clauses.

* It is desirable to provide a secondary index with the random access mechanism such as hashing.

* If there is no random access mechanism for a secondary index, storing a large amount of temporal
information in index entries degrades the performance due to its bigger size.

8. Conclusions
Database systems with temporal support maintain history data on line together with current data, which causes

problems in terms of both space and performance. This paper discussed the temporally partitioned store that could
provide fast response for various temporal queries without penalizing conventional non-temporal queries. The
current store holds current data and possibly some history dama while the history store contains the rest. We
examined various issues concerning the temporally partitioned store, and investigated several formats for the history
store, including reverse chaining, accessing lists, clustering, stacking, and cellular chaining. Storage structures for
primary and secondary indices were also considered. We evaluated the performance of all of these storage
structures on a set of sample queries, compared them with conventional access methods, and demonstrated
significant improvement in some eases.
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This work should be viewed as an initial attempt to characterize storage structures for temporal databases
utilizing temporal partitioning. While the desirability of a temporally partitioned store has bee shown, the
evaluation of individual storage structures and their applicability, whether to the current store, history store, or
index, should be more extensively explored. Specifically, our results should be extended to a wider range of queries.
to update transactions, to various combinations of attribute and tuple timestamping, to comparisons with additional
implementations, to consideration of the effect of buffering and sequential access, and to consideration of the
interaction with concurrency control and recovery.
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