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Abstract

Object localization using sensed data features and corresponding model features is a fun-

damental problem in machine vision. We reformulate object localization as a least squares

problem: the optimal pose estimate minimizes the squared error (discrepancy) between the

sensed and predicted data. The resulting problem is non-linear and previous attempts to

estimate the optimal pose using local methods such as gradient descent su�er from local

minima and, at times, return incorrect results. In this paper, we describe an exact, accurate

and e�cient algorithm based on resultants, linear algebra, and numerical analysis, for solv-

ing the nonlinear least squares problem associated with localizing two-dimensional objects

given two-dimensional data. This work is aimed at tasks where the sensor features and the

model features are of di�erent types and where either the sensor features or model features

are points. It is applicable to localizing modeled objects from image data, and estimates the

pose using all of the pixels in the detected edges. The algorithm's running time depends

mainly on the type of non-point features, and it also depends to a small extent on the number

of features. On a SPARC 10, the algorithm takes a few microseconds for rectilinear features,

a few milliseconds for linear features, and a few seconds for circular features.
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1 Introduction

Model-based recognition and localization are fundamental tasks in analyzing and under-

standing two-dimensional and three-dimensional scenes [12, 10]. There are many applications

for vision systems: inspection and quality control, mobile robot navigation, monitoring and

surveillance. The input to such systems typically consists of two-dimensional image data or

range data. The model-based recognition problem is to determine which object O from a set

of candidate objects fO1; O2; : : :g best explains the input data. Since the object O can have

any orientation or location, the localization problem is to compute the pose p for a given

object O which best �ts the sensed data.

The problems of recognition and localization have been extensively studied in the vision

literature [12, 10]. The majority of the object recognition algorithms utilize edge-based

data, where edges are extracted from image data using �lter-based methods. Edge data is

either comprised of pixels which have exceeded some threshold, or edge segments formed by

straight line approximations of those pixels. On the other hand, objects are usually modeled

as a set of non-point features, such as line segments, polygons, or parameterized curves.

For this reason, localization algorithms must handle matching sensor features and model

features which are of di�erent types. We present an exact and robust model-based object

localization algorithm for features of di�erent types, where either the sensed features or the

model features are points (refer Figure 1). Unlike Kalman �ltering based approaches to the

same problem, this algorithm is immune to problems of local minima, and unlike approaches

which reduce the problem to matching point features which can be solved exactly [16, 26, 5],

this algorithm does not introduce error by sampling points from model features.

Object
Edge Detected
       Pixels

Figure 1: Given image data, this localization algorithm estimates the object's pose directly

from the edge detected pixels and the model features.

Our approach involves reducing the model-based object localization problem between dis-

similar features to a nonlinear least squares error problem, where the error of a pose is
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de�ned to be the discrepancy between the predicted sensor readings and the actual sensor

readings. In this paper, we concentrate on the object localization problem, i.e., we assume

that the features have already been interpreted using a correspondence algorithm. We use

global methods to solve the problem of optimal pose estimation. In particular these methods

compute the pose that minimizes the sum of the squared errors between the sensed data

and the predicted data. Rather than using local methods such as gradient descent, the

problem is formulated algebraically and all of the local extrema of the sum of squared error

function, including the global minimum, are computed. For the case of matching points to

circular features, we use an approximation of the squared error because the error cannot be

formulated algebraically without introducing an additional variable for each circular feature.

The algorithm's running time mainly depends upon the algebraic complexity of the result-

ing system, which is a function the type of non-point features. Since the algorithm takes all

of the sensor features and model features into account, the running time is linear in the size

of the data set. It has been implemented and works well in practice. In particular, objects

with rectilinear boundaries are localized in microseconds on a SPARC 10 workstation. The

running time increases with the complexity of the non-point features: the algorithm takes

a few tens of milliseconds to localize polygonal models, and one to two seconds to localize

models with circular arcs.

1.1 Previous Work

The localization techniques presented in this paper are applicable to the general �eld of

model-based machine vision. In machine vision applications, localization is usually reformu-

lated as a least squares error problem. Some methods have focused on interesting sensor

features such as vertices, and ignored the remainder of the image data [11, 5, 3, 14, 6, 7],

thereby reducing the problem to a problem of matching similar features. These approaches

are likely to be suboptimal because they utilize a subset of the data [23]. In order to utilize

all of the edge data, modeled objects must be compared directly to edge pixel data. In

the model-based machine vision literature, there are three main approaches for localizing

objects where the model features and the sensed features are of di�erent types: sampling

points from the non-point features to reduce it to the problem of localizing point sets; con-

structing virtual features from the point feature data in order to reduce it to the problem of

matching like features; estimating the object's pose by computing the error function between

the dissimilar feature types and �nding the minimum using gradient descent techniques, or
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Kalman �ltering techniques.

One approach for object localization involves sampling points from non-point features in

order to reduce it to the problem of matching points to points. The main advantage of

reducing the problem of matching points to non-point features to the problem of matching

point sets is that the problem is exactly solvable in constant time. For two-dimensional

rigid transformations, there are only three degrees of freedom: x; y; � [16, 26]. By decoupling

these degrees of freedom, the resultant problems become linear, and are exactly solvable in

constant time. The crucial observation was that the relative position, (x; y), of the point

sets could be determined exactly irrespective of the orientation, � since the average of the x-

coordinates and y-coordinates was invariant to rotation. This decoupling technique is valid

for three dimensions as well [5]. To reduce the problem of matching points to non-point

features to the solvable problem of matching points to points, points are sampled from the

non-point features. This approach is optimal when objects are modeled as point-sets, but

can be suboptimal if objects are modeled as non-point features, because sampling introduces

errors when the sampled model points are out of phase with the actual sensed points.

Another approach to object localization for dissimilar features involves constructing vir-

tual features from sensed feature data and then computing the object's pose by matching

the like model features and virtual features. Such approaches solve an arti�cial problem,

that of minimizing the error between virtual features and model features rather than mini-

mizing the error between the sensed data and the modeled objects. Faugeras and Hebert [5]

presented an algorithm for localizing three-dimensional objects using pointwise positional in-

formation. In their approach, virtual features were constructed from sensed data and then,

objects were identi�ed and localized from the features, rather than the sensed data. Forsyth

et al. described a three-dimensional localization technique which represented the data by

parameterized conic sections [7]. Objects were recognized and localized using the algebraic

parameters characterizing the conic sections. Recently, Ponce, Hoogs, and Kriegman have

presented algorithms to compute the pose of curved three-dimensional objects [21, 22]. They

relate image observables to models, reformulate the problem geometrically, and utilize al-

gebraic elimination theory to solve a least squares error problem. One drawback of their

approach is that they minimize the resultant equation, not the actual error function. Ponce

et al. use the Levenberg-Marquardt algorithm for the least square solution, which may return

a local minimum [21].
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Another approach to object localization involves reducing it to the correct least squares

problem, but then solving that least squares problem using gradient descent techniques.

The least squares approach involves formulating an equation to be minimized; consequently,

the error function between a point and a feature segment cannot take into account fea-

ture boundaries. Gradient descent methods require an initial search point and su�er from

problems of local minima. Huttenlocher and Ullman used gradient descent techniques to

improve the pose estimates developed from comparing sets of three model point features and

three image point features [14]. Many localization algorithms have relied on Kalman �lters

to match points to non-point features. Kalman �lters su�er from local minima problems as

well. Given a set of points and corresponding non-point features, Ayache and Faugeras [3] at-

tempted to compute the least squares error pose by iteration and by Kalman �lters. Kalman

�lter-based approaches have demonstrated success in various machine-vision minimization

applications [17, 28, 4]. Kalman �lter-based approaches su�er from two problems: sensitivity

to local minima problems, and the requirement of multiple data points.

A great deal of work has been done on matching features (points to points, lines to

lines, points to features etc.) in the context of interpreting structure from motion [6, 13].

The problem involves matching sensor features from two distinct two-dimensional views of

an object; the problem of motion computation is reduced to solving systems of nonlinear

algebraic equations. In practice, the resulting system of equations is overconstrained and the

coe�cients of the equations are inaccurate due to noise. As a result, the optimal solution

is usually found using gradient descent methods on related least squares problems. Most of

the local methods known in the literature do not work well in practice [15] and an algorithm

based on global minimization is greatly desired.

Sparse sensors have recently demonstrated success in recognition and localization applica-

tions [27, 20]. The need for accurate localization algorithms has arisen with the emergence

of these sparse probing sensor techniques. This technique has been applied to recognition

and localization using beam sensor probe data and results in pose estimation with positional

accuracy of 1
1000" and orientational accuracy of 0:3o [27, ?].

The algorithm is applicable to both sparse and dense sensing paradigms; in sparse sensing

applications, such as probing, a small set of data is collected in each experiment, whereas in

dense sensing applications, such as machine vision, an inordinate amount of data is collected

in each experiment. Sparse sensing applications necessitated development of this localization
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algorithm because sparse sensing strategies require an exact optimal pose strategy. First, a

small data set cannot accommodate sampling points from the data set in order to transform

the problem of matching features of dissimilar types to matching features of similar types,

and second, a small data set is more susceptible to problems of local minima which can arise

with local methods such as gradient descent or Kalman �ltering.

1.2 Organization

The rest of the paper is organized in the following manner. In Section 2, we review

the algebraic methods used in this paper and explain how probabilistic analysis provides a

basis for using a least square error model to solve the localization problem. We describe

the localization problem and show how algebraic methods can be applied for optimal pose

determination in Section 3. The algorithm for localizing polygonal objects given point data

is described in Section 4 and the algorithm for localizing generalized polygonal objects, i.e.,

objects with linear and circular features is described in Section 5. In Section 6, we present

various examples, and use the localization technique to compare the relative localization

accuracy of utilizing all available data compared to using only an interesting subset of the

data. Finally, we conclude by highlighting the contributions of this work.

2 Background

2.1 Error Model

In this section, we describe the error model used for localization. Probability theory

provides the basis or reducing the object localization to a least squares error problem [25].

Assuming imperfect sensing and imperfect models, our goal is to tolerate these discrepancies

and provide the best estimate of the object's pose. Real data presents constraints which

are inconsistent with perfect models, and for this reason, we reformulate the problem into

a related solvable problem; minimizing the squared error is a common method for solving

problems with inconsistent constraints, and it provides to the maximum likelihood estimate,

assuming that the errors (noise) approximate independent normal (Gaussian) distributions.

The reason we assume a normal (Gaussian) error distribution is the composition of error

from many di�erent sources. Even though we may be using high precision, high accuracy

sensors to probe a two-dimensional object, such sensors have many intrinsic sources of error.

Furthermore, real objects can never be perfectly modeled, and this accounts for an additional

source of error. These error distributions de�ne a conditional probability distribution on
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the sensed data values given the boundary position (which depends on the object's pose,

equation (1)). The conditional probability can be rewritten in terms of the sum of the

squared discrepancies (equation (2)). The conditional probability of the pose given the

sensor data is related to the conditional probability of the sensor data given the pose by

Bayes' theorem (equations (3,4)).

The minimumsum squared error pose corresponds to the maximumprobability (maximum

likelihood estimate), since minimizing the negated exponent maximizes the result of the

whole expression. Thereby, computing the least squares error pose is analogous to performing

maximum likelihood estimation.

Pr(sensor = Sjpose = �) / e�
Discrepancy(s1;s1;predicted)

2

2�2
�Discrepancy(s2;s2;predicted)

2

2�2
�::: (1)

Pr(sensor = Sjpose = �) / e�
P

i
Discrepancy(si;si;predicted)

2

2�2 (2)

Pr(pose = �jsensor = S) =
Pr(sensor = Sjpose = �)Pr(pose = �)

Pr(sensor = S)
(3)

Pr(pose = �jsensor = S) / e�
P

i
Discrepancy(si;si;predicted)

2

2�2
Pr(pose = �)

Pr(sensor = S)

Pr(pose = �jsensor = S) / e�
P

i
Discrepancy(si;si;predicted)

2

2�2
1

2�
(4)

2.2 Directly Comparing Features

The sensor data point features should be directly compared to the model features, even

when the sensor features and model features are of di�erent types. One measure of discrep-

ancy between points and nonpoint features is the Euclidean distance between a sensor data

point and a speci�c predicted point on the model feature. Measuring the discrepancy in this

way relies on the mistaken assumption that the sensed point feature corresponds to a known

point on the model feature. The correspondence information speci�es a model feature relat-

ing to each sensor feature point, it does not indicate particular points on the model features.

A more reasonable measure of the discrepancy is the minimum distance between the sensor

feature point and the corresponding model feature, such as the minimum distance between a

point and a line, or the minimum distance between a point and a circle. For machine vision

applications, measuring the error in this way allows one to utilize all of the edge detected

pixels without introducing any arti�cial error (by sampling the model features, for example).

It turns out that the discrepancy (error), or minimum distance, between a sensor data point

and a linear model feature or a circular arc model is a nonlinear computation. In particular,
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the minimumdistance between a point and a circular arc cannot be formulated exactly with-

out introducing an additional variable; in order to achieve constant time performance, we

use a approximation to that minimum distance function which does not require introduction

of an additional variable.

2.3 Solving Algebraic Systems

The key to this algorithm is that we reduce the problem of �nding the global minimum

of an algebraic function to solving a system of nonlinear algebraic equations. Finding the

global minimum of a function is a classic problem and there many algorithms known in the

literature. The algorithms can be categorized into local methods and global methods. Local

techniques such as Newton's method require good initial estimates in order to �nd all the

solutions in the given domain, and this is di�cult in our applications. Global methods such

as resultants and Gr�obner bases are based on symbolic reduction and computing roots of

univariate polynomials. They are rather slow in practice and in the context of 
oating point

computations su�er from numerical problems. Other global techniques include homotopy

methods. However, they are rather slow for practical applications [13]. In this paper, we

use some recently developed algorithms based on multipolynomial resultants and matrix

computations described by Manocha [19]. Resultants are well known in classical algebraic

geometry literature [24, 18] and have recently been e�ectively used in many problems in

robotics, computer graphics and geometric modeling [19].
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Figure 2: (a): Given a set of sensed data points in the sensor reference frame, and non-point

model features in a model reference frame, the task is to determine the model position (in the

sensor reference frame). (b): The model's position can be expressed as the transformation

between the sensor frame and the model frame.
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The algorithm for solving non-linear equations linearizes the problem using resultants

and uses matrix computations such as eigendecomposition, singular value decomposition

and Gaussian elimination [9]. Routines for these matrix computations are available as part

of standard numerical linear algebra libraries. In particular, we used LAPACK [2] and

EISPACK [8] routines in our implementation of the algorithm.

2.4 Problem Speci�cation

Given a set of point features in one frame of reference and non-point features de�ned

in another frame of reference, we determine the transformation which optimally maps the

features onto each other. Assume without loss of generality that sensor features are data

points (in the sensor reference frame) and correspond to non-point model features (in the

model frame). The task is to localize the model (object) in the sensor reference frame; i.e.,

to determine the transformation between the sensor frame and the model frame consistent

with the data (see Figure 2(a)). Figure 2(b) shows the most likely pose of a particular

model/object for the points shown in Figure 2(a).

There are two approaches we can take: transform the non-point model features, and then

match them to points, or transform the points, and then match them to the non-point model

features. We have chosen to transform the points because it enables us to use a uniform

approach to solving the mathematical problems corresponding to di�erent feature types.

Due to the duality of these two related transformations, the algorithm for solving for the

optimal transformation of the points can also be used to solve for the optimal transformation

of the non-point model features by computing the inverse transformation.

3 Theoretical Framework

3.1 Transformation Matrices

Two-dimensional rigid transformations can be parameterized byX;Y; � (refer equation (5)).

In order to arrive at algebraic equations, we utilize the trigonometric substitution (t = tan( �
2):

sin � = 2t
1+t2 and cos � = 1�t2

1+t2 ). The algebraic matrixMat(X;Y; t), which is used throughout

this paper, is given in equation (5). It is important to remember that Mat(X;Y; t) is not
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exactly T (X;Y; �) but rather (1 + t2)T (X;Y; �).

T (X;Y; �)=

2
6664
cos(�) � sin(�) X

sin(�) cos(�) Y

0 0 1

3
7775 )Mat(X;Y; t)

t=tan( �
2
)

=

2
6664
1 � t2 �2t X(1 + t2)

2t 1� t2 Y (1 + t2)

0 0 1 + t2

3
7775

(5)

3.2 Determining Local Extrema

One way to extract the global minimumof a function is to compute all of the local extrema

(by solving for ~x in r�F (x1; x2; : : : ; xn) = ~(0; 0; : : : ; 0)) and �nd the minimum function value

at all the local extrema. This approach succeeds in the non-degenerate case, when the global

minimum may correspond to one or more points (a zero dimensional set), and when there

are a �nite number of local extrema, such as in the case of object localization. We utilize

this basic approach in order to �nd the minimum squared error pose. Let Error(X;Y; t)

describe the total squared error as a function of the pose parameters. First, we �nd all the

local extremum of Error(X;Y; t) by solving r � Error(X;Y; t) = ~(0; 0; 0). Then, the global

minimum is found by comparing the error function at all of the local extrema poses.

Previous attempts to compute the global minimum of the error function using gradient

descent methods su�er from problems of local minima because the partial derivatives of the

error function are nonlinear functions. In this algorithm, we utilize elimination techniques to

solve for all of the roots of the multivariate system of equations and thus avoid the problems

of local methods.

3.3 Symbolic Representation

Elimination theory deals with solving for coordinates of simultaneous solutions of multi-

variable systems [18]. Resultant methods are used for projection and elimination. We use

resultants to solve for one particular coordinate at a time; these methods involve construct-

ing a resultant equation in each coordinate, where the resultant construction depends on the

structure of the underlying system of equations.

The resulting computation involves a considerable amount of symbolic preprocessing. As

opposed to constructing the resultant formulation for each data set, we use a generic formu-

lation. The algebraic formulation of the squared error between the transformed points and

the lines allows us to use the algebraic equation as a generic representation for the squared

error. The total error function between points and linear features can be expressed as a
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rational polynomial, whose numerator consists of 24 monomials terms. Likewise, the alge-

braic formulation of the squared approximate error between transformed points and circles

allows us to use the algebraic equation as a generic representation for the squared error. The

approximate total error function between points and linear features and circular features has

a symbolic representation as a rational polynomial with a numerator consisting of 50 mono-

mial terms. The algebraic formulation of the total error functions serves as the intermediate

description. After reparameterizing the data sets in terms of algebraic coe�cients, only one

resultant formulation is necessary.

For each set of points and features, the sum of squared error between the set of points and

corresponding features is described by a rational equation in terms of the pose parameters

X;Y; t. The numerator of this rational equation is describable by the algebraic coe�cients

X iY jtk, where our nomenclature is such that axiyjtk refers to the coe�cient for the mono-

mial X iY jtk.

The multipolynomial resultant is used to eliminate variables from the system of partial

derivative equations, and thus to produce a function in one variable. This univariate function

is necessarily zero for all values of that variable which are common roots to the system of

equations. In the context of this application, the orientation parameter t is the most di�cult

pose parameter to determine. The �rst step in both of these techniques involves eliminating

X;Y to produce a resultant polynomial in t for which the partial derivatives of the error

function are simultaneously zero. For each such t, we can then compute the two remaining

pose parameters Xt and Yt. In the case of polygonal models, Xt and Yt are determined by

solving a system of two linear equations in Xt and Yt. For models with circular arc features,

computing XYt;t and Yt involves setting up another resultant to compute Yt by eliminating

Xt, and then computing XYt;t.

4 Optimal Pose Determination for Models With Linear Features

In this section, we describe the algebraic localization technique for polygonal models given

the boundary data points. We de�ne the problem as follows: compute the two-dimensional

rigid transformation T (X;Y; �) which best transforms the linear model features ~a onto the

data points ~x (refer section 2.4). This is accomplished by �nding the two-dimensional rigid

transformation T (X;Y; �) which best transforms the data points ~x onto the linear model

features ~a and then compute the inverse transformation. Pose estimation is reduced to a
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least squares error problem, which is accomplished by computing all of the local extrema of

the error function, and then checking the error function at all of the local extrema.

The main distinction between our approach and the related work in the literature lies in

our use of algebraic elimination theory to solve the simultaneous system of partial derivative

equations. We believe that gradient descent methods are unsuitable for solving this system

of equations. Algebraic elimination methods are used for the principal step of solving the

system of equations to enumerate the poses with local extrema of the error function.

The rest of the section is organized in the following manner. We �rst present an overview

of the algorithm. Then, we present an algebraic formulation of the error between an arbitrary

transformed point and an arbitrary line, followed by a generic description of the total error

function, in terms of symbolic algebraic coe�cients. Then, we detail the symbolic resultant

matrix for solving for one of the pose parameters (t) of the generic error function.

The symbolic coe�cients are recomputed each time the algorithm is run. In section 4.3,

we describe numerical methods for computing all the orientations t corresponding to the

local extrema poses. In section 4.4, we describe how the remaining pose parameters Xt; Yt

are computed for each orientation t.

Throughout this section, we will try to elucidate the main concepts using a simple ex-

ample with four points corresponding to three lines. We will graphically depict the error

function between each point and each corresponding linear feature, and we will depict the

sum squared error function between the points and linear features. Unfortunately though,

since the problem has three degrees of freedom, x; y; �, and we want to use an additional

degree of freedom to describe the error function, we cannot graphically depict the entire

problem completely since we do not want to confuse the situation by trying to describe a

four dimensional scenario. For these reasons, the graphics depict the three dimensional slice

along the hyperplane x = 0.

We run through an example in section 4.5, and in section 4.7 we present a data set for which

gradient descent methods may fail to �nd the optimal pose estimate. Finally, we present a

faster localization technique for rectilinear objects which exploits a symbolic factoring of the

resultant matrix.

4.1 Algorithmic Overview

Algebraic methods are used to compute the orientation, �, of polygonal objects. This

involves online and o�ine computations: the symbolic resultant matrix for � is constructed
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from the symbolic partial derivatives o�ine; online, the symbolic coe�cients are computed

given the data set, thereby constructing the symbolic resultant matrix. Then, the resultant

matrix is solved to enumerate all of the orientations, �, of poses with local extrema of the error

function. Then, the remaining pose parameters (X;Y ) are determined for each orientation

�. Finally, the global minimum is found by comparing the error of all of the local extrema

poses.

The localization algorithm involves four o�ine steps:

1. Determine the structure of a generic error function by examining an algebraic ex-

pression of the error between an arbitrary transformed point and an arbitrary linear

feature.

2. Express the error function Error(X;Y; �) as a generic algebraic function in terms of

symbolic coe�cients.

3. Formulate the partial derivatives of the generic error function Error(X;Y; �) with

respect to the coordinates: X, Y , and �. The motivation is that each zero-dimensional

pose with local extremum error satis�es r � Error(X;Y; �) = ~0.

4. Eliminate X and Y from the system of partial derivatives r � Error(X;Y; �) = ~0

in order to generate a expression solely in �. The result of this step is a symbolic

resultant matrix which will be used to solve for all of the � of poses with local extrema

error function. Given the orientation, �, the remaining pose parameters X�, Y� can be

determined by solving a system of linear equations. .

In addition to the o�ine steps, the localization algorithm involves three online steps (given

a data set):

1. Instantiate the symbolic coe�cients of the error function using the data set of points

and associated linear features.

2. Compute all of the candidate orientation parameters � by solving the resultant matrix

polynomial using eigenvalue techniques (refer section 4.3)

3. 8 �̂, if �̂ is a candidate orientation (Im(�̂) � 0) (where Im(x) refers to the imaginary

component of a complex number x):
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(a) Compute the remaining pose parameters X�; Y� for each � by solving the linear

system of equations @Error(X;Y;�)
@X

j�̂ = 0, @Error(X;Y;�)
@Y

j�̂ = 0

(b) Compute Error(X�̂ ; Y�̂; �̂) at each local extremum in order to �nd the global

minimum error pose.

4.2 Points and Linear Features

In this section we highlight the squared error function between points and linear features.

Given a point (X,Y) and an associated linear feature described by ~a = (a; b; c) where aX +

bY = c, the error between the point and the feature is: aX + bY - c, or (a; b;�c) � (X; Y; 1).

Let ~a be (a; b;�c)T and ~x be (X; Y; 1). The squared error between the point ~x and the

feature ~a, as a function of the transformation T (X;Y; �) is given in equation (6). The total

squared error for all of the points and associated features is given in equation (7). In order

to realize rational functions, we use the trigonometric substitution t = tan( �
2
) to arrive at

equation (7).

To circumvent the problems related to numerical inaccuracy, the points and features in

the data set should be centered at the origin before invoking the algorithm, and the opti-

mal transformation should be complementarily transformed afterwards. This reduces the

symbolic coe�cients and thus improves the numerical precision.

k(a; b;�c)T � (T (X;Y; �)(X; Y; 1)T)k2 =
k(a; b;�c)T � (Mat(X;Y; t)(X; Y; 1)T)k2

(1 + t2)2
(6)

Error(X;Y; �; ~x;~a) = k~aT � (T (X;Y; �)~xT)k2 =
k~aT � (Mat(X;Y; t)~xT)k2

(1 + t2)2

Error(X;Y; �) = Error(X;Y; t) =
X
i

Error(X;Y; �; ~xi;~ai) =

X
i

k~ai
T � (T (X;Y; �)~xi

T)k2 =

P
i k~ai

T � (Mat(X;Y; t)~xi
T)k2

(1 + t2)2
(7)

For example, consider the case of the four points and corresponding three lines depicted

in Figure 3. One pose which exactly maps the four points onto their corresponding features

is given in Figure 4. The four points are: (72 ;
�1
2 ); (

9
2;

�1
2 ); (4 +

p
3
2 ;

1
2); (4 �

p
3
2 ;

1
2), and the

three associated lines are x+1 = 0; 12x�
p
3
2 y� 1 = 0; 12x+

p
3
2 y� 1 = 0; the �rst two points

both correspond to the �rst line.

In order to illustrate the concept of an error function, consider the pose � = 0; y = 0

(refer Figure 5). In this case, the error between the �rst point and �rst corresponding linear
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B.(4+  3/2,1/2)C.(4−  3/2,1/2)

X

Y
x+

1=
0

x/2 + y  3/2 − 1 = 0

x/2 − y  3/2 − 1 = 0

Linear Features

X

Y

Corresponding Points

A
.

B.

C.

A.(7/2,−1/2) A.(9/2,−1/2)

Figure 3: The simple example used to illustrate the main concepts

B.(4+  3/2,1/2)=>(1/2,−  3/2)

C.(4−  3/2,1/2)=>(1/2,  3/2)

X

Y

x/2 + y  3/2 − 1 = 0

x/2 − y  3/2 − 1 = 0

x+1=0A.

B.

C.

Y

A.(7/2,−1/2)=>(−1,1/2)

A.(9/2,−1/2)=>(−1,−1/2)

X=0;Y=4;t =−1

Figure 4: One solution transformation which maps the four points onto the corresponding

linear features.

feature is 9
2 , and the error of the second point is 11

2 , and 1 for the both the third and fourth

points.

To further illustrate the concept of the error function, in Figure 6, we depict the squared

error function between the transformed points and the associated linear features as functions

of y and t. The total error function Error(Y; �), which is the sum of the four individual

squared error functions is given in Figure 7. The task, which we use resultant techniques

to accomplish, is to e�ciently �nd the global minimum of this error function; notice that

the global minimum of the error function is zero at � = 3�
2 , Y = 4, which corresponds to

mapping the vertices directly onto the corresponding linear features.

The sum of squared error between a set of points and corresponding lines is an algebraic

function of the translation and rotation matrix Mat(X;Y; t) (multiplied by (1 + t2)2). The
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x/2 − y  3/2 − 1 = 0

B.(4+  3/2,1/2)

C.(4−  3/2,1/2)

X

Y

x+
1=

0
A

.

Y

A.(7/2,−1/2)

9/2

Point 1

X

Y

x+
1=

0
A

.

Y

A.(9/2,−1/2)

11/2

Point 2

X

Y

B.

Y

Point 3

1

x/2 + y  3/2 − 1 = 0C.

1

Point 4

Figure 5: The distance between the points and the lines following the identity transformation

X = Y = t = 0.

coe�cients axiyjtk are computable using the data set of points and associated linear features.

The total sum squared error function (equation (7)) is multiplied by (1 + t2)2 to arrive at a

polynomial FF (X;Y; t) in X;Y and t (equations (8),(9)).

For each point ~x and associated linear feature ~a, the function FF (X;Y; t; ~x;~a) is a polyno-

mial expression in X;Y and t. The total function FF (X;Y; t) is the sum of all the individual

FF (X;Y; t; ~x;~a) error functions, and we can keep a running tally of all of the the symbolic

coe�cients (a, ax1, ax1y1, : : : ).

Error(X;Y; t) =
FF (X;Y; t)

(1 + t2)2
(8)

FF (X;Y; t) =
X
i

k~ai
T � (Mat(X;Y; t)~xi

T)k2 = a+Xax1+XY ax1y1+X2ax2+ Y ay1+ (9)

Y 2
ay2+ tat1+Xtax1t1+ Y tay1t1+ t2at2+Xt2ax1t2+XY t2ax1y1t2+

X2t2ax2t2+ Y t2ay1t2+ Y 2t2ay2t2+ t3at3+Xt3ax1t3+ Y t3ay1t3+

t4at4+Xt4ax1t4+XY t4ax1y1t4+X2t4ax2t4+ Y t4ay1t4+ Y 2t4ay2t4
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~x1 = (7
2
; �1

2
);~a1 = (1; 0;�1) ~x2 = (9

2
; �1

2
);~a2 = (1; 0;�1)

~x3 = (4 +
p
3
2
; 1
2
);~a3 = (1

2
; �

p
3

2
; 1) ~x4 = (4 �

p
3
2
; 1
2
);~a4 = (1

2
;
p
3
2
; 1)

Figure 6: The three dimensional plot of the error function Error(Y; �; ~xi;~ai) for each of the

four points and corresponding linear features.

Figure 7: The total error function Error(Y; �). The task, which we use resultant techniques

to accomplish, is to e�ciently �nd the global minimum of this error function.
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In the case of polygonal objects, some of the algebraic coe�cients are redundant because

the generic algebraic expression includes coe�cients which are dependent. We note these

redundancies because they can be exploited in the resultant construction.

ax1y1t2 = 2 ax1y1 ay2t2 = 2 ay2 ax2t2 = 2 ax2 ax2t4 = ax2

ax1y1t4 = ax1y1 ay2t4 = ay2 ax1t3 = ax1t1 ay1t3 = ay1t1

All of the minima of Error(X;Y; t), both local and global, have partial derivatives (with re-

spect to X;Y; t) equal to zero. To solve for the global minimum of Error(X;Y; t), we want to

�nd the con�gurations X;Y; t for which the partial derivatives are zero (refer equation (10)).

r � Error(X;Y; �) = ~(0; 0; 0) )r � Error(X;Y; t) = ~(0; 0; 0) (10)

Resultant techniques require algebraic (not rational) functions. Therefore, we replace the

rational partial derivatives with equivalent algebraic counterparts. Since we are only �nding

the common roots of equation (10), we are at liberty to use any function GX(X;Y; �) for
@Error(X;Y;t)

@X
where @Error(X;Y;t)

@X
= 0 ) GX(X;Y; �) = 0 (and Gy for @Error(X;Y;t)

@Y
and Gt for

@Error(X;Y;t)
@t

) .

For @Error(X;Y;t)
@X

and @Error(X;Y;t)
@Y

, GX(X;Y; t) and GY (X;Y; t) are equal to the partial

derivatives @FF (X;Y;t)
@X

, @FF (X;Y;t)
@Y

. Gt(X;Y; t) is slightly more complicated because the de-

nominator of @Error(X;Y;t)
@t

is a function of t, and that must be taken into account.

@Error(X;Y; t)

@X
/

@FF (X;Y; t)

@X

) GX(X;Y; t) =
@FF (X;Y; t)

@X
= 2Xax2+ 4Xax2t2 + 2Xax2t4 (11)

+Y ax1y1+ 2Y ax1y1t2 + Y ax1y1t4

+ax1+ ax1t1t+ ax1t2t2 + ax1t3t3 + ax1t4t4

@Error(X;Y; t)

@Y
/

@FF (X;Y; t)

@Y

) GY (X;Y; t) =
@FF (X;Y; t)

@Y
= Xax1y1+ 2Xax1y1t2 +Xax1y1t4

2Y ay2+ 4Y ay2t2 + 2Y ay2t4

ay1+ ay1t1t+ ay1t2t2 + ay1t3t3 ++ay1t4t4 (12)

@Error(X;Y; t)

@t
/

@
FF (X;Y;t)
(1+t2)2

@t
=

((1 + t2)@FF (X;Y;t)
@t

� 4tFF (X;Y; t))

(1 + t2)3
(13)
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) Gt(X;Y; t) = ((1 + t2)
@FF (X;Y; t)

@t
� 4tFF (X;Y; t)) (14)

@FF (X;Y; t)

@t
= at1+Xax1t1+ Y ay1t1+ 2at2t+ 2Xax1t2t+ 4XY ax1y1t (15)

+4X2ax2t+ 2Y ay1t2t+ 4Y 2ay2t+ 3at3t2 + 3Xax1t3t2 + 3Y ay1t3t2

+4at4t3 + 4Xax1t4t3 + 4XY ax1y1t3 + 4X2ax2t3

+4Y ay1t4t3 + 4Y 2ay2t3

Gt(X;Y; t) = ax1t1X � 4ax1tX + 2ax1t2tX � 3ax1t1t2X + 3ax1t3t2X � 2ax1t2t3X

+4ax1t4t3X � ax1t3t4X

+ay1t1Y � 4ay1tY + 2ay1t2tY � 3ay1t1t2Y + 3ay1t3t2Y � 2ay1t2t3Y

+4ay1t4t3Y � ay1t3t4Y

+at1� 4at+ 2at2t� 3at1t2 + 3at3t2 � 2at2t3 + 4at4t3 � at3t4 (16)

4.2.1 Example and Explanation of Resultant Methods

Elimination of X;Y from this system of equations (equation (11)=0, equation (12)=0, equa-

tion (16)=0) expresses the resultant as the determinant of a matrix polynomial in t. We

now show how these systems are solved using elimination theory. Consider the three func-

tions GX(X;Y; t), GY (X;Y; t), Gt(X;Y; t) which are proportional to the partial derivatives:
@Error(X;Y;t)

@X
, @Error(X;Y;t)

@Y
, @Error(X;Y;t)

@t
. Notice that GX(X;Y; t), GY (X;Y; t), Gt(X;Y; t) are

all quartic in t, but linear in X and Y . Resultants can be constructed for any algebraic

system of equations, but they are simplest for cases in which the equations are linear in all

but a single variable. We can rewrite the three equations as linear functions of X,Y , and t:

GX(X;Y; t) = f11(t)X + f12(t)Y + f13(t) = 0

GY (X;Y; t) = f21(t)X + f22(t)Y + f23(t) = 0

Gt(X;Y; t) = f31(t)X + f32(t)Y + f33(t) = 0

Consider the matrix equation (equation 17); in order for the partial derivatives to be

simultaneously zero, (X;Y; 1)T must be in the null space of the resultant matrix (refer equa-

tion (17)). The resultant matrix has a null space if and only if the determinant of the

resultant matrix is zero. Furthermore, any solution to the system of equations must lie in

the null space of the resultant matrix. We have therefore derived a relationship between roots

of the system of equations, and a single expression in a single variable. If t is a coordinate
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of a simultaneous solution of this system of equations, then the determinant of the resultant

matrix as a function of t must be zero. We can solve for all values of t using the resultant

matrix, by �nding all t such that jResultantMatrix(t)j = 0 (where jResultantMatrix(t)j

signi�es the determinant of ResultantMatrix(t)) and then we can solve for Xt and Yt for

each t.
2
6664
GX(X;Y; t)

GY (X;Y; t)

Gt(X;Y; t)

3
7775 =

2
6664
f11(t) f12(t) f13(t)

f21(t) f22(t) f23(t)

f31(t) f32(t) f33(t)

3
7775

| {z }
ResultantMatrix

2
6664
X

Y

1

3
7775 (17)

Solving the system of equations is reduced to �nding roots of the determinant of a matrix

polynomial, where M(t) denotes the resultant matrix.

M(t) = Resultant(f
@Error(X;Y; t)

@X
;
@Error(X;Y; t)

@Y
;
@Error(X;Y; t)

@t
g; fX;Y g)

= Resultant(fGX(X;Y; t); GY (X;Y; t); Gt(X;Y; t)g; fX;Y g) (18)

=

2
666666666666666666666666664

2ax2+ 4ax2t2 ax1y1+ 2ax1y1t2 ax1+ ax1t1t+ ax1t2t2

+2ax2t4 +ax1y1t4 ax1t3t3 + ax1t4t4

ax1y1+ 2ax1y1t2 2ay2+ 4ay2t2 ay1+ ay1t1t+ ay1t2t2

+ax1y1t4 +2ay2t4 ay1t3t3 + ay1t4t4

ax1t1� 4ax1t1t ay1t1� 4ay1t1t at1� 4at+ 2at2t

+2ax1t2t� 3ax1t1t2 +2ay1t2t� 3ay1t1t2 �3at1t2 + 3at3t2 � 2at2t3

+3ax1t3t2 � 2ax1t2t3 +3ay1t3t2 � 2ay1t2t3 +4at4t3 � at3t4

+4ax1t4t3 � ax1t3t4 +4ay1t4t3 � ay1t3t4

3
777777777777777777777777775

4.3 Solving the Matrix Polynomial

M(t) was obtained (equation (18)) by eliminatingX and Y from the equations correspond-

ing to the partial derivatives of Error(X;Y; t). In this section, we highlight a numerically

accurate and e�cient algorithm to compute the roots of jM(t)j = 0. All of the t coordinates

of the common solutions of the algebraic equations are roots of jM(t)j = 0.

A simple procedure for root �nding involves expanding the symbolic determinant and com-

puting the roots of the resulting univariate polynomial. This procedure involves a signi�cant

amount of symbolic computation (in determinant expansion), which makes it relatively slow.



21

Moreover, the problem of computing roots of polynomials of degree greater than 10 are can

be numerically ill-conditioned. As a result, the solutions obtained using IEEE 
oating point

arithmetic (or any other model of �nite precision arithmetic) are likely to be numerically

inaccurate. To circumvent these problems, we use matrix computations.

Solving jM(t)j = 0 is reduced to determining the eigenvalues of the block companion

matrix E. The construction of the block companion matrix E is highlighted in equation (19).

It involves matrix inversion and matrix products. In this section we assume that the leading

matrix, M4, is numerically well-conditioned. The eigenvalues of E are exactly the roots of

the equations jM(t)j = 0 [19] computed using routines from LAPACK [2] and EISPACK [8].

Solving for the roots of M(t) in this manner is numerically better conditioned than solving

the resultant polynomial formed by expanding the resultant matrix.

M(t) = M4t
4 +M3t

3 +M2t
2 +M1t+M0 (19)

E =

2
6666664

0 I 0 0

0 0 I 0

0 0 0 I

M�1
4 M0 M�1

4 M1 M�1
4 M2 M�1

4 M3

3
7777775

(20)

4.3.1 Identifying Possibly Valid Solutions

Resultant formulations can generate extraneous solutions; i.e., roots of the resultant which

have no corresponding solutions in the original system of equations. The normal approach

is to consider each root of the resultant a candidate solution. The disadvantage of treat-

ing all solutions as candidates is that the resultant formalism generates complex solutions

even when only real solutions are desired. In this case of matching points to linear features,

the orientation t is expected to be real. Furthermore, the resultant construction introduces

multiple extraneous roots i; i;�i;�i, and this is seen by the fact that the symbolic resul-

tant's characteristic polynomial is divisible by (1 + t2)2. We ignore complex solutions by

thresholding the imaginary components.

4.3.2 Improving the Accuracy

The eigenvalue decomposition depends upon the invertibility of the largest exponent ma-

trix (in this case, M4 is well conditioned and the inverse computation does not lead to

ill-conditioned matrices). Sometimes, the highest degree matrix M4 is symbolically rank
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de�cient. In this case, we use an algebraic substitution (s = f(t)), and generate a matrix

polynomialM 0 such that M 0(s) = 0,M(t) = 0 with an invertible largest exponent matrix

M 0
4 (M

0
4 = Coefficient[M 0; s4]) (where Coefficient[E; ti] describes the coe�cient of the ti

term in the expression E). Two simple transformations are the geometric inverse (t = 1
s
) and

a random generic rational transformation (t = �s+�

s+� ). We �rst try the geometric inverse sub-

stitution t = 1
s
which corresponds to checking whether M0 is numerically well-conditioned.

Let dM be M 's polynomial degree. If M0(t) is not well conditioned, we instead try a

number of generic rational transformations: t = �s+�

s+� , with random �; �; 
; �. If any of these

transformations produces a well conditioned matrixM 0
4 signi�ed by its condition number, we

use the random transformation corresponding to the best conditioned matrix. We compute

the eigenvalues s of the related large matrix E 0 (the companion matrix of the M 0 matrix),

to �nd all of the s for which jM 0(s)j = 0. The t values for which jM(t)j = 0 are computed

by applying the inverse function f�1 to the s values.

t =
1

s
! Mt=1=s(s) = sdMM(t)

! Coefficient[Mt=1=s; s
d] = Coefficient[M; tdM�d] (21)

t =
�s+ �


s+ �
! Mt=�s+�


s+�
(s) =M(t)(
s+ �)dM

If none of the rational transformations lead to numerically invertible largest exponent ma-

trices, we can use the generalized eigenvalue formulation.

4.3.3 Generalized Eigenvalue Formulation

In caseM4 is singular or numerically ill-conditioned and none of the transformations produces

a well conditioned matrix, we reduce root �nding to a generalized eigenvalue problem of a

matrix pencil [9]. The matrix pencil for the generalized eigenvalue problem is constructed

from the matrix polynomial in the following manner. Let

C1 =

2
6666664

I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 M4

3
7777775

C2 =

2
6666664

0 �I 0 0

0 0 �I 0

0 0 0 �I

M0 M1 M2 M3

3
7777775

(22)

and the eigenvalues of C1t+ C2 correspond exactly to the roots of jM(t)j = 0.
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4.4 Computing Xt and Yt

Given the value of t computed using eigenvalue routines, the corresponding Xt and Yt

coordinates of the roots of the algebraic equations are found in constant time by solving
@Error(X;Y;t)

@X
jt = 0 and @Error(X;Y;t)

@Y
jt = 0. The two linear equations in X and Y can be solved

using Cramer's rule.

4.4.1 Verifying That (Xt; Yt; t) is a Local Extremum

The method highlighted above is necessary but not su�cient and can produce extraneous

solutions. Therefore, we need to verify that each (Xt; Yt; t) con�guration is actually a local

extremum. This is accomplished by computing the absolute values of the partial derivatives

of the error function and comparing them to some � value, where the � should be non-zero

to accommodate sensor noise and numerical error.

4.5 Example

In this section, we step through an example in order to illustrate how we use resultants

to solve the non-linear least squares problem. Notice that we do not recompute Gx(X;Y; t),

GY (X;Y; t), or Gt(X;Y; t) online. Gx(X;Y; t), GY (X;Y; t), or Gt(X;Y; t) were intermediate

o�ine results used to construct the symbolic resultant matrix. In other words, the symbolic

resultant matrix is the compiled result of the elimination. For brevity, we present the inter-

mediary numeric values to four decimal places, though we use double precision arithmetic.

The resultant computation is comprised of seven steps:

1. Compute the symbolic coe�cients using the data set

2. Construct the symbolic resultant using the symbolic coe�cients

3. If necessary, apply transformations in order to �nd a well conditioned invertible highest

exponent matrix

4. Construct the companion matrix using the resultant matrix

5. Compute the eigenvalues of the companion matrix

6. If the algorithm applied a transformation in step 3, �nd the roots of t by applying an

inverse function to the eigenvalues

7. Compute the remaining pose parameters, Xt,Yt for each candidate, t
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Data point Linear Feature Algebraic Parameters

(xi;1; xi;2) (ai;1; ai;2; ai;3)

(-7.91, -7.91) (-0.007534555543, 0.999971614834, -9.004401406730)

(7.91, 7.91) (-0.007534555543, 0.999971614834, 6.805099825207)

(-7.91, 7.91) (0.700109199157, 0.714035789899, -12.166817390266)

(7.91, -7.91) (0.700109199157, 0.714035789899, 10.050656124962)

(-7.91, -7.91) (-0.710861891474, 0.703331622529, -11.545580060073)

(7.91, 7.91) (-0.710861891474, 0.703331622529, 10.561258166615)

Table 1: Example data set: data points and corresponding algebraically parameterized linear

features. The task is to compute the transformation which optimally transforms the set of

points onto the corresponding linear features.

4.5.1 Evaluating the Symbolic Coe�cients

The data set of points and associated linear features is given in Table 1. The symbolic coef-

�cients' values shown in Table 2 are computed from the points and features. They describe

the coe�cients of the sum of the algebraic error functions (refer equation( 23)). We present

FF (X;Y; t; ~(�7:91;�7:91; 0:0); ~(0:0075; 1:000;�9:0044)) in equation (24) and Figure 8.

FF (X;Y; t) = FF (X;Y; t; ~(�7:91;�7:91; 0:0); ~(0:0075; 1:000;�9:0044))

+FF (X;Y; t; ~(7:91; 7:91; 0:0); ~(0:0075; 1:000; 6:8041))

+FF (X;Y; t; ~(�7:91; 7:91; 0:0); ~(0:7001; 0:7140;�12:1668)) + : : : (23)

FF (X;Y; t; ~(�7:91;�7:91; 0:0); ~(0:0075; 1:000;�9:0044)) = (24)

1:3322 � 36:7938t + 292:9516t2 � 537:2817t3 + 284:0768t4

+2:3084Y � 31:8766Y t+ 36:0166Y t2 � 31:8766Y t3 + 33:7082Y t4

+0:9999(1 + t2)2Y 2 + 0:0001(1 + t2)2X2 � 0:0151(1 + t2)2XY

�0:0174X + 0:2402Xt � 0:2714Xt2 + 0:2402Xt3 � 0:2540Xt4
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Figure 8: The total error function Error(Y; �) for this example

a 503.8720

at1 -2001.9285

at2 3506.1299

at3 -2972.5279

at4 985.2446

ax1 1.5305

ax1t1 0

ax1t2 3.0610

ax1t4 1.5305

ax2 1.9911

ax1y1 -0.0304

ay1 8.8051

ay1t1 0

ay1t2 17.6102

ay1t4 8.8051

ay2 4.0089

Table 2: The values of the symbolic coe�cients which are used in the resultant formulation:

FF (X;Y; t) = a+ at1t+ : : :

4.5.2 Constructing the Matrix Resultant M Using the Symbolic Coe�cients

The resultant M(t) in equation (25) is generated from equation (18).

M(t) =

2
6664

3:9821t4+ 7:9643t2+ 3:9821 �0:0304t4 � 0:0608t2 � 0:0304; 0

�0:0304t4 � 0:0608t2 � 0:0304 8:0179t4 + 16:0357t2 + 8:0179 0

1:5305t4 + 3:0610t2 + 1:5305 8:8051t4 + 17:6102t2 + 8:8051  

3
7775 (25)

 = 2972:5279t4 � 3071:2816t3 � 2911:7982t2 + 4996:7719t � 2001:9285

4.5.3 Constructing the Companion Matrix E

At this point, we need to determine whether the highest exponent matrixM4 is numerically

invertible. We check its invertibility by computing the condition number for a particular

random value of t (in this case, 0.396465). M4(t = 0:396465) (equation (26)) is obviously

not uniformly degenerate since the matrix is well conditioned for a random value of t.

M4(t = 0:396465) =

2
6664

5:3324 �0:0407 0

�0:0407 10:7365 0

2:0495 11:7907 �596:5278

3
7775 (26)
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Computing the companion matrix E of M involves inverting the highest degree ma-

trix (in this case M4) and then left-multiplying all of the matrixes by M�1
4 . We compute

M�1
4 M0 : : :M

�1
4 M3 and combine them with an identity matrix to construct E.

M�1
4 =

2
6664

0:2511 0:0010 0

0:0010 0:1247 0

�0:0001 �0:0004 0:0003

3
7775 ;M

�1
4 M0 =

2
6664
1 0 0

0 1 0

0 0 �0:6735

3
7775

M�1
4 M1 =

2
6664
0 0 0

0 0 0

0 0 1:6810

3
7775 ;M

�1
4 M2 =

2
6664
2 0 0

0 2 0

0 0 �0:9796

3
7775 ;M

�1
4 M3 =

2
6664
0 0 0

0 0 0

0 0 �1:0332

3
7775

E =

2
6666664

03�9 I9�9
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4.5.4 Determining Roots of the Matrix Polynomial by Computing the Eigen-

values of Companion Matrix E

The eigenvalues of E are given in equation (27). Some of the 12 eigenvalues of E (E is a

square 12 � 12 matrix) are complex (with imaginary components > �). This is due to the

fact that the algebraic formulation of the transformation Mat(X;Y; t) de�nes a function for

complex values of t as well.

Eigenvalues(E) =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

0.000000009726 + 1.000000009241 i 0.000000009726 + -1.000000009241 i

-0.000000009726 + 0.999999990759 i -0.000000009726 + -0.999999990759 i

-1.231429745741 + 0.000000000000 i -0.000000005427 + 1.000000002712 i

-0.000000005427 + -1.000000002712 i 0.000000005427 + 0.999999997288 i

0.000000005427 + -0.999999997288 i 1.008279326594 + 0.000000000000 i

0.628186277667 + 0.384444450582 i 0.628186277667 + -0.384444450582 i

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(27)

4.5.5 Computing Xt and Yt for Candidate Solutions

We compute the remaining pose parameters (Xt; Yt) for each candidate t, the real eigen-

values, f�1:231429745741; 1:008279326594g. The values of Xt, Yt, and Error(Xt; Yt; t) for
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Type t Xt Yt Error(Xt; Yt; t)

Local Maximum -1.231429745741 -0.392742825743 -1.099677271638 2537.708141328489

Local Minimum 1.008279326594 -0.392742825743 -1.099677271638 0.047461161151

Table 3: Local extrema found by solving r � Error(X;Y; t) = 0

t = �1:231429745741 and t = 1:008279326594 are given in Table 3. The error function

Error(Xt; Yt; t) at t = 1:008279326594 is extremely small, and we observe that it is a local

minimum from the signs of the second order partial derivatives of Error(Xt; Yt; t). The

remaining candidates are disregarded because they are complex. Since the global minimum

is guaranteed to be one of the local extrema, the pose corresponding to t = 1:008279326594

is in fact the global minimum.

The pose is completed by transforming the t value into radians using equation (28). In

this case, �(t = 1:008279326594) = 1:5790415 radians.

�(t) = 2 tan�1(t) (28)

4.6 E�ect of Incorrect Correspondence

In this section, we show that the algorithm computes an optimum pose estimate even when

the correspondence information is incorrect. The algorithm computes the transformation

which maps the point set onto the feature set, regardless of the quality of the �t between

the transformed point set and the feature set. To demonstrate its robustness, we applied the

localization algorithm on almost the same data set with one exception: the third point now

corresponds to the same linear feature as the �rst two points (refer Table 4). A slice of the

error function is depicted in Figure 9, and the poses with extremal squared error are given

in Table 5.

Therefore, a high error residual at the local minima would indicate a wrong correspon-

dence.

4.7 Example Which Demonstrates Problems of Local Minima

The main advantage of using an algebraic approach to solve the non-linear least squares

problem is that it always returns the global minimum, not a local minimum. Gradient

descent techniques can fail by returning a local minimum. Table 6 shows a set of points and

linear feature parameters which induce a local minimum of the error function. The error

function is depicted in Figure 10, and the local minima are given in Table (7). In the case
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Data point Linear Feature Algebraic Parameters

(xi;1; xi;2) (ai;1; ai;2; ai;3)

(-7.91, -7.91) (-0.007534555543, 0.999971614834, -9.004401406730)

(7.91, 7.91) (-0.007534555543, 0.999971614834, 6.805099825207)

(-7.91, 7.91) (-0.007534555543, 0.999971614834, 6.805099825207)

(7.91, -7.91) (0.700109199157, 0.714035789899, 10.050656124962)

(-7.91, -7.91) (-0.710861891474, 0.703331622529, -11.545580060073)

(7.91, 7.91) (-0.710861891474, 0.703331622529, 10.561258166615)

Table 4: Incorrect data set: an incorrect correspondence is included to demonstrate the

localization technique's robustness.

Figure 9: The total error function Error(Y; �) given the wrong correspondence informa-

tion. Notice that the minimum sum squared error is on the order of 82, inferring incorrect

correspondence.

of linear features, it is impossible for a single value of t to correspond to two local minima

because @Error(X;Y;t)
@X

jt = 0 and @Error(X;Y;t)
@Y

jt = 0 are linear equations in X and Y (allowing

only a single generic solution).

In the example given in section 4.5, notice that there are only four non-degenerate values of

t (refer Table 7); in the example given in section 4.7, there are also only four non-degenerate

Type t Xt Yt Error(Xt; Yt; t)

Local Maximum -1.318194808282 11.674225332740 4.323041075059 1778.848128685287

Local Minimum 0.391742823602 2.115870897468 1.402893370181 82.262413290594

Table 5: Extremal error poses found for the data set with the incorrect correspondences.
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Model point Algebraic Parameters

(xi;1; xi;2) (ai;1; ai;2; ai;3)

(1.0, 0.0) (1.0, 0.0, 1.0)

(0.0, 1.0) (0.0, 1.0, 1.0)

(-1.0, 0.0) (1.0, 0.0, -1.0)

(0.0, -1.0) (0.0, 1.0, -1.0)

(0.6, 0.87) (3.06, 3.52, 4.09)

Table 6: An example of points and corresponding linear features which induce a local minima

in the error function.

Figure 10: The total error function Error(Y; �) for the example with local minima

values of t.

4.8 Points and Rectilinear Features

Having gone through the examples for localizing generic points and linear features, we now

describe a localization algorithm optimized for points and rectilinear features. This tailored

algorithm is much faster than the general case algorithm because the symbolic resultant can

be simpli�ed to a fourth order equation when all of the linear features are rectilinear, i.e.

Type t Xt Yt Error(Xt; Yt; t)

Local Minimum 0.163456292485 -0.048729446432 -0.056054788052 0.022882658439

Local Minimum -0.159961402498 -0.094761199366 -0.109006346984 0.055519581104

Local Maxima -56.167085506603 1.160012442320 1.33439339770 22.817164552496

Local Maxima -0.061241409474 -0.108071632540 -0.124317694947 0.059481427413

Table 7: Local extrema found by solving r � Error(X;Y; t) = 0
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either parallel or normal to each other. By redesigning the parts, or concentrating on only

the rectilinear edges, this special case can be exploited to achieve real-time localization with

cheaper computer hardware.

Although parallel edges can be represented in any manner, the description for which they

are all parallel either to the x axis or the y axis is particularly bene�cial because some of

the symbolic coe�cients become redundant, and this redundancy allows us to simplify the

symbolic resultant. For example the ax1t2 coe�cient (for the Xt2 term in FF (X;Y; t)) is

exactly the sum of the ax1 coe�cient (for the X term in FF (X;Y; t)) and the ax1t4 coef-

�cient (for the Xt4 term in FF (X;Y; t)); although these redundancies are unintuitive, they

are observed by expanding the error between points and horizontal lines (refer equation (6)),

and recognizing them is bene�cial. The redundant formulation of FF (X;Y; t) is given in

equation (29).

ax1t2 = ax1 + ax1t4; ay1t2 = ay1 + ay1t4; ax1y1 = ax1y1t2 = ax1y1t4 = 0

FF (X;Y; t) = a+ at1t+ at2t2 + at3t3 + at4t4 + ax1X + ax1t1Xt (29)

+ax1Xt2 + ax1t4Xt2 + ax1t1Xt3 + ax1t4Xt4 + ax2X2

+2ax2X2t2 + ax2X2t4 + ay1Y + ay1t1Y t+ ay1Y t2

+ay1t4Y t2 + ay1t1Y t3 + ay1t4Y t4 + ay2Y 2 + 2ay2Y 2t2 + ay2Y 2t4

In the case of rectilinear features, the resultant polynomial is a twelfth degree polynomial in

t, but it can be factored into a fourth order polynomial and eighth order polynomial (with

eight extraneous solutions, refer equation (30)). Thereby rectilinear features can be localized

faster because the fourth order polynomial in t can be solved exactly in constant time [1].

jM(t)j

(1 + t2)4
= a0 + a1t+ a2t

2 + a3t
3 + a4t

4 (30)

a0 = �2 � ax2 � ay1 � ay1t1� 2 � ax1 � ax1t1 � ay2+ 4 � at1 � ax2 � ay2

a1 = 4 � ax2 � ay12 � 2 � ax2 � ay1t12 � 4 � ax2 � ay1 � ay1t4+ 4 � ax12 � ay2

�2 � ax1t12 � ay2� 4 � ax1 � ax1t4 � ay2� 16 � a � ax2 � ay2

+8 � at2 � ax2 � ay2

a2 = 6 � ax2 � ay1 � ay1t1� 6 � ax2 � ay1t1 � ay1t4+ 6 � ax1 � ax1t1 � ay2

�6 � ax1t1 � ax1t4 � ay2� 12 � at1 � ax2 � ay2+ 12 � at3 � ax2 � ay2

a3 = 2 � ax2 � ay1t12 + 4 � ax2 � ay1 � ay1t4� 4 � ax2 � ay1t42 + 2 � ax1t12 � ay2
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+4 � ax1 � ax1t4 � ay2� 4 � ax1t42 � ay2� 8 � at2 � ax2 � ay2

+16 � at4 � ax2 � ay2

a4 = 2 � ax2 � ay1t1 � ay1t4+ 2 � ax1t1 � ax1t4 � ay2� 4 � at3 � ax2 � ay2 (31)

5 Optimal Pose Determination for Models with Circular and

Linear Features

In section 4 we described the localization algorithm for polygonal objects and objects with

linear features. In this section, we extend the algorithm to the larger class of generalized-

polygonal objects: objects with boundaries consisting of linear and circular features. Elim-

ination techniques are again used to solve the system of partial derivative equations. One

di�erence between the two localization algorithms is that resultant methods are used twice

for the circular features case because the partial derivatives @Error(X;Y;t)
@X

and @Error(X;Y;t)
@Y

are

nonlinear in X and Y .

5.1 Algorithm Overview

Resultant methods involve formulating the error function generically in terms of algebraic

coe�cients, formulating the partial derivatives in terms of the algebraic coe�cients, and

then constructing the symbolic resultant matrix. Resultant methods are used to eliminate

X and Y from the system of partial derivative equations to produce an equation solely in

�, which can be solved numerically. Then, resultant methods are used again to eliminate X

from a system of 2 partial di�erential equations to produce an equation solely in Y . Then,

the remaining pose parameter X is determined for each orientation � and y translation

component Y .

There are �ve o�ine steps (similar to points and linear features):

1. Determine the structure of a generic error function by examining an algebraic expres-

sion of the error between an arbitrary transformed point and an arbitrary circular

feature.

2. Express the error function Error(X;Y; �) as a generic algebraic function in terms of

symbolic coe�cients.

3. Formulate the partial derivatives of the generic error function Error(X;Y; �) with

respect to the coordinates: X, Y , and �. The motivation is that each zero-dimensional

pose with local extremum error satis�es r � Error(X;Y; �) = ~0.
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4. Eliminate X and Y from the system of partial derivatives r � Error(X;Y; �) = ~0 in

order to generate a expression solely in �. The result of this step is a symbolic resultant

matrix which is used to solve for all of the � of poses with local extrema error function.

Given the orientation, �, the remaining pose parameters X�, Y� can be determined by

solving a system of linear equations. .

5. Eliminate X from the system of two partial derivative equations @Error(X;Y;�)
@X

= 0 and
@Error(X;Y;�)

@Y
= 0 to produce an equation solely in Y�, which can be solved numerically.

The remaining pose parameter X is computed numerically using @Error(X;Y;�)
@X

= 0.

In addition to the �ve o�ine steps, there are three online steps:

1. Instantiate the symbolic coe�cients of the error function using the data set of points

and associated linear features.

2. Compute all of the interesting orientations � by solving the resultant matrix polynomial

using eigenvalue techniques (refer section 4.3)

3. 8 �̂, if �̂ is a candidate orientation (Im(�̂) � 0):

(a) Compute all of the interesting Ŷ�̂ by solving the resultant matrix polynomial using

eigenvalue computations described in section 4.3.

(b) 8 Ŷ�̂, if Ŷ�̂ is a candidate Y translation (Im(Ŷ�̂) � 0):

i. Compute for XŶ
�̂
;�̂ using

@Error(X;Y;�)
@X

j�̂;Ŷ
�̂
= 0 which is cubic in XY

�̂
;�̂

ii. ComputeError(XY
�̂
;�̂; Y�̂; �̂) at each local extremumin order to �nd the global

minimum error pose.

5.2 Approximating the Error Between Points and Circular Features

Unfortunately, resultant techniques cannot e�ectively minimize the squared error between

points and circular features. In this section, we prove that there is no algebraic rational

polynomial expression of the point position (x; y) which describes the squared minimum dis-

tance between a point and a circle. This is shown by the following example: consider a point

~(x; 0) on the x-axis and circle C centered at the origin with radius R (see Figure 11(a)). The

squared minimumdistance between the point ~(x; 0) and the circleC is shown in Figure 11(b).

The slope discontinuity of the squared minimum distance at x = 0 proves that no algebraic
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rational polynomial in x alone can describe the square of the minimum distance between a

circle and a point.

The minimumdistance between a point and a circle can be described by a modi�ed system

of algebraic polynomials by introducing an additional variable � denoting a point on the circle

C. But introducing a new variable for each circular feature in that manner would prohibit

the use of a single generic symbolic resultant matrix. Furthermore, introducing these extra

degrees of freedom would increase the complexity (and therefor the running time) of the

eigenvalue computations.

R

Circle C

(x,0)

Error   (x)2 

X X

F (x) = x   -  r  
2r( )

2 2 2

(a) (b) (c)

Figure 11: (a): Consider a point ~(x; 0) on the x-axis and a circle C centered at the origin

of radius R. (b): The squared minimum distance between ~(x; 0) and C as a function of x.

Notice the slope discontinuity at x = 0 which proves that the squared minimum distance

between a point and a circle cannot be written as a algebraic rational polynomial function in

the point position (x; y). (c): The function F (x) approximates the squared minimum error

for points nearby circular features.

For these reasons, we employ a rational polynomial function F (x) = (x
2�r2
2r )2 to approx-

imate the squared error function between points and circular features (see Figure 11(c)).

This approximation should su�ce when the data points are nearby the circular features.

5.3 Total Squared Error Function

In this section, we derive the squared error between points and circular features. We show

that the squared error between a set of points and a set of linear and circular features can

be expressed as a fourth order rational polynomial function in t.

Errortotal(X;Y; �) = Errorlinear features(X;Y; �) + Errorcircular features(X;Y; �) (32)
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=
X
i

Errorlinear(X;Y; �; ~xi;~ai)

| {z }
linear feature error

+
X
i

Errorcircular(X;Y; �; ~xi;~ci; ri)

| {z }
circular feature error

The error between a transformed point T (X;Y; t)~x and a circle C is exactly:

Errorcircular(X;Y; t; ~x;~c; r) = (k(T (X;Y; �)(X; Y; 1)T � (cx; cy; 1))k � r)2 = (33)

(kT (X;Y; �)~xT � ~ck � r)2 � F (T (X;Y; �)~xT � ~c; r) = (34)

(
kT (X;Y; �)~xT � ~ck2 � r2

2r
)2 =

(kMat(X;Y; t)~xT � (1 + t2)~ck2 � (1 + t2)r2)2

(1 + t2)2(2r)2
(35)

Errortotal(X;Y; �) =
X
i

Errorlinear(X;Y; �; ~xi;~ai)

| {z }
linear feature error

+
X
i

Errorcircular(X;Y; �; ~xi;~ci; ri)

| {z }
circular feature error

(36)

�
X

k~aT � (T (X;Y; �)~x)k2 +
X

(
kT (X;Y; �)~xT � ~cTk2 � r

2r
)2 (37)

=

P
k~aT � (Mat(X;Y; t)~x)k2

(1 + t2)2
+

P 1
4r2

(k(Mat(X;Y; t)~x� (1 + t2)~c)k2 � r(1 + t2)2)2

(1 + t2)4
(38)

It turns out that k(Mat(X;Y; t)~x�(1+t2)~c)k2�r(1+t2)2)2 is divisible by (1+t2)2 due to the

fact that cos2 �+sin2 � = 1. By factoring (1+ t2)2 out of the numerator and denominator of

Errorcircular(X;Y; t), we arrive at a quartic polynomial expression. The linear feature error

function and the factored circular feature error function have equal denominators ((1+ t2)2)

which enables the error functions to be easily added by adding the numerators of the error

functions. The squared error between points and linear features was derived in section 4.

We end up with an error function Errortotal(X;Y; t) which is a quartic function in t divided

by (1 + t2)2.

Errortotal(X;Y; t) =

P
k~a �Mat(X;Y; t)~xk2

(1 + t2)2
+

P 1
4r2 (

kMat(X;Y;t)~x�(1+t2)~ck2
(1+t2)2 � (1 + t2)r)2

(1 + t2)2
(39)

FFtotal(X;Y; t) = Errortotal(X;Y; t)(1 + t2)2 (40)

Once again, we use an algebraic function FFtotal(X;Y; t) to describe the sum squared error

between points and linear and circular features, where FFtotal(X;Y; t) = Errortotal(X;Y; t)

(equation (41)). The partials @Errortotal(X;Y;t)
@X

, @Errortotal(X;Y;t)
@Y

, @Errortotal(X;Y;t)
@t

, specify a sys-

tem of equations de�ning the local extrema of the error function (including the global mini-

mum).

FFtotal(X;Y; t) = a+Xax1+XY ax1y1+XY 2
ax1y2+X2

ax2+X2Y ax2y1+X3
ax3(41)
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+Y ay1+ Y 2ay2+ Y 3ay3+ tat1+Xtax1t1+XY tax1y1t1+XY 2tax1y2t1+X2tax2t1

+X2Y tax2y1t1+X3tax3t1+ Y tay1t1+ Y 2tay2t1+ Y 3tay3t1+ t2at2

+Xt2ax1t2+XY t2ax1y1t2+XY 2t2ax1y2t2+X2t2ax2t2+X2Y t2ax2y1t2

+X3t2ax3t2+ Y t2ay1t2+ Y 2t2ay2t2+ Y 3t2ay3t2+ t3at3+Xt3ax1t3

+XY t3ax1y1t3+XY 2t3ax1y2t3+X2t3ax2t3+X2Y t3ax2y1t3+X3t3ax3t3

+Y t3ay1t3+ Y 2t3ay2t3+ Y 3t3ay3t3+ t4at4+Xt4ax1t4+XY t4ax1y1t4

+XY 2t4ax1y2t4+X2t4ax2t4+X2Y t4ax2y1t4+X3t4ax3t4

+Y t4ay1t4+ Y 2t4ay2t4+ Y 3t4ay3t4+ (1 + t2)2(X2 + Y 2)2ax4y4

In the case of generalized-polygonal objects, some of the algebraic coe�cients are redun-

dant. We note these redundancies because they led to symbolic simpli�cation.

ax3t2 = 2 ax3 - ay3t1 ax3t3 = ax3t1 ax3t4 = ax3 - ay3t1 ax1y2t1 = ax3t1

ay3t2 = 2 ay3 + ax3t1 ax1y2t3 = ax3t3 ax1y2t4 = ax3t4 ax1y2t2 = ax3t2

ay3t4 = ay3 + ax3t1 ay3t3 = ay3t1 ax2y1t1 = ay3t1 ax2y1t2 = ay3t2

ax2y1t3 = ay3t3 ax2y1t4 = ay3t4

Again, the global minimum is found by �nding all of the local extrema and �nding the local

extrema with minimum error. All of the local extrema are found by solving for simultaneous

solutions to the zeros of the partial derivatives of the error function (refer equation 42).

r � Errortotal(X;Y; �) = (0; 0; 0) )r � Errortotal(X;Y; t) = (0; 0; 0) (42)

Again, since we are only �nding the common roots of equation (42), we are at liberty to use

substitute any functionHX(X;Y; �) for
@Errortotal(X;Y;t)

@X
with the proviso that @Errortotal(X;Y;t)

@X
=

0 ! HX(X;Y; �) = 0. Such a substitution is necessary because we will be using resultant

techniques which require algebraic (not rational) functions.

For @Errortotal(X;Y;t)
@X

and @Errortotal(X;Y;t)
@Y

, HX(X;Y; t) and HY (X;Y; t) are equal to the partial

derivatives @FFtotal(X;Y;t)
@X

; @FFtotal(X;Y;t)
@Y

. Ht(X;Y; t) is slightly more complicated because the

denominator of @Errortotal(X;Y;t)
@t

is a function of t, and this must be taken into account.

@Errortotal(X;Y; t)

@X
/

@FFtotal(X;Y; t)

@X

HX(X;Y; t) =
@FFtotal(X;Y; t)

@X
@Errortotal(X;Y; t)

@Y
/

@FFtotal(X;Y; t)

@Y
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HY (X;Y; t) =
@FFtotal(X;Y; t)

@Y

@Errortotal(X;Y; t)

@t
/

@ FFtotal(X;Y;t)
(1+t2)2

@t
=

((1 + t2)@FFtotal(X;Y;t)
@t

� 4tFFtotal(X;Y; t))

(1 + t2)3
(43)

Ht(X;Y; t) = ((1 + t2)
@FFtotal(X;Y; t)

@t
� 4tFFtotal(X;Y; t)) (44)

The resultant of this system of equations is obtained by eliminating X and Y using the

Macaulay construction [18].

M(t) = Resultant(f
@Errortotal(X;Y; t)

@X
;
@Errortotal(X;Y; t)

@Y
;
@Errortotal(X;Y; t)

@t
g; fX;Y g)

= Resultant(fHX(X;Y; t);HY (X;Y; t);Ht(X;Y; t)g; fX;Y g) (45)

5.4 Solving for Orientation, t, of Local Extrema Poses

The resultant of the system of equations: r � Errortotal(X;Y; t) = 0 is a 36 � 36 matrix

with rank 34. Furthermore, we can eliminate two rank-de�cient rows and many redundant

singleton rows (rows containing only one non-zero element). Symbolicmanipulation produces

a 26� 26 matrix with three singleton rows. The roots of the 26� 26 matrix polynomial are

computed using the eigendecomposition algorithms described in section 4.3.

The numerical precision of the resultant approach depends on the resultant matrix having

full rank. Rank de�ciency can result from redundant coe�cients. The 26�26 construction we

describe is designed for combinations of linear and circular features. If there are only circular

features, we need to reexamine the symbolic resultant to eliminate any remaining rank

de�ciencies. For eigenvalue computations, rank de�ciency results in numerical imprecision.

For robustness, we generate both resultant formulations, one assuming linear features are

included, and one assuming linear features are not included, and use the appropriate matrix

to compute the orientation t.

5.5 Solving for Y Position, Yt, of Local Extrema Poses

To compute Yt after solving for t, we again use resultant methods since the remaining

equations are nonlinear in X and Y . The resultant is constructed using the equations:
@Errortotal(X;Y;t)

@X
jt = 0 and @Errortotal(X;Y;t)

@Y
jt = 0. At a particular orientation t, @Errortotal(X;Y;t)

@X
jt =

0 can be written as a function U(Xt; Yt) = 0, and @Errortotal(X;Y;t)
@Y

jt = 0 can be written as a

function V (Xt; Yt) = 0. U(Xt; Yt) = 0 is cubic in Xt and V (Xt; Yt) = 0 is quadratic in Xt.

U(Xt; Yt) = 0 , u3(Yt)X
3
t + u2(Yt)X

2
t + u1(Yt)Xt + u0(Yt) = 0 (46)

V (Xt; Yt) = 0 , v2(Yt)X
2
t + v1(Yt)Xt + v0(Yt) = 0 (47)
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We use the Macaulay resultant to eliminate Xt and produce a function in Yt (refer equa-

tion (48)) [18]. This determinant of the resultant matrix is a third-order matrix polynomial

in Yt. This construction is more complex than the construction for the case of linear equa-

tions (refer section 4.2.1). We compute the roots of Yt at simultaneous solutions using the

eigenvalue decomposition method we previously outlined (see section 4.3).

Resultant(fU(Xt; Yt); V (Xt; Yt)g;Xt) =

2
66666666664

u0(Yt) 0 v0(Yt) 0 0

u1(Yt) u0(Yt) v1(Yt) v0(Yt) 0

u2(Yt) u1(Yt) v2(Yt) v1(Yt) v0(Yt)

u3(Yt) u2(Yt) 0 v2(Yt) v1(Yt)

0 u3(Yt) 0 0 v2(Yt)

3
77777777775

(48)

5.6 Solving for X Position, XYt;t,of Local Extrema Poses

Given Yt and t,
@Errortotal(X;Y;t)

@X
jt = 0 is a cubic equation in XYt ;t which can be solved nu-

merically. @Errortotal(X;Y;t)
@X

jt = 0 is used, rather than @Errortotal(X;Y;t)
@Y

jt = 0 (which is quadratic

in XYt;t), in case @Errortotal(X;Y;t)
@Y

jt is independent of XYt ;t.

5.7 Verifying (XYt ; Yt; t) is a Local Extremum

Resultant methods can produce extraneous solutions because they are necessary but not

su�cient condition. This particular method can generate 26�4�5�3 con�gurations. Once

again, we need to verify that each (XYt ; Yt; t) con�guration is a local extremumby computing

the absolute values of the partial derivatives and comparing them to some � threshold which

accommodates sensor noise and numerical error.

5.8 Example

In this example, consider the case of the four points corresponding to two circles as shown

in Figure 12. One pose which exactly maps the four points onto their corresponding features

is given in Figure 13. The four points are: (�2; 3); (�1; 2); (�2; 1); (�2;�3), and the two

associated circles are (x+2)2+ y2 = 1; (x� 2)2+ y2 = 1; the �rst four points all correspond

to the �rst circle.

The total error function between the transformed points and the associated circular fea-

tures is given in Figure 14 as a function of y and t. The global minimum of the error function

is zero at � = �
2 , Y = 2, which corresponds to mapping the vertices directly onto the cor-

responding circular features. The algorithm found two distinct local minima, the global

minima and also X = �2:1629; Y = 0:0915; � = �).
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X X

Y

Corresponding Points

A. (x+2)^2 + y^2= 1 B. (x−2)^2 + y^2= 1

Circular Features

A.(−2,3)

A.(−1,2)

A.(−2,1)

B.(−2,−3)

Figure 12: A simple example used to illustrate the algorithm for points and circular features

6 Implementation and Performance

In this section, we describe the performance of the localization algorithm on many cases.

We have applied the algorithm on randomly generated data for large data sets as well as

investigated the relationship between camera resolution and accuracy using simulated data.

We used the localization algorithm to compare the localization performance of using all

available boundary information as compared to just utilizing isolated boundary points, and

we experimentally tested the technique for small data sets using real data.

In the �rst case, we generated random sensed data, consisting of random features and

then random feature points. To simulate the random positions, all of the feature points were

transformed by a random rigid two-dimensional transformation. Finally, we ran the local-

ization on the random features and transformed feature points and compared the estimated

transformation with the actual transformation.

For the second suite of experiments, we investigated the relationship between pixel resolu-

tion and localization accuracy by localizing objects in known poses at di�erent resolutions.

We began with simple polygonal models representing the objects' boundaries, and moved

the models into random positions: x; y; �. For each pose and resolution, we enumerated

all of the pixel squares covered by the boundary features and listed these corresponding

feature(s) with each pixel. Finally, we compared the estimated transformations with the ac-

tual transformations for di�erent pixel resolutions to understand the implications of camera

resolution.
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X

A. (x+2)^2 + y^2= 1 B. (x−2)^2 + y^2= 1

B.(−2,−3) ,=> (3,0)
A.(−2,3)
=>(−3,0)

A.(−1,2)
=>(−2,1)

A.(−2,1)
=>(−1,0)

X

Y

X=0,Y=2,t =1

Figure 13: One solution transformation which maps the four points onto the corresponding

circular features.

Figure 14: The total error function Error(Y; �) for the four points and associated circular

features.

6.1 Verifying the Technique With Random Features

6.1.1 Generating Random Point and Linear Feature Data

Point and corresponding linear feature data (edges) were synthesized as shown in Figure 15:

1. Random Linear Feature (Edge) Generation:

(a) Randomly choose the edge's direction from a uniform distribution [0 : : :2�].

(b) Randomly choose the edge's distance from the origin from a uniform distribution

[mindistance : : :maxdistance].
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  (b) Choose
distance from
   the origin

min max

0

l

  (a) Choose
edge direction

θ

X

Y

θ

l

Construct Line

1. Generate Edge

min max

0

(a) Choose radius

r

X

Y

  (b) Choose
point from two
intersections of
edges and circle

2. Generate Point on Edge

r

θ

  (b) Choose
distance from
   Gaussian 
 distribution

(c) Perturb point 

3. Perturb Point

  (a) Choose
perturbation
   direction

Figure 15: Method for constructing random point and linear feature data

2. Random Point Sampling from Linear Feature (Edge):

(a) Construct a circle centered at the origin of random radius by randomly choosing

a radius r from a uniform distribution [minradius : : :maxradius].

(b) Find the point on the edge by intersecting the edge with the circle formed in step

(a).

3. Random Gaussian Perturbation of Data Point:

(a) Randomly choose a perturbation to the point, by choosing the orientation and

length of the perturbation: orientation from a uniform distribution [0 : : : 2�],
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length from normal distribution with mean 0 and standard deviation �.

minlength was 0.0, maxlength was 10.0, minradius was 10.0, maxradius was 15.0, and � was 0:1.

6.1.2 Generating Random Point, Circular Feature Data

Point and corresponding linear feature data and corresponding circular feature data were

synthesized by generating point and linear feature data as described in section 6.1.1, and

generating point and circular feature data as shown in Figure 16:

θ

  (b) Choose
distance from
   Gaussian 
 distribution

(c) Perturb point 

3. Perturb Point

1. Generate Circle

  (a) Choose
circle’s center

minY

maxYmaxXminX

min max

0

r

(b) Choose radius

θ

  (a) Choose
point on circle

  (a) Choose
 perturbation
   direction

rθ

2. Generate Point on Circle

  (b) Choose
point from two
intersections of
edges and circle

Figure 16: Method for constructing random point and circular feature data

1. Random Circular Feature Generation:
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(a) Randomly choose the center of the circle (from a square) by choosing random x

and y positions from uniform distributions: [mincoordinate : : :maxcoordinate].

(b) Randomly choose the circle's radius r from a uniform distribution: [minradius : : :maxradius].

2. Random Point Sampling from Circular Feature:

(a) Randomly choose the point on the circle perimeter from a uniform distribution

[0 : : : 2�].

3. Random Gaussian Perturbation of Data Point:

(a) Randomly choose a perturbation to the point by choosing the orientation and

length of the perturbation: orientation from a uniform distribution [0 : : : 2�],

length from normal distribution with mean 0 and standard deviation �.

mincoordinate was -10.0, maxcoordinatetest was 10.0, minradius was 3.0, maxradius was 15.0, and

� was 0:1.

6.1.3 Results

Table 8 compares the estimated poses with the actual poses for the randomly generated

data sets of points and linear features and circular with perfect sensing (� = 0:0). Table 9

compares the estimated poses with the actual poses for the randomly generated data sets

of points and linear features with � = 0:1. Table 10 compares the estimated poses with the

actual poses for the randomly generated data sets of points and linear and circular features

with � = 0:1.

6.2 Relationship Between Pixel Resolution and Localization Accuracy

Most of the work in machine vision is camera-based and involves high precision, high

data bandwidth sensors. This localization algorithm is useful for edge-detection based ap-

proaches because it enables the user to utilize all the edge data. In regards to edge-detection

based approaches, we wanted to investigate the relationship between camera resolution and

localization accuracy.

There are many factors which a�ect the quality of localization estimates, such as lens

distortion, lighting, surface re
ectance, etc. In these experiments, we concentrated only on

the relationship between pixel resolution and localization accuracy in order to gain a clear
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Random Point and Linear and Circular Feature Data

# linear features # circular features Actual pose Estimated pose

8 0 (X = 2; Y = 2; � = 0:7) (X = 2:0; Y = 2:0; � = 0:7)

8 0 (X = �3; Y = 2; � = 0:8) (X = �3:0; Y = 2:0; � = 0:8)

8 0 (X = �1; Y = 2; � = 0:9) (X = �1:0; Y = 2:0; � = 0:9)

8 0 (X = 4; Y = 6; � = 1:0) (X = 4:0; Y = 6:0; � = 1:0)

4 4 (X = 2; Y = 2; � = 0:7) (X = 2:0; Y = 2:0; � = 0:7)

4 4 (X = �3; Y = 2; � = 0:8) (X = �3:0; Y = 2:0; � = 0:8)

4 4 (X = �1; Y = 2; � = 0:9) (X = �1:0; Y = 2:0; � = 0:9)

4 4 (X = 4; Y = 6; � = 1:0) (X = 4:0; Y = 6:0; � = 1:0)

0 8 (X = 2; Y = 2; � = 0:7) (X = 2:0; Y = 2:0; � = 0:7)

0 8 (X = �3; Y = 2; � = 0:8) (X = �3:0; Y = 2:0; � = 0:8)

0 8 (X = �1; Y = 2; � = 0:9) (X = �1:0; Y = 2:0; � = 0:9)

0 8 (X = 4; Y = 6; � = 1:0) (X = 4:0; Y = 6:0; � = 1:0)

Table 8: Performance of (point,linear and circular feature) localization technique for ran-

domly generated data with � = 0.

Random Point and Only Linear Feature Data

# of random data points Actual pose Estimated pose

100000 (X = 2; Y = 2; � = 0:7) (X = 1:998597; Y = 2:003240; � = 0:700061)

100000 (X = �3; Y = 2; � = 0:8) (X = �3:001527; Y = 2:002663; � = 0:800075)

100000 (X = �1; Y = 2; � = 0:9) (X = �1:001533; Y = 2:002073; � = 0:900087)

100000 (X = 4; Y = 6; � = 1:0) (X = 3:998578; Y = 6:001493; � = 1:000099)

1000000 (X = 2; Y = 2; � = 0:7) (X = 1:999183; Y = 2:000571; � = 0:699966)

1000000 (X = �3; Y = 2; � = 0:8) (X = �3:000826; Y = 2:000516; � = 0:799959)

1000000 (X = �1; Y = 2; � = 0:9) (X = �1:000823; Y = 2:000461; � = 0:899951)

1000000 (X = 4; Y = 6; � = 1:0) (X = 3:999190; Y = 6:000408; � = 0:999945)

Table 9: Performance of (point,linear feature) localization technique for randomly generated

data for � = 0:1.
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Random Point and Linear and Circular Feature Data

# linear # circular Actual pose Estimated pose

features features

100000 100000 (X = 2; Y = 2; � = 0:7) (X = 2:000344; Y = 2:001496; � = 0:699958)

100000 100000 (X = �3; Y = 2; � = 0:8) (X = �2:999460; Y = 2:001097; � = 0:799954)

100000 100000 (X = �1; Y = 2; � = 0:9) (X = �0:999193; Y = 2:000738; � = 0:899951)

100000 100000 (X = 4; Y = 6; � = 1:0) (X = 4:001135; Y = 6:00432; � = 0:999948)

1000000 1000000 (X = 2; Y = 2; � = 0:7) (X = 2:000105; Y = 1:999681; � = 0:699999)

1000000 1000000 (X = �3; Y = 2; � = 0:8) (X = �2:999905; Y = 1:999641; � = 0:799999)

1000000 1000000 (X = �1; Y = 2; � = 0:9) (X = �0:999903; Y = 1:999603; � = 0:900003)

1000000 1000000 (X = 4; Y = 6; � = 1:0) (X = 4:000110; Y = 5:999568; � = 1:000005)

Table 10: Performance of (point,linear and circular features) localization technique for ran-

domly generated data � = 0:1.

understanding. The term pixel refers to an individual sensor in the sensor matrix. We

assume that the resolution of the data produced by the camera is limited by the pixel size.

The term pixel resolution refers to the area in the scene (in the neighborhood of a particular

object) characterized by a single pixel.

We believe that many systems rely on comparing isolated points on boundary curves, such

as vertices and in
ection points, because there are easily reproducible published algorithms

for e�ciently solving this problem. The purpose of these experiments is to determine the how

signi�cantly the localization precision improves by utilizing all of the available data, rather

than only isolated boundary points. We wanted to determine whether utilizing all of the edge

data was signi�cantly better compared to using only isolated points on boundary curves; it

was intuitive to us that using more of the available data always improves performance. We

found a distinct advantage to using all of the available information in that our localization

technique provided not insigni�cantly better estimates.

The experiments consisted of localizing a known object from a library of four modeled

objects in a known pose, and recording the variation between the actual and estimated pose

parameters. These experiments involved generating simulated data for polygonal models in

multiple poses for multiple camera resolutions. We used simulated data in order to focus on

the relationship between pixel resolution and localization accuracy. We assumed a model of

square pixels. The data points were of the form: <pixel center, associated linear feature>, and
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the data was synthesized by enumerated the centers of all pixel squares which overlapped

any of the modeled boundary features (refer Figure 17). A picture of the pixelization of the

hex-model object is shown in Figure 19.

(a) (b)

(d)(d)

Figure 17: Simulated data was synthesized by enumerating the centers of all of the square

pixels crossed by the boundary features

Four di�erent polygonal models were used, and each polygonal model was localized in

ten di�erent poses at �ve di�erent pixel resolutions. In order to characterize the results, we

measured the errors in x; y; � in a manner similar to standard deviations. In other words,

we summed up the squares of the discrepancies between the actual and estimated pose

parameters for x; y; �, and computed the square root of the average. To characterize the

average error, we simply averaged the errors returned by the optimal �t returned by the

localization technique. These error measurements are reported in Table 11.

Table 11

The results from using only data points corresponding to the vertices are shown in Table 12.

The most important variable (for polygons) is � because the x and y pose parameters are

linear functions and can be easily solved given �. Notice that the pose parameter estimates

appear to shrink by a factor between three and four each time the resolution is doubled.

The x; y; � values do stop converging at very high resolutions, i.e., for most of the objects,

the pose parameters x; y acquiesce to within 0.01 units of translation (0.02% of the object
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(−6.3,21.3)

(0.0,26.5)

(6.3,21.3)

(6.3,−21.3)(−6.3,−21.3)

(0.0,−26.5)

(0.0,0.0) (50.0,0.0)

(50.0,−20.0)

(40.0,−50.0)

(40.0,−60.0)(10.0,−60.0)

(10.0,−50.0)

(0.0,−20.0)

(0.0,0.0)

(−26.6,−16.6) (26.6,−16.6)

(0.0,36.6)

(0.0,0.0) (50.0,0.0)

(60.0,10.0)

(60.0,−40.0)(−10.0,−40.0)

(−10.0,20.0)

(10.0,40.0) (20.0,40.0)

(20.0,30.0)

(0.0,10.0)

(0.0,−30.0) (50.0,−30.0)

Hexthing Fiducial Mark

Letter T Number 6

Figure 18: Four objects: Hex-model, Fiducial, Letter T, Number 6. Almost all of the vertex

positions are given, but including the vertex positions for the letter T would clutter the

�gure without adding any additional information

length), and the orientational parameter � appears to acquiesce to a precision of 0.0001

radians. Also notice that the sum squared error shrinks by a factor of two each time the

resolution is doubled, implying that the squared error per datapoint shrinks by a factor of

four each time the resolution is doubled.

Next, we investigated the performance degradation related to only utilizing isolated bound-

ary points, rather than all of the available boundary information. To accomplish this, we

generated data points We did not utilize the published algorithms for estimating pose from

point sets, but instead used the localization technique with only the data points from vertices.

All such data points are easily found by modifying the object model, and then synthesizing

the data in exactly the same manner. The model was modi�ed by replacing each edge by

extremely small edges at the endpoints. In this way, the data synthesizer only generates
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Figure 19: The simulated pixel data for the hex-model object at position (7;�3) at orien-

tation -0.32 radians at resolution 1 pixel unit

data points for the vertices. This approach does not give the exact same answer as using the

commonly used point set algorithm because the error function of the localization technique

is not the squared distance between the transformed model vertex and the actual vertex,

but the sum of the two squared errors between the transformed actual vertices and the two

linear model features. The statistics for using only the vertices for the hex-model object are

given in Table 12.

We interpret these results from Table 12 in comparison to localization experiments using

only the corner data. The most important variable (for polygons) is � because the x and

y pose parameters are linear functions and can be easily solved given �. At the sharpest

resolution, the � estimates for the localization technique are 20 times more accurate than

the vertex-based localization technique. Furthermore, errors in x; y are larger for the vertex

case at every resolution save one.

The only error statistic which does not di�er signi�cantly between the two approaches is

the squared error. On a per-data point basis, the squared error of the localization technique

at the sharpest resolution 5:42
614:6 (approximately 0.01) is very similar to the squared error

per data point of the vertex based method, 0:09
17 . We found that the pose estimates were

more accurate using more data points, which is an intuitive result. It is confusing to note

that the sum squared errors are relatively equivalent; one explanation is that since there are
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fewer data points, a vertex-based approach more easily �ts the data, even though it does not

produce a more precise result.

7 Conclusion

7.1 Conclusion

In this paper, we described an object localization technique for sensor and model features

of di�erent types, such as polygonal models, and probe points. The approach involved re-

ducing the pose estimation problem to a least squares error problem. We utilized algebraic

elimination techniques to exactly solve the least squares error problems. The main advan-

tages of this localization algorithm are its applicability both to sparse and dense sensing

strategies, its immunity to local minima problems, its exact computation of the global min-

imum, and its high speed. We used this technique to compare the relative performance of

using only a subset of the data (interesting features such as vertices), with using the entire

data set, and we found the intuitive result that utilizing more data provides a more pre-

cise position estimate. This algorithm has been successfully applied it for recognition and

localization applications using very precise optical sensors.

7.2 Future Work

This approach is extendible to three-dimensional localization from three-dimensional range

data. This would involve computing generic error functions between points and features of

co-dimension one (planes, surfaces) as a function of the six degrees of freedom. After the

generic error functions have been determined, all we need to do is construct larger resultant

matrices to solve for the minima. The resultant solving may take a slightly longer time owing

to the greater number of degrees of freedom and algebraic complexity. This approach may

also be extendible to three-dimensional localization from two-dimensional perspective image

data. In this case, we can consider the image points to be rays going through the eye, and

compute the disparity between these rays and model edges in three dimensions. The crucial

step involves succinctly formulating the generic error between pairs algebraically. Again,

resultant solving may take a longer time, owing to the greater number of degrees of freedom

and algebraic complexity.
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Object Resolution jPixelsj
q

1
n

P
n(x� x̂)2

q
1
n

P
n(y � ŷ)2

q
1
n

P
n(� � �̂)2 Error

Hex-model 4.0 44.4 0.33446434 0.23129888 0.013330161 92.927956

Hex-model 2.0 82.4 0.07352662 0.049923003 0.0047521484 44.196507

Hex-model 1.0 157.6 0.041777074 0.0063066096 0.0036297794 21.544956

Hex-model 0.5 309.5 0.0031298357 0.0016034179 4.643562e-4 10.784967

Hex-model 0.25 614.6 0.0042416616 3.8894132e-4 1.0569962e-4 5.4200945

Letter \T" 4.0 49.2 0.5133025 0.60952026 0.021071866 103.38039

Letter \T" 2.0 90.4 0.13007967 0.25665605 0.00581296 48.95305

Letter \T" 1.0 174.3 0.054255202 0.124452725 0.0047051026 24.013884

Letter \T" 0.5 343.2 0.012289527 0.017529113 6.203042e-4 12.062334

Letter \T" 0.25 679.6 0.0040623806 0.0034328252 1.9236103e-4 6.0177937

Number \6" 4.0 106.5 0.21361086 0.19730452 0.010275254 228.42712

Number \6" 2.0 205.8 0.054341987 0.049577143 0.004476396 112.03862

Number \6" 1.0 405.9 0.010724932 0.02340998 0.0010456733 56.430653

Number \6" 0.5 803.6 0.0059675984 0.004836324 1.6956787e-4 28.311207

Number \6" 0.25 1600.9 0.0017914316 0.0019320602 7.470778e-5 14.09613

Fiducial 4.0 61.4 0.21314956 0.14251679 0.007586037 128.73416

Fiducial 2.0 120.0 0.057874706 0.07354973 0.0030514833 66.32908

Fiducial 1.0 237.4 0.029797971 0.02263394 8.284851e-4 33.25131

Fiducial 0.5 468.0 0.004916789 0.004921388 1.2238462e-4 16.175451

Fiducial 0.25 932.4 0.007628871 0.0050956924 1.399027e-4 8.207249

Table 11: Average localization technique performance for various objects at various resolu-

tions
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Object Resolution jPixelsj
q

1
n

P
n(x� x̂)2

q
1
n

P
n(y � ŷ)2

q
1
n

P
n(� � �̂)2 Error

Hex-model 4.0 12.2 0.8087669 0.74312437 0.021346115 11.319004

Corners

Hex-model 2.0 12.5 0.15569122 0.25277224 0.013486578 3.3304203

Corners

Hex-model 1.0 13.1 0.036884286 0.116834834 0.00448842 1.0500076

Corners

Hex-model 0.5 14.9 0.024275968 0.024562975 0.005042185 0.26821047

Corners

Hex-model 0.25 17.4 0.0063632606 0.004727341 0.0024016364 0.09157471

Corners

Table 12: Average localization technique performance using only the corners of the hex-

model object at various resolutions


