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Abstract 

 

We have developed a method for rigidly aligning images of tubes. This paper presents an 

evaluation of the consistency of that method for three-dimensional images of human 

vasculature. Vascular images may contain alignment ambiguities, poorly corresponding 

vascular networks, and non-rigid deformations, yet the Monte Carlo experiments 

presented in this paper show that our method provides registrations with sub-voxel 

consistency in less than one minute.  

 Our registration method builds on the principals of our ridges-and-widths tube 

modeling work; this registration method operates by aligning models of the tubes in a 

source image with subsequent target images. The registration method’s consistency 

results from incorporate multi-scale ridge and width measures into the model-image 

match metric. The method’s speed comes from the use of coarse-to-fine registration 

strategies that are directly enabled by our tube models and the model-image match 

metric. In this paper we also show that the method’s insensitivity to local, non-rigid 

deformations enables the visualization and quantification of the effects of such 

deformations. 

                                                      
* Submission to the IJCV special issue for UNC MIDAG 
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I . Introduction 

 

We have developed a fast and automated method for aligning images of tubular structures. We define 

tubular structures as multi-dimensional networks of generalized cylinders with smoothly varying widths 

and with paths that may be tortuous, contain cycles, and branch. In this paper, we present Monte Carlo 

results that demonstrate the speed and consistency of our registration method when dealing with three-

dimensional images of human vasculature. 

 

While the general task of aligning images of tubes is difficult, the specific task of aligning vascular 

images introduces additional complications including vascular network changes and non-rigid 

deformations. In this paper we will show that for multiple modalities our method is able to produce 

registrations with sub-voxel consistency in less than one minute despite these difficulties.  

 

Due in part to its consistency, our rigid-registration method also provides a basis for localizing and 

quantifying non-rigid deformations in the data, i.e., changes in the number, size, and location of tubes. 

This paper demonstrates methods for visualizing tube deformations. For medical applications, such 

quantifications and visualizations can be critical to tracking tumor and lesion changes/movement during 

and after surgical procedures – vessels are well distributed throughout most organs and therefore capture 

deformations within organs whereas organ surfaces and anatomic landmarks (traditional registration 

features) are often poorly correlated with internal deformations. 

 

Additionally, compared to surfaces and landmarks, tubes are defined by integrating over larger image 

regions and therefore are less sensitive to image noise and are better differentiated from surrounding 

tissue in, and therefore can be more easily registered across, data from multiple imaging devices. Our tube 

modeling method and the registration method presented in this paper are not dependent on the underlying 

data. In this paper we demonstrate the application of these methods to contrast enhanced x-ray computed 

tomography (CT) data and magnetic resonance angiographic (MRA) data. 

 

I .1 Details on tube registration difficulties 

 

Correspondence and alignment ambiguities are inherent to the general task of automatically registering 

images of tubes. For example, short tube sections of similar width cannot be differentiated from each 

other, so establishing correspondence can be problematic. Also, the proper alignment of long tube 
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sections having similar width and uniform curvature is ambiguous – tubes whose widths are poorly 

differentiated can only resolve alignment in directions normal to their path, i.e., horizontal tubes can only 

resolve vertical alignment. The alignment process is further complicated by that fact the space between 

tubes is usually homogeneous – if tubes only partially overlap, it is difficult for a metric, using local 

measures, to quantify the manner and magnitude of their displacement.  

 

For vascular images, general tube-alignment issues are compounded by vascular network changes and 

non-rigid deformations. Because of surgical procedures and image acquisition parameters, the number, 

lengths, and widths of vessels visible in the images may differ and hence the vascular network will appear 

to change between images. Also, the images may only partially overlap, so vessel segments completely 

contained in one image may be absent from or only partially or intermittently contained by the other 

image – causing the vascular network to appear to change. Even more detrimental to establishing 

correspondence and performing rigid registration, because of patient movement and surgical procedures, 

localized groups of vessels within and across organs may undergo non-rigid deformations with respect to 

location, path, and width.  

 

I .2 Method Overview 

 

We have previously presented and extensively evaluated a multi-scale tubular-object segmentation 

method that is accurate and effective for modeling tubes in a variety of 3D images [Aylward 1996, 2001a; 

Bullitt 1999, 2001a]. That segmentation method uses ridge traversal to extract the centerline of a tube and 

medialness measures to subsequently estimate the radius of the tube along that centerline.  

 

Our registration method operates by aligning models of the tubes in a source image with subsequent target 

images. This model-image registration method attains its consistency by incorporating the mathematical 

principals of ridges and medialness into the registration optimization process via the structure of the 

models generated by our tube segmentation method. The method is fast (under one minute to register two 

large, 3D volumes on a 500 Mhz Pentium III laptop PC) because tubes are sparse in our images and 

because coarse-to-fine registration strategies are directly enabled by the form of the models and by the 

model-image match metric. 

 

The model-image match metric used by our registration method was originally published in the 

proceedings of the 2001 MICCAI conference [Aylward 2001b]. That paper focused on the subjective 

analysis of the metric and its parameters. This paper provides the first quantitative analysis of the metric 
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and presents and evaluates an encompassing registration strategy that exploits the metric’s inherent 

coarse-to-fine registration capabilities. 

 

In the background section of this paper we highlight several approaches to tubular object segmentation 

and registration. We then motivate our registration work by presenting two sets of medical data that typify 

the difficulties associated with vascular image registration: vascular network changes and non-rigid 

deformations due to patient movement and surgical procedures. In subsequent sections, we summarize 

our segmentation method, detail our registration method, and then analyze our registration method via 

Monte Carlo experiments and parameter space visualizations using the medical data that motivated our 

work. We also illustrate our methods ability to localize and quantify non-rigid deformations present in the 

data. We conclude with a discussion of enhancements that we are investigating to address specific 

clinical, vascular-image registration problems. 

 

I I . Background 

 

There are three categories of methods for registering data: image-image methods, feature-feature 

methods, and feature-image methods. Most registration methods fall into the first two categories, e.g., 

mutual information and iterative closest point methods. Our method is an instance of the third category – 

our method aligns models of the vessels in a source image directly with a target image to quantify and 

direct the alignment of the source image with the target image. In this section, we review vessel modeling 

and image registration methods. 

 

I I .1. Vessel Modeling Methods 

 

Vessel modeling is a prominent medical image analysis task. A wide variety of excellent methods have 

been developed [Aylward 2001a; Frangi 1999; Gao 1996; Gerig 1993; Harris 1999; Keller 1995; 

Lindeberg 1994; Lorenz 1997; Lorigo 1999; Masutani 1998; McInerney 1999; Park 1998; Reuze 1993; 

Soler 2000; Wilson 1999; Yim 2000]. There are three basic approaches to vessel extraction: centerline-

based modeling, spatial filtering, and voxel labeling. 

 

Centerline extraction is the basis of our approach to vessel modeling. Our method starts from an initial 

point on or near a vessel and from there performs a multi-scale traversal of the vessel’s centerline. Using 

that centerline, it subsequently estimates the width of the vessel [Aylward 1996 and 2001a]. This 

approach is based on the multi-scale “core”  extraction methods of Pizer [Fritsch 1995; Pizer 1996], the 
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ridge extraction methods of Eberly [Eberly 1997], and the multi-scale image feature analysis work of 

Lindeberg [Lindeberg 1994]. Other groups have developed related techniques. The vessel segmentation 

work lead by Niessen [Frangi 1999] also uses centerline extraction; it begins with an initial specification 

of a pair of endpoints from which the connected vessel voxels (defined via thresholds) are used to define a 

path that is iteratively refined to form a centerline representation; the vessel extent normal to that 

centerline is then determined. By using a single point to initialize the centerline extraction process and by 

not depending on thresholds, our method is simpler to automate [Bullitt 2001a]. The accurate 

representation of a vessel’s centerline is critical to our registration method. 

 

Spatial filtering methods for vessel segmentation include anisotropic diffusion [Orkins 1997; Du 1995] 

matched filtering [Gerig 1993], morphological operations [Harris 1999] and level-set evolution [Lorigo 

1999; McInerney 1999; Yim 2000]. Matched filtering has been employed by a number of groups. One 

interesting instance of matched filtering is the traversal technique developed by Gerig [Gerig 1993; Keller 

1995] that uses stearable filters. A novel level-set method was developed by Lorigo [Lorigo 1999]. It uses 

2nd-order level-set information to rapidly extract entire vascular trees. Most spatial filtering methods can 

be adapted to directly produce centerline estimates. 

 

Statistical pattern recognition approaches to vessel segmentation are numerous [Gao 1996; Park 1998; 

Soler 2000; Wilson 1999]. One well-developed method [Wilson 1999] uses spatially-adaptive histogram 

modeling for voxel labeling. That method has demonstrated clinical utility for aneurysm treatment 

planning. To generate centerline models, the outputs of such voxel-based methods require skeletonization. 

The accuracy of such centerlines would depend on the skeletonization process employed, e.g., only voxel-

level resolution of centerlines is possible via binary morphological erosion. 

 

I I .2. Registration Methods 

 

An excellent overview of medical image registration methods is published in [Hill 2001]. The taxonomy 

presented below differs so as to provide a more intuitive differentiation of our method. 

 

Image-Image registration methods such as mutual-information optimization methods are favored for 

registering tissue images. These methods, however, are not well suited for registering vascular images. 

The sparseness of tubes in most vascular images prohibits the use of sampling to speed the calculation of 

mutual information and other voxel-matching metrics [Collignon 1995; Viola 1995]. These methods are 
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also poorly suited to handling the alignment ambiguities of tubes and the vascular network changes and 

non-rigid deformations of vascular images. 

 

Feature-feature registration methods have been heavily investigated for tissue images and several such 

methods have been developed for vascular images. This class of methods includes iterative closest point 

[Besl 1992; Ge 1996] and landmark-based techniques [Dryden 1998]. This class also includes 2D/3D 

registration methods that attempt to determine how to project vessel centers from a 3D image so as to best 

match the vessel centers in a 2D image formed via X-ray projection through the same anatomy [Bullitt 

1999]. Recently, a 3D/3D feature-based registration technique was published [Porter 2001] that uses 

closest-point pairings of the brightest (by threshold) voxels in MRA and Doppler 3D-US data to quantify 

their alignment. This method is reported to rigidly register these data in 5-10 minutes and handle initial 

misalignments of 5-10 degrees. Other groups have also developed MR/3D-US registration methods, but 

they have focused on image-image matching of vascular structures [Roche 2000].  

 

Feature-feature alignment methods, however, are limited by the speed and accuracy of the feature 

extraction process. There is often a strong inverse correlation between feature extraction speed and 

accuracy, and extraction errors in each image may combine to degrade registration accuracy. 

Additionally, it is common to reduce feature-feature alignment to point-point alignment and then the 

mathematical/geometrical characteristics (e.g., orientation and scale) of the underlying structures (e.g., 

tubes) cannot be exploited during optimization.  

 

Our feature-image registration method only requires the extraction of features (i.e., tubes) from one of the 

images (e.g., the pre-operative image). For that image, time can be spent making sure the extractions are 

accurate. Multiple subsequent images (e.g., intra-operative images) can be aligned with those features 

without additional extractions. 

 

There are relatively few other feature-image registration methods. Some of the hierarchical registration 

work of Petra van den Elsen falls into this category [van den Elsen 1993]. There has also been research 

into fitting generic models to multiple images from the same patient – most often this is for the purpose of 

segmentation but how to align those images could also be deduced. However, the inter-patient variability 

of the vasculature of nearly every organ (except perhaps the coronary arteries) prohibits the development 

or fitting of generic models. We know of no other registration method that extracts a patient specific 

model of the vasculature in one image and aligns that model with subsequent images from that patient.   
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Three clinical problems motivated our development of this method – those problems and their data are 

presented in the next section. 

 

I I I . Test Data 

 

One of the strengths of our registration method is that it can be applied across imaging modalities. No 

algorithmic assumptions are made regarding the source or dimensionality of the underlying data. For 

example, in medicine, it can be used to register CT with MRA data and even pre-operative MRA and CT 

data with intra-operative 3D-US data. Outside of the medical field, these methods can be applied, for 

example, to segment rivers and roads in satellite and radar data and to register those data over time 

despite the creation or destruction of roads, the change in river paths, or significant obscuration. 

 

The work presented in this paper is motivated by three clinical problems: (1) fusing images containing 

different vascular networks for simultaneous consideration of both networks during surgical planning, (2) 

tracking vascular network/lesion changes resulting for radiation therapy or surgery, and (3) registering 

highly detailed pre-operative data with less-detailed intra-operative data for precise surgical guidance. 

Clinical data representative of the first two problems are detailed below to demonstrate our rigid-

registration method’s ability to handle images from different imaging modalities even if those data 

contain significant vascular networks changes and non-rigid deformations. It is beyond the scope of this 

paper to address all of the issues surrounding the third clinical problem, intra-operative guidance. 

 

Handling Tube Network Changes (Liver CT Data): An extremely difficult registration problem exists if 

two images contain multiple tubes, yet only a few of those tubes exist in both images. Such drastic tubular 

network changes are common to medical data.  For example, it would be helpful to fuse medical images 

acquired at different times after a contrast-agent has been released into the bloodstream to identify areas 

of rapid contrast uptake (indicative of cancer) or to simultaneously visualize arterial and venous vessels 

for surgical planning. However, because of contrast flow, the apparent vascular network (type, number, 

connectivity, and widths) will drastically change between acquisitions. Additionally, because of patient 

motion such as breathing, there may be non-rigid deformations in the data as well. 

 

Figure 1 illustrates the Live CT data that we used to test the applicability of our method to this class of 

problems. The first set of CT data (a 256x256x141 voxel volume; 2x2x2mm voxel size) was acquired 30 

seconds after contrast agent release; this “portal image”  dataset captures the portal-vessel network that 

carries blood into the liver for filtering. The second set of CT data (256x256x150; 2x2x2mm) was 
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acquired 60 seconds after the contrast was released, and this “hepatic image”  dataset depicts the hepatic-

vessel network that carries the filtered blood away from the liver. Our goal is to align the portal with the 

hepatic data.  

 

The few vessels that are visible in both data must drive the registration process, but these vessels cannot 

be explicitly differentiated a priori from the rest. Figure 2 illustrates the vessels in these data that can be 

modeled using our extraction method (Section IV). Additionally, non-rigid deformations exist in these 

data. Because of the delay between acquisitions, patients move between scans and hold their breadth to 

different depths. The liver moves relatively independently of the surrounding ribs and spinal cord, and the 

shape of the liver deforms. 

 

    

Figure 1. Left: A cross-sectional slice from portal-phase contrast CT data. Slice bisects the liver – the 

liver is on the left side of the image that corresponds to the right side of the patient. Vessels appear 

brighter than background because of contrast uptake. Right: A slice from hepatic-phase contrast CT data. 

Slice is from the top of the liver where the filtered blood is subsequently transported to the heart for re-

circulation through the body. These data must be registered so that the vascular networks can be 

considered together to assess the eligibility of a donor for partial-liver transplantation. 

Portal 
Vessels 

Hepatic 
Vessels 
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Figure 2. Left: The set of vascular models formed using the portal data (Figure 1-left). Most visible 

vessels are from the portal venous network, but a few hepatic vessels can also be seen. Right: The set of 

vascular models formed from the hepatic data (Figure 1-right). The majority of the hepatic vessels can be 

seen, but only the main portal vessel (central, extending along the point of view) can be seen. Registration 

is difficult since only a small number of vessels exist in both data and non-rigid deformations are present. 

The vessel extraction method detailed in Section IV was used to generate these visualizations – manual 

extraction was performed and required about 15 minutes per dataset. 

 

Handling Non-Rigid Deformations (Head MRA Data): Localized areas of non-rigid deformation may 

degrade the consistency with which data can be aligned. In medicine, such local deformations are more 

the rule than the exception – localized non-rigid deformations may occur naturally by patient breathing or 

movement as with the Liver CT data presented previously, or the deformations may be induced by 

treatment such as radiation therapy or even surgery. In medicine and other fields, consistent registration 

despite local deformations is often important, and applications may often benefit from the quantification 

of the location and extent of those non-rigid deformations. 

 

Figure 3 shows a sequence of head MRA data from a patient with a successfully treated tumor (an 

arteriovenous malformation): (1) pre-treatment, (2) post-radiation treatment, and (3) post-surgery. Due to 

treatment, the number of vessels in the vascular network is reduced and the spatial distribution and size of 

the vessels about the lesion changes. This lack of correspondence and the non-rigid deformations 

confound any rigid registration process. 

 

Portal 
Vessels 

Hepatic 
Vessels 

Portal Vessel 

Hepatic 
Vessels 
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Figure 3. Axial maximum-intensity projections of the MRA data of a patient with an arteriovenous 

malformation (vascular tumor: patient right = image left). Images were taken before pre-treatment, post-

radiation treatment, and post-surgery (sequentially – over a 6 month period). Slightly different MRA 

imaging parameter settings were used to acquire each of these data. 

 

IV Vessel Modeling 

 

We have previously presented our vessel segmentation method [Aylward 1996, 2001b]. It is presented 

again in this paper because its mathematical principals and the form of the model it generates are critical 

to our registration method. 

 

Our vessel segmentation method operates by performing a multi-scale extraction of the centerline of a 

vessel and then estimating the width of the vessel about that centerline. Specifically, the method extracts 

the representation of a vessel in three steps: (1) definition of a seed point on or near a vessel of interest; 

(2) automatic, multi-scale extraction of an image intensity ridge representing the vessel’s central skeleton; 

and (3) automatic determination of vessel’s width at each skeleton point. 

 

Step 1: Seed points for initiating the vessel extraction process can be specified manually or determined 

using application-specific criteria. Manual seed-point (x0) selection occurs when the user points-and-

clicks on a vessel in one slice of a 3D scan and specifies an approximate radius (σ0) at that point on the 

vessel. Automated seed-point selection occurs using local contrast and ridge measures; each voxel in an 

image (or region of interest) is evaluated to determine if it is sufficiently brighter than its background (to 

indicate enhancement via contrast) and if it is near the intensity ridge of a tube. An intensity ridge of a 

tube is defined as a 1D height ridge in 3D: 
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 Define: x as a point in the image (x ∈ ℜ3) 

  σ as the scale at which measures at x are made 

  I σ(x) as the image intensity at x at scale σ (subscript of an image indicates scaling) 

  H as the Hessian matrix of I  at x at scale σ 

  vi and λi as the eigenvectors and associated eigenvalues of H with λ1 
�

 λ2 
�

 λ3 

 If x is on a ridge, then (Eberly 1997) 

  v3 approximates the ridge’s tangent direction at x 

  v1 and v2 approximate the ridge’s normal directions 

 Therefore, for x to be a ridge point (i.e., on the centerline of a vessel), it must be true that: 

  λ1 ≤ λ2 < 0  “Height-Ridge: The intensity decreases away from the ridge”  

  λ2 / λ1 ≅ 1  “Circularity: Cross-sectional intensity is nearly circular”  

  v1 • ∇I σ(x) ≅ 0  “Ridgeness: The point is an extremum in the directions normal 

  v2 • ∇I σ(x) ≅ 0    to the ridge”  

 

Using the eigenvectors of the Hessian to specify the directions in which the point is maximal makes this a 

"maximum-curvature" height-ridge definition. 

 

We have performed tests that demonstrate the method’s insensitivity to the position of the initial seed 

point (x0) and the initial radius (σ0) estimate (Aylward 2001). 

 

Step 2: Having designated the tube of interest via x0 and σ0, the remainder of the extraction process is 

completely automated: three steps are repeated to traverse the extent of the vessel skeleton. (a) The 

approximate normal plane is shifted one fifth of a voxel along the ridge’s approximate tangent direction. 

Assuming the ridge varies smoothly, the ridge will pass through this shifted normal plane. (b) The local 

maximum in intensity in that shifted normal plan is located. This point is the next point (xi+1) on the 

ridge/central skeleton. (Steps a and b are shown in Figure 4) (c) At fixed intervals during this traversal, 

the width of the tube is estimated (in a manner similar to that in Step (3) – below) and used to define σi+1, 

the scale at which subsequent ridge traversal measures are made. Once any of the height-ridge constraints 

is not satisfied, the traversal process terminates. 
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Figure 4. Extraction of the central track of a vessel via height ridge traversal. Eigen-vectors of the local 

Hessian (illustrated as axes of the ellipse) approximate the track’s tangent and normal directions. 

Traversal occurs by using the shifted approximate normal plane to limit the search for the next ridge 

point. 

 

Step 3: The central track stabilizes the estimation of the tube’s width. We define the radius at a point xi on 

a ridge with an initial radius estimate r  = r i-1 via 

 r i = argLocalMaxr [ M(x,r) ] (1) 

where M(x,r) is a “medialness”  function. Medialness functions respond maximally when applied at the 

center of a gray-scale object and at a scale (r i) proportional to the width of the object. We have devised a 

medialness function whose kernel is optimized for the extraction of tubular objects for which the central 

skeleton has already been extracted. Specifically, to measure medialness at a point xi and a scale r, we use 

the weighted-sum of the responses from a series of radially sampled center-on/surround-off medialness 

kernels, K(xi, r), applied along and oriented normal to the central skeleton about the point xi.  

 �
−=

+=
2

2
i ,

a
atia )rK(d)r,M( xx  (2) 

The scalar t is chosen so as to space the kernels proportionally to the estimated width at the previous point 

r i-1. The weights da decrease linearly from a = 0 and sum to one. (Figure 5) 
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Figure 5. (a) A 2D slice along a centerline and passing through the medialness function’s kernels: the 

responses from multiple kernels (aligned along and normal to the centerline) are weighted and summed 

to estimate the width at a point x on the central skeleton. (b) A kernel (seen in 2D cross-section normal to 

its centerline) of a medialness function is a radial sampling of a center-on (inner circles) / surround-off 

(outter circles) binary filter of radius r. 

 

This multi-kernel approach to width estimation exploits the spatial consistency of tubular objects common 

to medical images. There is significant benefit to this approach. Two of the most important benefits are 

that the kernels cover a large extent of the tube, thereby providing additional insensitivity to image noise; 

and the kernels are fit to the spatial curve of the centerline, thereby reducing assumptions about the local 

shape of the tube. 

 

V Register ing Images of Tubes 

 

Our method is a rigid registration technique. It is formulated as a transformation of point x in a source 

image into the coordinate space y of a target image. A rigid transformation occurs as a rotation matrix 

multiplication plus a translation 

 oxRy +=  (3) 

where  
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�
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γβγββ
γαγβαγαγβαβα
γαγβαγαγβαβα

R  (4) 

is a Euler matrix parameterized by α, β, γ as rotations about the z, y, and x-axes respectively and where 

 ][ zy ooox=o  (5) 

x



14 

 

V.1. The Registration Metr ic 

 

The metric quantifies how well a rotation matrix and offset vector align two vascular images. The metric 

is based on the fact that vessel centerlines are scaled intensity ridges in the image; therefore, when two 

vascular images are aligned, the centerline points in one will map to bright points in the other, thereby 

maximizing our metric, a weighted sum of the scaled intensities of the target image at the transformed 

points: 

 �
� =

=

+=
n

i
iin

i
i

)(w
w

)F(
i

1

1

1
oRxIoR, κσ  (7) 

 

This metric is controlled by the sampling of the centerlines (xi and n), the scaling (κσI = standard 

deviation of the Gaussian kernel used to blur the data) of the image data I , and the weighting wi of the 

centerline points xi. Via these parameters, coarse-to-fine registration optimization algorithms are possible. 

A subjective analysis of these parameters is in (Aylward 2001a). A summary is given below. The next 

section presents the quantitative evaluations of this metric. 

 

Sampling: We have performed experiments that show that our method is not sensitive to the number of 

samples n if the xi are carefully chosen. For example, to calculate the value of the metric and its 

derivatives, our optimization strategy only uses one-tenth to one-twentieth of the centerline points 

extracted during height-ridge traversal. Additionally, the number of samples used is further reduced, and 

yet the quality of the metric is actually improved, by rejecting any points whose circularity or medialness 

(see previous section on vessel extraction) is less than 0.2; that is, points are rejected if the local vessel’s 

cross-section has an orientation bias or are poorly differentiated from the background. As expected, if 

additional points are used, the accuracy of the metric will increase along with the computation time. 

Based on this trade-off, our optimization strategy increases n to implement a coarse-to-fine registration 

heuristic. 

 

Scaling: If a tube is differentiated from its background by contrast, an intensity ridge will exist along that 

tube’s center for a range of scales proportional to the radius of the tube. By default (and for all experiment 

presented in this paper) the local scaling of the image is equal to the radius of the tube (κ = 1). However, 

by increasing the scale beyond the radius of the tube (i.e., by using κ > 1), the intensity ridge will persist 
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and the spatial range for which that point is the local maximum will increase (barring neighboring 

objects). See Figure 6. This is another way in which coarse-to-fine registration could be implemented. 
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Figure 6. Via local image scaling, a larger range of shifting in the x-axis direction will lead by simple 

gradient ascent to the ideal x-offset value of ox=0. For κ=0, many local maxima exist. For κ=2, hill-

climbing from any ox ∈ [ –40 +20]  voxels (-50.1mm to +25.0mm) correctly leads to the ideal offset value. 

Coarse-to-fine registration is possible. This graph used vessels extracted from and applied to the portal 

liver CT image (Figure 1-left and Figure 2-left). 

 

Weighting: As a final technique for smoothing the metric surface, the sample points are weighted based 

on their radius. The vessel extraction system is capable of capturing vessels whose radius is near the inner 

scale of the data. While effective for understanding the vascular anatomy, the points on these vessels exist 

at such a relatively small scale that they have small capture radius and are affected by image noise. We 

therefore demote the contribution of these points. The weight function is defined to increase exponentially 

from w = 0 at r = 0 to an asymptote of w ≅ 1 at r ≅ 3. 

 1
1

2
2 −

+
= − iri e

w  (8) 

Again, a coarse-to-fine registration strategy could be implemented by equalizing the weighting during 

optimization to increase the contribution of smaller vessels when in the vicinity of the local maximum. 
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V.2. The Registration Metr ic’s Der ivative with Respect to Euler ’s Registration Parameters 

 

The straightforward derivation of the metric to provide transformation parameter gradients to the 

optimizer would use the rotation and offset components of the Jacobian of the transformation J(R, o) and 

the weighted sum of the scaled gradients in the target image: 

 ( ) ( ) ( ) ( )�
� =

=

+∇=
n

i
iin

i
i

i
,Jw

w
,d,F

1

1

1
oRxIoRoRoR κσ  (9) 

This approach, however, does not exploit the fact that the xi’ s exist on the centerlines tubes. Because of 

intensity irregularities along a centerline, these derivatives may induce shifts along a vessel whereas 

ideally shifts will only be produced across a vessel, e.g., horizontal tubes will be limited to inducing 

vertical shifts. To implement this, at each centerline point, the gradient’s influence is limited to the 

direction normal to the tube in the original data: 

 

Define the normal-plane at a point xi as the matrix 

 ( ) ( ) ( ) ( )RvRvRvRvN iiiii 2211 �� +=  (10) 

in which  �  is the outer-product operator (vector transforms do not involve the offset). 

 

Then the weighted, normal-plane component of the gradient is 

 ( ) ( ) iiii i
w,, NoRxIoRxI +∇=∇ κσv  (11) 

 

Next, adjust for the principal orientation of the tubes in a network so that the transformation 

parameters gradients do not have an orientation bias (if most tubes are horizontal, the system 

should not be unduly biased towards vertical transformations). This is done via the bias matrix 

 �
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=
n

i
iiw

1

NB  (12) 

 

The bias matrix is used to produce the unbiased, weighted, normal-plane component of the 

gradient defined as 

 ( ) ( ) 1
vvB

−∇=∇ BoRxIoRxI ,,,, ii  (13) 

Leading to the following expression for the transformation parameter gradients: 

 ( ) ( ) ( ) ( )�
=

∇=
n

i
i ,,,J,d,F

1
vBoRxIoRoRoR  (14) 
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Since we are only concerned with rigid transformations, we explicitly solve for do, dα, dβ, and dγ. The 

rotation gradients are calculated by projecting ( )vBoRxI ,,i∇  onto the tangent of the rotation-circle that 

passes through xi; the xy-plane component of this projection estimates the gradient of the metric with 

respect to α, the xz-plane component for β, and the yz-plane component for γ; see Figure 7. 

 

 

 

 

 

Figure 7. Within the xy-plane, the unbiased, weighted, normal-plane component of the image gradient is 

projected onto the tangent of the rotation-circle passing through xi to determine the gradient of the metric 

with respect to α. Similar projections are used within the xz-plane for β and the yz-plane for γ. 

 

V.3. The Registration Optimization Strategy 

 

Given these metric and metric derivative definitions, a coarse-to-fine gradient ascent registration 

optimization strategy is possible. The constraints inherent in these measures suggest that gradient ascent 

should be fast and accurate, and the next section provides parameter-space illustrations and Monte Carlo 

demonstrations that support our speed and accuracy claims. However, only by defining commensurate 

offset and rotation units and only by taking advantage of coarse-to-fine methods could an effective 

method for real-world data be implemented. 

 

In order to be able to efficiently optimize the offset and rotation parameters simultaneously, the spatial 

and rotation parameters had to be scaled to effect commensurate units. The parameter-space illustrations 

(and similar illustrations from other datasets) were used to determine these scales. Subjective analyses 

lead to the selection of 2.5 voxels as an offset unit and 0.1 radians as the rotation unit. 

 

The coarse-to-fine strategy is implemented by increasing the sampling of the tube’s centerlines during the 

two phases of optimization. 

Initialization: Euler’s registration parameters are set to zero. The metric’s only other parameter, κ, 

is set to one for the entire optimization process presented in this paper. 

xi 
vB),,( i oRxI∇

Fdα 

x 

y xi 
vB),,( i oRxI∇

Fdα 

x 

y 
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Phase I: using one twentieth of the centerline points, finite-differences beginning with large (4 

unit) and decreasing to small (one unit) step sizes is used to bound the metric’s local maximum. 

Phase II: using one tenth of the centerline points, a gradient direction line-search optimization 

method is used to identify the local maximum within 0.01 units, i.e., within 0.025 voxels and 

0.001 radians. 

 

We have also begun investigating the use conjugate gradient and Levenberg-Marquardt optimization 

techniques that should provide even faster convergence times. 

 

In the next section, using the clinical data, we report the exact numbers of centerline points used, metric 

and derivative computation times, optimization convergence times (on a 500 Mhz Pentium III laptop PC), 

and Monte Carlo accuracies. 

 

VI I . Evaluations 

 

The two clinical cases demonstrate the application of our method (without modification) to data from 

different organs and different imaging systems and given vascular network architecture changes and non-

rigid deformations. We evaluated our method in three phases: using vessels from the same data to 

understand our method’s potential given “ ideal”  correspondence between model and data, using both sets 

of liver CT data to understand our method’s ability to handle naturally occurring vascular network 

changes and non-rigid deformations, and using both sets of head MRA data to understand our method’s 

ability to handle surgery-induced changes in a vascular network and non-rigid image deformations. 

 

We consider a metric and its derivatives to be “effective”  for optimizing the parameters of a 

transformation, if they vary smoothly given small misalignments, if the metric is maximal when the data 

are aligned, and if the derivatives lead to the alignment of the data for a broad range of misalignments. 

The visualization of our metric and its derivatives over a range of offsets and rotations provides a means 

of subjectively assessing these characteristics. The Monte Carlo simulations provide a quantification of 

the performance of our system to objectively support the presence of these characteristics in our method. 

 

VI I .1 Effectiveness given r igid mis-registration 

 

We evaluated our method’s “ ideal”  performance using the first image, the “portal”  image, in the Liver CT 

sequence to generate visualizations of the metric and its derivatives for a range of offsets and rotations. 
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Specifically, from the portal data (Figure 1-left), we extracted all of the vessels that could be seen within 

the liver (Figure 2-left). The extraction process produced 7482 centerline points; the sub-sampling 

procedure (SectionV.1) selected 331 of these points to represent the vessels for registration. Using the 

same data, we then evaluated the registration metric and its derivatives for a range of x-offsets (±20 

voxels = 2.5 cm) and α-rotations (±0.2 radians = 11.46 degrees in the XY plane). The evaluation of the 

metric and its derivatives required approximately 0.56 seconds per transformation parameterization. The 

surface plots of the values are shown in Figure 8. 
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Figure 8. The metric and its derivatives evaluated over an x-offset range of ±20 voxels (2.5cm) and ±0.2 

radians (11.46 degrees). Vessels extracted from and applied to the portal image in the Liver CT sequence. 

Top Row: Metric value. Middle Row: metric derivative in voxels with respect to ox, oy, oz. Bottom Row: 

metric derivative in radians with respect to α, β, γ. The derivatives with respect to ox and α appropriately 

dominate. 

 

These values do appear to vary smoothly as offset and rotation increases, the metric is maximal given no 

offset or rotation, and the derivatives lead to the alignment of the data for a broad range offsets and 
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rotations. All unaffected parameter derivatives remain near zero. However, while dox is valid for a wide 

range of rotations, dα is only valid if translation has been resolved. These and other observations drove 

our specification of commensurate offset and rotation units (Section V.3). 

 

As mentioned previously, these visualizations depict the performance of the metric and its derivatives 

under ideal conditions in which the vessel models were registered with the same data from which they 

were extracted. Additionally, while these tests excellent for characterizing the metric and its derivatives – 

these tests are devoid of issues surrounding non-rigid deformations, optimization strategy design, and 

model architecture inconsistencies (i.e., missing or extraneous vessels in the target image). To test the 

performance of the entire registration optimization system under the difficult conditions in which these 

additional sources of error are present, we performed Monte Carlo simulations. 

 

VI I .2. Monte Car lo Performance – Tube Network Changes 

 

For the Monte Carlo experiments in this paper we wanted to simulate multiple instances of mis-

registration for a pair of images and then measure how well our registration optimization process was able 

to re-register those images. For this first set of Monte Carlo experiments, we used the portal and hepatic 

Liver CT data. These images contain significant vascular network changes (Figure 2) and some non-rigid 

deformations. The apparent lack of correspondence between the features (vessels networks) used for 

registration makes this a truly difficult registration task. 

 

To maintain realistic conditions, we used the transformation parameters that align these data to center and 

bound the range of simulated mis-alignments used in the Monte Carlo experiments. The vessel models 

formed from the portal data (Figure 2-left) were registered with the hepatic data (one slice in Figure 1-

right). Registration optimization required 47 seconds. During optimization, 331 points were used to 

initially bracket the metric maximum, and then 653 points were used to perform gradient-direction line-

search to determine the parameters within 0.1 units. The aligned vascular models from both images are 

illustrated in Figure 9 (only the vessels from the first image, however, were used during registration). The 

final transformation parameters are given in Table 1.  These transformation parameters suggest that 

Monte Carlo experiments covering a range of ±10 voxels and ±0.1 radians would represent a realistic 

range of clinical data acquisition conditions. 
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Figure 9. Registration of the vessel models first liver CT image with the second liver CT image allows 

models of all of the portal and hepatic vessel to be viewed simultaneously. Left: All of the vessel models 

from the two images are shown – vessels from portal Liver CT image in light gray; vessels from hepatic 

image in dark gray. Right: To illustrate the limited vascular network correspondence and the non-rigid 

deformations present in the images, the few vessel models that co-exist in both data are shown; the data 

had undergone non-rigid deformations (arrows), the vascular networks had minimal overlap, the 

vascular architecture changed, and yet the registration process was effective as indicated by the close 

correspondence of the surfaces of the models of the same vessels that were formed from the difference 

images. The sub-selection of vessel models on the right is merely illustrative – it is not part of the 

registration process. 

 

 
 

Parameter 

Value 
(voxels and 

radians) 
ox  0.595 
oy  -8.796 
oz  0.025 
α  -0.052 
β  0.037 
γ  -0.030 

Table 1. Transformation parameters calculated to align the liver’s portal CT data’s vascular models 

(Figure 9-left) with the liver’s hepatic data (one slice in Figure 1-right). 

 

The Monte Carlo experiments were performed as follows: We generated 100 random transformation 

parameterizations that mis-aligned the portal-data vascular models with the hepatic data up to ±10 voxels 

(±1.25 cm) and ±0.1 radians (±5.73 degrees). From each of these random initial mis-registrations, we then 

applied our optimization strategy and compared each of the final registration parameters’  values with the 

mean final registration parameters’  values. Figure 10 plots the relationship between the final offset 

parameters’  values and the final metric values. Four of the 100 instances converged to local maxima 

having offsets that were distant from the rest - these instances have low metric values, i.e., the final 
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registration metric value (Equ. 7) indicates if an optimal final-state has or has not been reached. Table 2 

contains a summary of the statistics for the 96 instances that converged to maxima with high metric 

values. 
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Figure 10. A plot showing, for the 100 Monte Carlo registrations, (x-axis) the Euclidean distance from o 

to the average value of o –versus- (y-axis) metric value F(R,o). The cluster in the upper left depicts the 96 

Monte Carlo registrations that have sub-voxel consistency and high metric values. The four points in the 

lower right of the plot indicate non-optimal registrations with low metric values. In practice, a heuristic 

can be implemented to flag and re-optimize registrations that produced poor metric values. 

 

 
 
 

Parameter 

 
Std. Dev. 
(voxel / 
radian) 

Max 
difference 
from mean 
(vxl/rad) 

ox 0.220 0.607 
oy 0.400 1.393 
oz 0.209 0.615 
α 0.008 0.024 
β 0.005 0.015 
γ 0.016 0.054 

Table 2. Results from 96 registrations of the vessel models from the first liver image with the second liver 

image given random starting points spanning ±10 voxel and ±0.1 radians. Average offset standard 

deviations was 0.276 voxel (0.34mm), and average rotation standard deviation was 0.010 radians (0.55 

degrees). Four Monte Carlo instances indicated by poor metric values in Figure 10 were not included in 

these statistics. 

 

The results in Figures 9 and 10 and Table 2 indicate that the registration method is consistent and suggest 

that it is accurate. The average standard deviation of the final transformation parameters is sub-voxel, 

sub-millimeter, and within 0.55 degrees. These levels of consistency were achieved despite the fact that 
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the data had undergone non-rigid deformations, only a few of the vessels modeled in the first image had 

corresponding vessels in the second image, and multiple additional vessels existed in the second image. 

 

VI I .3. Monte Car lo Performance – Non-Rigid Deformations 

The head MRA data shown in Figure 3 challenge rigid vascular image registration methods. We 

performed two tests: Monte Carlo analysis of the alignment of pre-treatment data with post-radiation data, 

and visualization of vascular model differences after registration between the pre-treatment and post-

surgery data. 

 

Monte Carlo analysis: we followed the same strategy as was used for the liver data. The vascular models 

from pre-treatment were extracted and aligned with post-radiation data. The resulting transformation 

parameter values are given in Table 3 and a visualization of the vascular models of the aligned data is 

shown in Figure 11. This optimization required 39 seconds and used 503 samples during the bounding of 

the maximum and 993 samples during the localization of the maximum within those bounds. Compared 

to the registration of the liver data, this registration speed required less time, despite the increase in 

number of samples, because the average vessel in the AVM data has a significantly smaller scale (radius) 

than the vessels in the liver data. Hence, the scaled image value and derivative calculations required less 

time; the time to calculate the metric and its derivative using 993 points from the AVM pre-treatment 

models requires only 0.17 seconds. 

 

 
 

Parameter 

Value 
(voxel / 
radian) 

ox  0.914 
oy  -1.876 
oz  -3.758 
α  -0.001 
β  -0.139 
γ  -0.129 

Table 3. The transformation parameters produced from the use of our method to align the vascular 

models from AVM pre-treatment (Figure 3 – left) with the post-radiation data (Figure 3 – center). The 

vascular models also had to be explicitly scaled to match the different voxel sizes of the post-radiation 

data. 
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Figure 11. Results of alignment of AVM pre-treatment data (used for registration and shown in dark-gray 

wireframe) with post-radiation (after gamma-knife treatment of the AVM – models not used in 

registration, but shown as solid light-gray surfaces). The registration parameters are given in Table 2. 

There is good correspondence between vessels on the patient’s left (image left), but on the right, near the 

AVM, multiple vessels are misaligned (arrows) and others are missing due to non-rigid deformations that 

occurred as a result of treatment. Visualizations of such vascular changes helps physicians determine 

treatment effectiveness. 

 

The Monte Carlo simulations used the same range of random initial starting values as the liver data 

(offsets of ±10 voxels and 0.1 radians). For this set of experiments, three of the one hundred instances 

failed to converge to a consistent solution (see Figure 12). The statistics from the 97 valid end states are 

given in Table 3.  They indicate that highly consistent results are possible from a wide range of initial 

mis-registrations despite non-rigid deformations and network architecture changes. 

Vessels 
deformed 
due to 
treatment. 
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Figure 12. A plot showing, for the 100 Monte Carlo registrations, (x-axis) the Euclidean distance from o 

to the average value of o –versus- (y-axis) the metric’s value. The cluster in the upper left depicts the 97 

Monte Carlo registrations that have sub-voxel consistency and high metric values. The three points in the 

lower right of the plot indicate non-optimal registrations with low metric values. In practice, a heuristic 

can implemented to flag and re-optimize image registrations that produced poor metric values. 

 

 
 
 

Parameter 

 
Std. dev. 
(voxel /  
radian) 

Max 
difference 
from mean 
(vxl/rad) 

ox 0.117 0.371 
oy 0.109 0.444 
oz 0.162 0.518 
α 0.002 0.006 
β 0.004 0.014 
γ 0.005 0.016 

Table 3. Statistics from the final states from the registration of pre-treatment and post-radiation head 

MRA data given initial mis-registrations of up to ±10 voxels and ±0.1 radians. Average final offset 

parameter standard deviations was 0.129 voxel (0.16mm), and average final rotation parameter standard 

deviation was 0.004 radians (0.21 degrees). Three Monte Carlo instances indicated by poor metric values 

in Figure 12 were not included in these statistics. The parameter values after optimization are consistent 

even though non-rigid deformations and vascular network architecture changes were present. 

 

As a final illustration of the versatility of the method, we aligned the post-surgery image (Figure 3 - right) 

with the post-radiation treatment image (Figure 3 - center). All images (and their vessels) were thereby 

aligned. Illustrations of the vascular changes between the pre-treatment and post-surgery data are given in 

Figure 13. This visualization displays the distance from the vessel centers in the pre-treatment image to 

the closest vessel centers in the post-surgery image. This calculation required only a few seconds via the 

Danielsson distance algorithm. The vessels are shaded to indicate the inter-data vessel distance – bright 

vessels were strongly affected by radiation and surgery. Other shadings/color-codes can be used to 
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illustrate how much the vessel radii changed between closest points in these two datasets. We have just 

begun to investigate and appreciate the clinical utility of these and related visualizations. 

 

  

Figure 13. A visualization of the effect of radiation and surgery on intracranial vessels containing a 

tumor (an AVM). Shading encodes the distance from pre-treatment vessels to nearest post-surgery 

vessels. Ends of some vessels are white because of differences in extraction. Long bright vessels indicate 

areas of large vascular/anatomic change/shift – the tumor bears the majority of the effects of treatment. 

 

VI I I . Conclusions and Future Work 

 

We have presented a method for registering images of tubes. Monte Carlo experiments and parameter 

space visualizations presented in this paper indicate that the metric is fast, accurate, and consistent. The 

method converges in less than one minute and provides extremely consistent (0.1-0.2 voxel and 0.004-

0.01 radian standard deviation) registrations of vascular images from different modalities, of different 

organs, and even if the images contain naturally occurring and surgically induced vascular networks 

changes and localized non-rigid deformations. 

 

The strength of the system comes from its incorporation of ridge criteria into the model-image match 

metric and its derivatives. These criteria, for example, limit vertical vessels to affecting horizontal shifts. 

The metric and its derivatives are also formulated to provide various mechanisms for performing coarse-

to-fine registration. The optimization strategy in this paper used the frequency of the sampling of the 

vessel centerlines to implement a coarse-to-fine registration strategy. 

Vessels 
deformed 
due to 
treatment. 
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Our work is now focusing on adapting this system to explicitly capture non-rigid tube deformations and 

smoothly interpolating the deformation of the image data around those tubes. In medicine, the 

experiments in this paper indicate that such non-rigid deformations are even needed for the accurate 

alignment of liver portal and hepatic CT images. 

 

The primary application we are developing will exploit our vascular image registration methods for 

aligning detailed pre-operative images with fast intra-operative images. This will enable the mapping of 

surgical plans developed pre-operatively onto/into a patient intra-operatively. Surgical procedures will be 

able to more closely follow surgical plans. This fusion will also enable information (such as tumor 

margins) to be mapped into the intra-operative data; thereby enabling percutaneous treatment of cancers 

that are not inherently visible on intra-operative images such as 3D ultrasound. 

 

A WWW site containing additional illustrations of this and related work is at http://caddlab.rad.unc.edu. 

Portions of this work were implemented using the NLM Visible Human Segmentation and Registration 

Toolkit (The Insight Toolkit: http://public.kitware.com/Insight/Web/index.htm). This work was supported 

in-part by the NIH/NCI R01-CA67812, the NIH/NCI P01-A47982, and an equipment and software grant 

from Microsoft Corporation. Aspects of this work have been licensed (patent pending) to Medtronic Inc. 

(Minn., MN) and R2 Technologies (Los Altos, CA). 

 



28 

IX. References  

 

[Alperin 1994] N. Alperin, D.N. Levin, C.A. Pelizzari, “Retrospective registration of x-ray angiograms 

with MR images by using vessels as intrinsic landmarks.”  Journal of Magnetic Resonance Imaging 4: 

139-144 

 

[Aylward 1996] S. Aylward, E. Bullitt, S.M. Pizer, D. Eberly, “ Intensity ridge and widths for tubular 

object segmentation and registration.”  IEEE Workshop on Mathematical Methods in Biomedical Image 

Analysis, 131-138 

 

[Aylward 2001a] Aylward S, Bullitt E, “A Comparison of Methods for Tubular-Object Centerline 

Extraction,”  Accepted IEEE Transactions on Medical Imaging, 2001 

 

[Aylward 2001b] Aylward S, Weeks S, and Bullitt E, “Analysis of the Parameter Space of a Metric for 

Registering 3D Vascular Images”  MICCAI 2001, pages 8 

 

[Besl 1992] Besl P J and McKay N D “A method for registration of 3-D shapes”  IEEE Trans. Pattern 

Anal. Mach. Intell. 14, 1992, pp. 239–56 

 

[Box 1978] G.E.P. Box, W.G. Hunter, J.S. Hunter, “Statistics for Experiments.”  Wiley Series in 

Probability and Mathematical Statistics. John Wiley and Sons, New York, NY. 

 

[Bullitt 1997] E. Bullitt, A. Liu, S. Aylward, and S. Pizer. Reconstruction of the intracerebral vasculature 

from MRA and a pair of projection views. In Information Processing in Medical Imaging, pages 537-542, 

Poultney, VT, 1997.  

 

[Bullitt 1999] E. Bullitt, A. Liu, S. Aylward, C. Coffey, J. Stone, S. Mukherji, and S. Pizer. Registration 

of 3d cerebral vessels with 2d digital angiograms: Clinical evaluation. Academic Radiology, 6:539-546, 

1999.  

 

[Bullitt 2001a] Bullitt E, Aylward S, Bernard E, Gerig G, Special Article. “Computer-assisted 

visualization of arteriovenous malformations on the home pc.”  Neurosurgery: 48: 2001, pp. 576-583 

 



29 

[Bullitt 2001b] Elizabeth Bullitt, Stephen Aylward, Keith Smith, Suresh Mukherji, Michael Jiroutek and 

Keith Muller, “Symbolic description of intracerebral vessels segmented from magnetic resonance 

angiograms and evaluation by comparison with X-ray angiograms”  Medical Image Analysis 5: 157-169, 

2001. 

 

[Collignon 1995] Collignon A, Maes F, Delaere D, Vandermeulen D, Suetens P and Marchal G, 

“Automated multi-modality image registration based on information theory”  Information Processing in 

Medical Imaging 1995 ed Y Bizais, C Barillot and R Di Paola (Dordrecht: Kluwer Academic, 1995 pp 

263–74 

 

[Du 1995] Y. Du, D. Parker, and W. Davis. Improved vessel visualization in MR angiography by 

nonlinear anisotropic filtering. Journal of Magnetic Resonance Imaging, 5:353-359, 1995.  

 

[Dryden 1998] Dryden I and Mardia K 1998 Statistical Shape Analysis (New York: Wiley) 

 

[Eberly 1996] D. Eberly. Ridges in Image and Data Analysis, volume 7 of Computational Imaging and 

Vision. Kluwer Academic Publishers, Dordrecht, 1996.  

 

[Frangi 1999] A. F. Frangi, W. J. Niessen, R. M. Hoogeveen, T. Van Walsum, and M. A. Viergever. 

Model-based quantitation of 3-d magnetic resonance angiographic images. IEEE Transactions on Medical 

Imaging, 18(10):946-956, October 1999.  

 

[Fritsch 1995] D.S. Fritsch, D. Eberly, S.M. Pizer, and M.J. McAuliffe. Stimulated cores and their 

applications in medical imaging. In Y. Bizais, C. Barillot, and R. DiPaola, editors, IPMI 1995: 

Information Processing in Medical Imaging, pages 385-68. Kluwer Series in Computational Imaging and 

Vision, 1995. 

 

[Gao 1996] L. Gao, D. G. Heath, B. S. W. Kuszyk, and E. K. Fishman. Automatic liver segmentation 

technique for three-dimensional visualization of CT data. Radiology, 201(2):359-364, November 1996.  

 

[Ge 1996] Y Ge, CR Maurer Jr, JM Fitzpatrick. Surface-based 3-D image registration using the Iterative 

Closest Point algorithm with a closest point transform. Medical Imaging 1996: Image Processing, Proc. 

SPIE, 1996 

 



30 

[Gerig 1993] G. Gerig, T. Koller, G. Szekely, C. Brechbuhler, and O. Kubler. Symbolic description of 3-d 

structures applied to cerebral vessel tree obtained from MR angiography volume data. In Information 

Processing in Medical Imaging '93: Lecture Notes in Computer Science 687, pages 94-111, 1993. 

  

[Harris 1999] K. Haris, S. N. Efstraatiadis, N. Maglaveras, C. Pappas, J. Gourassas, and G. Louridas. 

Model-based morphological segmentation and labeling of coronary angiograms. IEEE Transactions on 

Medical Imaging, 18(10):1003-1015, October 1999.  

 

[Hill 2001] D Hill, P Batchelor, M Holden, D Hawkes, “Medical Image Registration”  Phys. Med. Biol. 

46, 2001 

  

[Hoogeveen 1998] R. M. Hoogeveen, C. J. G. Bakker, and M. A. Viergever. Limits to the accuracy of 

vessel diameter measurement in MR angiography. Journal of Magnetic Resonance Imaging, 8, 1998.  

 

[Koller 1995] T. Koller, G. Gerig, G Szekely, and D. Dettwiler. Multiscale detection of curvilinear 

structures in 2-d and 3-d image data. In Proceedings of the 5th International Conference on Computer 

Vision, pages 864-869, Boston, MA, 1995. IEEE Computer Society Press.  

 

[Lindeberg 1994] Tony Lindeberg, Scale-Space Theory in Computer Vision, Kluwer Academic 

Publishers, Dordrecht, Netherlands, 1994 

 

[Lorenz 1997] C. Lorenz, I. C. Carlsen, T. M. Buzug, C. Fassnacht, and J. Weese. Multi-scale line 

segmentation with automatic estimation of width, contrast, and tangential direction in 2d and 3d medical 

images. In J. Troccaz, E. Grimson, and R. Mosges, editors, CVRMed-MRCAS '97, pages 233-242. 

Springer-Verlag, 1997.  

 

[Lorigo 1999] L. M. Lorigo, O. Faugeras, W. E. L. Grimson, R. Keriven, R. Kikinis, and C. F. Westin. 

Co-dimension 2 geodesic active contours for MRA segmentation. In Information Processing in Medical 

Imaging '99: Lecture Notes in Computer Science 1613, pages 126-139, 1999.  

 

[Masutani 1998] Y. Masutani, T. Schiemann, and K. H. Hohne. Vascular shape segmentation and 

structure extraction using a shape-based region-growing model. In Proceedings of Medical Image 

Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science 1496, pages 1242-

1249, 1998.  



31 

 

[McInerney 1999] T. McInerney and D. Terzopoulos. Topology adaptive deformable surfaces for medical 

image volume segmentation. IEEE Transactions on Medical Imaging, 18(10):840-850, October 1999.  

 

[Morse 1994] B. S. Morse, S. M. Pizer, and D. S. Fritsch. Robust object representation through object-

relevant use of scale. In Medical Imaging '94: Image Processing, volume 2167, pages 104-115. SPIE, 

1994.  

 

[Orkisz 1997] M.M. Orkisz, C. Bresson, I.E. Magnin, O. Champin, and P.C. Douek. Improved vessel 

visualization in MR angiography by nonlinear anisotropic filtering. Magentic Resonance Imaging, 37, 

1997.  

 

[Park 1998] W. Park, E. A. Hoffman, and M. Sonka. Segmentation of intrathoracic airway trees: A fuzzy 

logic approach. IEEE Transactions on Medical Imaging, 17(4):489-497, 1998.  

 

[Pizer 1996] S. M. Pizer, D. Eberly, B. S. Morse, and D. S. Fritsch. Zoom-invariant vision of figural 

shape: The mathematics of cores. In Computer Vision and Image Understanding, 1996.  

 

[Porter 2001] Brian C. Porter, Deborah J. Rubens, John G. Strang, Jason Smith, Saara Totterman, Kevin 

J. Parker3D, “Registration and Fusion of Ultrasound and MRI Using Major Vessels as Fiducial Markers”  

IEEE TMI 20(4) 2001 

 

[Reuze 1993] P. Reuze, J. L. Coatrieux, L. M. Luo, and J. L. Dillenserger. A 3-d moment based approach 

for blood vessel detection and quantification in MRA. Technology and Health Care, 1:181-188, 1993.  

 

[Roche 2000] A Roche, X Pennec, G. Malandain, N. Ayache, S. Ourselin, “Generalized Correlation Ratio 

for Rigid Registration of 3D Ultrasound with MR Images”  Rapport de recherche de l'INRIA-Sophia 

Antipolis, # 3980, Page 24 

 

[Sato 1997] Y. Sato, S. Nakajima, H. Atsumi, T. Koller, G. Gerig, S. Yoshida, and R. Kikinis. 3d multi-

scale line filter for segmentation and visualization of curvilinear structures in medical images. In J. 

Troccaz, E. Grimson, and R. Mosges, editors, CVRMed-MRCAS '97, pages 213 � 222. Springer-Verlag, 

1997.  

 



32 

[Sobol 1994] Llya M. Sobol'. A Primer for the Monte Carlo Method. CRC Press, Boca Raton, 1994.  

 

[Soler 2000] L. Soler, H Delingette, G. Malandain, N. Ayache, C. Koehl, J. M. Clement, O. Dourthe, and 

J. Marescaux. An automatic virtual patient reconstruction from CT-scans for hepatic surgical planning. In 

J. D. Weswood, editor, Medicine Meets Virtual Reality, pages 316-322. IOS Press, 2000.  

 

[van den Elsen 1994] van den Elsen P A, Maint “Registering images using correlation of geometrical 

features”  IEEE Trans. Med. Imaging 14 1994, pp. 384–96 

 

[Wilson 1999] D. L. Wilson and J. A. Noble. An adaptive segmentation algorithm for time-of-flight MRA 

data. IEEE Transactions on Medical Imaging, 18(10):938-945, October 1999.  

 

[Yim 2000] P.J. Yim, P.L. Choyke, and R.M. Summers. Gray-scale skeletonization of small vessels in 

magnetic resonance angiography. IEEE Transactions on Medical Imaging, 19(6):568-576, June 2000. 


	status: IJCV Special UNC-MIDAG issueVolume 55(2/3): 123-138, Nov/Dec 2003Available at: http://www.kluweronline.com/issn/0920-5691/contents     for those with access


