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Minimum Length from First Principles
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Abstract

We show that no device or gedanken experiment is capable of measuring a distance

less than the Planck length. By ”measuring a distance less than the Planck length”

we mean, technically, resolve the eigenvalues of the position operator to within that

accuracy. The only assumptions in our argument are causality, the uncertainty princi-

ple from quantum mechanics and a dynamical criteria for gravitational collapse from

classical general relativity called the hoop conjecture. The inability of any gedanken
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experiment to measure a sub-Planckian distance suggests the existence of a minimal

length.
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In this work we show that quantum mechanics and classical general relativity considered

simultaneously imply the existence of a minimal length, i.e. no operational procedure ex-

ists which can measure a distance less than this fundamental length. The key ingredients

used to reach this conclusion are the uncertainty principle from quantum mechanics, and

gravitational collapse from classical general relativity.

A dynamical condition for gravitational collapse is given by the hoop conjecture [1]: if

an amount of energy E is confined at any instant to a ball of size R, where R < E, then

that region will eventually evolve into a black hole1.

From the hoop conjecture and the uncertainty principle, we immediately deduce the

existence of a minimum ball of size lP . Consider a particle of energy E which is not already

a black hole. Its size r must satisfy

r ∼> max [ 1/E , E ] , (1)

where λC ∼ 1/E is its Compton wavelength and E arises from the hoop conjecture. Min-

imization with respect to E results in r of order unity in Planck units or r ∼ lP . If the

particle is a black hole, then its radius grows with mass: r ∼ E ∼ 1/λC . This relationship

suggests that an experiment designed (in the absence of gravity) to measure a short distance

l << lP will (in the presence of gravity) only be sensitive to distances 1/l.

Let us give a concrete model of minimum length. Let the position operator x̂ have discrete

eigenvalues {xi}, with the separation between eigenvalues either of order lP or smaller. (For

regularly distributed eigenvalues with a constant separation, this would be equivalent to

1We use natural units where h̄, c and Newton’s constant (or lP ) are unity. We also neglect numerical

factors of order one.
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a spatial lattice.) We do not mean to imply that nature implements minimum length in

this particular fashion - most likely, the physical mechanism is more complicated, and may

involve, for example, spacetime foam or strings. However, our concrete formulation lends

itself to detailed analysis. We show below that this formulation cannot be excluded by any

gedanken experiment, which is strong evidence for the existence of a minimum length.

Quantization of position does not by itself imply quantization of momentum. Conversely,

a continuous spectrum of momentum does not imply a continuous spectrum of position. In a

formulation of quantum mechanics on a regular spatial lattice, with spacing a and size L, the

momentum operator has eigenvalues which are spaced by 1/L. In the infinite volume limit

the momentum operator can have continuous eigenvalues even if the spatial lattice spacing

is kept fixed. This means that the displacement operator

x̂(t)− x̂(0) = p̂(0)
t

M
(2)

does not necessarily have discrete eigenvalues (the right hand side of (2) assumes free evolu-

tion; we use the Heisenberg picture throughout). Since the time evolution operator is unitary

the eigenvalues of x̂(t) are the same as x̂(0). Importantly though, the spectrum of x̂(0) (or

x̂(t)) is completely unrelated to the spectrum of the p̂(0), even though they are related by

(2). A measurement of arbitrarily small displacement (2) does not exclude our model of

minimum length. To exclude it, one would have to measure a position eigenvalue x and a

nearby eigenvalue x′, with |x− x′| << lP .

Many minimum length arguments are obviated by the simple observation of the minimum

ball. However, the existence of a minimum ball does not by itself preclude the localization

of a macroscopic object to very high precision. Hence, one might attempt to measure the
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spectrum of x̂(0) through a time of flight experiment in which wavepackets of primitive probes

are bounced off of well-localised macroscopic objects. Disregarding gravitational effects, the

discrete spectrum of x̂(0) is in principle obtainable this way. But, detecting the discreteness

of x̂(0) requires wavelengths comparable to the eigenvalue spacing. For eigenvalue spacing

comparable or smaller than lP , gravitational effects cannot be ignored, because the process

produces minimal balls (black holes) of size lP or larger. This suggests a direct measurement

of the position spectrum to accuracy better than lP is not possible. The failure here is due

to the use of probes with very short wavelength.

A different class of instrument, the interferometer, is capable of measuring distances much

smaller than the size of any of its sub-components. Nevertheless, the uncertainty principle

and gravitational collapse prevent an arbitrarily accurate measurement of eigenvalue spacing.

First, the limit from quantum mechanics. Consider the Heisenberg operators for position

x̂(t) and momentum p̂(t) and recall the standard inequality

(∆A)2(∆B)2 ≥ −
1

4
(〈[Â, B̂]〉)2 . (3)

Suppose that the position of a free test mass is measured at time t = 0 and again at a later

time. The position operator at a later time t is

x̂(t) = x̂(0) + p̂(0)
t

M
. (4)

We assume a free particle Hamiltonian here for simplicity, but the argument can be gener-

alized [4]. The commutator between the position operators at t = 0 and t is

[x̂(0), x̂(t)] = i
t

M
, (5)
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so using (3) we have

|∆x(0)||∆x(t)| ≥
t

2M
. (6)

We see that at least one of the uncertainties ∆x(0) or ∆x(t) must be larger than of order

√

t/M . As a measurement of the discreteness of x̂(0) requires two position measurements, it

is limited by the greater of ∆x(0) or ∆x(t), that is, by
√

t/M ,

∆x ≡ max [∆x(0),∆x(t)] ≥

√

t

2M
, (7)

where t is the time over which the measurement occurs and M the mass of the object whose

position is measured. In order to push ∆x below lP , we take M to be large. Note that this

is not the standard quantum limit [2] which can be overcome using refined techniques [3].

In order to avoid gravitational collapse, the size R of our measuring device must also grow

such that R > M . However, by causality R cannot exceed t. Any component of the device

a distance greater than t away cannot affect the measurement, hence we should not consider

it part of the device. These considerations can be summarized in the inequalities

t > R > M . (8)

Combined with (7), they require ∆x > 1 in Planck units, or

∆x > lP . (9)

Notice that the considerations leading to (7), (8) and (9) were in no way specific to an

interferometer, and hence are device independent. We repeat: no device subject to quantum

mechanics, gravity and causality can exclude the quantization of position on distances less

than the Planck length.
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It is important to emphasize that we are deducing a minimum length which is paramet-

rically of order lP , but may be larger or smaller by a numerical factor. This point is relevant

to the question of whether an experimenter might be able to transmit the result of the mea-

surement before the formation of a closed trapped surface, which prevents the escape of any

signal. If we decrease the minimum length by a numerical factor, the inequality (7) requires

M >> R, so we force the experimenter to work from deep inside an apparatus which has

far exceeded the criteria for gravitational collapse (i.e., it is much denser than a black hole

of the same size R as the apparatus). For such an apparatus a horizon will already exist

before the measurement begins. The radius of the horizon, which is of order M , is very large

compared to R, so that no signal can escape.

An implication of our result is that there may only be a finite number of degrees of

freedom per unit volume in our universe - no true continuum of space or time. Equivalently,

there is only a finite amount of information or entropy in any finite region our universe.

One of the main problems encountered in the quantization of gravity is a proliferation of

divergences coming from short distance fluctuations of the metric (or graviton). However,

these divergences might only be artifacts of perturbation theory: minimum length, which

is itself a non-perturbative effect, might provide a cutoff which removes the infinities. This

conjecture could be verified by lattice simulations of quantum gravity (for example, in the

Euclidean path integral formulation), by checking to see if they yield finite results even in

the continuum limit.

This research supported in part under DOE contracts DE-FG06-85ER40224, DE-FG03-

92ER40701 and DE-FG02-97ER-41036.

7



References

[1] K. S. Thorne, Nonspherical gravitational collapse: A short review, in J. R . Klauder,
Magic Without Magic, San Francisco 1972, 231–258; D. M. Eardley and S. B. Giddings,
Phys. Rev. D 66, 044011 (2002) [arXiv:gr-qc/0201034]; S. D. H. Hsu, Phys. Lett. B
555, 92 (2003) [arXiv:hep-ph/0203154].

[2] V. B. Braginsky and Yu. I. Vorontsov, Usp. Fiz. Nauk 114, 41 (1974) Sov. Phys. Usp.
17, 644 (1975); C. M. Caves, Phys. Rev. Lett. 54, 2465 (1985).

[3] M. Ozawa, ”Realization of measurement and the standard quantum limit, Squeezed
and Nonclassical Light,” in squeezed and nonclassical light, edited by P. Tombesi and
E. R. Pike, Plenum (1989) 263–286.

[4] X. Calmet, M. Graesser and S. D. H. Hsu, Phys. Rev. Lett. 93, 211101 (2004)
[arXiv:hep-th/0405033].

8


