Finiteness of the number of compatibly-split subvarieties

Shrawan Kumar and Vikram B. Mehta^{*}

January 14, 2009

1 Introduction

Let k be an algebraically closed field of characteristic p > 0 and let X be a scheme over k (always assumed to be separated of finite type over k). The following is the main theorem of this note and we give here its complete and self-contained proof.

(1.1) Theorem. Assume that X is Frobenius split by a splitting $\sigma \in \text{Hom}_{\mathcal{O}_X}(F_*\mathcal{O}_X, \mathcal{O}_X)$, where F is the absolute Frobenius morphism (cf. [BK, Section 1.1]). Then, there are only finitely many closed subschemes of X which are compatibly split (under σ).

2 Proof of Theorem 1.1

We first prove the following proposition which is of independent interest. By a variety we mean a reduced but not necessarily irreducible scheme over k.

(2.1) Proposition. Let X be a nonsingular irreducible variety which is Frobenius split by $\sigma \in \operatorname{Hom}_{\mathcal{O}_X}(F_*\mathcal{O}_X, \mathcal{O}_X) \simeq H^0(X, F_*(\omega_X^{1-p}))$, where ω_X is the dualizing sheaf of X (cf. [BK, Proposition 1.3.7]), and let $Y \subset X$ be a compatibly-split closed subscheme of X. Then,

 $Y \subset Z(\bar{\sigma}),$

^{*}Acknowledgements. We thank A. Knutson for the correspondences which led to this work. The first author was partially supported by a FRG grant from NSF.

where $Z(\bar{\sigma})$ denotes the set of zeroes of $\bar{\sigma}$ and $\bar{\sigma}$ is the section of $F_*(\omega_X^{1-p})$ obtained from σ via the above identification.

Proof. Since any irreducible component of a compatibly-split closed subscheme is compatibly split (cf. [BK, Proposition 1.2.1]), we can assume that Y is irreducible. Assume, if possible, that $Y \cap (X \setminus Z(\bar{\sigma})) \neq \emptyset$. Then, $Y^{\text{reg}} \cap (X \setminus Z(\bar{\sigma})) \neq \emptyset$, where Y^{reg} is the nonsingular locus of Y.

Take $y \in Y^{\text{reg}} \cap (X \setminus Z(\bar{\sigma}))$. Choose a system of local parameters $\{t_1, \ldots, t_m, t_{m+1}, \ldots, t_n\}$ at $y \in X$ such that $\{t_1, \ldots, t_m\}$ is a system of local parameters at $y \in Y$ and $\langle t_{m+1}, \ldots, t_n \rangle$ is the completion of the ideal of Y in X at y. (This is possible since both X and Y are nonsingular at y.) By assumption, $\bar{\sigma}$ is a unit in the local ring $\mathcal{O}_{X,y}$. Moreover, σ induces a splitting $\hat{\sigma}$ of the power series ring $k[[t_1, \ldots, t_n]]$ compatibly splitting the ideal $\langle t_{m+1}, \ldots, t_n \rangle$. Now, since $\bar{\sigma}$ does not vanish at y, $\hat{\sigma}((t_1 \cdots t_n)^{p-1})$ is a unit in the ring $k[[t_1, \ldots, t_n]]$. In particular, $\hat{\sigma}$ does not keep the ideal $\langle t_{m+1}, \ldots, t_n \rangle$ stable. This is a contradiction to the assumption. Hence, $Y \subset Z(\bar{\sigma})$, proving the proposition.

(2.2) Proof of Theorem 1.1. By [BK, Proposition 1.2.1], we can assume without loss of generality that X is irreducible. We prove Theorem 1.1 by induction on the dimension of X. If dim X = 0, then the theorem is clear. So assume that dim X = n and the theorem is true for varieties of dimension < n. Let $Y \subset X$ be a compatibly-split irreducible closed subscheme. Then, either $Y \subset X^{\text{sing}}$ (where X^{sing} is the singular locus of X) or $Y \cap X^{\text{reg}} \neq \emptyset$. In the latter case, by Proposition 2.1,

$$Y \cap X^{\operatorname{reg}} \subset Z(\bar{\sigma^o}),$$

where $Z(\bar{\sigma}^o)$ denotes the set of zeroes of the splitting $\bar{\sigma}^o$ of the open subset X^{reg} of X viewed as a section of $F_*(\omega_{X^{\text{reg}}}^{1-p})$. Thus, in this case,

$$Y \subset \overline{Z(\bar{\sigma^o})},$$

 $\overline{Z(\bar{\sigma^o})}$ being the closure of $Z(\bar{\sigma^o})$ in X. Hence, in either case,

(1)
$$Y \subset \overline{Z(\bar{\sigma^o})} \cup X^{\text{sing}}.$$

Considering the irreducible components, the same inclusion (1) holds for any compatibly-split closed subscheme $Y \subset X$ such that $Y \neq X$. Let $\{Y_i\}_{i\in I}$ be the collection of all the distinct compatibly-split closed subschemes $Y_i \subset X$ and let $Y := \bigcup_{i\in I} Y_i$. Since the ideal sheaf $\mathcal{I}_Y = \bigcap_{i\in I} \mathcal{I}_{Y_i}$ and each \mathcal{I}_{Y_i} is stable under the splitting σ of X, the closed subscheme Y is compatibly split. In particular, by (1), for each $i \in I$,

$$Y_i \subset Y \subset \overline{Z(\bar{\sigma^o})} \cup X^{\text{sing}}.$$

Since $\dim(\overline{Z(\overline{\sigma^o})} \cup X^{\text{sing}}) < \dim X$; in particular, one has $\dim Y < \dim X$. Thus, by the induction hypothesis (applying the theorem with X replaced by Y), I is a finite set. This completes the proof of the theorem.

(2.2) Remark. Karl Schwede has also obtained the above theorem via 'F-purity' in a recent preprint [S]. As pointed out by Schwede, when X is projective, the theorem also follows from [EH, Corollary 3.2] again via 'F-purity'. (See also, [Sh] for another proof via 'tight closure'.)

References

- [BK] Brion, M. and Kumar, S.: Frobenius splitting methods in geometry and representation theory, Birkhäuser, Boston (2005).
- [EH] Enescu, F. and Hochster, M.: The Frobenius structure of local cohomology, Preprint (2007) (To appear in J. Algebra and Number Theory).
- [S] Schwede, K.: F-adjunction, Preprint (2009).
- [Sh] Sharp, R.Y.: Graded annihilators of modules over the Frobenius skew polynomial ring and tight closure, *Trans. Amer. Math. Soc.* **359** (2007), 4237-4258.

Addresses:

S.K.: Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599-3250, USA
(email: shrawan@email.unc.edu)
V.M.: School of Mathematics, Tata Institute of Fundamental Research, Calaba, Mumbai 400005, India
(email: vikram@math.tifr.res.in)