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Let G be a semisimple, simply connected algebraic group over an algebraically
closed field of characteristic p > 0. Let U be the unipotent radical of a Borel
subgroup B ⊂ G and u the Lie algebra of U . Springer [16] has shown for good
primes, that there is a B-equivariant isomorphism U → u, where B acts through
conjugation on U and through the adjoint action on u (for G = SLn one has the well
known equivariant isomorphism A 7→ A− I between unipotent and nilpotent upper
triangular matrices). Let p be a good prime for G. Then there is an isomorphism
of homogeneous bundles X = G×B U → G×B u, where the latter can be identified
with the cotangent bundle T ∗(G/B) of G/B.

Motivated in part by [12] we establish a link between the G-invariant form χ on
the Steinberg module St = H0(G/B, (p − 1)ρ) (cf. §1.8) and Frobenius splittings
[15] of the cotangent bundle T ∗(G/B): The representation H0(G/B, 2(p − 1)ρ) is
a quotient of the space of functions H0(X,OX) on X (here H0(G/B,M) denotes
the G-module induced from the B-module M and ρ half the sum of the roots R+

opposite to the roots of B) (cf. Corollary 1). There is a natural map

ϕ′ : St ⊗ St → H0(X,OX)

such that the multiplication µ : St ⊗ St → H0(G/B, 2(p − 1)ρ) factors through
the projection H0(X,OX) → H0(G/B, 2(p − 1)ρ). In the notation of Corollary 1,
ϕ′ = H0(ϕ). Surprisingly the simple situation of [12] generalizes in that ϕ′(v) is a
Frobenius splitting of X if and only if χ(v) 6= 0 (if and only if µ(v) is a Frobenius
splitting of G/B) (cf. Theorem 1). In particular, the cotangent bundle T ∗(G/B) is
Frobenius split (cf. Corollary 2).

Frobenius splitting of the cotangent bundle in this setup has a number of inter-
esting consequences. By filtering the differential forms via a morphism to a suitable
partial flag variety and using diagonality of Hodge cohomology and Koszul resolu-
tions, we obtain the vanishing theorem (cf. Theorem 2)

Hi(G/B, Su∗ ⊗ λ) = 0, i > 0

where λ is any dominant weight and Su∗ denotes the symmetric algebra of u∗. This
was proved in [1] for large dominant weights and for all dominant weights for groups
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of classical type and G2 (and large primes). The simple key lemma in the very simple
proof of the Borel-Bott-Weil theorem [6] implies that the above vanishing theorem
can be extended to weights C = {λ | 〈λ, α∨〉 ≥ −1, ∀α ∈ R+}. This vanishing
theorem was proved in characteristic zero by Broer [3] using complete reducibility
and the Borel-Bott-Weil theorem. As in characteristic zero ([3], Theorem 4.4) it
follows that the subregular nilpotent variety is normal, Gorenstein and has rational
singularities (cf. Theorem 6).

In the parabolic case we prove the above vanishing theorem for P -regular domi-
nant weights (after proving that the cotangent bundle of partial flag varieties G/P
is also Frobenius split) (cf. Corollary 3 and Theorem 5).

By using the Koszul resolution, the vanishing theorem also gives the Dolbeault
vanishing:

Hi(G/B,Ωj
G/B ⊗ L(λ)) = 0

for i > j and λ ∈ C (cf. Theorem 3).
Another consequence is the conjectured isomorphism in ([9], II.12.15), [1] between

the group cohomology Hi(G1,H
0(G/B, µ))[−1] of the first Frobenius kernel of G and

the space of sections of a homogeneous line bundle on T ∗(G/B) (cf. Theorem 8 for
a precise statement). Furthermore, by using the B-module structure of St ⊗ St, it
follows easily that T ∗(G/B) carries a canonical Frobenius splitting [13][10]. This
implies that

H0(G/B, Su∗ ⊗ λ)

has a good filtration [10] for any weight λ (cf. Theorem 7). One obtains, in particular,
that the cohomology of induced representations Hi(G1,H

0(G/B, µ))[−1] has a good
filtration [1](for µ dominant and p bigger than the Coxeter number of G).

All of our proofs (and results) work for all groups in a uniform manner.
Our canonical splitting relates to the splitting of Mehta and van der Kallen in

the GLn-case [14] by taking a certain homogeneous component. For now we have
ignored the more combinatorial aspects of the methods in this paper, like analyzing
compatible Frobenius splitting.

1. Notation and preliminaries

The following notation is used throughout the paper. Fix an algebraically closed
field k of characteristic p > 0. All schemes and morphisms will be over k.

1.1. Group data. Let G be a connected, simply connected, semisimple algebraic
group, B a Borel subgroup of G, T ⊂ B a maximal torus and U the unipotent
radical of B. The Lie algebras of G, B and U are denoted g, b and u respectively.
In the following B will act on U by conjugation and on u by the adjoint action.
Let B+ be the opposite Borel subgroup with unipotent radical U+, R = R(T,G)
the root system of G with respect to T , R− = R(T, U) (the negative roots), R+ =
R(T, U+) = {α1, . . . , αN} (the positive roots), S ⊂ R+ the simple roots and h the
Coxeter number of G. For a parabolic subgroup P ⊃ B we let UP denote the
unipotent radical of P , U+

P the opposite unipotent radical of P , uP the Lie algebra
of UP , p the Lie algebra of P and RP ⊃ T the Levi factor of P . By 〈·, ·〉 we denote
the natural pairing X(T ) × Y (T ) → Z given by 〈λ, µ〉 = λ(µ(1)), where X(T ) is
the group of characters (also identified with the weight lattice) and Y (T ) the group
of one parameter subgroups of T (also identified with the coroot lattice). A simple
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root α ∈ R+ defines the (simple) reflection sα(λ) = λ − 〈λ, α∨〉α, where λ ∈ X(T )
and α∨ ∈ Y (T ) is the coroot associated with α. For a subset I ⊂ S we let P = PI
denote the associated parabolic subgroup. Recall that the group of characters X(P )
of P can be identified with {λ ∈ X(T )|〈λ, α∨〉 = 0, for all α ∈ I}. In particular,
X(B) = X(T ). A weight λ ∈ X(B) is called dominant if 〈λ, α∨〉 ≥ 0 for all α ∈ S.
A dominant weight λ ∈ X(P ) is called P -regular if 〈λ, α∨〉 > 0 for all α 6∈ I, where
P = PI is a parabolic subgroup. A B-regular dominant weight is called regular. The
Weyl group W of G is generated by the simple reflections. The “dot” action of W
on X(T ) is given by w · λ = w(λ + ρ) − ρ, where 〈ρ, α∨〉 = 1 for every simple root
α ∈ S. On the weight lattice X(T ) the integral cone Z+R

+ ⊆ X(T ) defines the
partial order: λ ≥ µ iff λ− µ ∈ Z+R

+.
Recall that the prime p is defined to be a good prime for G if p is coprime to all

the coefficients of the highest root of G written in terms of the simple roots. For
simple G, p is a good prime if p ≥ 2 for type A; p ≥ 3 for the types B, C and D;
p ≥ 5 for the types F4, E6, E7 and G2; p ≥ 7 for the type E8.

1.2. Homogeneous bundles. A P -scheme X gives rise to an associated locally
trivial fibration G×P X over G/P ([9], I.5.14, II.4.1). If M is a finite dimensional
P -representation, we let L(M) denote the sheaf of sections of the vector bundle
G×P M on G/P .

1.3. The relative Frobenius morphism. The absolute Frobenius morphism on
a scheme is the identity on point spaces and raising to the p-th power locally on
functions. The absolute Frobenius morphism is not a morphism of k-schemes. Let
π : X → Spec(k) be a scheme. Let X ′ be the scheme obtained from X by base
change with the absolute Frobenius morphism on Spec(k), i.e., the underlying topo-
logical space of X ′ is that of X with the same structure sheaf OX of rings, only the
underlying k-algebra structure on OX′ is twisted as λ � f = λ1/pf , for λ ∈ k and
f ∈ OX′ . Using this description of X ′, the relative Frobenius morphism F : X → X ′

is defined in the same way as the absolute Frobenius morphism and it is a morphism
of k-schemes.

1.4. Frobenius splitting. Following Mehta and Ramanathan [15] a variety X is
called Frobenius split if the homomorphism OX′ → F∗OX of OX′-modules is split.
A homomorphism σ : F∗OX → OX′ is a splitting of OX′ → F∗OX if and only if
σ(1) = 1. By abuse of terminology we will call an OX′ -module homomorphism
σ : F∗OX → OX′ a Frobenius splitting if σ(1) ∈ k \ {0} (so that σ is a splitting up
to a constant).

A splitting σ : F∗OX → OX′ is said to split the subvariety Y ⊆ X compatibly if
σ(F∗IY ) ⊆ IY ′, where IY denotes the ideal sheaf of Y .

If X is a smooth variety with canonical line bundle ωX , the Cartier operator gives
an isomorphism ([15], Proposition 5)

HomO
X′

(F∗OX ,OX′) ∼= F∗(ω
1−p
X ).

In this way global sections of ω1−p
X correspond to homomorphisms F∗OX → OX′ . A

section of ω1−p
X which corresponds to a Frobenius splitting in this way, is called a

splitting section. The above isomorphism can be described quite explicitly in local
coordinates ([15], Proposition 5)
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Proposition 1. Let P be a closed point of a smooth variety Y over k of dimension
n. Choose a system x1, . . . , xn of regular parameters in the (regular) local ring OY,P .
Then the isomorphism

F∗(ω
1−p
Y ) → HomO

Y ′
(F∗OY ,OY ′)

is locally described as

xα/(dx)p−1 : xβ 7→ x((α+β+1)/p)−1,

for any α = (α1, . . . , αn), β ∈ Z
n
+. Here we use the multinomial notation xα for the

element xα1

1 . . . xαn

n ∈ OY,P , and m = (m, . . . ,m) ∈ Z
n
+ for an integer m. If γ =

(γ1, . . . , γn) with at least one γi nonintegral, we interpret xγ as zero. Furthermore
dx denotes the element dx1 ∧ · · · ∧ dxn, and xα/(dx)p−1 denotes the local section of
ω1−p
Y with value xα on (dx)p−1.

We also have the following well known [15]

Lemma 1. Let U be an open dense subset of a smooth variety X. If a section
s ∈ H0(X,ω1−p

X ) restricts to a splitting section s|U ∈ H0(U, ω1−p
U ), then s is a splitting

section.

Lemma 2. Let X be a Frobenius split variety and L a line bundle on X. Then
there is for each i ≥ 0 an injection

Hi(X,L) ↪→ Hi(X,Lp)

of abelian groups.

1.5. Volume forms. Let X be a smooth variety with trivial canonical bundle ωX .
A volume form is a nowhere vanishing section θX of ωX (necessarily unique up to
scalar multiples if H0(X,OX)∗ = k). A function f on X is said to Frobenius split
X (with respect to θX) if f θ1−p

X is a splitting section of ω1−p
X .

Proposition 2. Let X = Spec k[x1, . . . , xn] be affine n-space. A volume form on
X is given by θX = dx1 ∧ · · · ∧ dxn and a function f ∈ k[X] Frobenius splits X if
and only if the coefficient of xp−1 in f is nonzero and the coefficients of the terms
xp−1+pα are zero for α ∈ Z

n
≥0 \ {0} (in the multinomial notation of Proposition 1).

Proof: An element σ ∈ HomO
X′

(F∗OX ,OX′) is a Frobenius splitting if and only if
σ(1) is a nonzero constant. The proposition now follows from Proposition 1. �

1.6. Filtration of differentials. Let f : X → Y be a smooth morphism between
smooth varieties X and Y . Let ΩX/k (resp. ΩX/Y ) be the sheaf of differentials of X
(resp. the sheaf of relative differentials of X over Y ). Then we have the following

Lemma 3. There is a short exact sequence

0 → f ∗ΩY/k → ΩX/k → ΩX/Y → 0,

giving a natural filtration of the sheaf of m-forms Ωm
X/k for m ≥ 1 with associated

graded object

GrΩm
X/k =

m
⊕

i=0

f ∗Ωi
Y/k ⊗ Ωm−i

X/Y .
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1.7. The induction functor. Let P be any parabolic subgroup. For a P -module
M we let H0(G/P,M) denote the induced G-module. Recall that (in algebraic
terms) H0(G/P,M) = (k[G] ⊗M)P , where P acts on k[G] by right multiplication
(it is a G-module with G acting trivially on M and by left multiplication on k[G]).
This translates into the more familiar

H0(G/P,M) = {f : G→M |f(g p) = p−1.f(g) ∀g ∈ G, p ∈ P}.

In this formulation H0(G/P,M) is simply the global sections of the homogeneous
vector bundle L(M) on G/P . The sheaf cohomology Hi(G/P,L(M)) will also be
denoted Hi(G/P,M) for i ≥ 0. For P = B, the functor H0(G/B,−) is also denoted
H0(−). If M is a G-module, then i : M → H0(G/P,M) given by i(m)(g) = g−1.m
is an isomorphism of G-modules.

1.8. The Steinberg module. The Steinberg module is by definition the induced
module St = H0(G/B, (p− 1)ρ). It is irreducible and selfdual. Fix an isomorphism
St → St∗ and denote the image of v ∈ St in St∗ by v∗. This defines a G-invariant
form given by χ(v⊗w) = 〈v, w〉 = v∗(w). Let v+ and v− denote highest and lowest
weight vectors of St.

Let G act on itself by conjugation. Then the map St ⊗ St → k[G] given by
(v ⊗ w)(g) = 〈v, g w〉 is a G-homomorphism. We get, in particular, by restriction a
B-homomorphism

ϕ : St ⊗ St → k[U ].

The global functions on G×BU can be identified with H0(G/B, k[U ]). In this setting
we have H0(ϕ)(v ⊗ w)(g, u) = 〈v, gug−1w〉 using the identification i from §1.7.

1.9. The Frobenius kernel. The relative Frobenius morphism U → U ′ is a homo-
morphism of group schemes. The kernel U1 is called the (first) Frobenius kernel and
is a normal (one point) subgroup scheme of U ([9], I.9). If we fix a T -equivariant
isomorphism (such that xi has weight αi)

k[U ] → k[x1, . . . , xN ],

then k[U1] ∼= k[x1, . . . , xN ]/(xp1, . . . , x
p
N). Let γ denote the B-equivariant restric-

tion homomorphism k[U ] → k[U1]. Notice that k[U1] is a finite dimensional B-
representation with all weights ≤ 2(p − 1)ρ. The T -equivariant projection on the
highest weight space spanned by the vector x̄p−1

1 . . . x̄p−1
N is in fact aB-homomorphism

ψ : k[U1] → 2(p− 1)ρ, where the bar denotes the corresponding element in k[U1].

2. Frobenius splitting of G×B U

We begin with the following elementary lemma.

Lemma 4. For any parabolic subgroup P , the canonical line bundle of the varieties
G×P UP and G×P uP is G-equivariantly trivial.

Proof: We give the proof in the case G ×P UP . The argument for G ×P uP is
similar (in fact this is, for good primes, isomorphic to the cotangent bundle of G/P ).
Let n = dimUP . The restriction of the locally free sheaf of relative differentials
Ω = Ω(G×PUP )/(G/P ) on G ×P UP to UP = P ×P UP is the sheaf of differentials of
UP , and hence Ωn|UP

= ωUP
. Let θUP

be a volume form on UP . Since k[UP ] has no
nonconstant units, the canonical action of P on θUP

gives rise to a character β of P ,
which can be determined by considering the action of P on ωUP

|e, as the identity
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e ∈ UP is fixed under P . The cotangent space at e is canonically isomorphic to
Me/M

2
e, where Me denotes the maximal ideal of functions in k[UP ] vanishing at e.

Hence β =
∑

α∈R(T,U+

P
) α. Since Ωn is a G-sheaf, it is the pull back of the line bundle

induced by β on G/P . As the canonical line bundle of G/P is induced by −β, the
result follows from Lemma 3. �

Fix T -eigenfunctions y1, . . . , yN of weights −α1, . . . ,−αN respectively, such that
k[U+] ∼= k[y1, . . . , yN ]. By Lemma 4, X = G ×B U carries a volume form θX
restricting to dy1∧· · ·∧dyN ∧dx1∧· · ·∧dxN on the open subset U+×U ↪→ G×BU .
The following lemma is instrumental in proving Frobenius splitting of G×B U .

Lemma 5. The map ψ ◦ γ ◦ ϕ : St ⊗ St → 2(p− 1)ρ is non-zero.

Proof: It suffices to prove that the monomial xp−1
1 . . . xp−1

N occurs with non-zero
coefficient in f ∈ k[U ], where f(x) = 〈v+, x v+〉. The functions x 7→ 〈v+, x v−〉
and x 7→ 〈v−, x v−〉 from G to k are highest and lowest weight vectors in St =
H0(G/B, (p− 1)ρ) respectively. By Theorem 2.3 in [12] the function σ

x 7→ 〈v+, x v−〉〈v−, x v−〉 ∈ H0(G/B, 2(p− 1)ρ)

is a splitting section of G/B. The restriction of σ to U+ ⊂ G/B is given by
x 7→ 〈v−, x v−〉. Since f corresponds to this function (which Frobenius splits U+)
under conjugation with w0 (the longest element in W ), the coefficient of xp−1

1 . . . xp−1
N

in f must be nonzero by Proposition 2. �

If M is a G-module and N a B-module, then by Frobenius reciprocity, restriction
followed by evaluation at e ∈ G is an isomorphism ([9], Proposition I.3.4)

HomG(M,H0(G/B,N)) → HomB(M,N).

Let µ : St ⊗ St → H0(G/B, 2(p− 1)ρ) denote the multiplication map.

Corollary 1. There is a commutative diagram

H0(G/B, k[U ])
H0(γ)

// H0(G/B, k[U1])

H0(ψ)
��

St ⊗ St

H0(ϕ)

OO

µ // H0(G/B, 2(p− 1)ρ)

of G-equivariant homomorphisms.

Proof: By applying the induction functor we get a homomorphism

H0(ψ) ◦ H0(γ) ◦ H0(ϕ) : St ⊗ St → H0(G/B, 2(p− 1)ρ),

which is non-zero by Lemma 5 (and Frobenius reciprocity). By Frobenius reciprocity
µ is (up to a constant) the unique G-homomorphism µ : St ⊗ St → H0(G/B, 2(p−
1)ρ). Adjusting constants this gives that the diagram is commutative. �

Theorem 1. Let v =
∑

i vi⊗wi be an element of St⊗St. The function fv = H0(ϕ)(v)

Frobenius splits G×B U if and only if µ(v) is a splitting section of ω1−p
G/B.

In particular, the function fv : G×B U → k given by

fv(g, u) =
∑

i

〈vi, gug
−1wi〉

for g ∈ G, u ∈ U , Frobenius splits G×B U if and only if χ(v) is nonzero.
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Proof: Suppose that µ(v) is a splitting section of ω1−p
G/B. Let f = H0(ϕ)(v). We

prove that f Frobenius splits X = G ×B U with respect to the volume form θX .
Restrict f θ1−p

X to the open subset U+ × U ↪→ G ×B U . This leads to a form
f ′(dy1 ∧ · · ·∧ dyN ∧ dx1 ∧ · · ·∧ dxN )1−p on U+ ×U . By Proposition 2 and Lemma 1,
we are done if we prove that the monomial yp−1xp−1 occurs with nonzero coefficient
in f ′ and the monomials yp−1+pαxp−1+pβ occur with zero coefficient where α, β ∈ Z

N
≥0

not simultaneously zero (in the multinomial notation of Proposition 1). We have
the following commutative diagram

k[U+] ⊗ k[U ]
1⊗γ // k[U+] ⊗ k[U1]

1⊗ψ // k[U+] ⊗ 2(p− 1)ρ

(k[G] ⊗ k[U ])B

OO

H0(γ)
// (k[G] ⊗ k[U1])

B

OO

H0(ψ)
// (k[G] ⊗ 2(p− 1)ρ)B

OO

with natural T -equivariant maps. A monomial yp−1+pαxp−1+pβ occuring in f ′ must
have β = 0, as it is the restriction of an element in the image of (k[G]⊗St⊗St)B →
(k[G] ⊗ k[U ])B and since any weight in St ⊗ St is ≤ 2(p − 1)ρ. Furthermore, by
Corollary 1, (H0(ψ) ◦ H0(γ))(f) restricted to U+ is a Frobenius splitting. Chasing
through the above diagram this means (using β = 0) that α = 0 and the monomial
yp−1xp−1 occurs with nonzero coefficient in f ′, so that f Frobenius splits G×BU . On
the other hand if H0(ϕ)(v) is a Frobenius splitting it is easy to read off the diagram
that µ(v) is a splitting section. The last part of the theorem follows from Theorem
2.3 in [12]. �

Recall that the cotangent bundle T ∗(G/P ) of G/P is the G-fibration associated
to the P -module (g/p)∗ under the adjoint action. It is well known that there is an
isomorphism (g/p)∗ ∼= uP of P -modules in good characteristics ([16], Lemma 4.4).
Hence in this case T ∗(G/P ) ∼= G×P uP . We have the following crucial result due to
Springer ([16], Proposition 3.5)

Proposition 3. Let char k be a good prime for G. Then there exists a B-equivariant
isomorphism ζ : U → u. Moreover for any parabolic subgroup P , ζ restricts to give
a P -equivariant isomorphism ζP : UP → uP .

Corollary 2. Let char k be a good prime for G. Then the cotangent bundle T ∗(G/B)
of G/B is Frobenius split.

Proof: By Proposition 3 we get a G-isomorphism G ×B U → G ×B u, where the
latter can be identified with the cotangent bundle of G/B. The result now follows
from Theorem 1. �

Remark 1. For v ∈ St⊗St define f̃v : G×B B → k as in Theorem 1 (where B acts

on itself by cojugation). Then f̃v Frobenius splits G ×B B if and only if χ(v) 6= 0.
Also the function g 7→ 〈v−, gv+〉〈v−, g−1v+〉 splits G. Furthermore, if char. k is a
good prime for G, any such v gives rise to a Frobenius splitting of G ×B b, which
descends via the map (g,X) 7→ Ad(g)X to the Lie algebra g. Since we have no
nontrivial applications of these results we do not give any proofs.

3. Vanishing

Let
C = {µ ∈ X(T )|〈µ, α∨〉 ≥ −1, ∀α ∈ R+}.
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It is easy to see ([4], Proposition 2) that C is the set of weights λ such that if µ is
a dominant weight with λ ≤ µ ≤ λ+, then µ = λ+ (here λ+ denotes the dominant
weight in the W -orbit of λ). The set C is precisely the weights of line bundles onG/B
in characteristic zero, which have vanishing higher cohomology when pulled back to
the cotangent bundle ([3], Theorem 2.4). In this section we prove the analogous
vanishing theorem in good prime characteristics.

Andersen and Jantzen ([1], Theorem 3.6) proved the following vanishing theorem
under the assumption that p > h and either λ = 0 or λ strongly dominant (i.e.
〈λ, α∨〉 ≥ h−1 for all α ∈ S). For p ≥ h−1 and all components of G classical or G2

they proved the vanishing theorem for λ dominant ([1], Proposition 5.4). Actually
the condition λ+ρ dominant in ([1], Proposition 5.4) is not sufficient for vanishing as
noticed by Graham and Broer - this is also revealed using Lemma 6 in §3.2 coupled
with Bott’s theorem. Let π : T ∗(G/B) → G/B denote the projection.

Theorem 2. Let char k be a good prime for G and suppose that λ ∈ C. Then

Hi(T ∗(G/B), π∗L(λ)) = Hi(G/B, Su∗ ⊗ λ) = 0

when i > 0.

Remark 2. By the semicontinuity theorem our result implies the same vanishing
theorem over fields of characteristic zero.

3.1. The Koszul resolution. Let

0 → V ′ → V → V ′′ → 0

be a short exact sequence of vector spaces. For any n > 0 one obtains a functorial
exact sequence (called the Koszul resolution, ([9], II.12.12))

· · · → Sn−iV ⊗ ∧iV ′ → · · · → Sn−1V ⊗ V ′ → SnV → SnV ′′ → 0.

3.2. A simple lemma. Let Pα be the minimal parabolic subgroup corresponding
to a simple root α. If λ ∈ X(T ) is a weight with 〈λ, α∨〉 = −1 and V a Pα-module,
then

Hi(G/B, V ⊗ λ) = 0

for i ≥ 0. This result is the simple key lemma in Demazure’s very simple proof of the
Borel-Bott-Weil theorem [6]. It has the following consequence (a similar approach
has been used by Broer in [5]).

Lemma 6. Suppose that λ ∈ C and 〈λ, α∨〉 = −1 for a simple root α. Then
sα(λ) ∈ C and

Hi(G/B, Snu∗ ⊗ λ) ∼= Hi(G/B, Sn−1u∗ ⊗ sα(λ))

for i ≥ 0 and n > 0.

Proof: As sα permutes R+ \ {α} and maps α to −α, we get that sα(λ) ∈ C. The
isomorphism follows by applying §3.1 to the short exact sequence of B-modules

0 → α → u∗ → u∗
Pα

→ 0,

and then tensoring with λ. �
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3.3. Large dominant weights. This section contains a proof of a lemma enabling
us to turn Frobenius splitting into vanishing for weights, which are not necessarily
regular. The key lies in filtering differentials using the fibration G/B → G/P for a
suitable parabolic subgroup P ⊃ B.

Lemma 7. Let λ be a dominant weight. Then

Hi(G/B,Ωj
G/B ⊗ L(mλ)) = 0

for i > j and all m sufficiently big.

Proof: If λ = 0, we are done by the fact that H i(G/B,Ωj
G/B) = 0 for i 6= j ([9],

II.6.18). This is usually referred to as the diagonality of Hodge cohomology. If
λ 6= 0, there exists a (unique) parabolic subgroup P 6= G, such that λ is a (P -
regular) character of P and the induced line bundle L(λ) is ample on G/P . Let f
denote the smooth (P/B)-fibration G/B → G/P . Using Lemma 3, we see that it is
enough to prove that the cohomology groups

Hi(G/B, f ∗Ωr
G/P ⊗ Ωj−r

(G/B)/(G/P ) ⊗ L(mλ))

vanish for all sufficiently big m, where 0 ≤ r ≤ j. The E2-terms in the Leray spectral
sequence for f are (using the projection formula)

Epq
2 = Hp(G/P,L(mλ) ⊗ Ωr

G/P ⊗Rqf∗Ω
j−r
(G/B)/(G/P ))

= Hp(G/P,L(mλ) ⊗ Ωr
G/P ⊗ L(Hq(P/B,Ωj−r

P/B))).

For all m sufficiently big we get Epq
2 = 0 for p > 0 by Serre vanishing. Diagonality

of Hodge cohomology for P/B gives that Epq
2 = 0 unless q = j−r. In particular, for

m sufficiently big, combining the two, we get Epq
2 = 0 unless p = 0 and q = j − r.

Now the result follows by the Leray spectral sequence, since i > j by assumption.
�

3.4. Proof of Theorem 2. The first isomorphism follows since π : T ∗(G/B) →
G/B is an affine morphism and π∗OT ∗(G/B) = L(Su∗). To prove the vanishing part
we may assume that λ is dominant, because of the following argument: Assume by
induction on n that Hi(G/B, Sju∗ ⊗ λ) = 0 for j < n, i > 0 and λ ∈ C. We wish to
prove the same result for j = n. Take a non dominant weight λ ∈ C. Then there is
a simple root α such that 〈λ, α∨〉 = −1. By Lemma 6, sα(λ) ∈ C and

Hi(G/B, Snu∗ ⊗ λ) = Hi(G/B, Sn−1u∗ ⊗ sα(λ)),

where the latter group vanishes by induction.
So assume that λ is dominant. Since (b/u)∗ is a trivial B-module, it follows

from §3.1 (applied to the sequence 0 → (b/u)∗ → b∗ → u∗ → 0, and breaking
the resulting Koszul resolution up into short exact sequences) that the vanishing of
Hi(G/B, Sb∗ ⊗ λ) implies the vanishing of Hi(G/B, Su∗ ⊗ λ) for i > 0. Again using
§3.1 for the short exact sequence 0 → (g/b)∗ → g∗ → b∗ → 0 we get for n ≥ 1 an
exact sequence

· · · → ∧1(g/b)∗ ⊗ Sn−1g∗ ⊗ λ→ Sng∗ ⊗ λ→ Snb∗ ⊗ λ→ 0

after tensoring with λ. By breaking this up into short exact sequences, we see that
the vanishing Hi(G/B, Sb∗ ⊗ λ) = 0 for any fixed i > 0 follows from the vanishing

Hi+j(G/B,∧j(g/b)∗ ⊗ λ) = 0
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for all j ≥ 0. The B-representation ∧j(g/b)∗ induces the bundle of j-forms Ωj
G/B on

G/B. By Lemma 7, we get for all large enough r thatH i+j(G/B,∧j(g/b)∗⊗(prλ)) =
0 for j ≥ 0 and hence Hi(G/B, Su∗ ⊗ (prλ)) = 0 for i > 0. But by Corollary 2 and
Lemma 2, we have an injection of abelian groups

Hi(T ∗(G/B), π∗L(λ)) ↪→ Hi(T ∗(G/B), π∗L(prλ))

which translates into an injection Hi(G/B, Su∗ ⊗ λ) ↪→ Hi(G/B, Su∗ ⊗ (prλ)) for
any r > 0 (this is where the assumption that p is good for G is used). This proves
the theorem.

3.5. Dolbeault vanishing. Theorem 2 is in fact equivalent to the following (Dol-
beault) vanishing (see [4] for results in characteristic zero and the parabolic case).

Theorem 3. Let char k be a good prime for G and λ ∈ C. Then

Hi(G/B,Ωj
G/B ⊗ L(λ)) = 0

for i > j.

Proof: Theorem 2 implies that Hi(G/B, Snb∗⊗λ) = 0 for i > 0, using induction on
n in the Koszul resolution (tensored with λ) coming from the short exact sequence
0 → (b/u)∗ → b∗ → u∗ → 0. This vanishing now fits in a similar induction on n
in the Koszul resolution (tensored with λ) coming from the short exact sequence
0 → (g/b)∗ → g∗ → b∗ → 0. This gives the desired vanishing. �

4. The parabolic case

In this section we prove that the cotangent bundle of G/P , where P is a parabolic
subgroup, is Frobenius split when char k is a good prime for G.

4.1. Frobenius splitting of G×P UP . Let P = PI ⊃ B be the parabolic subgroup
given by a subset I ⊂ S. Let RI denote the root system generated by I. The
space of functions k[(UP )1] on the Frobenius kernel of UP is a finite dimensional
P -representation with all weights ≤ (p − 1)δP , where δP :=

∑

α∈R+\R+

I

α ∈ X(P ).

Observe that −δP is the weight inducing the canonical line bundle of G/P . The
canonical line bundle of G×PUP is trivial by Lemma 4. The space of global functions
k[G×PUP ] can be identified with H0(G/P, k[UP ]). As in the case of a Borel subgroup
B ⊂ P , we have a natural P -equivariant map ϕP : St ⊗ St → k[UP ]. The natural
map

H0(G/P, k[UP ]) → H0(G/P, k[(UP )1]) → H0(G/P, (p− 1)δP ),

(where the last map is induced by the T -equivariant projection k[(UP )1] → (p−1)δP ,
which is in fact a P -module map) composed with H0(G/P, ϕP ) gives theG-eqivariant
map µP : St ⊗ St → H0(G/P, (p− 1)δP ).

Theorem 4. Let v =
∑

i vi ⊗ wi be an element of St ⊗ St. The function f =
H0(G/P, ϕP )(v) Frobenius splits G×P UP if and only if µP (v) is a splitting section
of ω1−p

G/P .

The function f = fPv : G×P UP → k given by

fPv (g, u) =
∑

i

〈vi, gug
−1wi〉

for g ∈ G, u ∈ UP , Frobenius splits G×P UP if and only if χ(v) is nonzero.
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Proof: It follows by analogous weight considerations for the restriction of f to
U+
P ×UP as in the B-case, that f = H0(G/P, ϕP )(v) Frobenius splits G×P UP if and

only if µP (v) is a splitting section of G/P (since any α ∈ R+ \R+
I contains a simple

root outside I with nonzero coefficient when written as a sum of simple roots and
(p− 1)δP +

∑

βi∈R+\R+

I

niβi can not be a weight of St⊗ St for ni ≥ 0 unless each ni
is 0).

In order to prove the last part of the theorem, we need to exhibit an element
w ∈ St ⊗ St such that H0(ϕP )(w) Frobenius splits G ×P UP (because this implies
that µP (w) is a Frobenius splitting of G/P , so that µP followed by the G-equivariant
“evaluation” map [12] H0(G/P, (p − 1)δP ) → k is a non-zero G-homommorphism
St ⊗ St → k and hence equals χ up to a non-zero scalar multiple).

As proved in Theorem 1, the function f(g, u) = 〈v−, gug−1v+〉, Frobenius splits
G×BU . The restriction of this function to U+×U therefore Frobenius splits U+×U .
Observe that this restriction is given by

f(g, u) = 〈v−, guv+〉, g ∈ U+, u ∈ U.

Let w′
0 be the longest element of the Weyl group of RP and let v+

0 = w′
0v

+, v−0 =
w′

0v
−. Index the set of positive roots {α1, . . . , αN} in such a manner that the first

n := |R+
I | roots are the positive roots of RP . Let yi : k → U (resp. xi : k → U+) be

the root homomorphism corresponding to the root −αi (resp. αi).
Write u = yN(tN ) . . .y1(t1) and g = x1(s1) . . .xN(sN). Then

uv+ = yN(tN) . . .yn+1(tn+1)(
∑

l 6=p-1

clt
ln
n . . . t

ll
1vl + ctp−1

n . . . tp−1
1 v+

0 ),

for some c, cl ∈ k, where vl are weight vectors in St and l = (l1, . . . , ln). As f
Frobenius splits U+ × U , we see that the coefficient of tp−1

n+1 . . . t
p−1
N sp−1

N . . . sp−1
n+1 in

〈v−0 ,xn+1(sn+1) . . .xN (sN)yN(tN ) . . .yn+1(tn+1)v
+
0 〉

is nonzero. By weight considerations, it therefore easily follows that the function

f ′ : U+
P × UP → k, f ′(g, u) = 〈v−0 , guv

+
0 〉

Frobenius splits U+
P × UP . But f ′ extends to the function (again denoted by) f ′ :

G ×P UP → k given by (g, u) 7→ 〈v−0 , gug
−1v+

0 〉. (To see this, it suffices to observe
that U+

P fixes v+
0 .) Hence f ′ Frobenius splits G×P UP . �

Corollary 3. Let char k be a good prime for G. Then the cotangent bundle T ∗(G/P )
of G/P is Frobenius split.

Proof: This follows from Theorem 4 and Proposition 3. �

Theorem 5. Assume that char k is a good prime for G. Let λ ∈ X(P ) be a P -
regular weight. Then

Hi(T ∗(G/P ), π∗L(λ)) = Hi(G/P, Su∗
P ⊗ λ) = 0

for i > 0, where π = πP : T ∗(G/P ) → G/P is the projection.

Proof: The proof follows §3.4. One applies the Koszul resolution for the short exact
sequence of P -modules 0 → (g/uP )∗ → g∗ → u∗

P → 0. We get for n ≥ 1 an exact
sequence

· · · → Sn−1g∗ ⊗ ∧1(g/uP )∗ ⊗ λ→ Sng∗ ⊗ λ→ Snu∗
P ⊗ λ→ 0
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after tensoring with λ. Again the vanishing Hi(G/P, Su∗
P ⊗ λ) = 0 for any fixed

i > 0 follows from the vanishing

Hi+j(G/P,∧j(g/uP )∗ ⊗ λ) = 0

for all j ≥ 0. Since λ induces an ample line bundle on G/P this vanishing follows
when λ is replaced by nλ for all sufficiently large n. In particular, we get the
vanishing of Hi(T ∗(G/P ), π∗L(prλ)) = Hi(G/P, Su∗

P ⊗ prλ) for any i > 0 and all
sufficiently large r. Now the result follows from Corollary 3 and Lemma 2. �

5. The subregular nilpotent variety

Throughout this section we assume that G is simple (and simply connected) and
that char k is good for G.

Let U be the unipotent variety in G, i.e., the closed subvariety of G consisting of
all the unipotent elements. Then the map

ϕ : G×B U → U

mapping (g, u) to gug−1 is a resolution of singularities ([8], Theorem 6.3) for all
prime characteristics. If P = Pα is the minimal parabolic subgroup associated with
a short simple root α, then ϕ restricted to G×B UP factors through

ϕα : G×P UP → U .

Lemma 8. The map

ϕα : G×P UP → S

is birational onto its image S, which consists of the closed subvariety of irregular
elements (called the subregular unipotent variety).

Proof: It follows by an argument of Tits that ϕα has connected fibres (see [3],
Proposition 4.2), so we need to show that ϕα is separable (since dim G ×P UP =
dim S). By Richardson’s theorem ([17], I 5.1-5.6) the orbit maps for the conjugation
action of G on itself are separable for very good primes. This implies the separability
of ϕα for good primes, when G is not of type A. In type A the separability of ϕα
follows from the GLn-case, where the orbit maps for the conjugation action are
separable for all primes. �

By ([2], Corollary 9.3.4) there is a (Springer) G-isomorphism between the unipo-
tent variety U and the nilpotent cone N , i.e., the closed subvariety of g consisting
of all the ad−nilpotent elements. In particular, we get that N is normal by the
normality of U ([8], Theorem 4.24(iii)). As in the unipotent case, the Springer
resolution

ϕ̃ : G×B u → N , (g,X) 7→ Ad g(X),

is a resolution of singularities, which gives a resolution (Lemma 8)

ϕ̃α : G×P uP → S

of singularities of the subregular nilpotent variety S, where uP is the nilpotent radical
of the Lie algebra of P . Moreover, all the morphisms ϕ, ϕ̃, ϕα, ϕ̃α are projective
morphisms. Let π : T ∗(G/B) → G/B denote the projection.

Theorem 6. The subregular nilpotent variety S is a normal Gorenstein variety with
rational singularities.
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Proof: The characteristic zero proof ([3], Theorem 4.4) carries over: The closed
subvariety G×B uP of the cotangent bundle G×B u is the zero scheme of a section
of the pull back π∗L(−α). So we get an exact sequence

0 → π∗L(α) → OG×B
u
→ OG×B

uP
→ 0.

By Theorem 2 (since α ∈ C) and the normality of N , we get a short exact sequence

0 → H0(T ∗(G/B), π∗L(α)) → k[N ] → k[G×P uP ] → 0.

Let S̃ denote the normalization of S. The surjection k[N ] → k[G ×P uP ] factors
through the injection k[S] → k[S̃] (followed by the map k[S̃] → k[G×P uP ] induced
by the normalization) via the restriction map k[N ] → k[S]. This proves that k[S] =
k[S̃] so that S is normal. By Theorem 2 the higher cohomologies of OG×B

u
and

π∗L(α) vanish. It follows that Hi(G ×B uP ,OG×B
uP

) = Hi(G ×P uP ,OG×P
uP

) = 0
for i > 0, giving that S has rational singularities (since ϕ̃α is birational by Lemma
8). As the canonical line bundle of G×P uP is trivial, S is Gorenstein ([11] p. 49–50).
�

6. Good filtrations

Let X be a smooth B-variety. A splitting section (or Frobenius splitting) σ ∈
H0(X,ω1−p

X ) is called canonical [13], ( [10], Definition 4.3.5) if σ is T -invariant and
for all α ∈ S and t ∈ k

xα(t).σ =

p−1
∑

i=0

tiσi,α

for suitable σi,α ∈ H0(X,ω1−p
X ) (of weight i α), where xα : k → B is the root

homomorphism corresponding to the root −α.
Recall that a filtration 0 = V0 ⊂ V1 ⊂ . . . of a G-module V is called a good

filtration if V is the union of the G-submodules V0, V1, . . . and Vi/Vi−1
∼= H0(G/B, λi)

for λi dominant. We have the following weaker version of a result due to Mathieu
([10], Lemma 4.4.2) sufficient for our purposes.

Lemma 9. Let X be a smooth B-variety and L a G-equivariant line bundle on
G ×B X. Assume that G ×B X admits a canonical splitting, then the G-module
H0(G×B X,L) has a good filtration.

For good primes there is a G-equivariant map

ϕ′ : St ⊗ St → H0(T ∗(G/B),OT ∗(G/B))

such that ϕ′(a ⊗ b) is a splitting section if χ(a ⊗ b) 6= 0 ( where ϕ′ := H0(ϕ),
cf. §2). Consider the splitting section of the cotangent bundle T ∗(G/B) given by
ϕ′(v+ ⊗ v−). It is easy to see that ϕ′(v+ ⊗ v−) is a canonical Frobenius splitting of
T ∗(G/B) = G×B u, since the definition can be checked for v+ ⊗ v− ∈ St ⊗ St.

Theorem 7. Suppose that char k is a good prime for G. Let λ ∈ X(T ) be a weight
(not necessarily dominant). Then

H0(G/B, Snu∗ ⊗ λ)

has a good filtration for n ≥ 0.
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Proof: By the above T ∗(G/B) = G ×B u admits a canonical Frobenius splitting.
Hence

H0(T ∗(G/B), π∗L(λ)) = H0(G/B, Su∗ ⊗ λ)

has a good filtration by Lemma 9, where π : T ∗(G/B) → G/B denotes the projec-
tion. �

Remark 3. Using Theorem 4 it follows in the same way that T ∗(G/P ) = G×P uP
admits a canonical Frobenius splitting for any parabolic subgroup P ⊃ B. Mathieu
has informed us that H0(X,L) has a good filtration if X is a smooth G-variety with
a canonical Frobenius splitting and L a G-equivariant line bundle on X. In our case
one can prove directly that G×B (G×P uP ) ∼= G/B× (G×P uP ) admits a canonical
Frobenius splitting, so that Lemma 9 implies that H0(G/P, Su∗

P ⊗ λ) has a good
filtration for (arbitrary) weights λ ∈ X(P ).

Theorem 8. Suppose that p > h and let λ be a dominant weight. Then we have an
isomorphism for any w ∈ W such that w · 0 + pλ is dominant

Hi(G1,H
0(G/B,w·0+p λ))[−1] ∼=

{

H0(G/B, S(i−`(w))/2u∗ ⊗ λ) if i ≡ `(w) mod 2,

0 otherwise.

where ()[−1] denotes Frobenius (un)twist of a representation.
In particular, the cohomology of induced representations Hi(G1,H

0(G/B,w · 0 +
p λ))[−1] admits a good filtration.

Proof: The key ingredient in the proof (in [1], §3.3) of the isomorphism is the
vanishing Theorem 2, which makes the spectral sequence ([1], 3.3(2)) degenerate.
The good filtrations follow from Theorem 7. �

Remark 4. Andersen and Jantzen proved the above theorem for groups not having
any components of types E and F ([1], §5). For arbitrary G they proved the above
theorem under the assumption that λ is strongly dominant ([1], Corollary 3.7(b)).

Remark 5. It follows from the linkage principle that the only dominant µ with

H•(G1,H
0(G/B, µ)) 6= 0

are of the form w · 0 + p λ for some λ dominant and w ∈ W .

7. Homogeneous Frobenius splittings

We assume that char. k is a good prime for G. The space of functions (k[G] ⊗
k[uP ])P = (k[G] ⊗ Su∗

P )P on the cotangent bundle T ∗(G/P ) has a natural grading.
Let πd : (k[G] ⊗ Su∗

P )P → (k[G] ⊗ Sdu∗
P )P be the projection on the d-th homoge-

neous factor. Let NP denote the dimension of G/P . Then a function f Frobenius
splits T ∗(G/P ) implies that πNP (p−1)(f) Frobenius splits T ∗(G/P ). A homogeneous
splitting function (of degree NP (p − 1)) descends to give a Frobenius splitting of
the projectivization P(T ∗(G/P )) (lines in T ∗(G/P )) of the cotangent bundle. These
splittings are in some sense better behaved than the splittings coming directly from
St ⊗ St via Corollaries 2 and 3.
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7.1. The An-case. In type An (G = SLn+1(k)) we have the B-equivariant isomor-
phism σ : A 7→ I + A between the upper triangular nilpotent matrices u and the
upper triangular unipotent matrices U . In this way we see that the element v+⊗v−

in St ⊗ St maps to the (splitting) function f

(g, A) 7→ 〈v+, g(A+ I)g−1v−〉

on the cotangent bundle T ∗(G/B) = G ×B u via H0(ϕ) and σ. The function g 7→
〈v+, gv−〉 is a highest weight vector in St and equals the (p − 1)-st power of the
highest weight function fρ : g 7→ 〈w+, gw−〉, where w+ and w− are highest and
lowest weight vectors in H0(G/B, ρ). The function fρ is a product of certain highest
weight functions fω1

, . . . , fωn
, with weight of fωi

= ωi, where ωi denotes the i-th
fundamental dominant weight. Let A = (aij)1≤ij≤n+1 be a matrix in G, then it is
well known that

fωs
(A) = det((aij)1≤i,j≤s)

for 1 ≤ s ≤ n. In this way the (magical) splitting function of Mehta and van
der Kallen [14] on T ∗(G/B) is exactly πN(p−1)(f), where N = n(n + 1)/2. One
interesting aspect of the Mehta - van der Kallen splitting is that it compatibly splits
all G×B uP , for any parabolic subgroup P ⊇ B. Finding a suitable splitting in this
context for the other groups would be very interesting.
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