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FROM RESOLVENT ESTIMATES TO DAMPED WAVES

HANS CHRISTIANSON, EMMANUEL SCHENCK, ANDRÁS VASY, AND JARED WUNSCH

Abstract. In this paper we show how to obtain decay estimates for the
damped wave equation on a compact manifold without geometric control via
knowledge of the dynamics near the un-damped set. We show that if replacing
the damping term with a higher-order complex absorbing potential gives an
operator enjoying polynomial resolvent bounds on the real axis, then the “re-
solvent” associated to our damped problem enjoys bounds of the same order.
It is known that the necessary estimates with complex absorbing potential
can also be obtained via gluing from estimates for corresponding non-compact
models.

1. Introduction

On a compact, connected Riemannian manifold without boundary (X, g), we
consider the non-selfadjoint Schrödinger operator

(1.1) P (h) = h2∆g + iha

where a ∈ C∞(X) is a non-negative function, and ∆g = d∗d is the non-negative
Laplacian associated to the metric g. This paper mainly addresses the question of
the semiclassical analysis of the resolvent of P (h),

Rz(h) := (P (h)− z)−1

for z in a complex h−dependent neighborhood of 1. For non-selfadjoint operators,
it is well known that the norm of the resolvent ‖Rz(h)‖L(L2,L2) may be large, even
far from the spectrum [18], and a better understanding of the resolvent properties of
non-selfadjoint operators remains a challenging problem [29]. In this paper we are
particularly interested in (polynomial) upper bounds in h for the resolvent. These
bounds are especially useful when studying the stabilization problem, which deals
with the rate of the energy decay of the solution of the damped wave equation on
X :

(1.2)

{ (
∂2
t +∆g + a(x)∂t

)
u(x, t) = 0, (x, t) ∈ X × (0,∞)

u(x, 0) = u0 ∈ H1(X), ∂tu(x, 0) = u1 ∈ H0(X).

It has been shown (see [23]) that if a > 0 somewhere, then the energy of the waves,

E(u, t) =
1

2

∫

X

|∂tu|2 + |∇u|2dx

satisfies E(u, t)
t→∞−−−→ 0 for any initial data (u0, u1) ∈ H1 ×H0. If some monotone

decreasing function f(t) can be found such that

E(u, t) 6 f(t)E(u, 0) ,
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so-called strong stabilization occurs. It is not hard to show that this is equivalent
to a uniform exponential decay : ∃C, β > 0 such that for any u solution of (1.2),

E(u, t) 6 Ce−βtE(u, 0).

In pioneering works of Rauch, Taylor, Bardos and Lebeau [2, 23, 26], it has been
shown in various settings that strong stabilization is equivalent to the geometric
control condition (GCC) : there exists T0 > 0 such that from every point in Σ =
{|ξ|2g = 1} ⊂ T ∗X , the bicharacteristic of P (h) reaches {a > 0} in time 6 T0. By
contrast, when the manifold X is no longer controlled by a, decay rate estimates
usually involve additional regularity of the initial data. They take the form

E(u, t) 6 fs(t)‖u‖2Hs

for s > 0 and
‖u‖Hs = ‖u(0)‖2H1+s + ‖∂tu(0)‖2Hs .

The question of exponential energy decay reduces to the study of high-frequency
phenomena, in particular the issue of the spectral properties in the semiclassical
limit h → 0 of certain non-selfadjoint operators approximately of the form∗ (1.1),
on a fixed energy layer. For instance, when geometric control holds, there exist
h0 > 0, C, c > 0 such that for z ∈ [1− δ, 1 + δ] + i[−ch, ch] we have

(1.3) ‖Rz(h)‖L(L2,L2) 6 C/h, h < h0.

Standard arguments then show that this resolvent estimate implies the uniform ex-
ponential decay for the energy. Similar arguments will apply in the case considered
here, of resolvent estimates with loss.

1.1. Motivation. While our main motivation for studying resolvent estimates for
P (h) come from the stabilization problem, our approach in this paper is oriented by
geometric considerations, as we explain now. As discussed above, in the presence
of geometric control, the resolvent (P (h) − z)−1 enjoys a polynomial bound in a
neighbourhood of size ch around the real axis, and this property implies exponential
damping. When geometric control no longer holds, it is then a natural question
to ask what type of estimate can be satisfied by ‖(P (h)− z)−1‖, and, crucially, in
what type of complex neighbourhood of the real axis a resolvent estimate can be
obtained. The properties of the undamped set

(1.4) N = {ρ ∈ S∗X : ∀t ∈ R, a ◦ etHp(ρ) = 0}
are of central importance for this question. Here, Hp denotes the Hamiltonian
vector field generated by the principal symbol p = σh(P (h)) = |ξ|2g of the operator

P (h), and S∗X = p−1(1) denotes the unit cosphere bundle. We remind the reader
that the flow generated by Hp in S∗X is simply the geodesic flow.

We now review some known results in the case N 6= ∅. In [7], the case when
N is a single hyperbolic orbit is analyzed, and a polynomial resolvent estimate
for ‖(P − z)−1‖ is shown in a h/| log h|-size neighbourhood of the real axis. As a
consequence, the energy decay is sub-exponential : with the above notation, one

can get fs(t) = e−βs

√
t. It is known from recent work [3] that this decay is sharp. If

∗Strictly speaking, in order to apply resolvent bounds to the damped wave equation, we also
need the imaginary part of the Schrödinger operator to be mildly z dependent, with

Rz(h) = (h2∆g + iha
√
z − z)−1;

this will be handled by perturbation (see Corollary 4.3, Section 6, as well as references [9,21,23]).
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the curvature of X is assumed to be negative, and if the relative size of the damping
function a is sufficiently large, then the resolvent obeys a polynomial bound in a
size h neighbourhood of the real axis, and as a result, exponential decay for regular
initial data occurs [27, 28]. Indeed, the hypotheses in [28] is much more general,
requiring only undamped sets of small pressure; the hyperbolic geodesic is a special
case. We note also that for constant negative curvature, the need for an arbitrarily
large damping function a has been recently removed by Nonnenmacher, by using
different methods [24].

A natural question raised by the above remarks, is the following: to what extent
does the geometry of the trapped set alone determine a type of decay? In other
words, given a trapped geometry, what type of resolvent estimate do we expect,
and in what complex neighbourhood of the real axis? This amounts in many cases
to a potentially rather crude decay rate for the energy, as it only depends on the
structure of N and not on the global dynamics of geodesics passing through the
damping; in certain cases, however, our results can be seen to be sharp.†

Motivated by the “black box” approach of Burq-Zworski [4] (cf. earlier work
of Sjöstrand-Zworski [31]) as well as recent work on the gluing of resolvent esti-
mates by Datchev-Vasy [15], we give a recipe for taking information from resolvent
estimates obtained for a noncompact problem in which the set N consists of all
trapped geodesics—those not escaping to infinity—and investigate what these esti-
mates imply for the compact problem with damping. In practice, as recent results
of Datchev-Vasy [15] have shown the resolvent estimates on manifolds with, say,
asymptotically Euclidean ends to be equivalent to estimates on a compact manifold
with a complex absorbing potential substituting for the noncompact ends, we choose
for the sake of brevity and elegance to take this latter model as our “noncompact”
setting. As will be discussed below, these complex absorbing potentials have the
effect of annihilating semiclassical wavefront set along geodesics passing through
them; this is why they are roughly interchangeable with noncompact ends, along
which energy can flow off to infinity never to return.

We thus formulate our main question as follows. Assuming that (X, g) and a are
given, we consider a model operator of the form

P1(h) = h2∆g + iW1

in which the damping is replaced by a complex absorbing potential. We assume that
this model operator enjoys a given “resolvent” estimate‡ on the real axis:

(1.5) ‖(P1(h)− z)−1‖ 6 C
α(h)

h
, z ∈ [1− δ, 1 + δ].

Various examples of such estimates already appear in the literature, see for instance
[5,7,8,11,12,25,34,36] and the references therein. Given (1.5) we then aim to obtain
analogous estimates for the inverse of the operator with damping, i.e., on

(P (h)− z)−1 = (h2∆g + iha− z)−1 ,

when the complex absorbing potential has crucially been replaced by anO(h) damp-
ing term. In this paper, we address this question using a control theory argument

†A very natural further question would then be : given a trapped geometry, what kind of global
assumptions on the manifold can improve the crude decay rate obtained when only N is known?

‡We refer to this as a resolvent estimate owing to its close relationship with the estimate for
the resolvent in scattering problems.
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motivated by [4], together with a recently improved estimate on resolvents trun-
cated away from the trapped set on one side [17], and show that we obtain the
same order of estimate as for the model operator. In the next subsection we state
the precise results.

1.2. Results. As above, we take Hp to be the Hamilton vector field of p = |ξ|2g − 1

and etHp its bicharacteristic flow inside p−1(1) = S∗X (i.e., geodesic flow). We
continue to take

(1.6) N = {ρ ∈ S∗X : ∀t ∈ R, a ◦ etHp(ρ) = 0},
and will add the further assumption that

π(N ) ∩ supp a = ∅,
where π is projection T ∗X → X. Thus there exists a non-empty open set O1 such
that supp(a) ⊂ X \O1, and π(N ) ⋐ O1. The following Theorem is our main “black
box” spectral estimate.

Theorem 1.1. Assume that for some δ ∈ (0, 1) fixed and K ∈ Z, there is a function
1 6 α(h) = O(h−K) such that

‖(h2∆g + i a− z)−1‖L2→L2 6
α(h)

h
,

for z ∈ [1− δ, 1 + δ]. Then there exists C, c0 > 0 such that

‖(h2∆g + iha− z)−1‖L2→L2 6 C
α(h)

h
,

for z ∈ [1− δ, 1 + δ] + i[−c0, c0]h/α(h).

When N = ∅, one has α(h) = O(1), while for N 6= ∅, one has α(h) → ∞ as
h → 0. As a general heuristic, the “larger” the trapped set is, the larger is α(h)
when h → 0, and the weaker the above global estimate is—see section 5 below for
examples.

Remark 1.2. As discussed above, instead of the assumption on the model operator
h2∆g + iW1 with complex absorption, we could just as well, by the results of [15],
have made an assumption on a model operator in which the set O1 is “glued” to
non-compact ends of various forms. In particular, it would suffice to know the
cut-off resolvent estimate on the real axis for the limiting resolvent

∥∥χ(h2∆′ − z + i0)−1χ
∥∥
L(L2,L2)

6
α(h)

h

for a localizer χ equal to 1 on O1 and for ∆′ the Laplacian on a manifold with
Euclidean ends whose trapped set is contained in a set O′

1 isometric to O1.

Remark 1.3. The hypotheses of Theorem 1.1 can be weakened to phase space hy-
potheses, with a a pseudodifferential operator (as in [30]). We have chosen to keep
the damping as a function on the base in accordance with tradition and for the sake
of brevity.

Remark 1.4. The assumption that α(h) = O(h−K) is of a technical nature. It does
not appear to be too restrictive, however, since every known estimate for weakly
unstable trapping satisfies this assumption (see Section 5 below). Indeed, if the
undamped set N is at least weakly semi-unstable, the results of [11] suggest that
in fact α(h) is always Oǫ(h

−1−ǫ) for any ǫ > 0.
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Remark 1.5. If α(h) is not of polynomial nature, the proof of Theorem 1.1 has to
be slightly modified (see below). As a result, the final estimate we can obtain is
weaker : there exists C, c0 > 0 such that

‖(h2∆g + iha− z)−1‖L2→L2 6 C
α2(h)

h
,

for z ∈ [1− δ, 1 + δ] + i[−c0, c0]h/α
2(h).

In section 5 we describe three different settings in which our gluing results apply,
in which the dynamics in a neighborhood of the trapped set are respectively

(1) Normally hyperbolic
(2) Degenerate hyperbolic
(3) Hyperbolic with a condition on topological pressure.

In addition to proving resolvent estimates in these settings, we discuss applications
to decay rates for solutions to the damped wave equation.

2. Operators with complex absorbing potentials

In this section, we collect some standard results about operators with complex
absorbing potentials. Such a potential has a much stronger effect than damping,
namely (in the microlocal absence of forcing), that of annihilating semiclassical
wavefront set completely along bicharacteristics passing through it in the forward
direction.

We collect basic results about the resolvent of an operator with complex absorb-
ing potential. This includes both existence of the family and the basic propagation
estimates, which tell us that the complex absorbing potential kills off wavefront set
under forward propagation. We begin with the definition of the “resolvent:”

Lemma 2.1. Let W ∈ C∞(X), W > 0 and W not identically zero. Suppose that

P1 = h2∆g + iW

on X. Then (P1 − z)−1 is a meromorphic family of bounded operators on L2 for
all z ∈ C, analytic in the closed lower half-plane.

Proof. We simply remark that h2∆+1 is invertible, and apply the analytic Fredholm
theorem to conclude that there exists a meromorphic resolvent family. By the
Fredholm alternative, any pole has to correspond to nullspace of P1 − z. Since

Im 〈P1u, u〉 = 〈Wu, u〉 − (Im z)‖u‖2,
for u to be in the nullspace would imply that Im z > 0; equality would further
require that 〈Wu, u〉 = 0 which is forbidden by unique continuation. �

Finally, we recall the microlocal bound of propagation through trapping by
Datchev-Vasy [16], as well as basic backward propagation of singularities in the
presence of complex absorption (see also Lemma A.2 of [25] for the latter). In this
context we will say that a bicharacteristic γ (by bicharacteristic we always mean an
integral curve of HRe p1 in the characteristic set of Re p1−Re z where p1 is the semi-
classical principal symbol of P1), or a point on γ, is non-trapped if W (γ(T )) > 0
for some T ∈ R, and is trapped otherwise. We say it is forward non-trapped if
W (γ(T )) > 0 for some T > 0. In the terminology of [16] we say that§ the resolvent

§We have opposite signs for imaginary parts of p1 relative to [16], so incoming and outgoing
are interchanged.
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(P1 − z)−1 is semiclassically incoming with a loss of h−1 provided that whenever
q ∈ T ∗X is on a forward non-trapped bicharacteristic γ of P1 and f = O(1) on
γ|[0,T ] then (P1 − z)−1f is O(h−1) at q.

Lemma 2.2. (See [16].) Suppose that P1 = h2∆g + iW on X, W > 0, and z ∈ C

such that Im z = O(h∞), Re z ∈ [1− δ, 1 + δ] for 0 < δ < 1 fixed. Assume that the
resolvent is polynomially bounded, i.e.,

∥∥(P1 − z)−1
∥∥
L(L2,L2)

6 Ch−K for some K.

Then (P1 − z)−1 is semiclassically incoming with a loss of h−1. In particular, if
W (γ(T )) > 0 for some T > 0 and WF~(f) is disjoint from γ|[0,T ], then (P1 −
z)−1f = O(h∞) at q.

Further, if χ ∈ C∞(X) and T ∗
suppχX contains no trapped points, then χ(P1 −

z)−1χ is O(h−1).

A further result that is of crucial importance in avoiding losses in our estimates
is the following result of [17]:

Lemma 2.3. (See [17].) With the notation of Lemma 2.2, if

∥∥(P1 − z)−1
∥∥
L(L2,L2)

6
α(h)

h

and if χ ∈ C∞(X) and T ∗
suppχX contains no trapped points, then for some C > 0,

∥∥(P1 − z)−1χ
∥∥
L(L2,L2)

6 C

√
α(h)

h
.

3. Propagation and damping estimates

We now switch from complex absorbing potentials back to damping: set

P = P (h) = h2∆g + iha

and consider the equation

(P − z)u = f , z ∈ [1− δ, 1 + δ] .

We also set Σ = p−1(0) ⊂ T ∗X where p = σh(P ). Let us start by recalling
a classical result about propagation estimates (see, e.g. Theorem 12.5 of [37] for
a proof by conjugation to normal form; an alternative is the usual commutator
argument as described in [22] in the homogeneous setting and [8] in the semiclassical
setting):

Lemma 3.1. Suppose q ∈ Σ and for some T > 0 the forward bicharacteristic
exp([0, T ]Hp)(q) is disjoint from a compact set K. Then there are Q,Q′ which
are elliptic at q, resp. exp(THp)(q), with WF′

~
(Q′) ∩ K = ∅ such that ‖Qu‖ 6

‖Q′u‖+ Ch−1‖f‖, u = (P − z)−1f .

4. Proof of Theorem 1.1

For the moment, we consider only the case where z ∈ [1− δ, 1 + δ]. We have

P = h2∆g + iha

and we additionally write

P1 = h2∆g + i a
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for the operator with damping replaced by absorption. Choose an open set V1 such
that N ⋐ V1 ⋐ O1. Let B1, ϕ ∈ C∞

0 (X) be smooth functions with B1|V1 = 1,
suppB1 ⊂ O1, ϕ = 1 on supp∇B1 and suppϕ ∩ N = ∅. We observe that N
satisfies the assumptions of Lemma 2.3, so that

‖(P1 − z)−1ϕu‖ 6 Ch−1
√
α(h)‖ϕu‖.

Then, noticing that a and B1 have disjoint supports, we have

(4.1)

‖B1u‖ = ‖(P1 − z)−1(P1 − z)B1u‖
= ‖(P1 − z)−1(P − z)B1u‖
= ‖(P1 − z)−1(B1(P − z) + [P,B1])u‖
6 ‖(P1 − z)−1B1(P − z)u‖+ ‖(P1 − z)−1ϕ[P,B1]ϕu‖

6
α(h)

h
‖B1(P − z)u‖+ C

√
α(h)‖ϕu‖

Since for ρ /∈ N the curve etHp(ρ) passes through {a > 0}, each such bicharac-
teristic curve must certainly enter the compact set X\O1. Thus by compactness,
there exists ǫ0 > 0 such that every such curve passes through {a > ǫ0}. We now
take a cutoff function χ > 0 with suppχ ⊂ {a > ǫ0/2}, and χ = 1 whenever a > ǫ0;
hence every controlled geodesic passes through {χ = 1}.

We next recall a classical lemma concerning the propagation of singularities in
the presence of geometric control. (See [4], which builds on a semiclassical version
of [22], proved in [32].) This is a slight variation on Lemma 3.1, and can of course
also be proved using the original positive commutator argument (see [8]).

Lemma 4.1. (See [4]) Let U be an open neighbourhood of N , χ ∈ C∞(X) as

above. If B0 = Ψ0,0
h (X) is such that WF′

h(B0) ⊂ T ∗X \ U , then for z real near 1,

‖B0u‖ 6
C

h
‖(P − z)u‖+ ‖χu‖+O(h∞)‖u‖

Since suppϕ and supp(1 −B1) lie inside the controlled region, we can write :

‖(I −B1)u‖ 6 Ch−1‖(P − z)u‖+ C‖χu‖+O(h∞)‖u‖

and

‖ϕu‖ 6 Ch−1‖(P − z)u‖+ C‖χu‖+O(h∞)‖u‖ .
But

‖χu‖2 6 C〈au, u〉
= Ch−1 Im〈(P − z)u, u〉
6 Ch−1‖(P − z)u‖‖u‖.

Starting with (4.1), we deduce from the above inequalities that

‖B1u‖2 6 C
(α2(h)

h2
‖(P − z)u‖2 + Cα(h)‖ϕu‖2

)

6 C
(α2(h)

h2
‖(P − z)u‖2 + Cα(h)‖χu‖2 +O(h∞)‖u‖2

)
.
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Hence, we have

‖u‖2 6 C(‖B1u‖2 + ‖(I −B1)u‖2)

6 C
(α2(h)

h2
‖(P − z)u‖2 + α(h)‖χu‖2 +O(h∞)‖u‖2

)

6 C
(α2(h)

h2
‖(P − z)u‖2 + α(h)

h
‖(P − z)u‖‖u‖

+O(h∞)‖u‖2
)

6 C
(α2(h)

h2
‖(P − z)u‖2 + 4ǫ−1α2(h)

h2
‖(P − z)u‖2 + ǫ‖u‖2

+O(h∞)‖u‖2
)
.

If ǫ is small, we can absorb the last two terms in the above inequality on the left
hand side, and we obtain

‖u‖ 6 C
α(h)

h
‖(P − z)u‖.

Now simply observe that by the triangle inequality this bound is still valid if we
add to z an imaginary part that satisfies

| Im z| 6 hα−1(h)C′

for C′ such that C′C < 1, and this concludes the proof of the theorem.

Remark 4.2. If α(h) is not of polynomial nature, then Lemma 2.3 cannot be used.
As a result, the square root in Equation (4.1) must be removed. The rest of the
argument is the same, and we end up with the estimate given in Remark 1.5. Note
also that the energy decay rates for the damped wave equation are of course weaker
than in the case where Lemma 2.3 can be applied.

In order to apply Theorem 1.1 to the situation of the stationary damped wave
operator, we now state a corollary where the Schrödinger operator depends mildly
on z.

Corollary 4.3. Let X be a compact manifold without boundary, and let P̃ (h, z) be
the modified operator

P̃ (h, z) = h2∆g + ih
√
za− z .

Assume that for some δ ∈ (0, 1) fixed there is a function 1 6 α(h) = O(h−K),
for some K ∈ Z, such that

‖(h2∆g + i a− z)−1‖L2→L2 6
α(h)

h
,

for z ∈ [1− δ, 1 + δ]. Then there exists C, c0 > 0 such that

‖P̃ (h, z)−1‖L2→L2 6 C
α(h)

h
,

for

z ∈ [1− c0/α(h), 1 + c0/α(h)] + i[−c0, c0]h/α(h).
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Proof. The real part of the perturbation is manifestly bounded by a small multiple
of h/α(h) and can thus be perturbed away by Neumann series. It thus only remains
to check that the size of the imaginary part of the perturbation:

Re(ha−√
zha)− Im z

can also be made much smaller than h/α(h).
Take

√
z = 1+r+iβ for r, β to be determined. Then z = (1+r)2−β2+2(1+r) iβ.

Then

Re(ha−√
zha)− Im z = ha(1− (1 + r))− 2(1 + r)β = ǫh/α(h)

for ǫ > 0 small if, say, |β| 6 ǫh/2α(h) and |r| 6 α−1(h). Squaring, we obtain

z ∈ [1− c0/α(h), 1 + c0/α(h)] + i[−c0, c0]h/α(h).

�

5. Examples

In this section, we briefly outline some known microlocal resolvent estimates,
state the two different stationary damped wave operator estimates, and then draw
conclusions about solutions to the damped wave equation (1.2).

5.1. A normally hyperbolic trapped set. In this section, we treat the case in
which the trapped set is a smooth manifold in S∗X around which the dynamics
is normally hyperbolic. In this case, estimates for the resolvent with a complex
absorbing potential have been obtained by Wunsch-Zworski [36]. A particular case
of interest is the “photon sphere” for the Kerr black hole geometry, where the phase
space is 6-dimensional N is a symplectic submanifold, diffeomorphic to T ∗S2—see
section 2 of [36] for details on this application, and [33] for placing it in actual
Kerr-de Sitter space. Another special case is of course that of a single hyperbolic
closed geodesic (discussed further in the following section).

The precise formulation of normal hyperbolicity used here is as follows: we define
the backward-forward trapped sets by

Γ± = {ρ ∈ T ∗X : ∀t ≷ 0, a ◦ etHp(ρ) = 0}
Then of course

N = Γ+ ∩ Γ−,

where we have now ceased to restrict to a single energy surface (so N ⊂ T ∗X is
a homogeneous subset in view of the homogeneity of p) in order to employ the
terminology of symplectic geometry more easily.

We make the following assumptions on this intersection:

(1) Γ± are codimension-one smooth manifolds intersecting transversely at N .
(It is not difficult to verify that Γ± must then be coisotropic and N sym-
plectic.)

(2) The flow is hyperbolic in the normal directions to K within the energy
surface S∗X : there exist subbundles E± of TN (Γ±) such that at p ∈ S∗X

TNΓ± = TN ⊕ E±,

where

d(exp(Hp) : E
± → E±
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N

{a > 0}

Figure 1. The “peanut of rotation”.

and there exists θ > 0 such that

(5.1) ‖d(exp(Hp)(v)‖ 6 Ce−θ|t|‖v‖ for all v ∈ E∓, ±t > 0.

As discussed in [36], these hypotheses as stated are not structurally stable, but they
do follow (at least up to loss of derivatives) from the more stringent hypothesis that
the dynamics be r-normally-hyperbolic for every r in the sense of [20, Definition
4]. This implication, and the structural stability of the hypotheses, follows from a
deep theorem of Hirsch-Pugh-Shub [20] and Fenichel [19].

As a consequence of the estimates of [36] for resolvents, we then obtain the
following estimate for the damped operator:

Theorem 5.1. Let (X, g) satisfy the dynamical conditions enumerated above. Then
we have

‖(h2∆g + iha− z)−1‖L2→L2 6 C
|log h|
h

,

for z ∈ [1− δ, 1 + δ] + i[−c0, c0]h/|log h|.

This estimate, or more precisely its refinement in Corollary 4.3, provide a corre-
sponding energy decay estimate for solutions to the damped wave equation (1.2).
In order to avoid irritating issues of projecting away from constant subspaces, etc.,
we assume that u0 ≡ u(x, 0) = 0.

Corollary 5.2. Assume the hypotheses of Theorem 5.1 hold, and let u be a solution
to (1.2) with u0 = 0, and u1 ∈ Hs for some s ∈ (0, 2]. Then there exists a constant
C = Cs > 0 such that

E(u, t) 6 Ce−st1/2/C‖u1‖2Hs .

A simple situation in which the hypotheses of Theorem 1.1 are satisfied is that
of a connected compact manifold of the form X = X0 ∪X1 with X1 open and X0

isometric to a warped product Ru × Sn−1
θ with metric

g = du2 + cosh2 u dθ2.

We take a ∈ C∞(X) to be identically 1 on X1 as well as equal to 1 for |x| > 1 in X0.
This class of manifolds thus includes the “peanut of rotation” shown in Figure 1 as
well as its higher dimensional generalizations.

Then the trapped set is easily seen to be N = {u = 0, ξ = 0} where ξ is the
cotangant variable dual to u, and the function x = 2 − u2 satisfies the convexity
hypotheses. The flow on N is normally hyperbolic, with the stable and unstable



FROM RESOLVENT ESTIMATES TO DAMPED WAVES 11

manifolds being the two components of the set

(
ξ2 +

|η|2Sn−1

cosh2 u

)
= |η|2Sn−1

i.e., by the intersection of the condition that energy and angular momentum match
their values on N . This is an example of a normally hyperbolic trapped set, and
hence both parts of Theorem 5.1 apply.

5.2. A trapped set with degenerate hyperbolicity. In this section, we study
a variant of the normally hyperbolic case, in which the intersection of stable and
unstable manifolds is no longer transverse, hence the results of [36] no longer apply.
This is the case of a surface of rotation with a degenerate hyperbolic closed orbit.

Our example manifold is a topological torus X = [−1, 1]x × S1
θ, equipped with

the metric

(5.2) ds2 = dx2 +A2(x)dθ2

where near x = 0,

A(x) = (1 + |x|2m)
1

2m

and m is an integer > 1. This manifold has a “fatter” part and a “thinner” part.
At the thickest, there is an elliptic geodesic, and at the thinnest part, where x = 0,
there is an unstable geodesic, which we denote by γ. If m > 2, the Gaussian
curvature is chosen to vanish to a finite order at the unstable geodesic, hence the
geodesic is degenerately hyperbolic. If the Gaussian curvature is strictly negative
(m = 1) in a neighbourhood of the thinnest part, the geodesic is non-degenerate;
the geometry of a single closed hyperbolic geodesic has been extensively studied
in [3, 4, 6, 7, 10, 13, 14] and others. As is seen in the previous section, in this non-
degenerate hyperbolic case the energy decays sub-exponentially with derivative loss;
in [3], it is shown that the sub-exponential decay rate is sharp. Based on the sharp
polynomial loss in local smoothing and resolvent estimates in [12], Theorem 1.1
shows that for the degenerate hyperbolic periodic geodesic, we have the following
estimates.

Theorem 5.3. Let X be as above, and suppose a(x) controls X geometrically
outside a sufficiently small neighbourhood U ⊃ γ, so that N = {γ}. Then

‖(h2∆g + iha− z)−1u‖ 6 Ch−2m/(m+1)‖u‖

for z ∈ [1− δ, 1 + δ] + i[−c0, c0]h
2m/(m+1).

As in the previous subsection, we deduce from this resolvent estimate an energy
decay estimate for solutions to the damped wave equation.

Corollary 5.4. Assume the hypotheses of Theorem 5.3 hold, and let u be a solution
to (1.2) with u0 = 0, and u1 ∈ Hs for some s ∈ (0, 2]. Then there exists a constant
C = Cs > 0 such that

E(u, t) 6 C


 t

m+1
m−1

(log(2 + t))
3(m+1)2

2(m−1)2




−s

‖u1‖2Hs .
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5.3. Hyperbolic trapped set with small topological pressure. In this sec-
tion, we assume that the trapped set N has a hyperbolic structure, and that the
topological pressure of half the unstable Jacobian on the trapped set is negative.
Roughly, this means that the set N is rather thin, or filamentary: in dimension
2, this is for instance equivalent to require that N has Hausdorff dimension < 2.
The simplest case to have in mind is a single, closed hyperbolic orbit. We then
build on [25] to get resolvent estimates near the trapped set, which we extend to
the global manifold with our different methods.

We briefly recall here the above dynamical notions. By definition, the hyperbol-
icity of N ⊂ S∗X means that for any ρ ∈ N , the tangent space TρN splits into
flow, stable and unstable subspaces

TρN = RHp ⊕ Es
ρ ⊕ Eu

ρ .

If X is of dimension d, the spaces Es
ρ and Eu

ρ are d − 1 dimensional, and are
preserved under the flow map:

∀t ∈ R, d etHp(Es
ρ) = Es

etHp (ρ)
, d etHp(Eu

ρ ) = Eu
etHp (ρ)

.

Moreover, there exist C, λ > 0 such that

i) ‖d etHp(v)‖ 6 C e−λt ‖v‖, for all v ∈ Es
ρ, t > 0

ii) ‖d e−tHp(v)‖ 6 C e−λt ‖v‖, for all v ∈ Eu
ρ , t > 0.(5.3)

One can show that there exist a metric on T ∗X call the adapted metric, for which
one can take C = 1 in the preceding equations.

The above properties allow us to define the unstable Jacobian. The adapted
metric on T ∗X induces a volume form Ωρ on any d dimensional subspace of T (T ∗

ρX).
Using Ωρ, we can define the unstable Jacobian at ρ for time t. Let us define the
weak-stable and weak-unstable subspaces at ρ by

Es,0
ρ = Es

ρ ⊕ RHp , Eu,0
ρ = Eu

ρ ⊕ RHp.

We set

Ju
t (ρ) = det d e−tHp |Eu,0

e
tHp (ρ)

=
Ωρ(d e

−tHp v1 ∧ · · · ∧ d e−tHp vd)

ΩetHp (ρ)(v1 ∧ · · · ∧ vd)
, Ju(ρ) := Ju

1 (ρ),

where (v1, . . . , vd) can be any basis of Eu,0

etHp (ρ)
. While we do not necessarily have

Ju(ρ) < 1, it is true that Ju
t (ρ) decays exponentially as t → +∞.

We denote by PrN the topological pressure functional on the closed, invariant
set N . We briefly recall a definition, see [35], [25] for more material. If f is a
continuous function on N , n an integer and ǫ > 0, define

Zn,ǫ(f) = sup
S




∑

ρ∈S
exp

n−1∑

k=0

f ◦ ekHp(ρ)





where the supremum is taken over all the (ǫ, n) separated subsets S. The topological
pressure of f on N is then

PrN (f) := lim
ǫ→0

lim sup
n→∞

1

n
logZn,ǫ(f) .
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Our main assumption here is that the topological pressure of 1
2 log J

u on N is
negative, namely:

PrN (
1

2
log Ju) < 0 .

For some δ > 0 small enough, this imply the following resolvent estimate:

(5.4) ∀z ∈ [1− δ, 1 + δ], ‖(h2∆g + i a− z)−1‖ 6 C
|log h|

h

This estimate is already contained in [25], modulo two minor simplifications
in our case: the manifold is compact, and infinity is replaced with the absorbing
potential i a, which control everything outside the trapped set – [15] shows explicitly
that the estimate, with the more complicated geometry at infinity, of [25] implies
the slightly simpler complex absorption result. Using Theorem 1.1, we immediately
deduce the following result:

Theorem 5.5. Let X be a compact manifold, and suppose that a > 0 controls X
except on N , which is assumed to be hyperbolic with the property that

PrN (
1

2
log Ju) < 0 .

For δ > 0 small enough, there is h0 and c0 > 0 such that for h 6 h0 and z ∈
[1− δ, 1 + δ] + i[−c0, c0]

h
| log h| we have

‖(h2∆g + iha− z)−1‖ 6 C
|log h|
h

.

In particular, there is no spectrum near the real axis in a region of size h/|log h|.
As the resolvent estimate is the same order as that in Theorem 5.1, we deduce the
same energy decay estimates as in Corollary 5.2.

6. From resolvent estimates to the damped wave equation and

energy decay

In this section, we show how to move from a high energy resolvent estimate to
an energy decay estimate for the damped wave equation, proving Corollaries 5.2
and 5.4. To estimate the energy decay for the damped wave equation, as usual we
rewrite it as a first-order evolution problem : if u = (u, ∂tu) one can write (1.2) as

(6.1) ∂tu = iBu, B =

(
0 − i Id

i∆g i a

)
.

The evolution group ei tB maps initial data (u0, u1) ∈ H := H1(X) ×H0(X) to a
solution (u, ∂tu) of (6.1) where u solves (1.2). For s > 0, define

‖u‖s := ‖u0‖H1+s(X) + ‖u1‖Hs(X)

It is not hard to see that if we can prove

(6.2)
∥∥ei tB(1− iB)−s

∥∥2
L2(X)→L2(X)

6 f(t)

then we can deduce a decay rate for the energy :

E(u, t) 6 f(t)‖u‖2s
It turns out that we can obtain bounds such as (6.2) if we have estimates on the
high-frequency resolvent (λ− B)−1, |λ| → ∞.
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To see this, we recall the following setup from [9]. Now suppose (λ − B)−1

continues holomorphically to a neighbourhood of the region

Ω =

{
λ ∈ C : | Imλ| 6

{
C1, |Reλ| 6 C2

P (|Reλ|), |Reλ| > C2,

}
,

where P (|Reλ|) > 0 and is monotone decreasing (or constant) as |Reλ| → ∞,
P (C2) = C1, and assume for simplicity that ∂Ω is smooth. Assume

‖(λ− B)−1‖H→H 6 G(|Reλ|)(6.3)

for λ ∈ Ω, where G(|Re λ|) = O(|Re λ|N ) for some N > 0.

Theorem 6.1. Suppose B satisfies all the assumptions above, and let k ∈ N, k >
N + 1. Then for any F (t) > 0, monotone increasing, satisfying

F (t)(k+1)/2 6 exp(tP (F (t))),(6.4)

there is a constant C > 0 such that
∥∥∥∥

ei tB

(1− iB)k
∥∥∥∥
H→H

6 CF (t)−k/2.(6.5)

In all cases considered in this paper, we have semiclassical resolvent estimates

‖(h2∆g + i
√
zha− z)−1‖L2→L2 6

α(h)

h
, z ∼ 1 + ih/α(h),

If we rescale

τ2 =
z

h2
,

then our resolvent estimates become

‖(∆g + i τa− τ2)−1‖L2→L2 6
α(|τ |−1)

|τ | .

for Im τ ∼ (α(|Re τ |−1))−1. By interpolation, this implies for 0 6 j 6 2,

‖(∆g + i τa− τ2)−1‖Hs→Hs+j 6 |τ |j−1α(|τ |−1).

Hence, with B as above and H = H1 ×H0, a simple calculation yields

‖(λ− B)−1‖H→H 6 α(|λ|−1).

For Corollary 5.2, we take α(|λ|−1) = log(2 + |λ|). Then k = 2 suffices, P (r) =

log−1(r), and hence we may take

F (t) = et
1/2/C .

This recovers the endpoint estimate s = 2. To get the intermediate estimates for
s ∈ (0, 2) we interpolate with the trivial estimate

E(u, t) 6 E(u, 0).

For Corollary 5.4, we have α(|λ|−1) = |λ|(m−1)/(m+1), N = (m−1)/(m+1) < 1,
so that k = 2, and P (r) = r(1−m)/(m+1). We try

F (t) =
ts

logq(t)
,

and insist

t3s/2 log−3q/2(t) 6 exp(tts(1−m)/(m+1) logq(m−1)/(m+1)(t)),
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which is satisfied if

s =
m+ 1

(m− 1)

and

q =
3(m+ 1)2

2(m− 1)2
.

Again interpolating with the trivial estimate proves the Corollary.
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