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Large deviations for Multidimensional

State-Dependent Shot Noise Processes
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Abstract: Shot noise processes are used in applied probability to model a variety of

physical systems in, for example, teletraffic theory, insurance and risk theory and in the

engineering sciences. In this work we prove a large deviation principle for the sample-

paths of a general class of multidimensional state-dependent Poisson shot noise processes.

The result covers previously known large deviation results for one dimensional state-

independent shot noise processes with light tails. We use the weak convergence approach

to large deviations, which reduces the proof to establishing the appropriate convergence

of certain controlled versions of the original processes together with relevant results on

existence and uniqueness.
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1. Introduction

The goal of the current work is to study large deviation results for a general family of multi-
dimensional state-dependent shot noise processes. Shot noise processes provide a natural class
of models for systems in which (some aspect of) the state of the system is determined by the
arrival of shocks. A typical application is in the context of queueing systems, in which the
arrival of customers can be interpreted as shocks and one is interested in, say, the current
workload or cost incurred - due to performed work - by current and former customers. Another
common area of application is insurance, the shocks being claims that arrive according to an
underlying point process.

Due to their usefulness in describing various physical systems shot noise processes have
been studied extensively, both theoretically as well as from the perspective of applications. For
some general treatments of this class of processes and their properties see [20, 19, 6, 8]; various
asymptotic properties of shot noise are found in [14, 17, 18, 21, 13], the last three of which deal
with heavy-tailed phenomena. An example of shot noise processes in the queueing context is
provided in [10], whereas [12, 13] considers applications to insurance and risk theory. Another
type of application is to storage processes, see, e.g., [15, 3].

In this paper we are concerned with Poisson shot noise processes, that is the underlying
point process governing the arrivals of the shocks is a Poisson process. Large deviations for a
family of Poisson shot noise processes have been studied in [9] and the precise result therein
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/Large deviations for Poisson shot noise process 2

is as follows. Let N be a homogeneous Poisson process with unit intensity and let Z1, Z2, . . . ,
be independent and identically distributed X-valued random variables, each with distribution
ν and independent of N . Here X is some locally compact Polish space. For a function H :
R+×X → R+, referred to as the shot shape, consider the Poisson shot noise process {X(t); t ∈
[0, T ]}, defined as

X(t) =

N(t)
∑

n=1

H(t− Tn, Zn), (1.1)

where T1, T2, . . . are jump instants of N . Suppose that

for each z ∈ X, t 7→ H(t, z) is nondecreasing and càdlàg and H(0, z) = 0. (1.2)

Let h(z) = limt→∞H(t, z). The function h is referred to as the shot value for the shot noise
process X. Suppose that h satisfies the following condition:

for every ϑ ∈ R,

∫

X

eϑh(z)ν(dz) <∞. (1.3)

For ε > 0, let Xε(t) = εX(ε−1t), t ∈ [0, T ]. The paper [9] shows that {Xε}ε>0 satisfies a large
deviation principle (LDP) in D([0, T ] : R+) as ε → 0, where D([0, T ] : R+) denotes the space
of càdlàg functions from [0, T ] to R+ which is equipped with the usual Skorohod topology.

The goal of this work is to study large deviation properties of general state-dependent
multidimensional shot noise processes. Such processes are natural models for systems where
the impact of a shot depends on the current state value of the system. In order to prove
large deviation results we use the fact that a Poisson shot noise process can be represented as
an integral with respect to a Poisson random measure. Using such representations, our work
builds on certain variational formulas for functionals of a Poisson random measure [5] and their
application to large deviations [4]. Rather than traditional large deviation techniques, such as
those used in [9], we use the weak convergence approach to large deviations. With the results
of [5, 4] this amounts to proving the appropriate convergence of certain controlled versions of
the original process, together with the necessary existence and uniqueness results. The main
advantage of the weak convergence approach is that it avoids the discretization/approximation
arguments and exponential estimates typically encountered in a large deviation analysis (see
e.g. [7]). Such approximation methods are used extensively in [9] and in general are difficult
to implement for complex settings such as the state-dependent shot noise processes considered
here.

Large deviation results such as those considered in this work can be used to determine the
most likely path to rare events. In applications of shot noise processes these results can thus
be used to try and prevent unwanted behaviour of the system in question. Moreover, large
deviation results can be used to design efficient Monte Carlo algorithms. For an example of
such simulations in the context of shot noise processes see [22]. Applications of our results to
rare-event simulation problems will be studied in our future work.

We now introduce the multidimensional state-dependent shot noise processes that will be
studied in this work. Let for each ε > 0, Hε : R+ × X × Rd+ → Rd+ be a measurable function
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and consider the stochastic process X̃ε given as the solution of the following equation,

X̃ε(t) =

N(t)
∑

n=1

Hε(t− Tn, Zn, X̃
ε(Tn−)), t ≥ 0. (1.4)

Let Xε(t) = εX̃ε(ε−1t). We will give a sufficient condition on the collection of maps {Hε}ε>0

under which {Xε}ε>0 satisfies a LDP in D([0, T ] : Rd+). It will be convenient to work with
the following, equivalent in law, representation for Xε. Let nε be a Poisson random measure
(PRM) on XT = [0, T ] ×X with intensity ε−1νT = ε−1λ⊗ ν where λ is the Lebesgue measure
on [0, T ]. Let Xε solve the equation

Xε(t) = ε

∫

Xt

Hε(ε
−1(t− s), z, ε−1Xε(s−))nε(ds dz), t ∈ [0, T ]. (1.5)

where for t ∈ [0, T ], Xt = [0, t]×X. It is easy to check that Xε defined in (1.5) and εX̃ε(ε−1·),
where X̃ε is as in (1.4), have the same distribution. We will in fact consider a more general
setting in that we will study the collection {Xε}ε>0 given as the solution of the equation
(1.5) where the measure ν describing the intensity of nε is a general σ-finite measure on
(X,B(X)). This allows for a non-integrable number of shocks on a bounded time interval. One
can formulate general sufficient conditions under which (1.5) has a unique pathwise solution.
We will instead take unique solvability of the equation as one of our basic assumptions (see
Condition 2.1). In Section 2.1 we introduce our assumptions (Conditions 2.1 and 2.2) on Hε.
Our main result (Theorem 2.2) shows that under these conditions, Xε given as the solution
of the stochastic integral equation (2.2) satisfies a LDP in D([0, T ] : Rd+) as ε → 0. The LDP
established in [9] is an immediate consequence of Theorem 2.2.

The rest of the paper is organized as follows. Section 3 contains the proof of wellposedness
of an ODE associated with the asymptotics of controlled analogues of (1.5) (Theorem 2.1). In
Section 4 we recall a result from [5] that gives a general sufficient condition (Condition 4.1)
for a LDP to hold for measurable functionals of PRM. Theorem 2.2 is proved by verifying
this sufficient condition. Part (a) of the condition is verified in Section 5.1 while part (b) is
considered in Section 5.2.

The following notation will be used. The space of probability measures on a Polish space
S, equipped with the topology of weak convergence, will be denoted by P(S). For a function
f : [0, T ] → Rk, set ‖f‖∗,t = sup0≤s≤t ‖f(s)‖, t ∈ [0, T ]. For ϑ ∈ P(S) and a ϑ -integrable f on
S, we denote

∫

S
f(x)ϑ(dx) as 〈f, ϑ〉. The Borel σ-field on a Polish space S will be denoted as

B(S). The space of functions that are right-continuous with left limits (RCLL) from [0,∞) [resp.
[0, T ]] to S will be denoted as D([0,∞) : S) [resp. D([0, T ] : S)] and are equipped with the usual
Skorohod topology. For a bounded function f from S to R, we denote ‖f‖∞ = supx∈S |f(x)|.
Convergence of a sequence {Xn} of S-valued random variables in distribution to X will be
written as Xn ⇒ X.

For a σ-finite measure ν on a Polish space S, Lp
Rk(S, ν) will denote the space of p-integrable

functions, with respect to ν, from S to Rk. When k = 1, we will merely write Lp(S, ν) or Lp(ν).
We will usually denote by κ, κ1, κ2, · · · , the constants that appear in various estimates within
a proof. The values of these constants may change from one proof to another.
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2. Main Result.

Our basic collection of stochastic processes {Xε}ε>0 is given in terms of Poisson random
measures {nε}ε>0. We will like all these Poisson random measures to be defined on a common
probability space. For this, the following construction will be useful. Let Y = X × [0,∞)
and YT = [0, T ] × Y. For a locally compact Polish space Z, let MFC(Z) be the space of all
measures ν on (Z,B(Z)) such that ν(K) <∞ for every compact K in Z. This space is equipped
with the usual topology of vague convergence. Let M̄ = MFC(YT ) and let P̄ be the unique
probability measure on (M̄,B(M̄)) under which the canonical map, N̄ : M̄ → M̄, N̄(m) = m,
is a Poisson random measure with intensity measure ν̄T = λ ⊗ ν ⊗ λ∞, where λ∞ is the
Lebesgue measure on [0,∞). The corresponding expectation operator will be denoted by Ē.
Let Ft = σ{N̄((0, s] × A) : 0 ≤ s ≤ t, A ∈ B(Y)}, and let F̄t denote the completion under P̄.
We denote by P̄ the predictable σ-field on [0, T ] × M̄ with the filtration {F̄t : 0 ≤ t ≤ T} on
(M̄,B(M̄)).

For ε > 0, let N ε−1

be a counting process on XT defined as

N ε−1

((0, t] × U) =

∫

(0,t]×U×R+

1[0,ε−1](r)N̄(ds dx dr), t ∈ [0, T ], U ∈ B(X). (2.1)

Clearly N ε−1

has the same distribution as nε, i.e. it is a PRM on XT = [0, T ]×X with intensity
ε−1λ⊗ ν.

Next we introduce our assumptions and present the main result.

2.1. Assumptions.

Our first assumption is on the unique solvability of (1.5). Note that N ε−1

is a M-valued random
variable, where M = MFC(XT ).

Condition 2.1. For each ε > 0 there is a measurable map Gε : M → D([0, T ] : Rd+) such that

for any probability space (Ω̃, F̃ , P̃ ) on which is given a Poisson random measure ñε on XT with
intensity measure ε−1νT , X

ε = Gε(εñε) is a F̃t = σ{ñε(B×[0, s]), s ≤ t, B ∈ B(X), ν(B) <∞}-
adapted càdlàg process that is the unique solution of the stochastic integral equation (1.5).

Condition 2.1 is satisfied quite generally. For example, if ν is a finite measure, the unique
solvability is immediate from a recursive construction of a solution of (1.5) from one jump
to the next. For more general ν, Condition 2.1 will hold under suitable Lipschitz and growth
assumptions on Hε (cf. Theorem III.2.3.2 of [11]). The condition in particular says that Xε =
Gε(εN ε−1

) is the unique solution of

Xε(t) = ε

∫

Xt

Hε(ε
−1(t− s), z, ε−1Xε(s−))N ε−1

(ds dz), t ∈ [0, T ]. (2.2)

on (M̄,B(M̄), P̄). For the rest of this work Xε will denote the solution of (2.2).
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Next, we introduce our second main assumption on the family {Hε}ε>0. We denote by Lexp

the family of all measurable functions r : X → R+ such that whenever A ∈ B(X) is such that
ν(A) <∞,

∫

A

eϑr(z)ν(dz) <∞, for all ϑ ∈ R.

Note that if ν is a probability measure this condition merely says that r(Z) has an everywhere
finite moment generating function, where Z is a random variable with probability distribution
ν.

Condition 2.2. There are measurable functions H̄ and Rε from R+ ×X×Rd+ to Rd+ and Rd

respectively; ςε, ς from X to R+; and h from X× Rd+ to Rd+ such that the following hold.

(a) For ε > 0 and (t, z, x) ∈ R+ × X× Rd+

Hε(t, z, x) = H̄(t, z, εx) +Rε(t, z, εx).

(b) For ε > 0 and (z, x) ∈ X× Rd+

sup
t≥0

‖Rε(t, z, x)‖ ≤ ςε(z)(‖x‖ + 1).

(c) ςε ≤ ς, ς ∈ Lexp ∩ L1(ν) and for ν a.e. z ∈ X, ςε(z) → 0 as ε→ 0.
(d) For (z, x) ∈ X × Rd+, t 7→ H̄(t, z, x) is càdlàg and non-decreasing (coordinate-wise) and

H̄(0, z, x) = 0.
(e) For every z ∈ X and m > 0, sup‖x‖≤m |H̄(t, z, x) − h(z, x)‖ → 0 as t→ ∞.

(f) For some Lh ∈ Lexp ∩ L1(ν),

‖h(z, x) − h(z, x′)‖ ≤ Lh(z)‖x− x′‖, for all x, x′ ∈ Rd+, z ∈ X.

(g) For some Mh ∈ Lexp ∩ L1(ν)

‖h(z, x)‖ ≤Mh(z)(1 + ‖x‖), for all x ∈ Rd+, z ∈ X.

The setting considered in [9] corresponds to the case where Hε(t, z, x) is independent of ε
and x; in particular Rε ≡ 0. Conditions 2.1 and 2.2 will be standing assumptions for this work
and will not be explicitly mentioned in the statements of results.

2.2. Controlled ODE.

In this section we will consider an ODE that arises in the asymptotic analysis of the controlled
analogues of (2.2). Define l : [0,∞) → [0,∞) by

l(r) = r log r − r + 1, r ∈ [0,∞).

For g : XT → [0,∞), let

LT (g) =

∫

XT

l(g(t, z))νT (dt dz). (2.3)
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Sn = {g : XT → [0,∞) : LT (g) ≤ n} . (2.4)

A function g ∈ Sn can be identified with a measure νgT ∈ M, defined by

νgT (A) =

∫

A

g(s, x)νT (ds dx), A ∈ B(XT ).

This identification induces a topology on Sn under which Sn is a compact space. (See [4] for
a proof.) Let S = ∪n≥1S

n. For g ∈ S consider the integral equation

ξ(t) =

∫

Xt

h(z, ξ(s))g(s, z)ν(dz)ds, t ∈ [0, T ]. (2.5)

The following result says that the above integral equation has a unique solution for every g ∈ S.
Proof is given in Section 3.

Theorem 2.1. For every g ∈ S there is a unique ξ ∈ C([0, T ] : Rd+) that solves the integral
equation (2.5).

2.3. Large Deviation Principle

We are now ready to present our main result. Given g ∈ S denote by ξg the unique solution of
(2.5). Define I : D([0, T ] : Rd+) → [0,∞] as

I(φ) = inf
g∈S:φ=ξg

{LT (g)}, (2.6)

where infimum over an empty set is taken to be ∞. In particular this says that I(φ) = ∞ for
all φ ∈ D([0, T ] : Rd+) \ C([0, T ] : Rd+). The following is our main result.

Theorem 2.2. I is a rate function and the collection {Xε}ε>0 satisfies a LDP in D([0, T ] : Rd+)
with rate function I, as ε→ 0.

Remark 2.1. The LDP for the scalar state-independent case established in Proposition 3.1
of [9] is an immediate consequence of Theorem 2.2. To see this, note that when d = 1 and
Hε(t, z, x) ≡ H(t, z), where H is as introduced in (1.1), Condition 2.1 holds trivially. Further-
more, under the assumptions made in [9] (specifically, (1.2)), parts (a)-(f) of Condition 2.2 are
immediate and h(z, x) ≡ h(z). Finally the requirement in (1.3), and since ν is a probability
measure, implies that part (g) of Condition 2.2 holds as well in this state-independent case.

3. Proof of Theorem 2.1

In this section we prove Theorem 2.1. We start with the following two lemmas which will be
used several times in this work. The proof of the first lemma is standard and is omitted.

Lemma 3.1. (a) For a, b ∈ (0,∞) and σ ∈ [1,∞), ab ≤ eσa + 1
σ
ℓ(b).

(b) For every β > 0, there exist ̺1(β), ̺2(β) ∈ (0,∞) such that ̺1(β), ̺2(β) → 0 as β → ∞,
and

|x− 1| ≤ ̺1(β)ℓ(x) for |x− 1| ≥ β, x ≥ 0, and x ≤ ̺2(β)ℓ(x) for x ≥ β > 1.
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Lemma 3.2. Let ϑ ∈ Lexp ∩ L1(ν). For every δ > 0 and n ∈ N, there exists c(δ, n, ϑ) ∈ (0,∞)
such that for all ϑ̃ : X → R+ such that ϑ̃ ≤ ϑ, all measurable maps f : [0, T ] → R+ and
0 ≤ s ≤ t ≤ T

sup
g∈Sn

∫

(s,t]×X

f(u)ϑ̃(z)g(u, z)ν(dz) du ≤ c(δ, n, ϑ)

(
∫

X

ϑ̃(z)ν(dz)

)(
∫ t

s

f(u)du

)

+ δ|f |∗,t.

(3.1)

Proof. Let f : [0, T ] → R+, g ∈ Sn and ϑ̃, ϑ be as in the statement of the lemma. Then for
each m > 0

∫

(s,t]×X

f(u)ϑ̃(z)g(u, z)ν(dz) du = T1(m) + T2(m),

where

T1(m) =

∫

(s,t]×{ϑ≤m}
f(u)ϑ̃(z)g(u, z)ν(dz) du,

and

T2(m) =

∫

(s,t]×{ϑ>m}
f(u)ϑ̃(z)g(u, z)ν(dz) du.

Using Lemma 3.1(a), we can estimate T2(m), for each k ≥ 1, as

T2(m) ≤ |f |∗,t

(

T

∫

{ϑ>m}
ekϑ(z)ν(dz) +

n

k

)

.

For each β > 1, define the sets E1(m,β) and E2(m,β) by

E1(m,β) = {(u, z) ∈ (s, t]× X : ϑ(z) ≤ m and g(s, z) ≤ β},

E2(m,β) = {(u, z) ∈ (s, t]× X : ϑ(z) ≤ m and g(s, z) > β}.

Then, T1(m) can be estimated as

T1(m) ≤ T3(m,β) + T4(m,β),

where

T3(m,β) =

∫

E1(m,β)
f(u)ϑ̃(z)g(u, z)ν(dz)du, T4(m,β) =

∫

E2(m,β)
f(u)ϑ̃(z)g(u, z)ν(dz)du.

Using Lemma 3.1(b)

T3(m,β) + T4(m,β) ≤ β

(
∫

X

ϑ̃(z)ν(dz)

)(
∫ t

s

f(u)du

)

+ ̺2(β)mn|f |∗,t.

Combining the estimates for T1(m) and T2(m), the left side of (3.1) can be bounded by

β

(
∫

X

ϑ̃(z)ν(dz)

)(
∫ t

s

f(u)du

)

+ |f |∗,t

(

̺2(β)mn+ T

∫

{ϑ>m}
ekϑ(z)ν(dz) +

n

k

)

.
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Now given δ > 0, choose k > 1 such that n
k
< δ

3 . Next, since ϑ ∈ Lexp ∩ L1(ν), it is possible to

choose m > 0 such that T
∫

{ϑ>m} e
kϑ(z)ν(dz) < δ

3 . Finally using Lemma 3.1(b) choose β > 1

such that ̺2(β)mn <
δ
3 . The result now follows on taking c(δ, n, ϑ) = β.

Proof of Theorem 2.1. We will use Banach’s fixed point theorem. Fix n ∈ N and g ∈ Sn.
Define for r > 0, T r : C([0, r] : Rd+) → C([0, r] : Rd+) as

T r(φ)(t) = φ(0) +

∫

Xt

h(z, φ(s))g(s, z)ν(dz)ds, t ∈ [0, r], φ ∈ C([0, r] : Rd+).

Note that the right-hand side indeed defines an element of C([0, r] : Rd+) since by Lemma 3.2,
for δ > 0 and 0 ≤ s < t < r,

∫

(s,t]×X

‖h(z, φ(u))‖g(s, u)ν(dz)du ≤ (1 + ‖φ‖∗,r)

(

c(δ, n,Mh)(t− s)

∫

X

Mh(z)ν(dz) + δ

)

.

We will now argue that for r small enough T r is a contraction. Note that for φ, φ̃ ∈ C([0, r] :
Rd+), with φ(0) = φ̃(0),

‖T r(φ)− T r(φ̃)‖∗,r ≤

∫

Xr

‖h(z, φ(s)) − h(z, φ̃(s))‖g(s, z)ν(dz)ds

≤ ‖φ− φ̃‖∗,r

∫

Xr

Lh(z)g(s, z)ν(dz)ds.

Using Lemma 3.2 again and our assumption on Lh we have that
∫

XT
Lh(z)g(s, z)ν(dz)ds <∞.

Thus for r sufficiently small
∫

Xr
Lh(z)g(s, z)ν(dz)ds < 1 and consequently T r is a contraction

and so by Banach’s fixed point theorem has a unique fixed point. This shows that there is a
unique solution to (2.5) for all t ∈ [0, r]. The result now follows by a recursive argument.

4. A General Sufficient Condition for LDP.

We now present a result from [5] which will be a key ingredient in our proofs. We begin with
some notation. Let Ā be the class of all (P̄ ⊗ B(X))/B[0,∞)-measurable maps ϕ : XT × M̄ →
[0,∞); as is common we frequently suppress in the notation the dependence of ϕ on elements
in (the probability space) M̄. For ϕ ∈ Ā, define a counting process Nϕ on XT by

Nϕ((0, t]× U) =

∫

(0,t]×U×R+

1[0,ϕ(s,z)](r)N̄(ds dz dr), t ∈ [0, T ], U ∈ B(X). (4.1)

Nϕ can be interpreted as a controlled random measure, with ϕ playing the role of the control
which selects the intensity for the points at location x and time s, in a possibly random but
non-anticipating way. Let

Un = {ϕ ∈ Ā : (s, z) 7→ ϕ(s, z, ω) ∈ Sn, P̄ a.e. ω}.
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Elements of Un will be regarded as Sn-valued random variables where the topology on the latter
space is as introduced below (2.4). Let {Km ⊂ X,m = 1, 2, . . .} be an increasing sequence of
compact sets such that ∪∞

m=1Km = X. For each m let

Āb,m =
{

ϕ ∈ Ā : for all (t, ω) ∈ [0, T ]× M̄, m ≥ ϕ(t, x, ω) ≥ 1/m if x ∈ Km

and ϕ(t, x, ω) = 1 if x ∈ Kc
m} ,

and let Āb = ∪∞
m=1Āb,m. Define Ũn = Un ∩ Āb.

Let U be a Polish space. The following condition is a slight modification of a condition
introduced in Section 4 in [5] to establish a large deviation result; see Section 2.2 in [4].

Condition 4.1. There exist measurable maps G0, Gε, ε > 0 from M to U such that the following
hold.

(a) For n ∈ N, let gm, g ∈ Sn be such that gm → g as m→ ∞. Then

G0
(

νgmT
)

→ G0
(

νgT
)

.

(b) For n ∈ N, let ϕε, ϕ ∈ Ũn be such that ϕε converges in distribution to ϕ as ε→ 0. Then

Gε(εN ε−1ϕε) ⇒ G0
(

νϕT
)

.

For φ ∈ U, define Sφ =
{

g ∈ S : φ = G0(νgT )
}

. Let I : U → [0,∞] be defined by

I(φ) = inf
g∈Sφ

{LT (g)} , φ ∈ U. (4.2)

By convention, I(φ) = ∞ if Sφ = ∅.

The following theorem is a slight extension of Theorem 4.2 of [5]. For a proof, we refer the
reader to the Appendix of [4].

Theorem 4.1. For ε > 0, let Zε be defined by Zε = Gε(εN ε−1

). If condition 4.1 holds, then I
defined as in (4.2) is a rate function on U and the family {Zε}ε>0 satisfies a large deviation
principle with rate function I.

5. Proof of Theorem 2.2

In order to prove Theorem 2.2 we will apply Theorem 4.1 with U = D([0, T ] : Rd+), G
ε as

introduced in Condition 2.1, and G0 : M → C([0, T ] : Rd+) defined as follows. Let G0(m) = ξg

if m = νgT for some g ∈ S where ξg is as introduced above (2.6). For all other m ∈ M we
set G0(m) = 0. It suffices to show that Condition 4.1 is satisfied with this choice of Gε and
G0. In Section 5.1 we will verify part (a) of this condition and Section 5.2 is devoted to the
verification of part (b).
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5.1. Verification of Condition 4.1(a)

The following is the main result of this section.

Proposition 5.1. Let n ∈ N and gk, g ∈ Sn, k ≥ 1 be such that gk → g. Then ξgk → ξg in
C([0, T ] : Rd+).

The following lemma will be useful in proving the proposition.

Lemma 5.1. Let fk, f ∈ D([0, T ] : Rd+), k ≥ 1, be such that ‖fk − f‖∗,T → 0 as k → ∞. Also
let n ∈ N and gk, g ∈ Sn be such that gk → g. Then, letting

f̃k(t) =

∫

Xt

h(z, fk(s))gk(s, z)ν(dz)ds, f̃(t) =

∫

Xt

h(z, f(s))g(s, z)ν(dz)ds,

f̃k(t) → f̃(t) as k → ∞, for every t ∈ [0, T ].

Proof. Note that
∫

Xt

h(z, fk(s))gk(s, z)ν(dz)ds −

∫

Xt

h(z, f(s))g(s, z)ν(dz)ds = T k1 (t) + T k2 (t), (5.1)

where

T k1 (t) =

∫

Xt

[h(z, fk(s))− h(z, f(s))] gk(s, z)ν(dz)ds

and

T k2 (t) =

∫

Xt

h(z, f(s)) [gk(s, z)− g(s, z)] ν(dz)ds.

Noting that

‖T k1 ‖∗,T ≤ ‖fk − f‖∗,T

∫

XT

Lh(z)gk(s, z)ν(dz)ds

and supk
∫

XT
Lh(z)gk(s, z)ν(dz)ds <∞ from Lemma 3.2, we see that ‖T k1 ‖∗,T → 0 as k → ∞.

Consider now T k2 . We first claim that for every ǫ > 0 there is a compact K ⊂ X such that

sup
ψ∈Sn

∫

[0,T ]×Kc

Mh(z)ψ(s, z)ν(dz)ds < ǫ. (5.2)

To see the claim, let {Kγ}γ∈N be a sequence of compact subsets of X such that Kγ ↑ X as
γ → ∞. Since, Mh ∈ L1(ν)

∫

Kc
γ

Mh(z)ν(dz) → 0 as γ → ∞.

Also, from Lemma 3.2, with f(u) ≡ 1, ϑ̃(z) = 1Kc
γ
(z)Mh(z) and ϑ(z) = Mh(z) we have that

for every δ > 0

sup
ψ∈Sn

∫

[0,T ]×Kc
γ

Mh(z)ψ(s, z)ν(dz)ds ≤ c(δ, n,Mh)T

∫

Kc
γ

Mh(z)ν(dz) + δ.
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The claim now follows on combining the above two displays. Using (5.2), for a fixed ǫ > 0,
choose a compact K ⊂ X such that

T k2 (t) =

∫

Xt

h(z, f(s))1K(z) [gk(s, z)− g(s, z)] ν(dz)ds + T k3 (t)

and supk≥1 ‖T
k
3 ‖∗,T ≤ ǫ. Next, for ρ > 0 write
∫

Xt

h(z, f(s))1K(z) [gk(s, z)− g(s, z)] ν(dz)ds = T k4,ρ(t) + T k5,ρ(t)

where

T k4,ρ(t) =

∫

[0,t]×K
h(z, f(s))1Mh(z)≤ρ [gk(s, z)− g(s, z)] ν(dz)ds

and

T k5,ρ(t) =

∫

[0,t]×K
h(z, f(s))1Mh(z)>ρ [gk(s, z)− g(s, z)] ν(dz)ds

From Lemma 3.2, for every δ > 0,

sup
k

‖T k5,ρ‖∗,T ≤ (1 + ‖f‖∗,T )

(

2c(δ, n,Mh)T

∫

X

Mh(z)1Mh(z)>ρν(dz) + 2δ

)

,

Choose δ > 0 and ρ > 0 such that the right-hand side of the above expression is bounded by
ǫ. A minor modification of Lemma 2.8 of [1] shows (see Appendix A.6 of [4]) that for every
ρ > 0, T k4,ρ(t) → 0 as k → ∞. Combining the above estimates we have that for every t ∈ [0, T ],

lim supk→∞ ‖T k2 (t)‖ ≤ 2ǫ. Since ǫ > 0 is arbitrary, the above implies that for every t ∈ [0, T ],
T k2 (t) → 0 as k → ∞. Thus we have shown that the expression on the left-hand side of (5.1)
converges to 0 as k → ∞, which proves the result.

Proof of Proposition 5.1. Let ξk = ξgk , ξ = ξg. We first argue that {ξk}k≥1 is pre-compact
in C([0, T ] : Rd+). Note that

‖ξk(t)‖ ≤

∫

Xt

(1 + ‖ξk(s)‖)Mh(z)gk(s, z)ν(dz)ds, t ∈ [0, T ].

From Lemma 3.2 it follows that for any δ > 0

sup
ψ∈Sn

∫

XT

Mh(z)ψ(s, z)ν(dz)ds ≤ c(δ, n,Mh)T

∫

X

Mh(z)ν(dz) + δ. (5.3)

An application of Gronwall’s lemma now shows that

sup
k≥1

(1 + ‖ξk‖∗,T ) = κ1 <∞. (5.4)

Next, for 0 ≤ s ≤ t ≤ T and δ > 0.

‖ξk(t)− ξk(s)‖ ≤

∫

(s,t]×X

‖h(z, ξk(u))‖gk(u, z)ν(dz)du

≤ κ1

∫

(s,t]×X

Mh(z)gk(u, z)ν(dz)du

≤ κ1

(

c(δ, n,Mh)(t− s)

∫

X

Mh(z)ν(dz) + δ

)

.
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This shows that {ξk}k≥1 is equicontinuous which together with (5.4) proves the desired pre-
compactness. Suppose ξk converges along a subsequence to ξ̄. From Lemma 5.1, along this
subsequence, for every t ∈ [0, T ], as k → ∞,

∫

Xt

h(z, ξk(s))gk(s, z)ν(dz)ds →

∫

Xt

h(z, ξ̄(s))g(s, z)ν(dz)ds

Combining this with the fact that ξk solves

ξk(t) =

∫

Xt

h(z, ξk(s))gk(s, z)ν(dz)ds, t ∈ [0, T ]

for every k ≥ 1 and that ξk converges along the chosen subsequence to ξ̄ we have that

ξ̄(t) =

∫

Xt

h(z, ξ̄(s))g(s, z)ν(dz)ds, t ∈ [0, T ].

By unique solvability of the above equation and the definition of ξ we now see that ξ̄ = ξ.

5.2. Verification of Condition 4.1(b)

The following is the main result of this section.

Proposition 5.2. Let n ∈ N and let ϕε, ϕ ∈ Ũn be such that ϕε converges in distribution to
ϕ as ε → 0. Let {Gε}ε>0 be as in Condition 2.1 and G0 be as introduced at the beginning of
Section 5. Then Gε(εN ε−1ϕε) ⇒ G0

(

νϕT
)

.

Proof. Let ϕ̃ε = 1/ϕε, and recall that ϕε ∈ Ũn means that ϕε = 1 off some compact set in X

and bounded above and below away from zero on the compact set. Then it is easy to check
(see Theorem III.3.24 of [11], see also Lemma 2.3 of [5]) that

Eεt = exp

{

∫

(0,t]×X×[0,ε−1ϕε]
log(ϕ̃ε)dN̄ +

∫

(0,t]×X×[0,ε−1ϕε]
(−ϕ̃ε + 1) dν̄T

}

is an
{

F̄t
}

-martingale and consequently

Qε
T (G) =

∫

G

EεT (ϕ̃)dP̄, for G ∈ B(M̄),

defines a probability measure on M̄. Furthermore, P̄ and Qε
T are mutually absolutely continuous

and it can be verified that under Qε
T , εN

ε−1ϕε has the same law as that of εN ε−1

under P̄.

Thus from Condition 2.1 it follows that X̄ε = Gε(εN ε−1ϕε) is Qε
T a.s. (and hence P̄ a.s.) the

unique solution of

X̄ε(t) = ε

∫

Xt

Hε(ε
−1(t− s), z, ε−1X̄ε(s−))N ε−1ϕε(ds dz), t ∈ [0, T ]. (5.5)
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Also note that X̄0 = G0
(

νϕT
)

solves the integral equation

X̄0(t) =

∫

Xt

h(z, X̄0(s))ϕ(s, z)ν(dz)ds, t ∈ [0, T ]. (5.6)

In order to prove the result we need to show that X̄ε converges in distribution to X̄0. We start
by showing that {X̄ε}ε>0 is tight. Note that, for t ∈ [0, T ],

Ē‖X̄ε‖∗,t ≤ Ē

∫

Xt

‖H̄(ε−1(t− s), z, X̄ε(s))‖ϕε(s, z)ν(dz)ds

+ Ē

∫

Xt

‖Rε(ε
−1(t− s), z, X̄ε(s))‖ϕε(s, z)ν(dz)ds

= T ε1 (t) + T ε2 (t).

Using the monotonicity of H̄ we see that

T ε1 (t) ≤ Ē

∫

Xt

‖h(z, X̄ε(s))‖ϕε(s, z)ν(dz)ds

≤ Ē

∫

Xt

(1 + ‖X̄ε‖∗,s)Mh(z)ϕε(s, z)ν(dz)ds.

Using Lemma 3.2 we now have that for every δ > 0

T ε1 (t) ≤ c(δ, n,Mh)(

∫

X

Mh(z)ν(dz))

∫ t

0
(1 + Ē‖X̄ε‖∗,s)ds+ δ(1 + Ē‖X̄ε‖∗,t). (5.7)

Another application of Lemma 3.2 shows that for each fixed δ > 0

T ε2 (t) ≤ Ē

∫

Xt

ςε(z)(1 + Ē‖X̄ε‖∗,s)ϕε(s, z)ν(dz)ds

≤ c(δ, n, ς)

∫

X

ςε(z)ν(dz)

∫ t

0
(1 + Ē‖X̄ε‖∗,s)ds+ δ(1 + Ē‖X̄ε‖∗,t)

Combining the above estimates on T ε1 and T ε2 and choosing δ sufficiently small, we have by an
application of Gronwall’s lemma that

sup
ε>0

Ē‖X̄ε‖∗,T = κ1 <∞. (5.8)

In order to prove the tightness of {X̄ε}ε>0 we will first establish the tightness of the following
closely related collection {X̃ε}ε>0 of C([0, T ] : Rd)-valued random variables:

X̃ε(t) =

∫

Xt

h(z, X̄ε(s))ϕε(s, z)ν(dz)ds, t ∈ [0, T ], ε > 0. (5.9)

For that we first observe that

‖X̃ε‖∗,T ≤ (1 + ‖X̄ε‖∗,T )

∫

XT

Mh(z)ϕε(s, z)ν(dz)ds.
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Combining the above estimate with (5.3) and (5.8) we now see that supε>0 Ē‖X̃
ε‖∗,T < ∞.

Also, for 0 ≤ s ≤ t ≤ T and δ > 0.

‖X̃ε(t)− X̃ε(s)‖ ≤

∫

(s,t]×X

‖h(z, X̄ε(u))‖ϕε(u, z)ν(dz)du

≤ (1 + ‖X̄ε‖∗,T )

(

c(δ, n,Mh)(t− s)

∫

X

Mh(z)ν(dz) + δ

)

.

Let κ2(δ) = c(δ, n,Mh)
∫

X
Mh(z)ν(dz) and consider

Aα = {x ∈ C([0, T ] : Rd) : ‖x‖∗,T ≤ α, and for every δ > 0, ‖x(t)−x(s)‖ ≤ α(κ2(δ)(t−s)+δ)}.

It is easy to check that for every α > 0, Aα is a compact subset of C([0, T ] : Rd). Also from
the above estimates, supε P̄(X̃

ε ∈ Acα) → 0 as α → ∞. This proves the tightness of {X̃ε}ε>0.
Next, let for ε > 0,

Ȳ ε(t) = ε

∫

Xt

h(z, X̄ε(s−))N ε−1ϕε(ds dz), t ∈ [0, T ].

Then, for t ∈ [0, T ],

Ȳ ε(t)−X̄ε(t) = ε

∫

Xt

[

h(z, X̄ε(s−))− H̄(ε−1(t− s), z, X̄ε(s−))
]

N ε−1ϕε(ds dz)+Rε
1(t), (5.10)

where

‖Rε
1‖∗,T ≤ ε sup

t∈[0,T ]

∫

Xt

‖Rε(ε
−1(t− s), z, X̄ε(s−))‖N ε−1ϕε(ds dz)

≤ ε

∫

XT

ςε(z)(‖X̄
ε(s−))‖+ 1)N ε−1ϕε(ds dz).

Thus, for every δ > 0

Ē‖Rε
1‖∗,T ≤ Ē

(

(‖X̄ε‖∗,T + 1)

∫

XT

ςε(z)ϕε(s, z)ν(dz)ds

)

.

≤ (Ē
∥

∥X̄ε‖∗,T + 1
)

[

c(δ, n, ς)T

∫

X

ςε(z)ν(dz) + δ

]

.

Since
∫

X
ςε(z)ν(dz) converges to 0 as ε→ 0, we have that

Rε
1 converges to 0 in probability in D([0, T ] : Rd). (5.11)

Next, denoting the first term on the right side of (5.10) as Sε1(t), we have for t0 ∈ [0, T ],

Ē‖Sε1‖∗,t0 ≤ εĒ

∫

Xt0

‖h(z, X̄ε(s−))‖N ε−1ϕε(ds dz)

≤ Ē

(

(‖X̄ε‖∗,T + 1)

∫

Xt0

Mh(z)ϕε(s, z)ν(dz)ds

)

≤
(

Ē‖X̄ε‖∗,T + 1
)

[

c(δ, n,Mh)t0

∫

X

Mh(z)ν(dz) + δ

]

.
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Thus, for some κ1 ∈ (0,∞), we have for every δ > 0,

sup
ε>0

Ē‖Sε1‖∗,t0 ≤ κ1(t0c(δ, n,Mh) + δ). (5.12)

Now we consider the interval (t0, T ]. Note that, for any υ ∈ (0, t0)

sup
t∈(t0 ,T ]

‖Sε1(t)‖ ≤ sup
t∈(t0,T ]

‖Sε1(t− υ)‖+ sup
t∈(t0,T ]

‖Sε2,υ(t)‖, (5.13)

where

Sε2,υ(t) = ε

∫

(t−υ,t]×X

[

h(z, X̄ε(s−))− H̄(ε−1(t− s), z, X̄ε(s−))
]

N ε−1ϕε(ds dz).

Using the monotonicity of H̄ again, we have that for α > 0,

sup
t∈(t0,T ]

‖Sε1(t− υ)‖ ≤ ε

∫

XT

‖h(z, X̄ε(s−))− H̄(ε−1υ, z, X̄ε(s−))‖N ε−1ϕε(ds dz)

= Rε
2,α +Rε

3,α, (5.14)

where

Rε
2,α = ε1Bε

α

∫

XT

‖h(z, X̄ε(s−))− H̄(ε−1υ, z, X̄ε(s−))‖N ε−1ϕε(ds dz),

Rε
3,α = ε1(Bε

α)
c

∫

XT

‖h(z, X̄ε(s−))− H̄(ε−1υ, z, X̄ε(s−))‖N ε−1ϕε(ds dz)

and Bε
α = {ω : ‖X̄ε‖∗,T ≤ α}. Let for α > 0, ̟α : R+ × X → R+ be defined as

̟α(r, z) = sup
‖x‖≤α

‖h(z, x) − H̄(r, z, x)‖, (r, z) ∈ R+ × X.

Then, from Condition 2.2(e), for all (α, z) ∈ R+ × X, ̟α(r, z) → 0 as r → ∞. Also, since
̟α(r, z) ≤Mh(z)(1+α) and Mh ∈ L1(ν), we have that

∫

X
̟α(r, z)ν(dz) → 0 as r → ∞. Now,

for every δ > 0,

ĒRε
2,α ≤ Ē

∫

XT

̟α(ε
−1υ, z)ϕε(s, z)ν(dz)ds

≤ Tc(δ, n,Mh)

∫

X

̟α(ε
−1υ, z)ν(dz) + δ(1 + α).

Thus Rε
2,α → 0 as ε→ 0 for every α > 0.

Next, from Markov’s inequality and (5.8), for η > 0

sup
ε>0

P̄(Rε
3,α > η) ≤ sup

ε>0
P̄((Bε

α)
c) ≤ sup

ε>0
P̄(‖X̄ε‖∗,T > α) ≤

κ1
α
. (5.15)

Using the above two observations in (5.14) we have that for every t0 ∈ (0, T ) and υ ∈ (0, t0)

sup
t∈(t0 ,T ]

‖Sε1(t− υ)‖ → 0, in probability, as ε→ 0. (5.16)
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We now consider Sε2,υ. Using monotonicity of H,

sup
t∈(t0,T ]

‖Sε2,υ(t)‖ ≤ sup
t∈(t0,T ]

ε

∥

∥

∥

∥

∥

∫

(t−υ,t]×X

h(z, X̄ε(s−))N ε−1ϕε(ds dz)

∥

∥

∥

∥

∥

≤ sup
t∈(t0,T ]

ε

∥

∥

∥

∥

∥

∫

(t−υ,t]×X

h(z, X̄ε(s−))Ñ ε−1ϕε(ds dz)

∥

∥

∥

∥

∥

+ sup
t∈(t0,T ]

∥

∥

∥

∥

∥

∫

(t−υ,t]×X

h(z, X̄ε(s−))ϕε(s, z)ν(dz)ds

∥

∥

∥

∥

∥

= Rε
4(t0, υ) +Rε

5(t0, υ), (5.17)

where Ñ ε−1ϕε(ds dz) = N ε−1ϕε(ds dz) − ε−1ϕε(s, z)νT (ds dz), the compensated version of
N ε−1ϕε . For η > 0 and α > 0,

P̄(Rε
5(t0, υ) > η) ≤ P̄(Rε

5(t0, υ) > η; Bε
α) + P̄((Bε

α)
c).

Also,

Rε
5(t0, υ)1Bε

α
≤ (1 + α) sup

t∈(t0 ,T ]

∫

(t−υ,t]×X

Mh(z)ϕε(s, z)ν(dz)ds

≤ (1 + α)

[

υc(δ, n,Mh)

∫

X

Mh(z)ν(dz) + δ

]

.

Combining the above two estimates and using (5.15) once again, we have for every t0 ∈ (0, T )
and η > 0,

sup
ε>0

P̄(Rε
5(t0, υ) > η) → 0, as υ → 0. (5.18)

We now consider Rε
4(t0, υ).

Rε
4(t0, υ) ≤ 2ε sup

0≤t≤T

∥

∥

∥

∥

∫

Xt

h(z, X̄ε(s−))Ñ ε−1ϕε(ds dz)

∥

∥

∥

∥

= R̃ε
4. (5.19)

Let τ εα = inf{t ∈ [0, T ] : ‖X̄ε(t)‖ > α} where the infimum is taken to be T if the set is empty.
Let

Rε
6,α = 2ε sup

0≤t≤T

∥

∥

∥

∥

∥

∫

(0,t∧τεα]×X

h(z, X̄ε(s−))Ñ ε−1ϕε(ds dz)

∥

∥

∥

∥

∥

.

Then from (5.15), for η > 0,

P̄(Rε
4(t0, υ) > η) ≤ P̄(R̃ε

4 > η) ≤ P̄(Rε
6,α > η) + P̄((Bε

α)
c) ≤ P̄(Rε

6,α > η) +
κ1
α
. (5.20)

For r > 0, write, Rε
6,α = Rε,r

7,α +Rε,r
8,α where

Rε,r
7,α = 2ε sup

0≤t≤T

∥

∥

∥

∥

∥

∫

(0,t∧τεα]×X

h(z, X̄ε(s−))1Mh(z)≤rÑ
ε−1ϕε(ds dz)

∥

∥

∥

∥

∥

,
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Rε,r
8,α = 2ε sup

0≤t≤T

∥

∥

∥

∥

∥

∫

(0,t∧τεα]×X

h(z, X̄ε(s−))1Mh(z)>rÑ
ε−1ϕε(ds dz)

∥

∥

∥

∥

∥

.

By standard martingale inequalities, for some κ2 ∈ (0,∞) (independent of α, ε, r),

Ē(Rε,r
7,α)

2 ≤ κ2r(1 + α2)εĒ

∫

XT

Mh(z)ϕε(s, z)ν(dz)ds

≤ κ2r(1 + α2)ε

(

c(δ, n,Mh)

∫

X

Mh(z)ν(dz) + δ

)

.

Thus, for each r > 0 and α > 0, Rε,r
7,α → 0 in probability as ε→ 0. Also, for every δ > 0,

Ē(Rε,r
8,α) ≤ 8(1 + α)E

∫

XT

Mh(z)1Mh(z)>rϕε(s, z)ν(dz)ds

≤ 8(1 + α)

(

c(δ, n,Mh)

∫

X

Mh(z)1Mh(z)>rν(dz) + δ

)

.

Since Mh ∈ L1(ν), we have that for each α > 0, supε>0 Ē(R
ε,r
8,α) converges to 0 as r → ∞.

Combining the above estimates, for each α > 0

Rε
6,α → 0 in probability as ε→ 0.

Using this observation in (5.20), we have that for each t0 ∈ (0, T ) and υ ∈ (0, t0)

Rε
4(t0, υ) and R̃ε

4 converge to 0 in probability as ε→ 0. (5.21)

Combining this with (5.13), (5.16), (5.17) and (5.18), we see that for every t0 ∈ (0, T )

sup
t∈(t0,T ]

‖Sε1(t)‖ → 0 in probability as ε→ 0.

Thus, from (5.12)
sup
t∈[0,T ]

‖Sε1(t)‖ → 0 in probability as ε→ 0.

Combining this with (5.11) and (5.10) we see that

Ȳ ε − X̄ε converges to 0 in probability in D([0, T ] : Rd). (5.22)

Also, since ‖Ȳ ε − X̃ε‖∗,T = 1
2R̃

ε
4, from (5.21) we have that

Ȳ ε − X̃ε converges to 0 in probability in D([0, T ] : Rd). (5.23)

The above two displays together with the tightness of {X̃ε}ε>0 established earlier shows that
{X̄ε}ε>0 is tight. Suppose that (X̄

ε, ϕε) converges weakly along a subsequence to (X0, ϕ̃). Note
that ϕ and ϕ̃ must have the same distribution. Without loss of generality we can assume that
convergence is almost sure and it holds along the full sequence. In fact we can assume that
(X̄ε, X̃ε, ϕε) converges a.s. to (X0,X0, ϕ̃). Then from Lemma 5.1, for all t ∈ [0, T ],

∫

Xt

h(z, X̄ε(s))ϕε(s, z)ν(dz)ds →

∫

Xt

h(z,X0(s))ϕ̃(s, z)ν(dz)ds a.s.
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This, along with (5.9) shows that X0 solves

X0(t) =

∫

Xt

h(z,X0(s))ϕ̃(s, z)ν(dz)ds, t ∈ [0, T ], a.s.

Since the above equation has a unique solution and ϕ̃ and ϕ have the same distribution we
have that X0 and X̄0 have the same distribution, where X̄0 was defined in (5.6). Thus we have
shown that X̄ε converges in distribution to X̄0. The result follows.

5.3. Completing the Proof of Theorem 2.2.

In view of Theorem 4.1 it suffices to check that {Gε, ε > 0}, introduced in Condition 2.1 and
G0 introduced at the beginning of Section 5 satisfy Condition 4.1. Part (a) of the condition is
immediate from Proposition 5.1 while part (b) is a consequence of Proposition 5.2.
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[12] C. Klüppelberg and T. Mikosch. Explosive Poisson shot noise processes with applications
to risk reserves. Bernoulli, 1(1-2):125–147, 1995.
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