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Abstract

This paper concerns testing the equality of multiple curves in a nonparametric regression
context. The proposed test forms an ANOVA type test statistic based on kernel smoothing
and examines the ratio of between and within group variations. The empirical distribution
of the test statistic is derived using a permutation test. Unlike traditional kernel smoothing
approaches, the test is conducted in scale-space so that it does not require the selection of an
optimal smoothing level, but instead considers a wide range of scales. The proposed method
also visualizes its testing results as a color map and graphically summarizes the statistical
differences between curves across multiple locations and scales. A numerical study using
simulated and real examples is conducted to demonstrate the finite sample performance of
the proposed method.
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1 Introduction

The comparison of several populations often arises in function estimation such as densities, re-

gression curves and survival functions. Among them, the problem of testing the equality of non-

parametric regression curves has been widely studied. Suppose that we have k different samples

and n =
∑k

i=1 ni independent observations (Xij, Yij) from the nonparametric regression models:

Yij = fi(Xij) + σi(Xij)εij, j = 1, . . . , ni, i = 1, . . . , k, (1.1)

where Xij’s are covariates, εij’s are independently distributed random errors with mean 0 and

variance 1; fi(Xi) = E(Yi|Xi) is the unknown regression function and σ2
i (Xi) = V ar(Yi|Xi) is
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the conditional variance function of the ith sample (i = 1, . . . , k). The general interests of the

problems are “are the functions in the model (1.1) really different?”, if then, “can we identify the

locations where the differences are?” Therefore, the equality of k regression curves at a location x

is hypothesized as

H0 : f1(x) = f2(x) = · · · = fk(x) = f(x) vs. H1 : fi(x) ̸= fj(x) for some x and i ̸= j. (1.2)

For a motivation of the proposed work, we introduce two real examples analyzed in Section

4. The first example concerns monthly household expenditures on several commodities in Dutch

guilders. The data were collected from April 1984 to September 1987, and the average was taken

over the 42 months for each household. The dataset is divided into three groups by the number of

members in the household: two, three or four members. We analyze the data using the model (1.1)

with k = 3. We are interested in comparing the relationship between the expenditure on food and

the total monthly expenditure for different family sizes. The second example is a random sample

from the working population in Belgium for the year 1994. The data set consists of information

on 893 males and 579 females. Our interest is to compare the relationship between wage (gross

hourly wage rate in euro) on a log scale and years of experience across five different education

levels, i.e. k = 5 in the model (1.1).

Much work has been done on this testing problem in nonparametric contexts. Hall and Hart

(1990) proposed a bootstrap test for the comparison of two regression curves. Härdle and Marron

(1990) took a semiparametric approach based on kernel smoothing under shape invariance. Del-

gado (1993); Kulasekera (1995); Kulasekera and Wang (1997); Neumeyer and Dette (2003) utilized

empirical process approaches to investigate the overall inequality. Bowman and Young (1996) used

kernel-based reference bands for detecting a difference in two regression curves. Pardo-Fernández

et al. (2007) proposed two types of test statistics that are based on the estimation of the distribu-

tion of the residuals in two populations. We note that most of these approaches involve selecting

an appropriate smoothing level, which has been a hurdle to the application of smoothers (see

e.g. Chaudhuri and Marron (1999)). However, it might be difficult to for a single bandwidth to

accurately estimate the multiple curves especially when each function has a different degree of

smoothness. In addition, the optimal bandwidth for curve estimation could be different from the

one for curve comparison, which might result in missing important local differences among the

curves. Therefore, a unitary bandwidth value is incapable of accurately estimating the coefficients
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with different degrees of smoothness and adequately discovering the scale-dependent variations in

the regression relationship.

In this paper, we take a kernel-based nonparametric approach for the comparison of multiple

curves. The main key that distinguishes the proposed approach from existing methods is to

investigate the differences of two or more regression curves at multiple locations and resolutions

using a so-called scale-space approach (Lindeberg, 1994). Then, the testing results are summarized

as a visual map, called SiZer map, to allow data analysts an easy interpretation. Chaudhuri and

Marron (1999) proposed SiZer (SIgnificant ZERo crossing of the derivatives) as a scale-space-based

exploratory data analysis tool for finding meaningful features in a single curve. The core of the

SiZer approach is to simultaneously study a curve at different smoothing scales instead of trying

to find the true underlying curve. At each scale, SiZer addresses the question of which features

of the smoothed curve at that particular scale represent a statistically significant structure. This

approach circumvents the difficulty of determining the optimal smoothing level and allows one to

extract all the information that is available at each individual level of scale.

SiZer tools have been extensively developed and applied to various fields. Hannig and Marron

(2006) improved SiZer inference to reduce type I errors. Hannig and Lee (2006) proposed a robust

version of SiZer that examines the median regression function and later Park et al. (2010) extended

it to the quantile function. SiZer has been also applied to time series data (Park et al., 2004;

Rondonotti et al., 2007; Park et al., 2007, 2009a). In addition, SiZer tools have been developed for

jump points detection (Kim and Marron, 2006), survival analysis (Marron and de Uña Álvarez,

2004), generalized linear models (Li and Marron, 2005; Ganguli and Wand, 2007; Park and Huh,

2013), smoothing spline (Marron and Zhang, 2005) and additive models (González-Manteiga et al.,

2008). Additionally, various Bayesian versions of SiZer have also been proposed as an approach

to Bayesian multiscale smoothing (Erästö and Holmström, 2005; Godtliebsen and Oigard, 2005;

Oigard et al., 2006; Erästö and Holmström, 2007; Sørbye et al., 2009). The scale-space has

been also extended to two dimensions; Ganguli and Wand (2007) considered a additive model

for generalized linear models, and Godtliebsen et al. (2002) and Duong et al. (2008) studied a

density estimation. Godtliebsen et al. (2004) analyzed image data under the independent errors

and Vaughan et al. (2012) extended it to the spatially dependent case. Note that these SiZer tools

aim to discover the important features in a single curve. Recently, Park and Kang (2008) and Park
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et al. (2009b) proposed SiZer tools for comparing multiple curves with independent and dependent

errors, respectively. The basic idea is to convert the problem into the comparison of two curves

using residuals. One shortcoming of this approach is that the local and scale information of the

differences among the curves is lost because the sets of residual curves are compared each other

rather than the original curves.

The objective of this paper is to develop a SiZer tool that is capable of directly comparing

multiple curves. The proposed SiZer is based on an ANOVA type test statistic and simultaneously

investigates the differences of the smoothed curves for a wide range of scales. The testing results

are summarized in a SiZer map to visualize the statistically significant differences among these

curves. This approach enables one to compare several curves directly and get the information on

their local differences at different scales, which reflects the original formulation of SiZer.

The remainder of the paper is organized as follows. Section 2 proposes SiZer for the comparison

of multiple curves. Section 3 conducts a simulation study for the proposed tool. In Section 4, two

real examples are analyzed using the proposed SiZer. Appendix provides derivation of the test

statistic introduced in Section 2.

2 Proposed SiZer

In this section, we propose a SiZer tool for simultaneously comparing k regression curves. In the

proposed SiZer, which utilizes kernel smoothing techniques, the main focus lies in investigating

the smoothed curves indexed by the bandwidth h instead of the true underlying curve. Therefore,

we consider the following null hypothesis in scale-space.

H0 : f1,h(x) = f2,h(x) = · · · = fk,h(x) = fh(x) (2.1)

where

fi,h(x) =

∫
fi(u)Kh(x− u)du.

Here, h controls the smoothing level, Kh(·) = K(·/h)/h and K is a symmetric density function.

Under the model (1.1), let

f̂i,h(x) =

ni∑
j=1

Kij(x)Yij
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be a local polynomial estimator (Fan and Gijbels, 1996) of the regression function fi in (1.1)

based on the ith sample. Among local polynomial estimators local constant and local linear are

a popular choice. For the local constant estimator, also known as Nadaraya-Watson estimator

(Nadaraya, 1964; Watson, 1964), the weights are given as

Kij(x) =
Kh(x−Xij)∑ni

j=1Kh(x−Xij)
.

The weights of the local linear estimator are given as

Kij(x) =
Si,2(x)Kh(x−Xij)− Si,1(x)(x−Xij)Kh(x−Xij)

Si,0(x)Si,2(x)− (Si,1(x))2

where Si,l(x) =
∑ni

j=1(x−Xij)
lKh(x−Xij). Also, let

f̂h(x) =
k∑

i=1

ni∑
j=1

K̃ij(x)Yij

be the pooled estimator of the common regression function f(x) under the null hypothesis (1.2).

For the local constant estimator K̃ij(x) = Kij(x) and

K̃ij(x) =
S2(x)Kh(x−Xij)− S1(x)(x−Xij)Kh(x−Xij)

S0(x)S2(x)− (S2(x))2

where Sl(x) =
∑k

i=1

∑ni

j=1(x−Xij)
lKh(x−Xij) for the local linear estimator. The local constant

estimator is easy to calculate, but it is known that it has a boundary issue (Fan and Gijbels,

1996). In our numerical analysis in Sections 3 and 4, we use the local linear estimator.

In comparing the k smoothed curves, we apply a similar idea as in ANOVA in which the

means of multiple normal populations are compared using the ratio of between and within group

variations. This motivates us to consider the following test statistic for the null hypothesis (2.1)

under the model (1.1):

Fh(x) =

∑k
i=1 (f̂i,h(x)− f̂h(x))

2/(c1 · df1)∑k
i=1

∑ni

j=1 (Yij − f̂i,h(Xij))2Kh(x−Xij)/(c2 · df2)
, (2.2)

where (c1, df1) and (c2, df2) are scale factors and degrees of freedom. In the test statistic Fh(x),

it can be seen that the numerator measures the variation between k groups and the denominator

measures the variation within groups.

The numerator and denominator of the test statistic (2.2) may be represented by the quadratic

form with suitable weight matrices. Therefore, we obtain the degrees of freedom d1 and d2, and
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scale factors c1 and c2 using the Satterthwaite approximation (Satterthwaite, 1946), i.e., by solving

the equation related to the first two moments conditions. We provide its details for both local

constant and local linear estimators in the Appendix.

Using the Fh(x) statistic in (2.2), we simultaneously test (2.1) at multiple locations, say

x1, . . . , xg for a given h. In order to find a critical value at each scale, we approximate P (maxl=1,...,g

Fh(xl) < qh) using a permutation idea. We obtain the empirical distribution of the maximum of

the pointwise F ’s to address the multiple comparisons adjustment. In what follows we illustrate

how to empirically determine a critical value qh. For a given h,

(i) pool the k datasets and permute them;

(ii) using the permuted data, calculate maxl Fh(xl);

(iii) repeat (i) and (ii) B times;

(iv) using the B repetitions, obtain the empirical distribution of maxl Fh(xl) and 100(1 − α)%

quantile, qh.

In our numerical study, we use α = 0.05 and B = 1000. Also, the bandwidths used in our

numerical examples are 11 equally spaced values on a logarithmic scale of the range of x.

For illustration purpose, we generate three datasets from N(0, 1) with n1 = n2 = n3 = 100

to investigate the proposed algorithm more carefully. For simplicity, we use the local constant

estimator with B = 100. In Figure 1(a), the degrees of freedom of the numerator df1 are graphed

with different bandwidths. For small bandwidths, df1s are smaller and more wiggly on the grid

points x1, . . . , xg. On the other hand, df1 gets closer to 2 regardless of x as h increases. Note that

smoothing with the largest bandwidth approximates the simple average of the response variables

for each group, which essentially corresponds to ANOVA and its degrees of freedom for the between

groups is k− 1 = 2 in this case. In Figure 1(b), the degrees of freedom of the denominator df2 are

graphed with different bandwidths. While df2s are also small and wiggly for small bandwidths,

they get close to 300 as h increases. We again note that the degrees of freedom of ANOVA for

the within groups corresponds to n− k = 297 in this case. Figure 1(c) displays the Fh(x) statistic

defined in (2.2) for the simulated data. Finally, Figure 1(d) shows the estimated quantile with

different h using the permutation idea introduced above. The estimate quantile values are under

10 except for the first a few small bandwidths. The significance of the differences of the three
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Figure 1: We generate three datasets from N(0, 1) with n1 = n2 = n3 = 100. We visually display

(a) df1 (b) df2 and (c) Fh(x) in equation (2.2) with the local constant estimator, against the grid

points x for different h using permutation with B = 100. The plots show how the degrees of

freedom and the test statistic change along with location x and scale h. Note that the curves in

(a), (b), and (c) become smoother with greater average df1, df2, or Fh as the bandwidth h increases.

We also draw the quantile (d) qh vs. log h for this simulated setting. Statistical significance is

determined by comparing the Fh(x) and qh for each x and h.
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curves are determined by comparing Fh(x) and qh each other at a particular location and scale

(x, h). It can be seen that the value of Fh(x) is always less than qh at any location for a given

smoothing level, and thus no significant features would be found for this simulation. Given that

the three curves are generated from the same model, this result demonstrates the accuracy of the

proposed SiZer tool. More simulated examples will be illustrated in Section 3.

SiZer summarizes the result of the series of tests at (x, h) as a colored map called a SiZer map.

The variation of colors in a SiZer map provides the statistical evidence for the differences in the

curves for different scales. At each (x, h), if the test statistic is equal to or above the quantile value

qh, which means that the curves are significantly different one another, then the pixel is colored

white. On the other hand, if the test statistic is less than qh, which means that the curves are not

significantly different, then that particular map location is given gray. There is one more color in

a SiZer map when there are not sufficient data points for statistical decision. In that case, the

test is not conducted and the location is colored darker gray. To determine these gray areas, we

define the estimated effective sample size (ESS, Chaudhuri and Marron (1999)) for each (x, h) as

ESS(x, h) =

∑k
i=1

∑ni

j=1Kh(x−Xij)

Kh(0)
.

If ESS(x, h) < 5k, then the corresponding pixel is colored darker gray.

If the null hypothesis in (2.1) is rejected, one would be interested in pairwise comparisons of

the curves. This can be done by SiZer for comparing two curves developed in Park and Kang

(2008).

3 Simulation

This section demonstrates the finite sample performance of the proposed scale-space tool under

various simulation settings. The simulated data are generated by the model in (1.1) with three

samples, i.e., k = 3. The regression functions f1, f2, and f3 are chosen from the following four

groups of the functions:

(R1) f1(x) = f2(x) = f3(x) = x

(R2) f1(x) = x, f2(x) = x+ 0.25, f3(x) = x+ 0.5

(R3) f1(x) = x, f2(x) = 0.5, f3(x) = 1− x
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Figure 2: Four different regression functions used in the simulation.
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(R4) f1(x) = f2(x) = x, f3(x) = 1− 48x+ 218x2 − 315x3 + 145x4.

These four groups are displayed in Figure 2.

The variance functions σ2
1, σ

2
2, and σ2

3 are also chosen from the following four groups of the

functions:

(V1) σ2
1(x) = σ2

2(x) = σ2
3(x) = 0.5

(V2) σ2
1(x) = σ2

2(x) = σ2
3(x) = 0.5(0.5 + 2x)

(V3) σ2
1(x) = σ2

2(x) = σ2
3(x) = 0.5(2.5− 2x)

(V4) σ2
1(x) = σ2

2(x) = σ2
3(x) = 0.5(−4x2 + 4x+ .5).

Pardo-Fernández et al. (2007) considered the first three regression functions (R1)-(R3) with the

constant variance (V1), and Park et al. (2010) used the fourth case (R4) of the regression functions

with the four variance functions (V1)-(V4). In the model, X1j, X2j and X3j are generated from the

uniform distribution on (0, 1) independently. Also, each example has the sample sizes n1 = 300,

n2 = 400, and n3 = 500. We repeat each combination of regression and variance functions

for 100 times with B = 1000 and report the average SiZer map over 100 repetitions for each

combination, which graphically presents the testing results of comparing three regression curves.

At each iteration, each pixel in a SiZer map takes one of the three values: 1 for indecisive, 2 for

insignificant, and 3 for significant feature. An average SiZer map is created by taking the mean

of the 100 values at each pixel.

In Figure 3, the four average SiZer maps are depicted for the case of the regression function

(R1) with four different variance functions. Almost all pixels are colored gray in the four maps,

which provides strong evidence of no significant difference across the entire locations and scales.

This is the correct decision because the three regression functions share the same linear trend in

Figure 2(a). We also conclude that the SiZer inference is rather insensitive to different types of

variance functions in this example.

From the average SiZer maps in Figure 4, we can observe that the significant features (white)

are consistently found at middle and large scales in the four maps, which correctly reveals the

overall difference of the three curves in Figure 2(b). It is noted, however, that the SiZer map for

(V2) (and (V3)) fails to flag significant features at the end (beginning, respectively). It suggests
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Figure 3: The average SiZer maps for the regression function (R1) with four different variance

functions (V1)-(V4). Almost all pixels are colored gray in the four maps, which indicates no

significant different among the three curves.
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Figure 4: The average SiZer maps for the regression function (R2) with four different variance

functions (V1)-(V4). The significant features (white) are consistently found at middle and large

scales in the four maps.
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Figure 5: The average SiZer maps for the regression function (R3) with four different variance

functions (V1)-(V4). The significant feature are found in most of the locations except for the

center where the three curves intersect.
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that some significant features can be possibly omitted in a SiZer map when both regression and

variance functions are linear.

The average SiZer maps in Figure 5 illustrate that, for four types of the variance functions,

the three regression functions significantly differ to one another in most of the locations except

for the center where the three curves in Figure 2(c) intersect. For the linear variance functions

(V2) and (V3), we note a similar phenomenon observed in Figure 4; less significant features are

declared compared to the other two variance cases.

Pardo-Fernández et al. (2007), who considered the first three regression functions (R1)-(R3)

with the constant variance (V1), also concluded that there is no difference for (R1) and global dif-

ferences exist for both (R2) and (R3). However, it is difficult to directly compare the performance

of the proposed approach and theirs because SiZer analyzes the data at multiple scales instead of

working with a single bandwidth and attempts to find the locations where the difference occurs

instead of conducting a test for overall equality. Furthermore, SiZer also can be helpful for drawing

a single conclusion about overall equality of the curves in practice. If a SiZer map shows no (or

few isolated and spurious) significant features, it can be concluded that there is no evidence of

overall inequality, see for example (R1). On the other hand, a fair amount of significant features

at multiple scales would support overall inequality, see for example (R2) and (R3). In addition,

the proposed SiZer provides additional information about locations and scales of the differences.

Park and Kang (2008) applied the idea of Pardo-Fernández et al. (2007) to SiZer inference and

compared multiple curves based on the residuals. They compared the densities of two residual

sets, one of which is obtained from the pooled data under the null hypothesis and the other from

k separate groups under the alternative hypothesis. If the two densities tend to be similar to

(different from) each other, it would suggest overall equality (inequality, respectively). However,

because it does not directly compare the original regression curves, it is not possible to find the

exact locations of their differences.

Figure 6 displays the four average SiZer maps for (R4) in Figure 2(d). From the maps, we can

correctly infer that there is a big difference among the three curves in the first half of the region

because significant features are detected at most of the scales. In the second half, two middle-sized

features are flagged as significant around x = 0.6 and 0.9 at small and middle scales because the

differences among the curves are not large enough to be caught at large scales. We again note
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Figure 6: The average SiZer maps for the regression function (R4) with four different variance

functions (V1)-(V4). A large significant feature is detected in the first half of the region at most of

the scales. In the second half, two middle-sized features are flagged as significant around x = 0.6

and 0.9 at small and middle scales.
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slightly inferior performance particularly with the positively linear variance function because the

same trends exist in both regression and variance functions and they seem to be confounded each

other.

In what follows we assess the accuracy of SiZer inference by calculating type I error and power

for each simulation setting. Since SiZer conducts multiple tests at various locations and scales, the

conventional concepts of type I error and power are not applicable. To circumvent this difficulty,

we adopt the approach used in Rondonotti et al. (2007) and Hannig et al. (2013), in which they

measured how often SiZer maps created from the observed data (called observed SiZer) are in

agreement with the true ones without noise (called oracle SiZer).

Type I error and power for SiZer analysis are calculated as follows. For the case of (R1) where

no difference should be found,

type I error =
# (pixels in an observed SiZer map that are flagged as significant)

# (total pixels)
,

and the power is not calculated. In a map, darker gray regions are excluded because no statistical

decision is made. For (R2)-(R4), we create two SiZer maps with the true regression functions f1,

f2, and f3 (oracle SiZer) and with the observed data (observed SiZer). Then, we compare the two

SiZer maps each other pixel by pixel, and define

type I error =
# (observed SiZer=significant, oracle SiZer=insignificant)

# (total pixels)
,

and

power = 1− # (observed SiZer=insignificant, oracle SiZer=significant)

# (total pixels)
.

Table 1 shows the mean and standard error of the 100 type I errors and the powers for each

simulation setting. It can be seen that the type I errors are below 0.004 for all the cases. This

suggests that the proposed SiZer inference makes few mistakes in its decision of overall equality.

The power ranges between 0.5090 to 0.7312, which implies that there are some pixels that are

not detected by the observed SiZer maps. From our numerical experiments, however, an observed

SiZer rarely misses an important difference among the curves although it might not detect a few

significant pixels around the feature. We observe that the power is slightly higher for (R4) when

the regression and variance have different types of trends. We also note that the standard errors

are small for all the cases, which indicates the stable performance of the proposed SiZer.
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Table 1: Type I error and Power

Type I Error Power

Settings Mean S.E. Mean S.E.

(R1)-(V1) 0.0025 0.0010 - -

(R1)-(V2) 0.0025 0.0010 - -

(R1)-(V3) 0.0031 0.0012 - -

(R1)-(V4) 0.0025 0.0011 - -

(R2)-(V1) 0 0 0.6280 0.0040

(R2)-(V2) 0 0 0.5653 0.0062

(R2)-(V3) 0 0 0.5718 0.0054

(R2)-(V4) 0 0 0.6195 0.0042

(R3)-(V1) 0 0 0.5621 0.0031

(R3)-(V2) 0 0 0.5119 0.0036

(R3)-(V3) 0 0 0.5090 0.0042

(R3)-(V4) 0 0 0.5572 0.0031

(R4)-(V1) 0.0004 0.0002 0.7312 0.0028

(R4)-(V2) 0.0002 0.0001 0.6562 0.0038

(R4)-(V3) 0.0004 0.0002 0.7038 0.0026

(R4)-(V4) 0.0003 0.0002 0.7126 0.0027
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4 Real Data Analysis

As mentioned in Section 1 we analyze two real datasets in this section using the proposed scale-

space tool for comparing multiple curves.

The first example, the monthly household expenditures on several commodities in Dutch

guilders, has been analyzed by several authors including Adang and Melenberg (1995); Einmahl

and Van Keilegom (2006); Pardo-Fernández et al. (2007); Park and Kang (2008). We obtain the

dataset from Data Archive of the Journal of Applied Econometrics. The dataset is divided into

three groups by the number of members in the household: two (n1 = 1575), three (n2 = 377) or

four members (n3 = 292). We are interested in testing the equality of mean regression functions

for each group, where the response variable is the logarithm of the expenditure on food and the

covariate is the logarithm of the total monthly expenditure for each different family size. In an

economic sense, it is similar to testing whether the Engel’s law has a different meaning according

to the household size.

The first top three panels of Figure 7 display the observed data points and their smoothed

curves indexed by different bandwidths. These kernel estimates look similar at large scales but

show some differences at small scales particularly for the left regions from x = 10 to x = 11.

According to the SiZer map in the lower panel there are no differences among the three groups

because the pixels are colored either gray (insignificant) or darker gray (no decision). The test

results confirm that the central areas of the three groups are similar to each other. However, the

differences observed at the beginning in the kernel estimates with small bandwidths cannot be

determined because there are few data available around the regions especially for the second and

the third groups. Therefore, for each different family size, there is no evidence for the overall

inequality of the relationships. This conclusion is consistent with that of Park and Kang (2008).

The second example, taken from the Belgian part of the European Community Household

Panel, concerns the working population in Belgium for the year 1994. This data set was used

by Nolan and Whelan (1996), Whelan et al. (2000), Whelan et al. (2003) and Verbeek (2004),

etc. The purpose was to explore the relationship between persistent income poverty and life-style

deprivation, and finding out factors which can explain the wage differential. In our analysis, we

focus on the relationship between wage (gross hourly wage rate in euro) on a log scale and years

of experience with five education level groups from low (1) to high (5). The sample sizes for each
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Figure 7: SiZer plots for the Dutch household data. The first top three plots display the data

points and kernel estimates with different bandwidths for each sample and the bottom shows the

corresponding SiZer map.
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group are n1 = 99, n2 = 265, n3 = 420, n4 = 356 and n5 = 332, respectively.

The SiZer plots in Figure 8(a) indicate that there are significant differences, flagged as white

in the map, among the five education levels. Because these features are found in all locations and

most of scales, and also the wage seems to have a higher mean as the education level increases

from the kernel estimates, the mean differences can be regarded as the major driving force. Note

that the darker gray colors at the bottom right corner imply that there are not sufficient data

points around those regions (many years of experience) for the education levels 4 and 5 to make

a statistically meaningful decision at small scales. When there exists an overall mean difference,

it is sometimes difficult to identify other trends in the data. Hence, we redraw SiZer plots after

subtracting the overall mean of each group in Figure 8(b). For the centered data, the features

from x = 17 to the end at middle and large scales remain. This difference seems to come from an

increasing trend starting around 20 years of experience for the levels 3, 4, and 5.

In Figure 9, we expand our investigation for sets of subgroups using the centered data. Figure

9(a) displays SiZer plots using only the first three levels. The SiZer map using the centered data

flags the features from x = 20 to the end at middle and large scales. This difference also can

be similarly found in Figure 8(b). In the comparisons among the education levels 3, 4, and 5 in

Figure 9(b), the kernel estimates hint a stronger increasing trend for the education levels 4 and

5 compared to the level 3. The SiZer map supports it as significant features are found at large

scales in the second half of the locations.

To sum up, SiZer analysis discovers that the overall mean wage tends to be higher as the

education levels increases, and there exist increasing trends starting around 20 years of experience

for the education level from 3 to 5. We point out, however, that the SiZer inferences for subgroup

comparisons possibly cause another issue of multiple testing adjustments among SiZer maps. We

suggest this improvement as future work.

5 Appendix: derivation of the test statistic

This section provides the derivation of the scale factors and degrees of freedom in the test statistic

(2.2) using both local constant and local linear estimators. The expectations and variances are

conditionally calculated given Xij = xij.
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and (b) centered data. The five groups represent education levels from 1 (low) to 5 (high).
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5.1 Local constant estimator

Let us consider the numerator of (2.2) first. Let

T (x) =
k∑

i=1

(f̂i,h(x)− f̂h(x))
2

=
k∑

i=1

(f̂i,h(x)−
k∑

l=1

rl(x)f̂l,h(x))
2, (5.1)

where

rl(x) =

∑nl

j=1 Kh(x−Xlj)∑k
l=1

∑nl

j=1 Kh(x−Xlj)
.

Let

a2i (x) =
σ2
i (x)

nih

∫
K2(u)du.

Then, the expected value and the variance of (5.1) can be represented as

ET (x) =
k∑

i=1

a2i (x)(1− 2ri(x) + kri(x)
2)

V arT (x) = 2(ET (x))2 − 4
∑

1≤i<j≤k

{
a2i (x)a

2
j(x)

×
(
1− 2(ri(x) + rj(x))− (ri(x)− rj(x))

2 + k(r2i (x) + r2j (x))
) }

.

Then, the degrees of freedom (df1) and the scale factor (c1) of the numerator can be obtained by

calculating

df1 =
2(ET (x))2

V arT (x)
, c1 =

V arT (x)

2ET (x)
.

Next, we consider the denominator of (2.2). Let

Ti(x) =

ni∑
j=1

(
Yij − f̂i,h(Xij)

)2
Kh(x−Xij)

=

ni∑
j=1

wij(x)
(
Yij −

ni∑
l=1

ri(j, l)Yil

)2
, (5.2)

where wij(x) = Kh(x−Xij) and

ri(j, l) =
Kh(Xij −Xil)∑ni

l=1 Kh(Xij −Xil)
.
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If we set

r̃i(j, l) =

 ri(j, l), if j ̸= l

ri(j, j)− 1, if j = l,

(5.2) can be rewritten as

Ti(x) =

ni∑
j=1

wij(x)
( ni∑

l=1

r̃i(j, l)Yil

)2
.

If we assume that Yijs are independently distributed with N(0, σ2
i (Xij)), then it can be shown

that

ETi(x) =

ni∑
j=1

ni∑
l=1

wij(x)
[
r̃i(j, l)

]2
σ2
i (Xil)

V arTi(x) = 2
(
ETi(x)

)2 − 4
∑∑
1≤j<l≤ni

∑∑
1≤p<q≤ni

{
σ2
i (Xil)σ

2
i (Xij)wip(x)wiq(x)

×
(
r̃i(p, l)r̃i(q, j)− r̃i(p, j)r̃i(q, l)

)2}
.(5.3)

Then, the denominator of (2.2) corresponds to T (x) =
∑k

i=1 Ti and one can get its expected value

and variance by

ET (x) =
k∑

i=1

ETi(x) and V arT (x) =
k∑

i=1

V arTi(x).

Again, the degrees of freedom and the scale factor of the distribution of the denominator can be

obtained by calculating

df2 =
2(ET (x))2

V arT (x)
, c2 =

V arT (x)

2ET (x)
.

When we have non-central parameters, i.e., when Yijs are independently distributed with

N(fi,h(Xij), σ
2
i (Xij)), let Y

′
ij = Yij − fi,h(Xij) and replace Yij by Y ′

ij in (5.2). Then, we have the

same formula in (5.3). In order to get Y ′
ij, we need to plug in the estimate f̂i,h.

5.2 Local linear estimator

For the local linear estimator, exact derivation of the variance of the numerator is rather compli-

cated. However, we note in (2.2) that we only need

c1 · df1 =
(ET (x))2

ET (x)
.
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The expectation of numerator is given as

E(T (x)) = E

(
k∑

i=1

(f̂i,h(x)− f̂h(x))
2

)

=
k∑

i=1

ni∑
j=1

(
K2

ij(x) + kK̃2
ij(x)− 2Kij(x)K̃ij(x)

)
σ2
i (xij).

In the denominator of (2.2),

Ti(x) =

ni∑
j=1

(
Yij − f̂i,h(xij)

)2
Kh(x−Xij)

=

ni∑
j=1

wij(x)
(
Yij −

ni∑
l=1

Kil(xij)Yil

)2
, (5.4)

where wij(x) = Kh(x− xij). If we set

r̃i(j, l) =

 Kil(xij), if j ̸= l

Kij(xij)− 1, if j = l.

(5.4) can be rewritten as

Ti(x) =

ni∑
j=1

wij(x)
( ni∑

l=1

r̃i(j, l)Yil

)2
.

If we assume that Yijs are independently distributed with N(0, σ2
i (xij)), then it can be shown that

ETi(x) =

ni∑
j=1

ni∑
l=1

wij(x)
[
r̃i(j, l)

]2
σ2
i (xil),

and

ET (x) =
k∑

i=1

ETi(x).

Again,

c2 · df2 =
(ET (x))2

ET (x)
.
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Marron, J. and de Uña Álvarez, J. (2004). SiZer for length biased, censored density and hazard

estimation. Journal of Statistical Planning and Inference, 121:149–161.

Marron, J. and Zhang, J. (2005). SiZer for smoothing splines. Computational Statistics, 20:481–

502.

Nadaraya, E. A. (1964). On estimating regression. Theory of Probability and its Applications,

9:141–142.

Neumeyer, N. and Dette, H. (2003). Noparametric comparison of regression curves: an empirical

process approach. Annals of Statistics, 31:880–920.

Nolan, B. and Whelan, C. T. (1996). Measuring poverty using income and deprivation indicators:

Alternative approaches. Journal of European Social Policy, 6:225–240.

Oigard, T. A., Rue, H., and Godtliebsen, F. (2006). Bayesian multiscale analysis for time series

data. Computational Statistics and Data Analysis, 51:1719–1730.

Pardo-Fernández, J. C., Van Keilegom, I., and González-Manteiga, W. (2007). Testing for the
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