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Abstract

Solving elliptic PDEs in more than one dimension can be a computationally ex-

pensive task. For some applications characterised by a high degree of anisotropy

in the coefficients of the elliptic operator, such that the term with the highest

derivative in one direction is much larger than the terms in the remaining direc-

tions, the discretized elliptic operator often has a very large condition number

– taking the solution even further out of reach using traditional methods. This

paper will demonstrate a solution method for such ill-behaved problems. The

high condition number of the D-dimensional discretized elliptic operator will be

exploited to split the problem into a series of well-behaved one and (D − 1)-

dimensional elliptic problems. This solution technique can be used alone on

sufficiently coarse grids, or in conjunction with standard iterative methods, such

as Conjugate Gradient, to substantially reduce the number of iterations needed

to solve the problem to a specified accuracy. The solution is formulated analyt-

ically for a generic anisotropic problem using arbitrary coordinates, hopefully

bringing this method into the scope of a wide variety of applications.
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1. Introduction

The solution of Poisson problems is often the single most expensive step in

the numerical solution of partial differential equations (PDEs). For example,

when solving the Navier-Stokes or Euler equations, the Poisson problem arises

from the incompressibility condition [1, 2]. The particular solution strategy

depends of course on a combination of factors, including the specific choice of

the discretization and the type of boundary conditions. In simple geometries,

very efficient schemes can be devised to reduce the effective dimensionality of

the problem, such as using FFTs or cyclic reduction to partially or completely

diagonalize the operator [2]. For more complex geometries or boundary con-

ditions, the available choices to solve the discretized problem usually involves

direct inversion for small size problems, while Krylov based iterative methods

such as Conjugate Gradient or multigrid methods are used when the matrix

problem is too large to be inverted exactly [2, 3, 4].

In this paper, we are interested in Poisson problems characterized by a high

level of anisotropy (to be precisely defined later). The source of anisotropy can

be due to the highly flattened domains over which the solution is sought, as is

the case for atmospheric, oceanic [2] and some astrophysical problems [5, p. 77].

However, the source of anisotropy could have a physical base, e.g. Non-Fickian

diffusion problems where the flux is related to the gradient by an anisotropic

tensor [6]. Recently, research has been conducted to develop compound materi-

als that could serve as a cloaking device. [7, 8] Thesemetamaterials are designed

to have specific anisotropic acoustic and electromagnetic properties that divert

pressure and light waves around a region of space unscathed.

Anisotropy results in a spreading of the spectrum of the discretized operator,

with severe consequences on the convergence rate. We illustrate this point with

a simple Poisson problem

∇2φ = ρ.

The r.h.s. and boundary conditions are chosen randomly (but compatible, see

below). The Laplacian operator is discretized with a standard 7-point, second-
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order stencil, the domain is rectangular with dimensions L×L×H , the domain’s

aspect ratio is measured by R = L/H , and the discretization is chosen as

(∆x,∆y,∆z) = (H/2, H/2, H/16). For illustration purposes, the problem is

solved using a 4-level multigrid scheme which employs line relaxation in the

vertical (stiff) direction, as used by Armenio and Roman [9] to do a LES of a

shallow coastal area. Figure 1 shows the attenuation factor A = ‖En+1‖/‖En‖
as a function of the aspect ratio, where En is the residual error after n iterations.

For moderate aspect-ratio domains, the convergence is satisfactory, but as R

increases, we rapidly approach a point where the method becomes, for practical

purposes, useless. Similar results (see below) hold for Krylov based methods.
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Figure 1: Attenuation factor as a function of domain aspect ratio for a Poisson problem solved

used a standard multigrid scheme.

In this paper, we describe how a formal series solution of a Poisson problem

derived by Scotti and Mitran [10], herein referred to as SM, can be used to

significantly speed up the convergence of traditional iterative schemes. SM in-
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troduced the concept of grid lepticity, λ, to describe the degree of anisotropy of a

discretized domain and then sought a solution to the Poisson problem written as

a power series in λ−1 – the leptic expansion. An apparent limitation of the leptic

expansion is that it is very efficient only for lepticity larger than a critical value

of order 1. SM were led to introduce the leptic expansion in order to provide the

right amount of dispersion needed to balance nonlinear steepening of internal

waves propagating in a shallow stratified ocean. For this limited purpose, SM

showed that at most only three terms in the expansion are needed, and thus the

lack of overall convergence was not a serious limitation. Here, we develop the

method for the purpose of efficiently calculating solutions of a discretized Pois-

son problem. In our approach, the lepticity, which in SM’s original formulation

was related to the aspect ratio of the domain, becomes now a generic measure

of anisotropy. The main result of this paper is that for subcritical values of the

lepticity, the leptic expansion can still be extremely valuable to dramatically

increase the convergence rate of standard iterative schemes, as the numerical

demonstrations of the method will show. The examples are coded using Mat-

lab and Chombo’s BoxTools1 library with standard second order discretization

techniques.

What makes the leptic expansion particularly attractive is that it can be

parallelized in a very straightforward way, as long as the decomposition of the

domain does not split along the stiff (vertical, in our examples) direction. For

comparison, the parallel implementation of the Incomplete Cholesky Decom-

position of a sparse matrix, which is used as a preconditioner for Conjugate

Gradient schemes and yields very good convergence rates even at high levels of

anisotropy [11], is a highly non-trivial task [12].

Finally, it must be noted that the idea behind the leptic expansion can be

traced as far back as the work of Bousinnesq on waves [13]. What we have done

here is to formulate it in a way suitable for numerical calculations.

1Chombo has been developed and is being distributed by the Applied Numerical Algorithms

Group of Lawrence Berkeley National Lab. Website: https://seesar.lbl.gov/ANAG/chombo/
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The rest of the paper is organized as follows: a discretization- and coordinate-

independent version of the leptic expansion is introduced in Section 2. The

reader who is not interested in the details may skip directly to Section 2.2,

where a summary of the scheme is provided. Section 3 presents convergence

estimates of the leptic expansion using Fourier analysis techniques [14]. This is

where the leptic method’s potential to generate initial guesses for conventional

iterative schemes emerges. In Section 4, we consider some examples to illus-

trate how the leptic expansion can be used with conventional iterative schemes

to create very efficient solvers. A final section summarizes the main results.

1.1. Notation

As an aid to the following discussion, we define the relevant notation here.

• Horizontal coordinate directions: x1 = x, x2 = y. Vertical (stiff) coordi-

nate direction: x3 = z.

• H = vertical domain extent. L = horizontal domain extent.

• φ = full solution. φp = solution of pth-order equation.

• φv and φh = solution of vertical and horizontal equations (explained in

section 2).

• Summation indices2 (summed from 1 to 3): i, j.

• Horizontal summation indices (summed from 1 to 2): m,n.

• u⋆i = (u⋆, v⋆, w⋆)
i
, the flux field that will be used as Neumann boundary

conditions.

• ρ = the source term of the elliptic PDE.

• σij = a symmetric, contravariant tensor field.

2I will use summation notation. Repeated indices imply a sum unless explicitly stated

otherwise.
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• V is the 3-dimensional domain and dV = dx1dx2dx3.

• Ai is the boundary of V in the ith-direction.

• dAi =
(

dx2dx3, dx3dx1, dx1dx2
)T

i
, the area element at the boundary of V .

• S is the 2-dimensional horizontal domain with local coordinates
(

x1, x2
)

and dS = dx1dx2.

• dlm =
(

dx1, dx2
)T

m
, the line element around the boundary of S.

• Ā (x, y) = 1
H

∫ z+

z−
A (x, y, z)dz, the vertical average of A.

• The leptic ratio is defined as λ = ∆x/H , where ∆x is the horizontal mesh

spacing.

2. Derivation

The problem we wish to solve is an anisotropic elliptic PDE with Neumann

boundary conditions of the type that often arises when solving the incompress-

ible Navier-Stokes equations [1, 2]. More precisely, we wish to solve the following

equation

∂iσ
ij∂jφ = ρ in V (1)

σij∂jφ = u⋆i on ∂V ,

where σij is a positive-definite, symmetric tensor field. The only restriction on

ρ and u⋆i is that they must be compatible with one another. That is, if we

integrate eq. (1) over V and apply Stokes’ theorem, we obtain an identity that

must be obeyed by the sources,

∫

V

ρdV =

∮

∂V

u⋆idAi. (2)

In general, the domain can have any number of dimensions higher than 1,

but without loss of generality we will restrict ourselves to the 3-dimensional

case. We will also assume there is a small parameter, ε, that we can use to
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identify terms of the field and operator in a formal perturbation expansion of

the form

φ = φ0 + εφ1 + ε2φ2 + ε3φ3 + . . . (3)

∂iσ
ij∂j = ∂3σ

33∂3 + ε
(

∂mσmn∂n + ∂mσm3∂3 + ∂3σ
3n∂n

)

.

In this section, we will derive a method to solve eqs. (1) using the expansion

(3).

2.1. The desired form of the expansion

We begin by plugging expansion (3) into the first of eqs. (1) and equating

powers of ε.

∂3σ
33∂3φ0 = ρ (4)

∂3σ
33∂3φ1 +

(

∂mσm3∂3 + ∂3σ
3n∂n + ∂mσmn∂n

)

φ0 = 0 (5)

∂3σ
33∂3φ2 +

(

∂mσm3∂3 + ∂3σ
3n∂n + ∂mσmn∂n

)

φ1 = 0 (6)

etc . . .

The first thing to notice is that eq. (4) with Neumann boundary conditions

can only determine φ0 up to an additive function of x and y. We will call the

solution of eq. (4) φv
0(x, y, z) and the still undetermined function φh

0 (x, y). We

might as well preemptivley write the fields at every order as

φn(x, y, z) = φv
n(x, y, z) + φh

n(x, y)

so that equations (4)-(6) read

∂3σ
33∂3φ

v
0 = ρ (7)

∂3σ
33∂3φ

v
1 + ∂mσm3∂3φ

v
0 +

(

∂3σ
3n∂n + ∂mσmn∂n

)

φ0 = 0 (8)

∂3σ
33∂3φ

v
2 + ∂mσm3∂3φ

v
1 +

(

∂3σ
3n∂n + ∂mσmn∂n

)

φ1 = 0 (9)

etc . . .
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In order to solve this set of equations, we must define our boundary condi-

tions at each order. At O(1), we will set

σ33∂3φ
v
0

∣

∣

z+
= w⋆|z+ − w̃0

σ33∂3φ
v
0

∣

∣

z−
= w⋆|z− ,

where z+ and z− denote the evaluation at the upper and lower boundaries,

respectively. The excess function, w̃0, is defined at each x and y to make eq.

(7) consistent with its boundary conditions. By vertically integrating eq. (7),

we see that

∫ z+

z−

ρdz = σ33∂3φ
v
0

∣

∣

z+

z−

= w⋆|z+z− − w̃0,

that is,

w̃0 = w⋆|z+z− −
∫ z+

z−

ρdz.

This completely determines φv
0 along vertical lines at each x and y. Notice that

we have not yet chosen the gradients of φv
0 normal to the horizontal boundaries.

We will save this freedom for later. Right now, we need to look at the O(ε)

equations to get φh
0 .

For the moment, let us think of eq. (8) as an equation for φv
1 . We again

need to specify vertical boundary conditions. We will define

σ33∂3φ
v
1

∣

∣

z+
= w̃0 − σ3n∂nφ0

∣

∣

z+
(10)

σ33∂3φ
v
1

∣

∣

z−
= − σ3n∂nφ0

∣

∣

z−
.

Defining a new excess function is unnecessary because it can just be absorbed

into the still undetermined function φh
0 . As before, we vertically integrate eq.
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(8).

0 =
[

σ33∂3φ
v
1 + σ3n∂nφ0

]z+

z−
+

∫ z+

z−

(

∂mσm3∂3φ
v
0 + ∂mσmn∂nφ0

)

dz

= w̃0 +

∫ z+

z−

(

∂mσm3∂3φ
v
0 + ∂mσmn∂nφ0

)

dz

= w̃0 +

∫ z+

z−

(

∂mσm3∂3φ
v
0 + ∂mσmn∂nφ

v
0

)

dz +

∫ z+

z−

∂mσmn∂nφ
h
0dz

= w̃0 +

∫ z+

z−

∂mσmj∂jφ
v
0dz +

∫ z+

z−

∂mσmn∂nφ
h
0dz

If we divide by H , the vertical integrals become vertical averages, which will be

denoted with overbars. When taking these averages, remember that while φh

was defined to be independent of z, no such assumption was made for σij . This

leaves us with an equation for φh
0 ,

∂mσmn∂nφ
h
0 = − w̃0

H
− ∂mσmj∂jφv

0. (11)

If φh
0 is chosen to be any solution to this equation, then eq. (8) for φv

1 together

with the boundary conditions (10) will be consistent. Now, we define boundary

conditions for eq. (11) to be

σmn∂nφ
h
0

∣

∣

~x∈∂S
= u⋆m

∣

∣

~x∈∂S
. (12)

This choice of boundary condition will be made consistent with equation (11)

in the following steps. First, we integrate eq. (11) over S and reorganize the

result.

− 1

H

∫

S

w̃0dS −
∮

∂S

σmj∂jφv
0dlm = −

∫

S

w̃0

H
dS −

∫

S

∂mσmj∂jφv
0dS

=

∫

S

∂mσmn∂nφ
h
0dS

=

∮

∂S

σmn∂nφ
h
0dlm

=

∮

∂S

u⋆mdlm

Next, we exploit the remaining freedoms in the boundary conditions of φv
0 by

choosing σmj∂jφ
v
0 = u⋆m−u⋆m at the horizontal boundaries of V . This, together
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with the definition of w̃0, gives us

− 1

H

∫

S

(

w⋆|z+z− −
∫ z+

z−

ρdz

)

dS −
∮

∂S

(

u⋆m − u⋆m
)

dlm =

∮

∂S

u⋆mdlm.

Noting that the third and fourth terms cancel, this simplifies to become

H

∮

∂S

u⋆mdlm +

∫

S

w⋆|z+z− dS =

∫

V

ρdV .

Now, if this equation holds, then the boundary conditions (12) will be consistent

with the horizontal equation (11). From equation (2), we see that this is indeed

the case. Therefore, equations (11) and (12) completely determine φh
0 , and in

turn, φ0. Having φ0 at our disposal, we can now tidy up eq. (8) a bit.

∂3σ
33∂3φ

v
1 = −∂mσm3∂3φ

v
0 −

(

∂mσmn∂n + ∂3σ
3n∂n

)

φ0

=
(

ρ− ∂3σ
33∂3φ0

)

− ∂mσm3∂3φ0 −
(

∂mσmn∂n + ∂3σ
3n∂n

)

φ0

= ρ− ∂iσ
ij∂jφ0

The first two terms in parentheses in the second line are zero via eq. (7). Since

this equation along with boudary conditions (10) are consistent, this completely

determines φv
1 at each x and y. There is, as before, another freedom yet to be

chosen – the gradients of φv
1 normal to the horizontal boundaries. Again, we

will choose them later.

We continue in the same manner, obtaining an equation for φv
2 whose Neu-

mann compatibility condition is the equation for φh
1 . At this point, we might

as well just derive the equations for the general order fields φv
p and φh

p−1 where

p ≥ 2. We start with

∂3σ
33∂3φ

v
p + ∂mσm3∂3φ

v
p−1 +

(

∂mσmn∂n + ∂3σ
3n∂n

)

φp−1 = 0 (13)

and the vertical boundary conditions for φv
p

σ33∂3φ
v
p

∣

∣

z±
= − σ3n∂nφp−1

∣

∣

z±
.

Vertically averaging eq. (13) and rearranging a bit gives us

1

H

[

σ33∂3φ
v
p + σ3n∂nφp−1

]z+

z−
+ ∂mσmj∂jφv

p−1 + ∂mσmn∂nφh
p−1 = 0,
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which upon applying boundary conditions and rearranging some more gives us

the horizontal equation

∂mσmn∂nφ
h
p−1 = −∂mσmj∂jφv

p−1. (14)

This equation will be compatible with homogeneous boundary conditions if

we chose the gradients of φv
p at the horizontal boundaries wisely. By integrating

eq. (14) over S, we find

0 =

∮

∂S

σmn∂nφ
h
p−1dlm

=

∫

S

∂mσmn∂nφ
h
p−1dS

= −
∫

S

∂mσmj∂jφv
p−1dS

= −
∮

∂S

σmj∂jφv
p−1dlm.

It is tempting now to let the gradients of φv
p−1 for p ≥ 2 be identically zero, but

a more appropriate choice is

σmj∂jφ
v
p−1 = (σmn − σmn) ∂nφ

h
p−2, (15)

which is equivalent to

σmj∂jφ
v
p =







u⋆m − σmn∂nφ
h
0 , p = 1

−σmn∂nφ
h
p−1, p ≥ 2.

This choice will average to zero, satisfying the above integral, as well as prevent

inconsistencies later.

Finally, we can clean up eq. (13) to get an equation for φv
p.

∂3σ
33∂3φ

v
p = ρ− ∂iσ

ij∂j (φ0 + φ1 + . . .+ φp−1)

This completes the derivation of the needed equations. It may seem like some

of the boundary conditions were chosen only to be compatible with their cor-

responding differential equation, when in fact we chose them carefully so that

the sum of their contributions is u⋆i for each direction, i. At the horizontal
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boundaries,

σmj∂jφ =
(

σmj∂jφ
v
0

)

+
(

σmn∂nφ
h
0 + σmj∂jφ

v
1

)

+ . . .+
(

σmn∂nφ
h
p−1 + σmj∂jφ

v
p

)

+ . . .

=
(

u⋆m − u⋆m
)

+
(

σmn∂nφ
h
0

)

+ . . .+
(

σmn∂nφ
h
p−1

)

+ . . .

=
(

u⋆m − u⋆m
)

+
(

u⋆m
)

+ . . .+ (0) + . . .

= u⋆m,

at the upper vertical boundary,

σ3j∂jφ
∣

∣

z+
=
(

σ33∂3φ
v
0

)

+
(

σ3n∂nφ0 + σ33∂3φ
v
1

)

+ . . .+
(

σ3n∂nφp−1 + σ33∂3φ
v
p

)

+ . . .

= (w⋆ − w̃0) + (w̃0) + . . .+ (0) + . . .

= w⋆,

and at the lower vertical boundary,

σ3j∂jφ
∣

∣

z−
=
(

σ33∂3φ
v
0

)

+
(

σ3n∂nφ0 + σ33∂3φ
v
1

)

+ . . .+
(

σ3n∂nφp−1 + σ33∂3φ
v
p

)

+ . . .

= (w⋆) + (0) + . . .+ (0) + . . .

= w⋆.

2.2. Summary of the expansion

Tables (1) and (2) provide a concise overview of the steps involved in gener-

ating the nth-order of the expansion in generalized and Cartesian coordinates,

respectively. The problem is formulated recursively. The left hand side is the

same at each step. However, it must be noted that the solution of the (D − 1)-

dimensional Poisson problem can be postponed or in some cases eliminated

depending on the magnitude of the correction required. This will be discussed

in section 2.3. For a very simple example problem solved using this expansion,

see section 3.
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O (1)

∂3σ
33∂3φ

v
0 = ρ

σ33∂3φ
v
0

∣

∣

z±
=























w⋆|z+ − w̃0, z = z+

w⋆|z− , z = z−

σmj∂jφ
v
0

∣

∣

~x∈Am

=
[

u⋆m − u⋆m
]

~x∈Am

∂mσmn∂nφ
h
0 = − w̃0

H
− ∂mσmj∂jφv

0 σmn∂nφ
h
0

∣

∣

~x∈∂S
= u⋆m

∣

∣

~x∈∂S

O (ε)

∂3σ
33∂3φ

v
1 = ρ− ∂iσ

ij∂jφ0

σ33∂3φ
v
1

∣

∣

z±
=























w̃0 − σ3n∂nφ0

∣

∣

z+
, z = z+

−σ3n∂nφ0

∣

∣

z−
, z = z−

σmj∂jφ
v
1

∣

∣

~x∈Am

=
[

u⋆m − σmn∂nφ
h
0

]

~x∈Am

∂mσmn∂nφ
h
1 = −∂mσmj∂jφv

1 σmn∂nφ
h
1

∣

∣

~x∈∂S
= 0

O (εp)

∂3σ
33∂3φ

v
p = ρ− ∂iσ

ij∂j

(

p−1
∑

r=0

φr

) σ33∂3φ
v
p

∣

∣

z±
= −σ3n∂nφp−1

∣

∣

z±

σmj∂jφ
v
p

∣

∣

~x∈Am

= −σmn∂nφ
h
p−1

∣

∣

~x∈Am

∂mσmn∂nφ
h
p = −∂mσmj∂jφv

p σmn∂nφ
h
p

∣

∣

~x∈∂S
= 0

Table 1: The general form of the expansion. The indices i, j extend over all directions and

the indices m,n do not include the vertical (thin) direction. The excess function is defined as

w̃0 = w⋆|
z+
z− −

∫ z+
z−

ρdz.
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O (1)

∂2
zφ

v
0 = ρ

∂zφ
v
0 |z± =























w⋆|z+ − w̃0, z = z+

w⋆|z− , z = z−

∂mφv
0 |~x∈Am

=
[

u⋆m − u⋆m
]

~x∈Am

∇2
hφ

h
0 = − w̃0

H
∂mφh

0

∣

∣

~x∈∂S
= u⋆m

∣

∣

~x∈∂S

O (ε)

∂2
zφ

v
1 = ρ−∇2φ0

∂zφ
v
1 |z± =























w̃0, z = z+

0, z = z−

∂mφv
1 |~x∈Am

= 0

No horizontal equation. φh
1 = 0

O (εp)

∂2
zφ

v
p = ρ−∇2

(

p−1
∑

r=0

φr

) ∂zφ
v
p

∣

∣

z±
= 0

∂mφv
p

∣

∣

~x∈Am

= 0

No horizontal equation. φh
p = 0

Table 2: The expansion in Cartesian coordinates. The indices i, j extend over all directions

and the indices m,n do not include the vertical (thin) direction. The excess function is defined

as w̃0 = w⋆|
z+
z− −

∫ z+
z−

ρdz and the horizontal Laplacian is ∇2

h
= ∂2

x + ∂2
y .

2.3. Eliminating horizontal stages

Typically, solutions of the horizontal problems are more expensive than so-

lutions of the vertical problems. Sometimes, we can skip the horizontal stages

altogether if we know in advance that its solution will not contribute to the
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overall convergence of the method. For example, suppose

σij =











A (x, y) D (x, y) 0

D (x, y) B (x, y) 0

0 0 C (x, y, z)











where A,B,C, and D are arbitrary functions of the variables listed. We see that

∂mσmj∂jφv = ∂mσmn∂nφv + ∂mσm3∂3φv,

but since σm3 = 0 by assumption, the ∂mσm3∂3φv term is zero. Also, since each

φv
p is the solution of an ordinary differential equation with Neumann BCs, we can

choose solutions whose vertical averages are zero – eliminating the ∂mσmn∂nφv

term as well. This means that the r.h.s. of the horizontal equations become zero

for all but the O(1) stages. Since the boundary conditions are also zero for these

problems, the solutions, φh
p≥1, must be identically zero. Whenever σij has this

form, φh
0 is the only horizontal function that needs to be found – eliminating

most of the computation time.

In practice, σij is often very close to the form shown above. In fact, many

useful coordinate systems such as the Cartesian, cylindrical, and spherical sys-

tems are described by σij =
√
ggij which are exactly of this form. It is helpful

to consider this while iterating. If we can find a value of P such that all φh
p≥P

will not significantly influence the overall convergence, or if we calculate that

the norm of the horizontal equation’s r.h.s. is below some threshold, then we

can tell the leptic solver to stop performing horizontal solves in the interest of

computation time. Alternatively, suppose we are about to find φh
p . We could

simply set φh
p to zero everywhere and then set up the next vertical stage. If the

vertical problem is consistent up to some prescribed tolerance, then we never

needed the true solution of the horizontal equation to begin with! Otherwise,

we can go back and solve the horizontal equation before moving on to the next

vertical stage. This is a very economical way of deciding which horizontal solves

are necessary.
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2.4. An interpretation of ε

So far, we have derived a set of equations that produce a formal solution

to the original Poisson problem based on the assumption that the parameter

ε in eqs. (3) properly identifies terms of fundamentally different sizes. The

procedure does not refer to a specific discretization of the equations, but heuris-

tically depends on the existence of a small parameter. The latter is typically

derived from an anisotropy inherent in the problem. This could be due to many

causes, but to appeal to the interests of the author’s own research, we will focus

on an anisotropy in the geometry of the domain and numerical discretization.

However, it is easy to generalize the foregoing argument regardless of the actual

source of anisotropy. Naively, the aspect ratio of the domain could be used to

define such a parameter. However, the following example shows that it must

also depend on the details of the discretization.

Suppose we want to solve the isotropic, 2D Poisson equation in a rectangular

domain. We will choose a uniform discretization with Nx × Nz cell-centers

and we will define the aspect ratio to be α = H/L. Upon switching to the

dimensionless variables x̃ = x/L and z̃ = z/H , Poisson’s equation transforms

as follows

ρ =

(

∂2

∂x2
+

∂2

∂z2

)

φ

=
1

H2

(

α2L2 ∂2

∂x2
+H2 ∂2

∂z2

)

φ

=
1

H2

(

α2 ∂2

∂x̃2
+

∂2

∂z̃2

)

φ

We will rescale the field variable, φ, so that it is dimensionless and ofO (1), which

is always possible. Now, apart from an overall scaling of H−2, it is natural to

identify the small parameter ε with the aspect ratio of the grid. However, a

little reflection shows that a more “quantitative” definition of ε cannot ignore

the discretization altogether. Indeed, once discretized, the term involving x-

derivatives is at most ∼ α2N2
x while the term involving z-derivatives is at least

∼ 1. This means that if αNx ≪ 1, then ∂2φ
∂x2 will be fundamentally smaller than

∂2φ
∂z2 , and so the “smallness” of ε depends on both the aspect ratio of the domain
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and on the details of its discretization. It follows that, in the continuum limit,

ε cannot be a priori ever guaranteed to be small.

Scotti and Mitran quantified these results in a more general manner. In

their paper [10], they define the grid’s leptic ratio, λ = min (∆xm/H), where

min∆xm is the minimum grid spacing in the directions other than the vertical.

Note that the leptic ratio is controlled by the overall apsect ratio of the domain

and by the degree of “coarseness” of the discretization in the horizontal direc-

tions. It is shown that if λ > O(1), then the computational grid is “thin,” and

the summarized equations of the previous section will indeed produce solutions

whose sum converges to the solution of (1). This result extends to more exotic,

N-dimensional geometries if we identify the symmetric tensor field, σij , with
√
ggij .

At first, it would seem that this method is of very limited practical utility,

being convergent only on rather coarse grids. Moreover, it it is at odds with

the very sensible idea that finer grids should lead to better results. However,

in this article we pursue the idea that even when the leptic ratio of the grid is

below critical, so that the expansion will not converge, the method can still be

used to accelerate the convergence of conventional methods. Looesely speaking,

the idea is that the r.h.s. can be partitioned between a component that can

be represented on a grid with λ > 1 and a remainder which needs a finer grid

with λ < 1. Restricted to the former component, the expansion converges,

while it diverges on the latter. On the contrary, traditional method such as

BiCGStab tend to converge fast on the latter, and slow on the former. By

judiciously blending both methods, we can achieve a uniformly high level of

convergence. Also, note that since the expansion is formulated analytically,

it can be implemented regardless of any particular choice of discretization of

the domain. In the following examples, we will use a second-order scheme on

a staggered grid, but the method is by no means restricted to this type of

discretization.
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3. Convergence estimates

3.1. Restricted case

The heuristic arguments used earlier can be given an analytic justification

in the case of a simple rectangular geometry. Once again, we limit to two

dimensions, the extension to higher dimensional spaces being trivial. The elliptic

equation we wish to solve is

(

∂2
x + ∂2

z

)

φ (x, z) = ρ (x, z) (16)

with homogeneous Neumann boundary conditions. Without loss of general-

ity, we can set ρ (x, z) equal to an arbitrary eigenfunction of the operator,

cos (kx) cos (mz). The exact, analytic solution of eq. (16) becomes simply

φ (x, z) = −cos (kx) cos (mz)

k2 +m2
.

Now, let’s investigate how the leptic solver would have arrived at a solution.

First, we will write eq. (16) as

(

ε∂2
x + ∂2

z

)

(φ0 + εφ1 + . . .) = cos (kx) cos (mz) , (17)

where the ε is only used to identify small terms and will eventually be set to 1.

Equating various powers of ε gives us

∂2
zφ0 = cos (kx) cos (mz)

∂2
zφ1 = −∂2

xφ0

∂2
zφ2 = −∂2

xφ1

etc . . .

The solution to the O (1) equation is

φ0 (x, z) =
cos (kx) cos (mz)

−m2
.

The constant of integration, that is φh
0 (x), is identically zero since the BCs are

homogeneous and there is no need for an excess function. The O (ε) equation

becomes

∂2
zφ1 = − k2

m2
cos (kx) cos (mz)
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whose solution is

φ1 (x, z) = − k2

m2

cos (kx) cos (mz)

−m2
.

Continuing in this manner, we see that the solution at O (εn) is

φn (x, z) =

(

− k2

m2

)n
cos (kx) cos (mz)

−m2

which means that if we terminate the leptic solver at O (εp), the solution we

arrive at is given by the sum

φ (x, z) =
cos (kx) cos (mz)

−m2

p
∑

n=0

(

− k2

m2

)n

(18)

where we have set ε to 1. If k2/m2 > 1, then this geometric series will diverge

as p → ∞ and the leptic solver will ultimately fail. On the other hand, if

k2/m2 < 1, then the series will be finite for all values of p and we can put the

solution in a closed form,

φ (x, z) =
cos (kx) cos (mz)

− (k2 +m2)

{

1−
(

− k2

m2

)p+1
}

.

In the limit p → ∞, the term in braces tends to 1 and we recover the exact,

analytic solution of the elliptic equation.

Since the wavenumbers k and m are both positive, we can simply say that

convergence of the leptic method requires max (k/m) < 1. Analytically, this

quantity depends on the harmonic content of the source, ρ (x, z), and is, in

principle, unbounded. Numerically, once a discretization has been chosen, k

and m are limited to a finite number of values. If we let the source term be a

general linear combination of eigenfunctions and if our rectangular domain has

dimensions L by H divided uniformly into elements of size ∆x by ∆z, and it is

discretized with a spectral method, then max (k) = π/∆x and min (m) = π/H .

This produces our convergence condition, H/∆x < 1, which is the origin of the

leptic ratio, λ = min (∆xm/H), and its square inverse, ε = max (H/∆xm)
2
,

used throughout this paper.

Notice that this convergence condition is a restriction on how we must dis-

cretize a given domain, it is not directly a restriction on the source term of the
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elliptic equation at hand. This means that the leptic method should converge

similarly for all equations that use a particular uniform, rectangular grid. If the

grid is not rectangular or uniform, then the relavant convergence condition is

Hi/∆xi < 1 at all grid positions, i. Here, Hi is the vertical height of the domain

at xi and ∆xi is the minimum horizontal grid spacing at xi.

3.2. General case

Now, we will extend this argument to the more general case involving the

positive-definite, symmetric tensor field, σij (x, z). We wish to perform a con-

vergence analysis on

{∂zσzz∂z + ε (∂xσ
xx∂x + ∂xσ

xz∂z + ∂zσ
zx∂x)}φ (x, z) = ρ (x, z) . (19)

Without the exact form of each σij (x, z), we cannot trivially diagonalize the

operator in (k,m)-space. We can, however, diagonalize the operator in (x, z)-

space by performing a small rotation by an angle 1
2 tan

−1
(

2εσxz

σzz−εσxx

)

. This

casts the equation into the simpler form

{

∂z
[

σzz +O
(

ε2
)]

∂z + ∂x
[

εσxx +O
(

ε2
)]

∂x
}

φ (x, z) = ρ (x, z) ,

where the x and z now represent the new coordinates. We might as well just

let σzz +O
(

ε2
)

→ σzz and εσxx +O
(

ε2
)

→ εσxx so that

{∂zσzz∂z + ε∂xσ
xx∂x}φ (x, z) = ρ (x, z) . (20)

Even though each term of eq. (20) is functionally different than the cor-

responding terms of eq. (17), their magnitudes are equal. This means that a

convergence analysis of eq. (20) must lead to a restriction of the form λ > O (1).

Rotating back to eq. (19) cannot possibly change this restriction due to the van-

ishing size of the rotation angle. This shows that even in the general case of

eq. (1), the leptic solver will converge as long as the discretization is chosen to

satisfy λ > O (1).

21



3.3. The leptic solver as a preconditioner

Let us return to the simple case of solving ∇2φ = cos (kx) cos (mz) on a rect-

angular domain. After applying nl iterations of the leptic solver, the residual,

r, is found via eq. (18) with p = nl − 1.

r = cos (kx) cos (mz)−∇2

{

cos (kx) cos (mz)

−m2

nl−1
∑

n=0

(

− k2

m2

)n
}

= cos (kx) cos (mz)− k2 +m2

m2
cos (kx) cos (mz)

nl−1
∑

n=0

(

− k2

m2

)n

=

{

1 +

nl
∑

n=1

(

− k2

m2

)n

−
nl−1
∑

n=0

(

− k2

m2

)n
}

cos (kx) cos (mz)

=

(

− k2

m2

)nl

cos (kx) cos (mz)

The last line comes from collapsing the telescoping set of sums. This gives us

an amplification factor for each eigenmode of the residual. That is, if we are

given a generic residual and perform an eigenvector expansion,

r (x, z) =
∑

k

∑

m

r (k,m) cos (kx) cos (mz) ,

then the magnitudes of the individual components, r (k,m), will be amplified

or attenuated by k2/m2 each time we iterate. If the grid is constructed such

that λ > O (1), then r (k,m) will always be attenuated since max
(

k2/m2
)

< 1.

If, however, the grid’s leptic ratio is ∼ O (1), then only those eigenmodes with

k2/m2 < 1 will diminish and those with k2/m2 > 1 will be amplified. In

(x, z)-space, this effect appears as a diverging solution, but in (k,m)-space,

we can see that the solution is split into converging and diverging parts – we

are conditioning the solution. For this reason, even though preconditioning is

normally understood as the action of substituting the original operator with a

modified one with better spectral properties [15], we will use preconditioning to

mean the action of replacing an initial guess with one that has better spectral

support.

As an example, consider a 64× 64× 16 grid with ∆x = (1, 1, 0.1). This fixes
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ε at 2.56, which is large enough to cause problems for the leptic solver.3 In

order to learn how the solvers are treating the modes on this grid, let’s apply

them to

∇2φ =

32
∑

i=1

32
∑

j=1

8
∑

k=1

cos

(

2πix

L

)

cos

(

2πjy

L

)

cos

(

2πkz

H

)

with homogeneous boundary conditions. This is a residual equation whose r.h.s.

harbors every periodic mode supported by the grid in equal amounts (except

for the zero modes, which must be removed to be consistent with the boundary

conditions). We only consider periodic modes to facilitate spectral analysis via

FFT. In one test, we solved this equation with a BiCGStab solver and in another

separate test, we used the leptic method. BiCGStab stalled in 26 iterations and

the leptic solver began to diverge after 24 iterations. Once progress came to a

halt, we performed an FFT to locate which modes were converging slowest. To

simplify the visualization, we found the (kx, ky) slice that contained the most

slowly converging modes (which, consistent with the previous analysis, is the

smallest value kz = 2π/H). The results are in figures 2 and 3.4

The color in these plots represent the base-10 logarithm of the Fourier co-

efficients of each mode. It is apparent that each method has its own distinct

problem region shown in red. The BiCGStab solver has the most trouble dealing

with low frequency modes while the leptic solver has trouble with high frequency

modes. Since the leptic solver produced a residual whose largest modes can eas-

ily be handled by BiCGStab, we apply the BiCGStab using as initial guess the

output of the leptic solver after 18 iterations. Now BiCGStab is able to converge

quickly (figure 4).

We should mention that this is just an illustration. In this example, the

BiCGStab method on such a small grid would have converged on its own in

a reasonable number of iterations. On a larger grid, BiCGStab alone often

3For the remainder of this paper, we will be dealing with a geometric anisotropy quantified

by λ. The perturbation parameter is then ε = (H/∆x)2.
4VisIt has been developed and is being distributed by the Lawrence Livermore National

Laboratory. Website: https://wci.llnl.gov/codes/visit.
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Figure 2: A 2-dimensional slice of the residual error after 26 iterations of BiCGStab. Colors

are on a logarithmic scale. Notice the large error near the center of the plot, indicating

BiCGStab’s difficulty eliminating low frequency errors. The blue lines are the zero-frequency

modes that must be fixed to agree with the boundary conditions.

converges too slowly to be a viable solution method and sometimes stalls due

to the condition number of the operator. Further complications arise when we

use mapped coordinates because this tends to drive the condition number of the

operator even higher. In these situations, using the leptic method to generate

a suitable initial guess becomes quite useful. We will illustrate this effect in

further detail in section 4.
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Figure 3: The residual error after 24 iterations of the leptic solver. This solver eliminates

low frequency errors much more effectively than high frequency errors, indicating the leptic

solver’s potential to serve as a preconditioner for BiCGStab.

4. Demonstrations

In this section, we will create a sample problem on various numerical domains

in order to compare the effectiveness of traditional solvers with methods that

utilize the leptic solver. Our traditional solver of choice will be the BiCGStab

method preconditioned with the incomplete Cholesky factorization (IC) of the

elliptic operator [12]. For simplicity, we will use a rectangular domain and the
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Figure 4: The residual error of the BiCGStab method when given an initial guess generated

by the leptic solver.

r.h.s. will be generated by taking the divergence of a vector field

u⋆1 =

(

z

Lz

)2

sin

(

πy

Ly

)

+
x√
2Lz

u⋆2 =

(

z

Lz

)2

sin

(

πx

Lx

)

u⋆3 = −
(

z

Lz

)2

cos

(

πz

4Lz

)

ρ = ∂iu
⋆i.

This vector field also generates the boundary conditions. To compare the solvers,

we will plot the relative residual as a function of the iteration number. For what

follows, the vertical and horizontal solves of the leptic solver will each be counted

each as an iteration.
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4.1. High leptic ratio - Cartesian coordinates

First, we set N = (64, 64, 16) and ∆x = (0.1, 0.1, 0.001). This fixes ε at

0.0256, which lies well within the region where the leptic solver outperforms

traditional methods. Figure 5 shows the results. The leptic solver is clearly

the more efficient method. In only 6 iterations, it is able to achieve a relative

residual of 10−10. We would have needed 170 iterations of the BiCGStab/IC

solver to obtain a residual error of that magnitude.
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Figure 5: With ε ≈ 1/40, the leptic solver is clearly more efficient than BiCGStab. Since we

are using Cartesian coordinates, the leptic solver only needed to perform one horizontal solve.

4.2. Borderline cases - Cartesian coordinates

When ε = O (1), the leptic solver may or may not be the most efficient

solver. We will denote these situations as borderline cases. In the first borderline

case, we will bring ε to 1 by setting N = (64, 64, 10) and ∆x = (0.1, 0.1, 0.01).

Figure 6 shows that the leptic solver requires approximately 5 times as many

iterations as it did in the ε = 0.0256 example to achieve an O
(

10−10
)

residual
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error. The BiCGStab/IC method, however, converges a bit more quickly than

it did in the previous example. It required only 90 iterations to catch up to

the leptic method. This is emperical evidence of our theoretical assertion – by

raising ε (decreasing the lepticity), the leptic solver becomes less effective and

the traditional method becomes more effective. In this specific borderline case,

the leptic solver outperforms the BiCGStab method.
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Figure 6: The convergence patterns of the leptic and BiCGStab solvers when ε = 1 and

condition number ≈ 105.6. The spikes in the BiCGStab residual are due to restarts.

By varying Nx and Ny, we can generate an entire class of grids with the

same ε. For example, if we bring N up to (256, 256, 10), the BiCGStab method

should not converge as rapidly as before. On the other hand, ε is still 1, which

means the leptic solver should perform almost as well as it did on the 64×64×10

grid. This is because most of the leptic solver’s convergence relies on the vertical

solver. This is true in general when the horizontal solver is able to be switched off

(see section 2.3) – as the horizontal domain grows, the leptic solver outperforms

traditional relaxation methods. This effect is shown in figure 7. By comparing
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figures 6 and 7, we see that unlike the leptic method, the BiCGStab/IC method

is in fact slowed down by the larger horizontal grid.

The true value of the leptic solver is illustrated by when we use it to generate

a suitable initial guess for the BiCGStab/IC solver (see section 3.3). This initial

guess has an error that is dominated by high wavenumbers. The BiCGStab

solver then rapidly removes those errors as shown by the dash-dot curve in

figure 7.
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Figure 7: The performance of various solution methods with ε = 1 and condition number

≈ 106.8. After a few iterations of the leptic solver, BiCGStab can achieve a fast convergence

rate. Using a preconditioner such as an incomplete Cholesky decomposition can drive this

rate even higher.

As our final isotropic, borderline case, we will set N = (50, 50, 50) and ∆x =

(0.1, 0.1, 0.004). This is appropriate for a cubic, vertically stratified domain

and brings ε up to 4. The BiCGStab/IC solver does not provide immediate

convergence and the leptic method would have started to diverge after its third

iteration, but when we combine the two methods as we did in the last example,
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we see a much more rapid convergence than either method could individually

achieve (figure 8).
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Figure 8: Performance of the solvers with ε = 4 and condition number ≈ 106.2. The leptic

solver began diverging after it’s third iteration, so control was passed to the Krylov solver.

Again, the leptic solver proves most valuable as a preconditioner for the BiCGStab/IC solver

when ε = O (1).

4.3. High leptic ratio - Mapped coordinates

When the metric is diagonal, several of the terms in our expansion (sec. 2.2)

vanish. This means we can remove much of the code to produce a more efficient

algorithm. This reduced code is what generated the results of the previous

sections. However, in these simple geometries the value of the leptic expansion

is somewhat limited because it is normally possible to employ fast direct solvers.

Not so in the case we consider now, where we apply the full algorithm by

considering a non-diagonal metric. The metric we will use is routinely employed

in meteorological and oceanic simulations of flows over non uniform terrain. It
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maps the physical domain characterized by a variable topography z = h(x, y)

to a rectangular computational domain. Although any relief may be specified,

it is sufficient for our illustrative purposes to simply let the depth go from d/2

to d linearly as x goes from 0 to L, where d < 0 (Figure 9).

Figure 9: A cross section of the coordinate mapping. The thick line denotes the lower vertical

boundary.

We define h(ξ) = d
2 + d

2Lξ, where (x, y, z) →
(

ξ, η, h(ξ)
d

ζ
)

. This means that

the symmetric tensor, σij =
√
ggij , is given by

√
ggij =











ξ+L
2L 0 − ζ

2L

0 ξ+L
2L 0

− ζ
2L 0 4L2+ζ2

2L(ξ+L)











ij

.

For the next two examples, we will be seeking a simple

φsol (ξ, η, ζ) = cos

(

2πξ

L

)

cos

(

2πη

L

)

cos

(

2πζ

d

)

solution by setting u⋆i =
√
ggij∂jφsol and ρ = ∂iu

⋆i.

Setting N = (256, 256, 64) and ∆x = (0.25, 0.25, 0.0025) gives us ε = 0.4096.

After approximately 200 iterations, the BiCGStab method begins to stall with

a relative residual of O
(

10−8
)

. On the other hand, the leptic solver was able

to reach a relative residual of 3.637 × 10−9 in only 10.2% of the time before

terminating at O
(

ε4
)

. The reason the leptic method stopped iterating was due

to inconsistent data given to the vertical solver. In section 2, we showed that at

each iteration, a 2D poisson problem, namely eq. (11), must be handed to a tra-

ditional solver and if that solver fails, the next vertical stage may have a source
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term that is not compatible with its boundary conditions. Remarkably, the hor-

izontal stages failed (abandoned due to stalling) at every order of calculation

and the leptic solver was still able to out-perform the BiCGStab method. Had

our decision-making algorithm been altered to abandon the horizontal solver

after failing the first time, which is reasonable for some problems, we would

have converged much faster. It should be pointed out that until O
(

ε4
)

, the

leptic solver did not diverge, therefore we never needed to transfer control to a

full 3D BiCGStab solver – which would have been slow.
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Figure 10: Performance of the leptic and Krylov solvers with an anisotropic σij and ε ≈ 0.4.

Since our solver is using Chombo’s matrix-free methods (known as shell matrices in some

popular computing libraries such as PETSc [16]), the Cholesky decomposition of the elliptic

operator can not be performed.

4.4. Borderline case - Mapped coordinates

For this scenario, we set N = (64, 64, 10) and ∆x = (0.5, 0.5, 0.1) giving us

ε = 4. To solve our sample problem on this grid, we let the leptic and BiCGStab
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solvers work together, iteratively. As soon as one solver begins to stall or diverge,

control is passed to the other solver. The effectiveness of this algorithm is

explained in section 3.3 – the leptic solver first reduces low frequency errors

until high frequency errors begin to dominate the residual, then the BiCGStab

solver reduces high frequency errors until low frequency errors dominate the

error. This continues until the residual error has been reduced over the entire

spectrum supported by the grid. Figure 11 illustrates the effectiveness of this

algorithm rather convincingly.
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Figure 11: The convergence pattern of a hybrid leptic/Krylov method when ε = 4 on an

anisotropic domain. In this case, neither method would have individually provided rapid

convergence, but when the methods are combined, we see a very rapid convergence and the

introduction of another preconditioner (eg. IC) is not necessary.

5. Discussion

The leptic method was originally devised as a method to add a physically

appropriate amount of dispersion when numerically modeling the propagation
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of nonlinear waves in a dispersive medium. In this paper, we generalized the

method so it could be used to actually speed up the numerical solution of Poisson

problems characterised by a high level of anisotropy. The key idea is that

instead of (or in addition to) preconditioning the operator to achieve overall

better spectral properties, we precondition the initial guess (or the restarts) to

achieve better spectral support of the residual by coupling the leptic expansion

to Krylov methods. However, since the former converges on its own if the

lepticity of the grid is sufficiently large, it is easy to see that it could be used

within multigrid methods as well. Namely, when the coarsening reaches a point

that the lepticity of the grid is below critical, the leptic expansion can be used

in lieu of the relaxing stage to generate an exact solution at the coarse level.

This would likely cut down the layers of coarsening.

In its full generality, this method can be used to solve anisotropic Pois-

son equations in arbitrary, D-dimensional coordinate systems. In many cases,

however, numerical analysis is performed using simple, rectangular coordinates

without an anisotropic tensor, σij . This simplification reduces much of the com-

putation. For these common purposes, we included a summary of the Cartesian

version of the expansion. Both the general and Cartesian expansions are sum-

marized in section 2.2.

When implementing the leptic method for numerical work, the computa-

tional domain should be split in all but the vertical (stiff) dimension. The ver-

tical ordinary differential equations require a set of integrations – one for each

point in the horizontal plane. With this domain decomposition, these integra-

tions are independent of one another and the solutions to the vertical problems

can be found via embarassingly parallel methods. On the other hand, the so-

lutions to the horizontal equations cannot be parallelized as trivially, making

their solutions more costly to arrive at. In light of this, section 2.3 was provided

to discuss when it is appropriate to eliminate these expensive stages.

The computational cost of a single iteration is of the same order as a precon-

ditioned step of a Krylov method. The savings are obtained in the faster rate

of convergence, shown in the examples above over a wide range of anisotropic

34



conditions, as well as the relative ease with which the leptic expansion can be

parallelized. The best rate of convergence is achieved by using the leptic expan-

sion at the beginning and every time the convergence rate of the Krylov method

slows down. We did not attempt to predict a priori after how many steps the

switch is necessary. If the Poisson problem, as it often happens, is part of a

larger problem that is solved many times, a mockup problem should be solved

at the beginning to determine empirically the best switch pattern.

Adapting the expansion to accept Dirichlet boundary conditions would re-

quire a new derivation similar to that of section 2, but the job would be much

simpler since Dirichlet elliptic operators have a trivial null space, thereby elim-

inating the need to consider compatibility conditions among the second-order

operators and their boundary conditions.
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