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1 Introduction

Understanding the dynamics of the term structure of interest rates is important to researchers
as well as practitioners because of these dynamics’ implications for macroeconomic policy and
microeconomic decision making of economic agents in an economy. The new millenium has already
predicted and experienced turbulence in fixed-income security markets in response to the ‘soft
landing’ of the US economy and anticipated inflation induced by soaring oil prices. Consequently,
significant attention has been paid in both the academic and practitioner literature to attempting
to describe term structure dynamics.

The empirical evidence suggests that the uncertainty or volatility in interest rate dynamics is
time-varying and probably stochastic [e.g. Longstaff and Schwartz (1992), Engle and Ng (1993),
Gallant and Tauchen (1996)]. This stream of literature relies upon the premise that i) there exists
strong time-variation in term premia and ii) these time-varying premia are initially induced by
time-varying volatility of interest rates and/or associated state variables which govern the stochas-
tic dynamics of the term structure. Despite the major progress made in documenting the empirical
dynamics of the second moment of Treasury securities, the progress in connecting the observed em-
pirical dynamics of the second moment and existing parametric term structure models is relatively
limited. Even though many studies investigate the empirical ability of alternative specifications
of the theoretical stochastic differential equation of state variables to explain the time-varying
volatility of the short rate, there are only a few studies that investigate the empirical performance
of parametric term structure models in explaining the time-varying volatilities of the yield-to-
maturities.1 The latter set of studies concerns the empirical performance of the models in both
the cross-sectional and time series dimensions, or equivalently the models’ performance under the
equivalent martingale measure. Thus, these studies may be viewed as a more rigorous empirical in-
vestigation of the underlying models. Exceptions are the recent studies of Dai and Singleton (2000)
and Ahn, Dittmar and Gallant (2000, ADG hereafter). Dai and Singleton (2000) find that Affine
Term Structure Models (hereafter referred to as ATSMs) are able to fit the unconditional term
structure of volatility based on data from the late 1980’s through the 1990’s. ADG document that
Quadratic Term Structure Models (QTSMs henceforth) outperform ATSMs empirically, but that
neither the ATSMs nor the QTSMs can explain the stochastic features of the volatilities of the
yields, in particular the short rate.

To illustrate this point, Figure 1 depicts the term structure of volatility, e.g., the locus of the
volatility of bond yields as a function of time-to-maturity. We observe that ATSMs produce lower
levels of volatility across all maturities, and in addition, have difficulty in recovering the shape of the
term structure of volatility. QTSMs improve upon the ATSMs performance in both dimensions, but

1See Chan, Karolyi, Longstaff and Sanders (1992), Äit-Sahalia (1996a, 1996b), Anderson and Lund (1997), Gallant
and Tauchen (1996) among many others for empirical investigations of the volatility of the short rate.
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still suffer from the inability to reproduce the large magnitude of volatility across all maturities. In
particular, the QTSM is relatively successful in explaining the observed shape of the term structure
of volatility dynamics, but it fails significantly to generate excessive volatility levels in the interest
rates over different horizons. In summary, we suggest that the representative parametric term
structure models have shortfalls in fitting the observed volatilities of the yields-to-maturity across
time to maturity.

To understand the shortcomings of extant parametric models in their specifications of volatility,
we need to investigate existing term structure models and their relative strengths and weaknesses
from the viewpoint of their implications for term structure volatility. More than two decades
of extensive studies in term structure dynamics can be classified into three alternative classes.2

First, the most popular class of term structure models is the class of ATSMs, which designate
an affine association between the underlying state variables and yields. This class includes the
seminal works of Vasicek (1977) and Cox, Ingersoll and Ross (1985, CIR hereafter).3 Duffie and
Kan (1996) make a significant contribution to the literature by generalizing ATSMs, and summarize
the primitive assumptions underlying this class of models. Dai and Singleton (2000) characterize
the admissibility of ATSMs and explore a maximally flexible ATSM that empirically nests all other
existing ATSMs as a sub-family. Dai and Singleton also pioneer a new focus in the empirical
literature by implementing the ATSMs based on theoretical analysis of the minimal conditions
necessary for for identifying the ATSMs. Even though their analysis exhibits relatively promising
empirical performance of this class for late 1980’s and early 1990’s, Gallant and Tauchen (1997),
and ADG (2000) reject all versions of ATSMs using data including the 1970’s and 1980’s. This
class of models generates stochastic volatility of the short rate or yields based on a “level” effect in
the underlying state variables. Denote an ATSM with m state variables with square-root processes
(which can be potentially correlated) and n −m Gaussian state variables as an Am(n) (following
the notation of Dai and Singleton (2000)). While the Gaussian factors are homoskedastic, the
state variables with square-root process induce stochastic volatility with an order of 1

2 as their
name implies. Consequently, the ATSM has two potential shortcomings in specifying stochastic
volatility. First, out of n state variables, only m state varibles contribute to stochastic volatility

2Note that more broadly speaking, the term structure literature can be divided into two alternative approaches:
the equilibrium approach and the arbitrage approach. The equilibrium approach is, as its name implies, a scheme to
endogenously determine the term structure of the interest rate by specifying the underlying economy using assumed
preferences of either a representative agent or a stand-in aggregate household, his/her monetary and/or information
constraints, and imposing the market clearing condition. In contrast, the arbitrage approach relies upon extracting
the information regarding pricing from the observed term structure and using this information to price contingent
claims on either interest rate or fixed-income securities. Thus the latter approach is less suitable for interpreting
model implications for the determination of the characteristics of term structure of interest rate dynamics.

3These single-factor models are extended to multivariate versions by Langetieg (1980), Chen and Scott (1992),
Longstaff and Schwartz (1992), Sun (1992), Pearson and Sun (1994), Balduzzi, Das, Foresi and Sundaram (1996),
Chen (1996), Anderson and Lund (1997), and Jegadeesh and Pennachi (1996).
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of the interest rate. Second, the variance of the interest rate is proportional to an affine function
of the state variables themselves. The first problem cannot be solved trivially by equating n
and m. As noted in Dai and Singelton (2000) and stressed in Ahn, Dittmar and Gallant (2000),
while n = m maximizes the ATSM’s flexibility in specifying heteroskedastic volatility, it limits its
flexibility in specifying conditional/unconditional correlations among the state variables.

Compared to the ATSMs, non-affine term structure models have been relatively slow to de-
velop. The representative non-affine term structure models are QTSMs. This class of models
was first implied by Longstaff (1989) and pioneered by Beaglehole and Tenney (1991, 1992) and
Constantinides (1992). However, only recently have these diverse versions been consolidated and
systematically compared in a general framework. ADG formally define the QTSMs and also build
a maximally flexible QTSM which can be identified empirically. The authors clarify the exact
restrictions which reduce the general QTSM to existing sub-class models. The QTSM has the po-
tential to be a more flexible model in specifying heteroskedacity in volatility since all included state
variables can contribute to generating stochastic volatility unlike the ATSM. ADG also demon-
strate that the QTSM is free of the trade-off between heteroskedastic volatilies of the interest rates
and negative correlation among state variables, while maintaining admissibility. However, the
QTSM is isomorphic to the ATSM in its mechanism for generating volatility; the volatility of the
interest rate is proportional to the level of the state variables. Even though there is no strict
one-to-one correspondence between the CIR factor in ATSMs and the Gaussian factor in QTSMs,
we can easily demonstrate that the CIR factor is equivalent to the square of the Gaussian factor
in its contribution to the volatility.4 Thus in terms of generating volatility, An(n) is equivalent to
Q(n).5

The last class which could be of importance is the inverted square-root model (ISRM) of Ahn
and Gao (1999). This model is based on the notion that the interest rate is the inverse of a state
variable which follows a square-root process. This model is unique in the sense that the drift of the
interest rate is a quadratic function of the underlying state variables and its volatility is governed
by a power function of the state variable with an exponent of 3/2. This model has the potential to
magnify stochastic volatility by leveraging the interest rate in the volatility specification. However,
one drawback of this model is that a closed-form solution (even in ordinary differential equation
terms) does not exist once we incorporate non-trivial correlation among state variables.

In this paper, we investigate whether a mixture of these three different classes of models can
enhance the performance of pure models in explaining the high volatility of interest rates in the
US. Put differently, this paper explores the potential positive (or negative) synergy in combining

4Using this concept, ADG formally proves that a particular version of the CIR model coincides the constrained
version of QTSM with certain relevant restrictions.

5However, this equivalence does not hold in a discrete horizon because of the feedback effect in drift term of the
interest rates.
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heterogeneous parametric models, particularly in specifying the volatility of interest rates. If the
hybrid model can improve the performance of parametric models in volatility specification, there
might be an offsetting cost, which is of central importance in this paper. None of these questions
have been pursued in the extant literature. We denote a hybrid model with m CIR factors,
n−m Gaussian factors, h Quadratic factors, and k inverted-square root factors by Am(n)Q(h)I(k).
Consequently the total number of state variables is n + h + k.

With this purpose, we investigate different hybrid models and compare their overall perfor-
mance in explaining the transition distribution of yields and in particular the fit of the volatility
specification. We use the Efficient Method of Moments (EMM) of Gallant and Tauchen (1996) to
estimate a wide variety of Am(n)Q(h)I(k). Following Dai and Singleton (2000) and ADG (2000),
we simultaneously use time series data on short- and long-term Treasury bond yields to explore the
empirical properties of Am(n)Q(h)I(k). The hybrid models are of essentially two classes, in which
h = 2 or n = 2. In the first case, we investigate whether augmenting a (correlated) quadratic two-
state variable process with an (uncorrelated) affine (Gaussian or square-root process) or inverted
square root process improves on our specification of volatility. Symmetrically, we also investigate
whether an affine two-state variable process augmented by an uncorrelated affine or inverted square
root process can improve the performance of the affine model.

We find several interesting results. First, we find that the specification of a maximal three-factor
QTSM (A0(0)Q(3)I(0)) is very difficult to improve upon. However, by augmenting a two-factor
QTSM with an inverted-square root factor (A0(0)Q(2)I(1)), we are able to improve upon the fit of
the QTSM. Our diagnostics suggest that the model improves primarily on the ability of the QTSM
to fit the conditional mean of interest rates. However, like the maximal QTSM, the hybrid model
is unable to fully capture the volatility dynamics. We find that augmenting various two-factor
ATSMs by one-factor QTSMs result in dramatic improvement in the fit of the models relative to the
maximal three-factor ATSM. However, none of these models are able to approach the performance
of the maximal QTSM or the A0(0)Q(2)I(1). In general, the cost-benefit tradeoff that emerges
among the hybrid models appears to be that the models sacrifice the ability to fit the conditional
mean of term structure dynamics in favor of conditional volatility, or vice versa.

The paper is organized as follows. In Section 2, we investigate alternative parametric models,
ATSMs, QTSMs, and ISRMs focusing on their implications for heteroskedastic volatility. Section
3 provides a discussion of the data and the EMM methodology that we use for examining the fit
of the Am(n)Q(h)I(k). The empirical results of the EMM estimation and their implication for
heteroskedastic volatility are provided in Section 4, and Section 5 concludes.
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2 Models

We define an economy represented by the augmented filtered probability space (Ω, F,F , P ), where
F = {Ft}0≤t≤T . First, we assume the existence of a stochastic discount factor, M(t), which defines
the canonical valuation equation:

x(t) = EP
t

[

M(T )
M(t)

x(T )
]

(1)

where x(t) is the price of an asset, with x(t, ω) : [0,∞)×Ω → R+. Absent arbitrage opportunities,
there exists a unique equivalent probability measure, Q. Define a money market account B(t) as

B(t) = e
R t
0 r(s)ds.

As shown by Harrison and Kreps (1979) and Harrison and Pliska (1981), the scaled asset price
x(t)/B(t), is a martingale under the probability measure Q, i.e.

x(t) = EQ
t

[

B(t)
B(T )

x(T )
]

= EQ
t

[

e−
R T

t r(s)dsx(T )
]

(2)

In particular, for a discount bond which pays $1 at maturity, the bond price is given as:

P (t, T ) = EQ
t

[

e−
R T

t r(s)ds
]

(3)

In this paper, we investigate the performance of various term structure models under the as-
sumption that the short term interest rate is a function of N unobserved state variables Y (t) =
(Y1(t), Y2(t), · · · , YN (t)) adapted to the probability space (Ω, F,F , P ). In particular we confine our
attention to term structure models that are defined by the specified economy and the following
assumptions:

Assumption 1: The nominal instantaneous interest rate is a function of the state variables:

r(t) = δ0 + δ′AYA(t) + δ′QYQ(t) + δ′IYI(t) + YQ(t)′ΨYQ(t) (4)

where δ0 is a constant; δA, δQ, and δI are n, h, and k dimensional vectors with N = n + h + k; Ψ
is an h× h matrix of constants. A, I, and Q represent affine, inverted square root, and quadratic
factors respectively.

Thus defined, the instantaneous interest follows a hybrid model of affine, quadratic and inverted
square root processes, of which the stochastic differential equations are defined in the following
assumptions:

Assumption 2: The SDEs of the state variables YA(t) are defined by a multivariate affine process:

dYA(t) = KA(ΘA − YA(t))dt + ΣA
√

SA(t)dzA(t), (5)
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where zA(t) is an NA-dimensional vector of independent Wiener processes, ΘA is an n-dimensional
vector, and KA and ΣA are n×n matrices. SA(t) is a diagonal matrix with the ith diagonal element
given by αA,i + β′A,iYA(t), where βA,i is an n vector of constants.

Assumption 2 is taken directly from Dai and Singleton (2000).

Assumption 3: The SDEs of the state variables YQ(t) are defined by multivariate Gaussian pro-
cesses:

dYQ(t) = KQ(ΘQ − YQ(t))dt + ΣQdzQ(t), (6)

where zQ(t) is an h-dimensional vector of independent Wiener processes, ΘQ is an h-dimensional
vector, and KQ and ΣQ are h× h matrix. Furthermore KQ has non-negative eigenvalues.

Assumption 3 is taken from from Ahn, Dittmar and Gallant (2000), who specify the factor dynamics
as a Gaussian processes.

Assumption 4: The SDEs of the state variables YI(t) are defined by independent multivariate
inverted square root processes:

dYI(t) = KI(ΘI − YI(t)) ◦ YI(t)dt + ΣI
√

SI(t)dzI(t), (7)

where zI(t) is a k-dimensional vector of independent Wiener processes, ΘI is an k-dimensional
vector. K and ΣI are k × k diagonal matrices. SI(t) is also a k × k diagonal matrix with the ith

element to be YI,i(t)
3
2 . ◦ is a Hadamard product, an element by element multiplication.

This assumption is an extension of Ahn and Gao (2000) into a multi-variate setting with the
assumption of mutually independent state variables.

In the following subsections, we specify each of the models that we estimate and discuss their
implications for heteroskedastic volatility. As in Dai and Singleton (2000) and Ahn, Dittmar and
Gallant (2000), we focus only on three factor models, but our primary interest is in the performance
of models with different factor combinations. There are two issues that must be considered in
constructing hybrid models in order to maintain both tractability and flexibility:

• Tractability: Dai and Singleton (2000) emphasize that correlation among the factors is nec-
essary to describe bond price dynamics. Consequently, an ideal framework is driven by three
correlated factors. However, analytical solutions to multivariate correlated cases are avail-
able only for ATSMs and QTSMs. In order to ensure tractability, we assume that factors of
different types (affine, quadratic, and inverted square root) are independent.

• Correlation Structure: As noted above, Dai and Singleton (2000) suggest that it is important
to maximal flexibility in the specification of correlated factors in order to generate the cor-
relations observed in bond yields. In order to maximize this flexibility, we examine models
that have at least two correlated factors of the same type. The only exception is ISRM, for
which an analytical bond price is not available for even two correlated factors.
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2.1 Three Factor Quadratic Model: A0(0)Q(3)I(0)

This is the three factor model studied by Ahn, Dittmar and Gallant (2000). The advantage of
this model is its total flexibility in specifying the correlation structure among the factors. Since
the model results in yield volatility that is a function of all of the factors, which are stochastic, the
model has the potential to explain heteroskedasticity in volatility. However, Ahn, Dittmar and
Gallant (2000) show that, although the model performs better than extant ones, it still has some
defficiencies, particularly in capturing the observed volatility of yields. We employ this model as
the benchmark case.

The model is governed by three quadratic factors following the risk-neutral process

dY (t) =













b1

b2

b3





 +







A11 0 0
A21 A22 0
A31 A32 A33





 Y (t)





 dt +







σ11 0 0
0 σ22 0
0 0 σ33





 dZ̃(t) (8)

the physical process
dY (t) = (Φ0 + Φ1Y (t))dt + ΣdZ(t) (9)

with bond prices given by

P (t, τ) = exp
[

A(τ) + B(τ)′Y (t) + Y (t)′C(τ)Y (t)
]

(10)

where the coefficients satisfy the ODEs

dC(τ)
dτ

= 2C(τ)ΣΣ′C(τ) +
(

C(τ)A + A′C(τ)
)

−R

dB(τ)
dτ

= 2C(τ)ΣΣ′B(τ) + A′B(τ) + 2C(τ)b− β (11)

dA(τ)
dτ

= tr
[

ΣΣ′C(τ)
]

+
1
2
B(τ)′ΣΣ′B(τ) + B(τ)′b− α

As noted above, this specification allows for heteroskedastic volatility in bond yields; the diffu-
sion term in the SDE for bond yields is a first-order function of the factors. Further, the framework
allows for correlation among all of the factors. Consequently, for a model to better capture the
dynamics of bond yields, the cost of omitting the correlations between the quadratic factors and
the alternative factor must be outweighed by some additional flexibility in defining heteroskedastic
volatility.

2.2 Two Quadratic and One Affine (Gaussion) Factor Model: A0(1)Q(2)I(0)

The model to be considered here has two correlated quadratic factors and one independent Gaussian
factor. This model is expected to perform worse than quadratic model since the independence
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assumption restricts our ability to model correlations and the constant conditional volatility in the
Gaussian process impairs our ability to fit heteroskedastic volatility.

The risk-neutral processes for the state variables are given as follows:

dY (t) =













b1

b2

κ̃θ̃





 +







A11 0 0
A21 A22 0
0 0 −κ̃





Y (t)





 dt +







σ11 0 0
0 σ22 0
0 0 σ





 dZ̃(t) (12)

and the physical process

dY (t) =













Φ0,1

Φ0,2

κθ





 +







Φ1,11 0 0
Φ1,21 Φ1,22 0

0 0 −κ





Y (t)





 dt +







σ11 0 0
0 σ22 0
0 0 σ





 dZ(t) (13)

with prices given by
P (t, τ) = Pq(t, τ)Pa(t, τ) (14)

where Pq represents the price for the two quadratic factors given by the solution to (10) and (11),
and Pa is given by the Vasicek (1977) bond price formula.

2.3 Two Quadratic and One Affine (Square Root) Factor Model: A1(1)Q(2)I(0)

With two quadratic and one square-root factor, this model is also expected to underperform the
quadratic model. Although the square-root specification introduces level dependence of volatility
on the factor, the effect is weaker than the level dependency afforded by quadratic model (the order
of the effect is 0.5 in the square root case vs. 1.0 in the quadratic case). The loss of correlation
between the square root factor and the quadratic factors will also hurt the model’s performance.

The underlying factor process is determined by two quadratic factors and one Square-Root
factor following the risk-neutral process

dY (t) =













b1

b2

κ̃θ̃





 +







A11 0 0
A21 A22 0
0 0 −κ̃





Y (t)





 dt +







σ11 0 0
0 σ22 0
0 0 σ

√

Y3(t)





 dZ̃(t) (15)

and the physical process

dY (t) =













Φ0,1

Φ0,2

κθ





 +







Φ1,11 0 0
Φ1,21 Φ1,22 0

0 0 −κ





 Y (t)





 dt +







σ11 0 0
0 σ22 0
0 0 σ

√

Y3(t)





 dZ(t) (16)

with prices given by
P (t, τ) = Pq(t, τ)Pa(t, τ) (17)

where Pq represents the prices for the two quadratic factors given by the solution to (10) and (11),
and Pa is given by the CIR (1985) bond price formula.
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2.4 Two Quadratic and One Inverted Square-Root Factor Model: A0(0)Q(2)I(1)

Of the models considered in this section, this is the only model that offers potential trade-offs
between correlation and level dependence. By replacing a correlated quadratic factor with an
independent inverted-square-root factor, we loose flexibility in correlation structure. However, as
strongly evidenced by Chan, Karolyi, Longstaff, and Sanders (1992), Äit-Sahalia (1996a, 1996b),
and Ahn and Gao (1999), interest rate volatility increases at an increasing rate in interest rate
levels with a level dependence on the order of approximately 1.5. The inverted-square-root factor
exhibits this stronger level dependence (the order of the diffusion term is 1.5 vs. 1.0), and thus
may potentially result in better goodness-of-fit.

The model is based on two quadratic factors and one inverted square-root factor following the
risk-neutral process

dY(t) =













b1

b2

κ̃θ̃





 +







A11 0 0
A21 A22 0
0 0 −κ̃





Y(t)





 dt +







σ11 0 0
0 σ22 0
0 0 σ

√

Y3(t)3





 dZ̃(t) (18)

and the physical process

dY(t) =













Φ0,1

Φ0,2

κθ





 +







Φ1,11 0 0
Φ1,21 Φ1,22 0

0 0 −κ





Y(t)





 dt +







σ11 0 0
0 σ22 0
0 0 σ

√

Y3(t)3





 dZ(t) (19)

with prices given by
P (t, τ) = Pq(t, τ)PI(t, τ) (20)

where Pq represents the prices for the two quadratic factors given by the solution to (10) and (11),
and PI is given by the Ahn and Gao (1999) bond price formula

PI =
Γ(β − γ)

Γ(β)
M(γ, β,−x(Y3(t), τ))x(Y3(t), τ)γ (21)

where

x(Y3(t), τ) =
2(κθ − λ1)

σ2
(

e(κθ−λ1)τ − 1
)

Y3(t)

β =
2
σ2

[

κ + λ2 + (1 + γ)σ2]

φ = κ + λ2 +
1
2
σ2

γ =
1
σ2

[
√

φ2 + 2σ2 − φ
]

and M(·, ·, ·) is the confluent hypergeometric function.
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2.5 Three Affine (Two Square-Root/One Gaussian) Factor Model: A2(3)Q(0)I(0)

This is the maximal Dai and Singleton (2000) model. As demonstrated in Ahn, Dittmar, and
Gallant (2000), this model fits the term structure dynamics more poorly than the quadratic model.
Any dependence of volatility on the level of the state variables is weak compared to the quadratic
or inverted square root case. This weaker dependence is due to the lower order level dependence
of volatility in the square-root factors and constant volatility in the Gaussian factor.

Dai and Singleton (2000) define this model with two square-root and one Gaussian factor that
follow the risk-neutral process

d







Y1(t)
Y2(t)
Y3(t)





 =







κ̃11 0 0
κ̃21 κ̃22 0
0 0 κ̃33













θ̃1 − Y1

θ̃2 − Y2

−Y3





 dt

+







1 0 0
0 1 0

σ31 0 1













β11
√

Y1(t) 0 0
0 β22

√

Y2(t) 0
0 0

√

Y1(t)





 dZ̃(t) (22)

and the physical process
dY (t) = K (Θ− Y (t)) dt + ΣSdZ(t) (23)

The bond price is given by
P (t, τ) = exp

[

A(τ)−B(τ)′Y (t)
]

(24)

where the coefficients satisfy the ODEs

dA(τ)
dτ

= −Θ̃′K̃′B(τ) +
1
2

N
∑

i=1

[

Σ′B(τ)
]2
i αi − δ0

(25)

dB(τ)
dτ

= −K̃′B(τ)− 1
2

N
∑

i=1

[

Σ′B(τ)
]2
i βi − δy

The coefficients δ are governed by the short rate equation;

r(t) = δ0 + δ1Y1(t) + δ2Y2(t) + δ3Y3(t)

where δ1 = 0, δ2 = δ3 = 1, and δ0 = 0.

2.6 One Quadratic and Two Affine (Square-Root/Gaussian) Factor Model:
A1(2)Q(1)I(0)

The remaining models are defined with two affine factors and a single quadratic factor. Because
these models limit flexibility in both correlation structures and volatility specification, the models
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are not expected to outperform the quadratic model. However, we can gain some insight into
the relative importance of specifying flexibility in correlations vs. level effects by comparing the
performance of these models to the full-fledged affine model.

The model of this subsection is determined by one quadratic, one square-root, and one Gaussian
factor following the risk-neutral process

d







Y1(t)
Y2(t)
Y3(t)





 =







κ̃11 0 0
0 κ̃22 0
0 0 1













θ̃1 − Y1

−Y2

b1 + A11Y3





 dt

+







1 0 0
σ21 1 0
0 0 1













β11
√

Y1(t) 0 0
0

√

Y1(t) 0
0 0 σ11





 dZ̃(t) (26)

and a corresponding physical process. The bond price is given by the product of a two-factor affine
bond price, as in (24) and a one-factor quadratic bond price, as in (10).

2.7 One Quadratic and Two Affine (Square-Root) Factor Model: A2(2)Q(1)I(0)

The performance of this model is expected to be somewhat similar to the previous model. The
correlation between the factors is governed through the mean reversion matrix. In this specification,
one quadratic and two Square-Root factors follow the risk-neutral process

d







Y1(t)
Y2(t)
Y3(t)





 =







κ̃11 0 0
κ̃21 κ̃22 0
0 0 1













θ̃1 − Y1

θ̃2 − Y2

b1 + A11Y3





 dt

+







1 0 0
0 1 0
0 0 1













β11
√

Y1(t) 0 0
0 β22

√

Y2(t) 0
0 0 σ11





 dZ̃(t) (27)

and a corresponding physical process. The bond price is given by the product of a two-factor affine
bond price, as in (24) and a one-factor quadratic bond price, as in (10).

2.8 One Quadratic and Two Affine (Gaussian) Factor Model: A0(2)Q(1)I(0)

This model sacrifices the most flexibility in terms of level effects on volatility, as only one factor
contributes to heteroskedastic volatility. In this model, one quadratic and two Gaussian factors
follow the risk-neutral process

d







Y1(t)
Y2(t)
Y3(t)





 =







κ̃11 0 0
κ̃21 κ̃22 0
0 0 1













θ̃1 − Y1

θ̃2 − Y2

b1 + A11Y3





 dt
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+







1 0 0
0 1 0
0 0 1













α1 0 0
0 α2 0
0 0 σ11





 dZ̃(t) (28)

and a corresponding physical process. The bond price is given by the product of a two-factor affine
bond price, as in (24) and a one-factor quadratic bond price, as in (10).

3 Data and Methods

3.1 Term Structure Data

In order to investigate the implications of the models for the term structure of interest rates, we
utilize the data set of McCulloch and Kwon (1993). These data are sampled at a monthly frequency
and cover the period December 1946 through February 1991. Although this sample omits the most
recent data, we view its advantages as superior to its disadvantages. Since the data set accounts
for coupon payments, we observe a zero-coupon term structure that is the object of interest for our
analysis.

For the purposes of the analysis of the model’s ability to fit the term structure of interest rates,
we utilize three yields; the 6-month and 12-month T-Bill yields and the 10-year bond yield. These
maturities are similar to those examined in comparable studies, e.g. Dai and Singleton (2000),
Ahn, Dittmar and Gallant (2000). All of the yields are treated as such in estimation; we do not
use a proxy for the short rate. As these yields cover short-, intermediate-, and long-term bonds,
we feel that they provide a reasonable description of the term structure of interest rates at a given
point in time. The data are plotted in Figure 2, which shows that the sample period covers a wide
range of interest rate regimes, from very low levels in the late 1940’s and 1950’s to the high rate
regime of the early 1980’s. Thus, the sample captures periods of relative stability in interest rates
as well as periods punctuated by high volatility.

3.2 The Efficient Method of Moments

One of the features of QTSMs is that even in a single factor case, the short rate is not a sufficient
statistic for risk in the economy. In the presence of multiple state variables, this issue becomes
more important. As a result, estimation of the parameters of the model is complicated by the
need to estimate the parameters of an unobserved stochastic process. Furthermore, since the
model is expressed in continuous time, it is necessary to avoid issues of discretization bias [Aı̈t-
Sahalia (1996a, 1996b)]. Recent econometric advances have allowed researchers to address both of
these issues through the use of simulated method of moments techniques. We specifically employ
the Efficient Method of Moments [Gallant and Tauchen (1996)] to estimate the parameters of the
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models investigated in this paper. This methodology has been used to estimate parameters of
the short rate diffusion in Andersen and Lund (1997), to investigate ATSMs in Dai and Singleton
(2000), and to investigate QTSMs in ADG (2000).6

The EMM procedure can be thought of as a two-step process. The first step is fitting a
consistent estimator of the conditional density of the observable data. Designate this approximation
to the density as

f̂K (yt|xt−1, θ) =
f (xt−1, yt|θ)
f (xt−1|θ)

(29)

where yt denotes the current observation of the observed process, xt−1 denotes lags of the process,
and θ denotes the parameter vector of the density approximation. We approximate this density
using the semi-nonparametric (SNP) procedure of Gallant and Tauchen (1989). The procedure
augments a Gaussian vector-autoregression (VAR) with the potential for ARCH innovations by
a Hermite polynomial expansion to capture deviations from normality. Designating a demeaned
transformation of yt as zt = R−1(yt − µ), the SNP approximation to the density is given by

hK(zt|xt−1) =
f(zt, xt−1)φ(zt)

∫

f(s, xt−1)φ(s)ds

f(zt, xt−1) =
Kz
∑

|α|=0

Kx
∑

|β|=0

(aαβxβ
t−1)z

α
t (30)

φ(zt) ∼ N(0, I).

We fit a SNP model to the Treasury data using the procedure outlined in Gallant and Tauchen
(1997). The authors suggest an upward fitting strategy in which the parameters of parts of the SNP
model are tuned to minimize the Schwartz (1978) criterion (BIC) and then used as starting points for
the fitting of the next part of the model. This method provides a fairly efficient way to fit the model.
Our Schwartz-preferred fit is described by {Lµ, Lr,Kz, Iz,Kx} = {1, 4, 4, 3, 0}. Lµ = 1 implies that
one lag of the data is sufficient to describe mean dynamics in the VAR and Lr = 4 suggests that
a fourth-order ARCH process describes the innovations to the process. Kz = 4 suggests that a
fourth-order Hermite polynomial captures deviations from normality, and Iz = 3 indicates that
the interaction terms in the orders of the polynomial are suppressed. Finally Kx = 0 suggests
that it is unnecessary to incorporate lags of the process in modeling the coefficients of the Hermite
polynomial. This specification is quite similar to that of other SNP specifications in term structure
studies. For example, Dai and Singleton (2000) find a specification of {Lµ, Lr,Kz,Kx} = {1, 2, 4, 0}
describes a term structure of six-month LIBOR, two-year swap, and ten-year swap yields over the
period 1987-1996. Our specification differs only in the ARCH term, which likely reflects our
incorporation of an earlier period in our data sample. ADG find that the same specification of the

6A detailed discussion of the method in these contexts can be found in Andersen and Lund (1997).

14



score generator describes the term structure of 3-month and 12-month Treasury Bills and 10-Year
Treasury Bonds.

The second step in the EMM process involves estimating a parameter vector for the term
structure model. The procedure takes a set of initial starting values for the model and simulates
a long set of data. In our case, we set the simulation length to T = 50, 000. The SNP model is fit
to the simulated data and the scores of the fitted model with respect to the SNP parameters are
estimated. Designate the parameters of the structural model as ρ and the parameters of the SNP
model as θ̃. The scores of the fitted SNP model are used as moment conditions, m′(ρ, θ̃) and the
quadratic form

m′(ρ, θ̃)Ĩ−1m(ρ, θ̃) (31)

is estimated, where Ĩ−1 denotes the quasi-information matrix from quasi-maximum likelihood es-
timation of θ. The procedure is repeated until the quadratic form is minimized. Then, a test of
the specification of the SDE is formed through the test statistic

Tm′(ρ, θ̃)Ĩ−1(ρ, θ̃) ∼ χ2
K−P (32)

where K denotes the dimension of θ and P denotes the dimension of ρ. The method uses all of
the relevant moments of the conditional distribution and is therefore asymptotically as efficient as
maximum likelihood, as shown in Gallant and Long (1997).

4 Estimation Results

In this section we discuss various diagnostics for the set of term structure models investigated in
the paper. In particular, we focus on specification testing using the EMM procedure [Gallant and
Tauchen (1986)] and qualitative analysis using the reprojection methodology of Gallant and Long
(1997).

4.1 EMM Specification Tests

Results of specification tests for four models are presented in Table 1. The models grouped
in this table include at least two quadratic factors and are, from left to right, A0(0)Q(3)I(0),
A0(1)Q(2)I(0), A1(1)Q(2)I(0), and A0(0)Q(2)I(1). The three-factor QTSM is presented as a
benchmark case. The results indicate that the A0(0)Q(3)I(0) performs fairly well in fitting the
term structure dynamics; its ability to fit the dynamics is indicated by a z-statistic for the model
specification of 6.976. While this result indicates statistical rejection of the model, it is similar
to the results of ADG (2000), who find that A0(0)Q(3)I(0) outperforms A2(3)Q(0)I(0) in fitting a
similar set of yields.
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The second column presents results for a specification with two quadratic factors augmented
by a Gaussian factor, A0(1)Q(2)I(0). The results indicate that replacing a third correlated
quadratic factor with a Gaussian factor comes at a large cost in terms of fit; the z-statistic for
the A0(1)Q(2)I(0) rises to 14.930, roughly double that of the A0(0)Q(3)I(0). The table sug-
gests that the quadratic parameters remain largely unchanged; only in parameters that are poorly
identified in the A0(0)Q(3)I(0) case are changes substantial. For example, the risk-neutral mean
reversion coefficient A(1, 1) is estimated as -2.05 in the purebred model, but as -0.18 in the hybrid
model. However, in neither case are the coefficients precisely estimated. The results suggest that
the substitution of a Gaussian factor for a quadratic factor result in little impact on the form of
the model and a reduction in the fit.

The results in the third column represent the specification of two quadratic factors augmented
by a square-root factor, A1(1)Q(2)I(0). This specification actually performs worse than the
A0(1)Q(2)I(0) specification, with a z-statistic of 18.977. This result is somewhat surprising,
since the introduction of a square root factor improves the flexibility of the model in capturing het-
eroskedastic volatility. One of the main problems with this specification appears to be identification
of the parameters; the majority of the parameters are imprecisely estimated; however, the source of
this imprecision is unclear. Regardless, the results indicate that accommodating heteroskedastic
volatility does not improve the performance of the model relative to A0(1)Q(2)I(0).

The final column presents results for a model with two quadratic factors and an inverse-square-
root factor, A0(0)Q(2)I(1). The results indicate that this model performs somewhat better than
the pure quadratic model, A0(0)Q(3)I(0), with the z-statistic falling to 6.393. The parameters of
the model are estimated fairly precisely, with the exception of λ1.7 Thus, the results suggest that
by augmenting the quadratic factors by a true nonlinear model, that the specification can better
fit the dynamics of the term structure.

In the fifth column, we estimate another benchmark model, a three-factor quadratic model in
which two factors are correlated and one factor is orthogonal. This estimation provides us greater
insight as to the costs and benefits of specifying the correlation structure. The results indicate that
restricting the correlation structure among the factors comes at a large cost; although the model
has greater degrees of freedom, it is strongly rejected with a z-statistic of 23.507. We investigate
the implications of this result in greater detail below.

To gain some better insights into the dimensions along which these models improve performance,
we examine t-statistics for the scores of the model with respect to the SNP parameters. These
scores provide a diagnostic as to which features of the density that the models find difficult to
fit. The terms A(2)−A(13) represent the Hermite polynomial terms, and capture deviations from

7The results are not materially changed with λ1 set to 0; this improves the z-statistic of the model by adding an
additional degree of freedom.
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conditional normality. The ψ(1)− ψ(12) terms are the VAR terms in the model, representing the
conditional mean of term structure dynamics. Finally, the τ(1)− τ(78) terms represent the ARCH
terms, capturing the conditional volatility of the term structure. The diagnostics for these scores
are presented in Table 3.

The results suggest that a principal source of improvement in the A0(0)Q(2)I(1) model relative
to the A0(0)Q(3)I(0) model is actually in the conditional mean of the process. None of the ψ terms
for the former model exceed 1.96 in absolute value, suggesting that the scores with respect to these
terms are fit fairly well by the hybrid model. In contrast, the A0(0)Q(3)I(0) model fails to match 6
of the 12 ψ scores. The models perform similarly in capturing the Hermite polynomial terms; each
model misses two of the Hermite terms. The magnitude of the t-ratios for the A0(0)Q(3)I(0) model
is considerably larger; however, both violate the scores at conventional significance levels. The
results, however, indicate that both models should accommodate the shape of volatility reasonably
well. Finally, along the dimension of the ARCH terms, the quadratic model fares somewhat better
than the hybrid model, missing only two of the scores whereas the hybrid model misses four. Thus,
the somewhat surprising result of the diagnostics is that the reason that the hybrid model performs
better than the quadratic model is due to the conditional mean terms; both models appear to fit
conditional volatility reasonably well, with the quadratic model perhaps having a slight advantage.

We also present diagnostics for the three-factor quadratic model with two correlated and one
orthogonal factor. These results provide some greater insight into the comparison of the scores
of the fully specified quadratic model and the A0(0)Q(2)I(1) model. The results suggest that
restricting the correlation structure is very costly in terms of the volatility fit. The quadratic
model with two correlated and one orthogonal factor performs somewhat similarly to the fully
parameterized A0(0)Q(3)I(0) in terms of the Hermite polynomial terms and conditional mean
terms. The model fails to fit one additional Hermite polynomial score and fails to fit the same
conditional mean scores as the fully parameterized model. However, the model fares much more
poorly in capturing the ARCH terms, violating 7 of these scores at conventional significance levels.
These results indicate that the correlation structure is very important for matching the volatility
dynamics observed in the data. Thus, the performance of the hybrid A0(0)Q(2)I(1) model is
impressive given the restrictions imposed on the model by forcing the inverted square root factor
to be orthogonal to the remaining factors.

In Table 2, we present results for models that have at least two affine factors; from left to right
we present results for A0(2)Q(1)I(0), A1(2)Q(1)I(0), A2(2)Q(1)I(0), and A2(3)Q(0)I(0). The last
model represents the preferred model of Dai and Singleton (2000). The results indicate that all four
models perform quite poorly in describing term structure dynamics. The worst-performing model
is the A2(2)Q(1)I(0) model, with a z-statistic of 63.511. However, it is interesting to note that
two hybrid specifications improve upon the pure affine model; A0(2)Q(1)I(0) and A1(2)Q(1)I(0)
outperform A2(3)Q(0)I(0). These results suggest that the flexibility in volatility specification

17



provided by the quadratic factor outweighs the flexibility in specifying conditional correlations.
This is clearest in the case of the A0(2)Q(1)I(0) model, which performs the best of the four models
in the table; the ability to model the heteroskedastic volatility through the Q term apparently
provides a significant improvement to the fit of the model.

The diagnostics for the scores of these models are presented in Table 4. Three of the four
models, A0(2)Q(1)I(0), A1(2)Q(1)I(0), and A2(3)Q(0)I(0) fit the conditional mean of the density
quite well, with none of the t-ratios significant. In fact, the fit of the conditional means for
these models appears generally superior to those of the models with multiple quadratic variables.
However, the models fare much worse in terms of capturing conditional volatility and deviations
from normality. Three of the models have significant scores for the Hermite terms; the fourth
model, A2(3)Q(0)I(0) has significant scores for eight of the Hermite terms. The model that best
captures the ARCH terms for the conditional volatility in the model is the A1(2)Q(1)I(0) model,
which fails 7 of the ARCH scores. Thus, none of these models appears able to capture volatility
and departure from normality particularly well.

In summary, the somewhat surprising result of our specification test was that the pure quadratic
model continues to provide the best specification for volatility and departures from normality,
with a two quadratic factor-model with one inverted square root factor following closely behind.
Overall, this latter model appears to perform better than the quadratic model, but the source
of the improvement appears to be in the specification of the conditional mean terms rather than
in the volatility. This is somewhat surprising since the inverted square root factor provides some
additional flexibility in modeling heteroskedastic volatility. In contrast, the affine-dominated hybrid
models do not perform as well as the quadratic-dominated hybrid models. However, these models
display some considerable improvement in fit relative to the pure affine case.

4.2 Reprojection

We briefly summarize the reprojection method in this section; a complete discussion is provided
in Gallant and Tauchen (1998). We denote the conditional density implied by the QTSM for
observables as

p̂ (y0|y−L, ..., y−1) = (y0|y−L, ..., y−1, ρ̂n) (33)

where ρ̂ denotes the estimated model parameters. Although analytic expressions for (33) are not
available, an unconditional expectation, Eρ̂n can be computed by generating a simulation {ŷt}N

t=−L

from the system with parameters set to ρ̂n and approximating

Eρ̂n(g) =
1
N

N
∑

t=0

g(ŷt−L, . . . , ŷt) (34)
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With respect to unconditional expectation so computed, define

θ̂K = arg max θ ∈ <pK Eρ̂n log fK(y0|y−L, . . . , y−1, θ) (35)

where fK(y0|y−L, . . . , y−1, θ) is the SNP conditional density (30). Let

f̂K(y0|y−L, . . . , y−1) = fK(y0|y−L, . . . , y−1, θ̂K). (36)

Theorem 1 of Gallant and Long (1997) states that

lim
K→∞

f̂K(y0|y−L, . . . , y−1) = p̂(y0|y−L, . . . , y−1).

Convergence is with respect to a weighted Sobolev norm that they describe. Of relevance here is
that convergence in their norm implies that f̂K as well as its partial derivatives in (y−L, . . . , y−1, y0)
converge uniformly over <`, ` = M(L + 1), to those of p̂. The idea of reprojection is to study the
dynamics of p̂ by using f̂K as an approximation; this result provides the justification.

Of immediate interest in eliciting the dynamics of observables are the first two one-step-ahead
conditional moments

E(y0|y−L, . . . , y−1) =
∫

y0 fK(y0|x−1, θ̂K) dy0
and

Var(y0|y−L, . . . , y−1)

=
∫

[y0 − E(y0|x−1)] [y0 − E(y0|x−1)]
′ fK(y0|x−1, θ̂K) dy0

where x−1 = (y−L, . . . , y−1). Thus the reprojection method provides some further insight into the
performance of the models in capturing the conditional means, volatilitities, and deviations from
normality implied by the data.

Plots of the first two conditional moments implied by six of the eight models are presented in
Figures 2 through 7. The figures depict the conditional moments implied by the models (dashed
lines) and the conditional moments implied by the score generator (solid lines). Figure 2 presents
results for the fully specified three-factor quadratic model. The graphs of the conditional means
suggests that the model’s difficulty in fitting conditional means is largely concentrated in the short
end of the term structure. The three-factor quadratic model performs quite well in capturing the
conditional mean of the ten-year yield, performs somewhat worse for the twelve-month yield, and
captures the conditional mean of the six-month yield fairly poorly. A similar pattern emerges
for volatility; the model reproduces the time series pattern and the level of the 10-year volatility
fairly well. However, the model cannot reproduce the level of conditional volatility found in the
six-month and twelve-month yields.

The results for the hybrid model A0(0)Q(2)I(1) are presented in Figure 3. The graph suggests
that, as indicated by the t-ratio diagnostics, that the model performs much better in capturing the
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conditional mean of term structure dynamics. The model matches the dynamics of the twelve-
month and 10-year yields quite well, with some slightly larger discrepancies for the twelve-month
yield. The model has a slightly more difficult time matching the 6-month yield conditional mean;
however, the deviations in the model conditional means and the means implied by the conditional
distribution are not as large as for the pure quadratic model case. Conditional volatility, however,
is not captured as well by this hybrid model. Again, the model tracks the time series and level
of the ten-year yield volatility reasonably well. However, significant deviations are present for the
shorter-maturity bonds, and the conditional volatility of the A0(0)Q(2)I(1) does not approach the
level of volatility implied by the score generator.

The remaining figures suggest that models with multiple affine factors have severe difficulty in
capturing many of the features of the data. The reprojections suggest that the models perform
quite poorly in capturing both conditional means and conditional volatilities. Interestingly, the
A2(3)Q(0)I(0) model displays the reverse pattern of the quadratic models; it fits the conditional
mean of the long bond quite poorly and performs better in fitting the conditional mean of the
shorter term bonds. Further, all of these models imply conditional volatilities that, relative to the
conditional volatility implied by the score generator, are nearly flat.

In general, the results of the reprojection conform to the intuition provided by the test diag-
nostics. The main finding is that there appears to be some tradeoff in modeling term structure
dynamics by incorporating a third (correlated) quadratic state variable compared to a single (uncor-
related) inverted square root state variable. The inverted square root variable appears to improve
the ability of the quadratic model to capture conditional means of bond yields. However, this im-
provement comes at the cost of matching the conditional volatilities of these yields. As mentioned
previously, this result seems somewhat surprising given the additional flexibility provided by the
diffusion term of the inverted square root model.

5 Conclusion

This study confirms, outside of the affine factor specification, the claim made in Dai and Singleton
(2000) of a trade-off between dependence of of the conditional variance of factors on factor levels
and the admissible structure of the correlation matrix for the factors. In particular, we find that
a hybrid quadratic/inverted-square-root model provides a better fit to term structure dynamics
than the benchmark quadratic model, albeit marginally. This performance is achieved despite
the more restrictive correlation structure implied by the hybrid model, by allowing but higher
level dependence. The results of models with two affine factors and a quadratic factor appear
to underscore the trade-off between level dependence and correlation structure; although none of
these models fit the term structure dynamics well, the models improve upon the performance of the
maximal affine model. This result may suggest that level dependence must be given similar weight

20



to correlation structure in specifying factor dynamics. We expect that a model that allows for a
fully specified correlation structure would perform even better than the hybrid quadratic-inverted
square root model, but such a study must rely on a numerical solution of the PDE for bond prices.

The study does leave us with some puzzles. On detailed examination of the hybrid model,
we find that the improved performance appears to come from better fit in the conditional mean of
the process rather than the volatility. Given the flexibility of the hybrid model in specifying level
effects in volatility, this result appears somewhat counterintuitive. One possible explanation for
this result is that correlations among factors are reflected in the yield volatility since we are only able
to observe discrete realizations of the yields. Because the quadratic model offers a more flexible
correlation structure, it may be better able to capture this effect despite its relative deficiency
in level dependence. Regardless of the source, both of these effects appear to be important in
capturing the moments of the term structure dynamics. Future progress in the specification of
both volatility dynamics and correlation structure will allow these moments to better be captured
by term structure models.
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Table 1: Specification Tests of Term Structure Models

Coefficient A0(0)Q(3)I(0) A0(1)Q(2)I(0) A1(1)Q(2)I(0) A0(0)Q(2)I(1) A0(0)Q∗∗∗(3)I(0)

α 0.0381 (0.0207) 0.0405 (0.0040)
R(2, 1) -0.6411 (2.1362) -0.5934 (0.4462) -0.7162 (2.3059) -0.2736 (0.0437)
R(3, 1) 0.4541 (1.5846)
R(3, 2) -0.9571 (0.0889) -0.7858 (0.2688)
b(1) -0.0361 (1.0103) -0.0322 (0.2676) -0.0094 (0.0337) 0.1377 (0.0180) 0.1323 (0.3600)
b(2) -0.0583 (0.1745) -0.2772 (0.1574) -0.0210 (0.0972) -0.0400 (0.0045) -0.0430 (0.0157)
b(3) 0.2214 (0.6868) 0.2202 (0.0772)

A(1, 1) -2.0490 (9.0499) -0.1803 (0.8635) -0.1245 (1.2738) -1.6332 (0.1212) -1.4798 (2.5891)
A(2, 1) 0.0181 (1.8000) 0.1097 (0.0890) -0.1480 (1.5970) 0.2882 (0.0299)
A(3, 1) -2.6043 (6.5106)
A(2, 2) -0.2470 (0.0415) -0.2181 (0.0298) -0.1103 (0.1407) -0.1217 (0.0146) -0.2373 (0.0540)
A(3, 2) 1.2125 (0.5019) 1.3444 (0.3623)
A(3, 3) -0.2631 (0.0434) -0.2779 (0.1007)
Σ(1, 1) 1.5185∗(0.3130) 2.3975∗(0.9507) 0.4113∗(2.8703) 14.0968∗ (1.8088) 1.9454∗ (7.6299)
Σ(2, 2) 0.1559∗(0.1382) 0.0629∗(0.0135) 6.3587∗(49.0821) 1.0240∗ (0.0596) 0.0629∗ (0.0352)
Σ(3, 3) 0.5938∗(0.2064) 0.7645∗ (0.1180)
Φ0(1) -0.0411 (0.7745) -0.1455 (0.0560) 1.0112 (2.9161) 0.0027 (0.0007) -0.0430 (0.1148)
Φ0(2) -0.0008 (0.0000) 0.0026 (0.0066) 0.0941 (0.0351) -0.0002 (0.0000) -0.0015 (0.0006)
Φ0(3) 0.1693 (0.7101) 0.1618 (0.0562)

Φ1(1, 1) -1.7637 (0.3621) -1.1853 (0.4421) -6.7895 (16.8038) -0.8950 (0.1276) -0.6192 (0.6202)
Φ1(2, 1) 0.0039 (0.0352) 0.0001 (0.0627) -0.6665 (0.7573) 0.0620 (0.0111)
Φ1(3, 1) -2.7877 (0.0000)∗∗

Φ1(2, 2) -0.0038 (0.0006) -0.0974 (0.1486) -0.0051 (0.0029) -0.0022 (0.0003) -0.0108 (0.0024)
Φ1(3, 2) 1.2091 (0.4214) 0.9735 (0.2994)
Φ1(3, 3) -0.3417 (0.0312) -0.3166 (0.1323)

κ 0.0003 (0.0002) 0.5818 (0.2011) 2.8594 (2.0308)
θ -0.0035 (0.0140) 0.0439 (0.0037) 0.0023 (0.0010)
σ 0.0359 (0.0139) 0.0035 (0.0042) 8.2801 (2.9192)
λ0 0.0000
λ1 0.0100 (0.0000)∗∗ -15.6120 (0.0000)∗∗ -0.1175∗∗(0.0000)

χ2 57.677 130.570 159.185 68.291 186.859
df 17 25 25 24 24
z 6.976 14.930 18.977 6.393 23.507

∗ × 10−4

∗∗ Coefficient not estimated precisely.
∗∗ First factor is orthogonal to second and third factors.

Table presents results of estimation of four term structure models. The models are indexed as
Am(n)Q(h)I(k), where Q(h) denotes h quadratic factors, Am(n) denotes n affine factors of which m are
square-root processes, and I(k) denotes k inverted square root processes.
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Table 2: Specification Tests of Term Structure Models
Coefficient A0(2)Q(1)I(0) A1(2)Q(1)I(0) A2(2)Q(1)I(0) A2(3)Q(0)I(0)

α -0.0126 0.0286
b(1) -0.0650 0.1692 -0.2275

A(1, 1) -1.8489 -1.5190 -2.1201
Σ(1, 1) 0.0137 8.3780∗∗ 1.5952∗∗

Φ0(1) 0.0654 0.1050 0.1476
Φ1(1, 1) -1.7478 -1.0948 -1.1168
κ(1, 1) 0.0050 0.1309 0.3170 5.0232
κ(2, 1) -29.8649 0.0917 2.3304
κ(2, 2) 10.6862 3.6785 4.1378 0.1282
κ(3, 3) 7.7198
θ(1) -0.0073 0.0181 0.0135 0.0017
θ(2) -0.0537 0.0127 0.0777
α(1) 0.0000
α(2) 0.0273

β(1, 1) 0.0002 0.0019 0.0013
β(2, 2) 1.0000∗ 0.0016 0.0000
σ(2, 1) -70.9546
σ(3, 1) 0.8680
λ(1) 0.5364 0.0021 0.0607 0.1425
λ(2) -0.0100 -0.0000 -0.0139 -1.6857
λ(3) -4.2685
χ2 246.524 296.663 503.270 409.936
df 27 29 28 30
z 29.873 35.146 63.511 49.050

∗fixed
∗∗ × 10−4

Table presents results of estimation of four term structure models. The models are indexed as
Am(n)Q(h)I(k), where Q(h) denotes h quadratic factors, Am(n) denotes n affine factors of which m are
square-root processes, and I(k) denotes k inverted square root processes.
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Table 3: EMM Diagnostics of Term Structure Models
Coefficient A0(0)Q(3)I(0) A0(1)Q(2)I(0) A1(1)Q(2)I(0) A0(0)Q(2)I(1) A0(0)Q∗(3)I(0)

A(2) -0.172 0.452 -0.468 -1.301 0.723
A(3) -1.314 -0.358 -0.554 -1.276 -0.223
A(4) 0.025 0.240 0.540 0.137 -0.106
A(5) 0.215 1.935 2.648 1.132 0.302
A(6) 0.116 1.305 1.813 -0.092 1.535
A(7) 3.987 4.449 4.585 0.857 3.345
A(8) -0.124 0.557 0.253 -0.635 0.368
A(9) -1.206 0.053 0.279 -1.212 0.129
A(10) -0.344 -0.434 -0.107 -0.724 -0.635
A(11) 1.157 3.713 4.307 2.431 1.773
A(12) 0.650 2.546 2.963 0.831 2.645
A(13) 4.506 4.683 4.547 2.205 3.949
ψ(1) -1.739 0.751 -0.323 -0.442 -0.799
ψ(2) 1.209 -3.088 -1.563 -0.444 0.899
ψ(3) -0.709 2.528 0.028 -1.071 0.605
ψ(4) -2.177 -1.098 0.340 1.193 2.418
ψ(5) -2.325 1.917 -0.586 -1.790 -2.735
ψ(6) 1.251 -2.060 0.043 1.248 1.251
ψ(7) 2.390 -1.175 0.376 1.403 2.678
ψ(8) -2.457 1.897 -0.554 -1.949 -2.932
ψ(9) 1.367 -1.958 -0.002 1.339 1.251
ψ(10) 2.138 -0.774 0.476 1.453 2.084
ψ(11) -2.189 1.380 -0.455 -1.899 -2.584
ψ(12) 1.275 -1.488 -0.225 1.294 1.060
τ(1) 1.366 1.565 1.993 1.101 0.913
τ(2) -0.738 0.113 -2.238 -1.793 -2.735
τ(3) 1.344 0.674 3.153 2.101 3.521
τ(4) -0.249 -2.608 -3.694 -2.118 -5.416
τ(5) 0.376 2.706 4.309 2.632 6.159
τ(6) 1.824 1.860 0.183 0.975 -5.577
τ(7) 1.264 2.299 2.627 1.073 1.666
τ(15) 1.129 0.788 1.113 1.305 1.556
τ(24) 3.014 2.699 1.631 2.216 -0.909
τ(25) 1.786 2.980 3.475 1.812 2.294
τ(33) 0.079 0.095 1.121 0.823 1.732
τ(42) 2.123 1.898 0.989 1.160 -0.789
τ(43) 1.672 2.591 2.562 1.293 1.913
τ(51) 1.034 0.719 1.601 1.663 1.930
τ(60) 0.672 1.346 0.574 0.479 -1.992
τ(61) 0.580 0.975 1.133 0.554 0.773
τ(69) 1.205 0.214 1.348 1.107 1.423
τ(78) 1.097 1.176 0.466 0.305 -1.147

∗ First factor is orthogonal to second and third factors.

Table presents diagnostics for EMM scores. The coefficients labeled A(k) denote Hermite polynomial terms
in the SNP score generator, Ψ(k) denotes the AR terms in the VAR of the SNP score generator, and τ(k)
denotes the ARCH terms in the VAR of the SNP score generator. The table presents t-statistics for the
test of the null hypothesis that the score with respect to the parameter A(k), Ψ(k), or τ(k) is equal to 0.
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Table 4: EMM Diagnostics of Term Structure Models
Coefficient A0(2)Q(1)I(0)∗ A1(2)Q(1)I(0) A2(2)Q(1)I(0) A2(3)Q(0)I(0)∗

A(2) 0.805 -0.659 1.540 -1.167
A(3) -0.852 -0.828 0.418 -2.393
A(4) 0.103 -0.232 -1.213 -2.694
A(5) 1.981 3.320 2.125 2.089
A(6) 1.881 2.953 2.634 1.205
A(7) 3.133 4.672 2.284 -6.335
A(8) -0.190 0.124 1.151 -0.161
A(9) 0.253 -0.022 0.628 -0.323
A(10) -0.480 -0.712 -1.310 -4.298
A(11) 3.607 4.568 3.713 3.850
A(12) 2.688 2.569 2.948 2.394
A(13) 3.997 4.394 3.323 -6.585
ψ(1) -0.331 -0.545 -1.727 -0.889
ψ(2) -0.808 -1.567 2.456 0.493
ψ(3) -0.320 -0.464 0.161 0.267
ψ(4) -0.441 0.242 2.346 -0.485
ψ(5) 0.042 -0.471 -2.410 -0.023
ψ(6) -0.186 0.568 0.695 0.334
ψ(7) -0.082 0.248 2.418 -0.603
ψ(8) -0.364 -0.406 -2.408 0.101
ψ(9) -0.180 -0.523 0.588 0.341
ψ(10) -0.272 0.220 1.936 -0.385
ψ(11) -0.049 -0.064 -2.087 0.109
ψ(12) -0.181 0.368 0.132 0.298
τ(1) 0.915 2.366 0.439 -1.789
τ(2) -3.217 0.372 -4.001 -5.160
τ(3) 4.272 1.794 5.769 5.723
τ(4) -5.102 -5.405 -5.698 -2.367
τ(5) 4.923 5.507 4.610 2.469
τ(6) 1.085 2.128 5.740 1.629
τ(7) 1.520 1.922 0.914 -3.226
τ(15) 2.257 0.589 2.721 2.958
τ(24) 2.308 2.195 4.111 2.345
τ(25) 2.450 2.648 1.783 -2.721
τ(33) 2.636 0.382 3.681 4.012
τ(42) 1.523 1.648 2.920 1.627
τ(43) 1.914 2.111 1.397 -1.742
τ(51) 2.804 0.523 3.445 3.759
τ(60) 1.160 1.371 2.745 1.128
τ(61) 0.766 0.906 0.518 -1.117
τ(69) 1.925 0.456 2.376 2.323
τ(78) 0.969 1.060 2.117 1.015

∗ Quasi-t ratios. Actual will probably be larger.
Table presents diagnostics for EMM scores. The coefficients labeled A(k) denote Hermite polynomial terms
in the SNP score generator, Ψ(k) denotes the AR terms in the VAR of the SNP score generator, and τ(k)
denotes the ARCH terms in the VAR of the SNP score generator. The table presents t-statistics for the
test of the null hypothesis that the score with respect to the parameter A(k), Ψ(k), or τ(k) is equal to 0.
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Figure 1: Reprojected Conditional Moments: A0(0)Q(3)I(0)
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Figure 2: Reprojected Conditional Moments: A0(0)Q(2)I(1)
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Figure 3: Reprojected Conditional Moments: A0(1)Q(2)I(0)

30



1950 1955 1960 1965 1970 1975 1980 1985 1990

0

20

40

60

80

Conditional Mean, Six−Month Treasury Bill, 1947−1991

1950 1955 1960 1965 1970 1975 1980 1985 1990

0

20

40

60

80

Conditional Mean, Twelve−Month Treasury Bill, 1947−1991

1950 1955 1960 1965 1970 1975 1980 1985 1990

0

20

40

60

80

Conditional Mean, Ten−Year Treasury Bond, 1947−1991

(a) Conditional Means

1950 1955 1960 1965 1970 1975 1980 1985 1990

0.2

0.4

0.6

0.8

1

1.2

Conditional Std. Dev., Six−Month Treasury Bill, 1947−1991

1950 1955 1960 1965 1970 1975 1980 1985 1990

0.2

0.4

0.6

0.8

1

1.2

Conditional Std. Dev., Twelve−Month Treasury Bill, 1947−199
1

1950 1955 1960 1965 1970 1975 1980 1985 1990

0.2

0.4

0.6

0.8

1

1.2

Conditional Std. Dev., Ten−Year Treasury Bond, 1947−1991

(b) Conditional Volatility
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