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ABSTRACT

We study asset pricing when agents face risk and uncertaimdyempirically demonstrate that uncertainty has
a substantial effect on asset prices. We measure risk wihvmdatility and uncertainty with the degree of
disagreement of professional forecasters, attributirfigreint weights to each forecaster. We run regressions
representing the typical risk-return trade-off and aughtieese regressions with a measure of uncertainty. We
find stronger empirical evidence for a uncertainty-retwaide-off than for the traditional risk-return trade-offew
investigate the performance of a two-factor model with eskl uncertainty in the cross-section.
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One of the most studied theoretical relationships in eroglifinance is that the expected excess return of the market
over a risk-free bond should vary positively and propomibnto the volatility of the market return. This risk-retur
trade-off is so fundamental that it could well be describedha “first fundamental law of finance.” Merton (1973)
derived this theoretical relationship in a continuous timedel in which all agents have power preferences and

hedging concerns are negligible, and it is sometimes edd as Merton’s ICAPM or simply the ICAPM.

The empirical evidence for a risk-return trade-off is mixeédany studies have run versions of the following
regression:

Eirerr1 =vV;

wherer..1 is the excess return of the market over a risk-free bonsla risk aversion coefficient, and is (market)
risk.l The goal has been to find a significantly positiveoefficient that captures the trade-off between risk and
return. Baillie and DeGennaro (1990); French, Schwert,Stachbaugh (1987); and Campbell and Hentschel (1992)
find a positive but mostly insignificant relation betweendbaditional variance and the conditional expected return.
On the other hand, Campbell (1987); Nelson (1991); Brandtkang (2004); among others, find a significantly
negative relation. Glosten, Jagannathan, and Runkle [18&8vey (2001); and Turner, Startz, and Nelson (1989)
find both a positive and a negative relation depending on ththod used. Finally, Ghysels, Santa-Clara, and
Valkanov (2005) find a significant and positive relationshgtween the market return and conditional volatility

usingMixed Data Samplingor MIDAS, estimation methods.

An important strand of recent research in finance developddats Hansen and Thomas Sargent contends that
uncertainty, in addition to risk, should matter for assétipg. When agents are unsure of the correct probability
law governing the market return they demand a higher premiuorder to hold the market portfolio. Papers by
Hansen and Sargent (1995, 2001, 2003, 2005, 2006); Hanaeger, and Tallarini (1999); Anderson, Hansen,
and Sargent (2003); Hansen, Sargent, Turmuhambetova, dli@h¥ (2006); Chen and Epstein (2002); Maenhout
(2004, 2006); Uppal and Wang (2003); Kogan and Wang (200&); Lau, Pan, and Wang (2005) among many
others have shown how uncertainty effects optimal decssaond asset prices. So far the literature has been mostly
theoretical. The main contribution of this paper is to enmcpily investigate the performance of asset pricing models

when agents face uncertainty in addition to risk.

Kogan and Wang (2002) show that in the presence of uncertthiattraditional risk-return regression needs to

be augmented since both risk and uncertainty carry a pegtemium:

Eiretp1 = yVi + 0M;

1We take (market) riski, to be the conditional volatility of the market.
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wheref is a measure of aversion to uncertainty avdgmeasures the amount of uncertainty in the economy. When
there is no uncertainty, so thaf; = 0, or if agents are not averse to uncertainty, so that 0, Merton’s original
formulation is recovered. Kogan and Wang (2002) derive #geothposition in a two-period discrete time model in
which agents are concerned about alternative normallgilaliséd models for asset returns. We provide an alternative
derivation of this theoretical relationship in the settofgan infinite horizon continuous time model and show that it
holds when hedging returns are negligible and agents havergweferences. It is this relationship we empirically
investigate to assess the importance of the uncertaitiyarérade-off in conjunction with the traditional risktoen

trade-off.

There is an abundant literature on estimating risk aversipand measuring risky;; and many different ap-
proaches have been used. In this paper we face the additioaldéénges of estimating uncertainty aversiénand
measuring uncertainty\/;. One approach that has been proposed is to set uncertairdl/tequolatility and to use
detection probabilities to calibrate uncertainty averdeee Anderson, Hansen, and Sargent (2003) and Maenhout
(2006)]. In this paper we measure uncertainty with the degfalisagreement of professional forecasters parame-
terized in a flexible way. We simultaneously estimate uraety aversion, risk aversion, and nonlinear parameters,

which determine risk and uncertainty, from observed as$etsq

The relationship between the disagreement of professionatasters and expected returns has been discussed
in many recent papers, without a link to uncertainty. A nundfeauthors, including Anderson, Ghysels, and Juer-
gens (2005) and Qu, Starks, and Yan (2003) find that moreréisagent, as measured by the dispersion of earnings
forecasts, implies higher expected returns. In particlladerson, Ghysels, and Juergens (2005) observe that the
dispersion factors (portfolios that long high dispersitocks and short low dispersion stocks) are positively eglat
to expected returns and have explanatory power beyonditnaali Fama-French and momentum factors. Similarly,
Qu, Starks, and Yan (2003) observe a positive relation etveapected returns and a factor for disagreement, con-
structed from the annual volatility of a firm’'s earnings disgion. Others, including Diether, Malloy, and Scherbina

(2002) and Johnson (2004), find that higher dispersion stbeke lower future returns.

In contrast to all these papers, we emphasiggregatemeasures of disagreement whereas the prior literature
emphasizes disagreement abiodividual stocks or portfolios. Most of the existing literature maasuisagreement
with the dispersion of earnings forecasts made by finano@llyats of individual stocks and studies the relationship
between this measure and individual stock returns. We egigghthe effect of disagreement on the market return
and use data on forecasts of aggregate corporate profitr ridilin earning forecasts of individual stocks. We
theoretically show that disagreement (or uncertainty)tensitfor individual stocks only when the divergence of

opinions about the stock is correlated with market disagerg.

Several different rationales have been proposed to exfileieffect of disagreement on expected returns. An-

derson, Ghysels, and Juergens (2005) took the disagreefifen¢casters about the future values of variables as an



indication of heterogeneity in the beliefs of agents andrvaibhow the disagreement is priced in a heterogeneous
agents model with micro-foundations. Diether, Malloy, &wherbina (2002) rationalize their findings that higher
dispersion stocks have lower future returns with arguméota the short-sale constraints literature, in particular
Miller (1977). They argue dispersion proxies for differeamf opinions among traders where only the most opti-
mistic opinions are reflected, thereby driving up curreitgs. Johnson (2004) offers an alternative explanation to
the findings of Diether, Malloy, and Scherbina (2002). Inrhisdel, levered firms may be able to reduce the cost of
capital by increasing idiosyncratic risk of earnings witgtand subsequently the dispersion of earnings forecast
Johnson views dispersion as a manifestation of idiosyieariak relating to the opacity in the underlying value of a

stock.

This paper suggests an alternative explanation for whygdésement is priced: Economic agents interpret dis-
agreement as uncertainty. Economic agents think a patioubdel, labeled the reference model, is a good descrip-
tion of the world but are worried that it is misspecified analize there are a variety of probability laws which could
possibly correctly describe the world. From the point ofwigf agents, the amount of disagreement of forecasters
is an indication of which models are plausible. When theldtie disagreement agents are concerned only about
models which are close to the reference model but when theréot of disagreement agents care about models that

are both close and far from the reference model.

We assume that agents choose not to act like Bayesians artineopossible probability models, because
they are not sure which probabilities should be used to coenpbssible models. Instead agents solve a robust
control problem to find optimal decision rules. We quantife tispersion of predictions of mean market return
forecasts with an empirical measure which we lakgl Our empirical results show that assets that are correlated

with uncertainty, as measured BY;, carry a substantial premium.

One of the key innovations of our paper is how we measure disagent. From the previous discussion, one
might be tempted to think that simply computing standargetision measures from the raw forecasts might be
enough. Indeed, the existing literature does measurerdisagent with cross-sectional sample variances, attniguti
equal weight to each forecaster. Unfortunately, this issafficient because not all forecasts matter equally. For us,
the empirical success depends on assigning different wgeagtross forecasts. We find that disagreement matters
only with unequal weighting schemes. In particular, to ¢ttt M;, we measure disagreement with a flexible
weighting scheme across forecasts that can accommodajriaganore or less weight across forecasts. Parameters
determining the weights are estimated by quasi-maximuetitikod and GMM. We find estimates of the parameters
determining the optimal weights to be significantly difieré&om equal weights and entail putting more weight on

the center of the cross-sectional distribution of forexast

We study empirical asset pricing with risk and uncertaintghbin the time series and the cross-section. The

time series estimates are concerned with aggregate matessreturns whereas the cross-sectional analysis is



concerned with other portfolios. For the cross-sectidke iKogan and Wang (2002), we show that the expected
excess return on any asgetlepends on a risk beta, denotégl, times risk aversion and the amount of aggregate

risk; and an uncertainty beta, denofgg , times uncertainty aversion and the amount of aggregatertaintiy:

Eirgir1 = Bok vV + Bur0 M.

We investigate the empirical performance of risk and uaiert in the cross-section by constructing portfolios with
varying degrees of risk uncertainty; estimating the prafssk and uncertainty; and testing if risk and uncertainty

have additional explanatory power over the Fama-Frendbr&c

We find for the market that uncertainty is more important eteant of expected returns than risk. The cor-
relation between our estimated measure of uncertainty fenthtairket excess return is 0.28 whereas the correlation
of our measure of risk with the market excess return is orilfp.0We find that the price of uncertainty is signifi-
cantly positive and helps explain the returns of many pbo$an the cross-section of stocks. We find there is not
a significant relationship between uncertainty and laggeatility, very little contemporaneous correlation beeme

uncertainty and volatility, and very little correlationtiseen uncertainty and future volatility.

The paper is organized as follows. Section 1 describes amanp with uncertainty and derives a theoretical
decomposition of excess returns into risk and uncertainotppgonents. Section 2 discusses the separation of un-
certainty and risk. Section 3 describes how we measure nosk Haily volatility and Section 4 describes how we
measure uncertainty from the dispersion of forecasts.i@ebBtempirically investigates risk-return and uncertgint
return trade-offs for the market and Section 6 empiricallyestigates the importance of risk and uncertainty for the

cross-section of returns. Section 7 concludes.

1. The theoretical impact of risk and uncertainty on returns

In this section we decompose asset returns into risk andtainty components. We show that the expected excess
market return depends on a measure of risk aversion timemntioent of market risk plus a measure of uncertainty
aversion times the amount of market uncertainty. The ergegkcess return on any other asset depends on a risk
beta times times risk aversion and the amount of marketais#t;an uncertainty beta times uncertainty aversion and

the amount of market uncertainty.

We derive the decomposition in a general equilibrium mode&hich all agents are identical; have power utility
functions; are worried about model misspecification; andiogest in many risky assets and a risk-free bond. In
equilibrium agents fully invest all of their wealth in the rkat and do not hold other risky assets or the risk-free

bond. This model is the environment proposed by Merton (L1@0opulated with agents who are worried about



model misspecification as in Hansen and Sargent (2001). &up losely follows approaches taken by Hansen
and Sargent except that we break the link between uncsrtairt risk; and allow concerns for robustness to vary
over time in ways that are not related to risk. Similar to wbykUppal and Wang (2003), we allow concerns for

robustness to vary with states. Following Maenhout (2004 seale concerns for robustness by the value function.

The decomposition of returns into risk and uncertainty congmts has been previously obtained by Kogan and
Wang (2002) in a two-period discrete time model under différassumptions. The approach taken in Kogan and
Wang (2002) allow agents to worry about alternative Ganssiadels and is appropriate when agents have quadratic
or exponential utility functions but does not apply whenrggenave the power utility functions used in this paper.
Our formulation allows agents to consider general altéreahodels, allows them to have power utility functions,

and sets the analysis in the context of an infinite horizoricoaus time dynamic equilibrium model.

In our formulation, there is an underlying state vectarhich agents believe approximately follows the process
dry = a; dt + Ay dBy (l)

where B, is a vector of independent standard Brownian motions;and a(x;) andA; = A(x;) are functions of
the current state. Agents perceive that the instantaneskiree rate iso; = p(z;). Agents can invest in a set of

assets and perceive that the price ofttieasset Py, approximately follows the process
APy = dyy Py dt + Gy Pyt dBy 2)

wheredy; = di(x;) is a scalar andy; = (x(x;) is a row vector. The first asset is interpreted as the markettd,L
and P; be vectors whoséth elements ard; and Py; respectively. Let; be a matrix whoséth row is ;. The

wealthy; of an agent approximately follows the process

dyr = (ViMye + pr e — ¢r) dt + Gy dBy (3

where\; = d; — p; is the expected excess return of the available assets owersttifree bondy); is a vector

of portfolio weights whoséth element gives the fraction of wealth (possibly greatantbne or less than zero)
invested in theéith asset, and, is consumption. Wealth approximately, and not necessexiytly, follows equation
(3) because the price of the assets only approximately, andatessarily exactly, follows the process in equation

(2). We call the processes in equations (1), (2), and (3)dference model.

Agents believe that the reference model provides a reakoagbroximation for the processes that govern the
state, the returns on assets, and wealth though they areroewicthat the approximation may be misspecified. In

particular, they wonder about whether or not they have cosgecifications of the conditional means and consider



the possibility that the conditional mean of the state;is- A.g; rather tharu; and the conditional expected return
of the assets id;, — n.g; rather thani;. Hereg, = g(z¢, y;) is a vector of the same dimensiondg A; = A(z,) is

a matrix of the same dimension As, andn, = n(x) is a matrix of the same dimension §s Agents believe (and
indeed they are correct) that the reference model correpiggifies the conditional variances of the stag,(the
conditional variances of the assefg)(and the risk-free ratef). In summary, they worry that the underlying state,

the price of assets and the evolution of the wealth are giyen b

dl‘t = ((lt — Atgt) dt + At dBt (4a)
dPyt = (drs — Mkt gt) Pre dt + (i Pry dBy, Vk (4b)
dye = (Vi My — Viyemnge + pe ye — ) dt + Gy dBy (4c)

instead of equations (1), (2), and (3). In equation (4f),is the kth row of n,. Agents are uncertain about the
conditional mean of their wealth because they are unceafaiut the conditional mean returns on the assets. We
assume agents have full knowledge of the matrisgandr; but do not know the value of the vectgr. Rather than
acting as Bayesians and using a distributiongigragents findy; by solving a robust control problem. The solution

to the control problem provides the valuegpfas a function of the exogenous state and wealth.

Agents consider a worst case specification othat is constrained to be close to the reference model. We
capture the requirement that is close to the reference model by penalizing deviationsftbe reference model

with the quadratic term

.,
— 5
2; 919t (5)

where¢, = ¢(z, y;) is a function that can be depend on the exogenous state arith wehe functionsA andn
allow some perturbations aof andy to be penalized more heavily than others. For example, densi model in
which bothx and B (as well asg) are two-dimensional, there is only one risky asset whidhésmarket, and for

somet

AVES b mz[o 100}. (6)
00

In this case a higher penalty is imposed for perturbing trst dlement ofz than the market return. In particular,
perturbing the first element af by 0.001 has the same penalty as perturbing the market retufhloylhe second

element ofz is presumed to be known exactly so that under no circumssangkeagents consider perturbations in
it since the second element &f,g; is zero for any finitey. In this way,A andn allow us to capture the notion that

agents may have more or less doubts about the conditionalstoégdome variables compared to others.

In work by Hansen and Sargefitis taken to be constant; arkdlands are linked to volatility so that\; = A; and

n: = (; for all t. Hansen and Sargent suggest this is reasonable becauseitislifficult to learn about conditional



means in the presence of high volatiftyje do not restrict\ and to necessarily being tied to volatility and allow
for the possibility that they depend more flexibly on theestdtor example, there may be some state variables that
have a high conditional variance but agents have very tiblgbt about their conditional mean. In addition doubts
may vary over time in interesting ways that are not linkeddaoditional variances. For example, during the oil crisis
in the mid 1970’s agents may have been willing to considererperturbations in all variables than they were in mid
1990’s. For the reasons discussed in Maenhout (2004) wéetvid depend on the exogenous state and wealth (also

see below for more details).

The objective of agents is

/ooex (—5t) o + L gal a @)
o p 11—~ ' 24 9t 9t

whered a time discount rate. At any date, the first component of theatilbe is the utility obtained from consump-
tion where~ is a risk aversion parameter which is greater than zero ahdqual to one. The second component
penalizes deviations from the reference model and is adatedrrthan subtracted. Agents want to maximize their
objective by choosing adapted consumption and portfolimlihgs; and minimize their objective by choosigg

subject to the constraints in equations (4a), (4b), and (4c)
The agents’ value function, denotddy, x), satisfies the Hamilton-Jacobi equation

=

0 = maxmin {

i/ _ ! _ ! _/ _
nax i 1—fy+2¢gg 6J + J,[a—Agl+ Jy [W'Ay—d'yng+py — ] +

1 1
§tl" [AN Joo ] + §Jyy7/’/CC/T,Z)Z/2 + (N Toyy} (8)

where we drop the subscripts and the subscripts drdenote differentiation. In the limit ag approaches zero

at every date, the functional equation (8) becomes the udaalilton-Jacobi equation studied by Merton (1973)
and many subsequent researchers. The additional termenpegs the same terms present in Hansen and Sargent’s
formulation except thaf\ andy are flexible functions of the state ands a flexible function of the state and wealth.
The minimizing choice of is

9= oA Ty + 0y Jy 9)

which illustrates how specifications of A andn endogenously determine the perturbations of conditioredma
that agents consider. The optimal choice of the fraction ediltt to invest in the market;;, satisfies the first-order

condition:
JyAy — Jyyng + JyyCCy? + CA Jpyy = 0. (10)

2For example see Anderson, Hansen, and Sargent (2003), iH&mgent, and Tallarini (1999) and Hansen, Sargent, Toambetova,
and Williams (2006) .

3Uppal and Wang (2003) allow the parameteto vary across assets and state variables, though theyreeteir parameters to be
time-invariant. Our model could be viewed as a generativatif their model in which the uncertainty parameters am@nadt to vary over
time.




In equilibrium, market clearing requires that all agentgest in the market and no other asset so that (since the
market is the first asset); = 1 and, = 0 whenk > 1. Substituting in the right hand side of equation (9) §or

imposing the equilibrium conditions anand rearranging terms allows us to write equation (10) as

Ju
A =5+ ¢Jyyo+ onA'J, — CA’J—y (11)
Yy

whereg and g denote the first columns of the matricgs andnr’. The kth element of, is the covariance between
the market (the first asset) and thith asset. Likewise, thieth element of represents the “covariance” between the

uncertainty in the market and the uncertainty in itie asset.

We consider the specification ¢fproposed by Maenhout (2004):

0
$(a,y) = 7 (12)
) = )Ty
wheref is a time-invariant constant. With this specification fotan(lL1) simplifies to
J. J.
A=7s+ 0o+ 0N —2— —(NZE (13)
! e
sinceJ,y/[(1 —~)J] = 1. The term
J, J.
(VAN — . ] (14)
ST Ty

comes from the hedging component of optimal portfolios. ifigpdify the analysis we make sufficient assumptions
for this hedging component to be zero. We assume the noig@githe market is orthogonal to the noise driving
the state (so tha A} = 0 for all ¢) and the uncertainty in the market is unrelated to the uaieyt in the state (so
thatn, A} = 0 for all ¢).% It follows that

A =5+ bo. (15)

In our empirical work we estimate this model in discrete tiorehe market in Section 5 and for the cross-section
of returns in Section 6. In order to estimate this model walrteeelate the true expected excess return for stocks
to A. We make the assumption thatis the expected excess return on stocks. This assumpti@pisg@iate if the
reference model is correct and the agents’ fears of midsg@on are unwarranted. For the market, we consider a
discrete time approximation to equation (15) in which thartgrly excess return of the market over a risk-free bond

between periodsandt + 1, denotedr., 1, satisfies

Eireir1 = Vi + 0M, (16)

“It is probably unreasonable to assume that the noise andtamtg underlying the market and the state are not relafdgrnatively,
we could view equation (15) as a good approximation to equdfi3) wheny is close to oneg: A} is close to a matrix of zeros for al] and
n: A} is close to a matrix of zeros for all



whereV; = ¢y, is the (conditional) variance and; = p1; the (conditional) uncertainty of the market. For any other

assett we define

Skt Okt
vk = T wk = T 17
Bok v Buk A (17)

and assumg,,;, andj,,; are constant over time. This assumption implies restristian the exogenous processes for
the state vector and asset prices and allows us to thimkoénd 5, as respectively being regression coefficients

of the risk in assek on market risk and of the uncertainty in ask&tn market uncertainty. We estimate

Eiries1 = Bor Vi + Bur0M; (18)

wherer;1 IS an excess return and where, like for the market, we haveressthe reference model is correct. The
above equation provides the theoretical underpinningshiempirical cross-sectional analysis covered in Section
6. Kogan and Wang (2002) derive equations (16) and (18) udifferent assumptions. Their derivation, however,

does not apply when agents have power utility functions.

In reality, the reference model may indeed be not correctlamdgents fears of misspecification may be justified.
We deal with this in several ways. First, for some of our eations, we use quasi-maximum likelihood which allows
us to obtain consistent estimates in the presence of cayia@s of misspecification. Second, when estimating (16)
and (18) we include additional constant terms. If there israstant level of misspecification then the constant terms
would be significant. Third, in some of our specifications Wevwauncertainty to affect the quarterly conditional
volatility of asset returns. Although uncertainty shoulot mffect volatility in our continuous time model, it is
plausible that uncertainty affects quarterly volatilitgdause model misspecification might appear as additional
noise at the quarterly frequency. It is important to rememntbat even if the reference model is false, it is by
assumption a good description of reality so that the aduiti@onstant terms and the additional noise should be

small in magnitude.

2. Empirically distinguishing uncertainty from risk

In this section we discuss how we distinguish uncertaintynfrrisk. Following Knight (1921), Keynes (1937)

described uncertainty by saying:

By ‘uncertain’ knowledge, let me explain, | do not mean meteldistinguish what is known for certain
from what is only probable. The game of roulette is not subjedhis sense, to uncertainty; nor is the
prospect of a Victory bond being drawn. Or, again, the exgigxt of life is only slightly uncertain.
Even the weather is only moderately uncertain. The sensehiolwl am using the term is that in
which the prospect of a European war is uncertain, or themicopper and the rate of interest twenty
years hence, or the obsolescence of a new invention, or thiggooof private wealth owners in the
social system in 1970. About these matters there is no #aidmhsis on which to form any calculable
probability whatever. We simply do not know.



One could adopt the position that an eventisgy if its outcome is unknown but the distribution of its outcane

known anduncertainif its outcome is unknown and the distribution of its outcan®also unknown.

In this paper we consider an asset pricing environment irchvhiis plausible to assume that agents know the
second and higher order central moments of all asset reéangly. If agents knew the conditional mean of asset
returns then they would know the complete distribution dfimes. There is very little information, however, about

means in data and its likely that agents have very low confielémthe information they do have.

Following the work of Merton (1980) and Foster and Nelsor@@)9it is well known that precise estimation of
volatility can be achieved through sampling returns oveitaarily short time intervals. To a first degree we may
therefore assume that volatility is known, although in pcacprominent high-frequency data characteristics ssch a
leptokurtosis, and intra-daily deterministic patternsg anarket microstructure features such as price discretene
nonsynchronous trading, and bid-ask spread further cangaenthe data used in empirical research. Merton also
showed that, in contrast to volatility, estimation of th&tdromponent only depends on the span, not the sampling
frequency. A longer span of data only yields precise estonatin practice long data spans uncontaminated by
some sort of structural breaks are next to impossible to flddnce, the estimation of the drift component very
much remains extremely difficult. We therefore take the vibat future asset returns (and future values of other
state variables) ardsky because they might deviate from their conditional meand, uatertain because their
true conditional means are not known. Under this view, uaady is limited to uncertainty in first moments and

everything about higher order central moments is assumbed perfectly known.

How should agents deal with uncertainty? Keynes (1937gsgription was:

Nevertheless, the necessity for action and decision cawsals practical men to do our best to overlook
this awkward fact and to behave exactly as we should if we kathd us a good Benthamite calculation
of a series of prospective advantages and disadvantaggsmedtiplied by its appropriate probability,
waiting to be summed.

We assume agents follow Keynes advice and find approximateapilities when faced with uncertainty. However,
unlike Keynes we assume that agents treat these probeditiifferently from known probabilities and do not, like

good Benthamites, compute expected utilities.

For example, assume agents believe that the excess rettine amarket is distributed normal with mearand
standard deviation :

re ~ N (,u,02) .

They know the scalat exactly but do not know the value pfand might or might not know its distribution. In this

situation we call theisk in the market? and theuncertaintyin the market agent’s beliefs about the variance.of

10



In other words, uncertainty is a measure of the confidence afgent in her beliefs aboutand can be thought of

as an approximation to the mean squared error of her beliefs:
E(p— )

wherefi is her best approximation ¢f.

In order to empirically identify risk and uncertainty, we dot take a hard line view on the separation of risk
and uncertainty. For us it does not matter if agents know ¢ortcknow) the distribution of.. If agents know the
distribution of . we will think of the variance of: as uncertainty. If agents do not know the distributiop. dfien we
think of agents as taking Keynes’s advice and measuringrtaicty with their best approximation to the variance.
Because of our practical views, some of what we call unagstainay indeed be risk as defined by Knight and
Keynes. However, it seems reasonable to us that the umdgriaiy is of an order of magnitude larger than the risk
in 1 and that from a practical perspective calling everythirag th unknown about the true value @luncertainty is

a reasonable approximation.

Regardless of whether agents know the distributiop,0ive assume they choose to treat the uncertainty in
differently from the variance of returns because they maynbee (or less) averse to situations in which they have
little confidence inu than to situations in which the variance of returns is lalgargued by Hansen and Sargent a
reasonable strategy when facing uncertain distributisrie solve a version of the robust control problem described

in Section 1.

In the next two sections we propose ways to empirically meate amount of risk and uncertainty in the

economy.

3. Measuring risk with volatility

There are many ways to estimate volatility. When we confineatiention to models exclusively based on returns
data a natural choice would be ARCH-type models. Since wmat# our models at the quarterly frequency, this
would imply quarterly ARCH models. This is rather unappeglas volatility would be estimated quite imprecisely.
Therefore we adopt an approach which allows us to estimdédility at a quarterly frequency more precisely by
exploiting daily returns data. In recent work, Ghysels, t8a0Plara, and Valkanov (2005) suggested that volatility
can be modeled with a mixed data sampling, or MIDAS, approddie key to modeling conditional variances is
parsimony, summarizing in a convenient way the temporabdyns which yield predictions of future volatility.
In this section we review one parsimonious flexible funaidiorm for measuring the conditional volatility of the

market, which we call (market) risk.
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Ghysels, Santa-Clara, and Valkanov (2006a) suggest thateetized Beta distribution is a flexible functional
form that can conveniently capture many plausible pattefrigne series decay. The discretization is based on the
standard continuous Beta probability density functionclihg

(x —a)*Y(d — )X !

Bla,x)(d — a)exT (19)

wle] =

whereB is the Beta function and, y, a andd are parameters. The discretized Beta distribution we use is

-1
B0 i) Ml RSNt i )
= B(a, x)(d — a)etx—1 Z; B(a, x)(d — a)o+x—1 (20)

_ (i—a) i d— !
- Y — e (d = )Xt (21)

with n values { = 1,2, ... n) that receive positive probability. We requite< 1 andd > n. In a time series appli-
cationn could be the number of lags used in a volatility predictiorotéNthat a potentially large set of weights is
tightly parameterized via a small set of parameters. GhySainta-Clara, and Valkanov (2006a) and Ghysels, Sinko,
and Valkanov (2006b) discuss how, by varying parameteesdibcretized Beta distribution can capture many dif-
ferent weighting schemes associated with time series medeway patterns observed in volatility dynamics and
other persistent time series processes. They also obdmvadttinge = 1 yields downward sloping weighting
schemes typically found in models of volatility predictiorBy construction equation (21) is a well-formed proba-
bility density function sincé ;" , w; = 1 and we interpret they;’s as weights. This convenient scheme is used in
our empirical work, both in a time series context to parammterisk and, as we describe in the next section, in a

cross-sectional setting to specify uncertainty.

To measure risk we a construct a measure of conditionaln@gaby weighting priodaily squared (demeaned)

returns. More specifically, the weight on tfih prior lag is

(s+1—i)*
S (s+1— )

ll(w) =

wheres is the maximum number of lagsThe functional form of these weights is determined by a éisned Beta

distribution withae = 1, x = w, andd = s + 1. The value ofa does not matter since = 1. The single free

The value ofs determines how many daily lags are used to predict futuratility. We sets to be roughly the number of trading days in
a year. Since the number of trading days per year variesti§litiiioughout our sample and we prefebe constant for all dates, we seto
be the minimum number of trading days in the previous 12 nwatfailable throughout our sample.
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parametetw models the decay pattern of the weight function and the topiplFigure 1 provides an example of the

weights® The resulting conditional variance is equal to
Vi = JQVOIt(w) (22)

wheres? is a time-invariant constant and

2
s
s—1i,5—1i+1 1 s—j,s—j+1
Vol (w) = s g li( Top s E Ter +
=1

s

1 o
235 \/T s i,5—1+1 _E :T:t Jis—j+1 708 i—l,s—i 1 ZTS G,s—j+1 (23)
S

J=1

is the component of the conditional variance which is deieech from the volatility of daily excess returns. Here

s—1i,5—1i+1
et

that vol depends on the parametersince the weight$; depend onv. The second component of yallows for

r is the daily return between trading days ¢ ands — i + 1 which occur between periods- 1 andt. Note
the effect on quarterly volatility of serial correlationdiily returns. Such a correction did not appear in the oaigin

formulation of Ghysels, Santa-Clara, and Valkanov (2005).

In Section 5 we estimate ando? from data on excess market returns. Ghysels, Santa-Cladayalkanov
(2005) argued that? should equal one and fixed it at one for their results. We esén? to allow for this part of

the model to be misspecified. In Section 6 we estimatising only information from the cross-section.

4. Measuring uncertainty with disagreement

This section describes how we use the dispersion of foretasheasure uncertainty. Section 4.1 briefly describes
the data on predictions we use leaving the details to AppefdiSection 4.2 intuitively provides a rationale for
measuring uncertainty with disagreement and Section 4©3ges the details of a parsimonious flexible function

form that captures uncertainty. Section 4.4 provides amgi&

4.1. Survey of Professional Forecasters

In this paper we use predictions on macroeconomic and fiabwariables from the Survey of Professional Fore-
casters (henceforth SPF). There are many other papers #katuse of data from the SPF, most of which evaluate
the quality of the predictions [see, for example, ZarnoWli285) and Braun and Zarnowitz (1993)]. In this section

we describe how we use the dispersion of forecasts as a pooxlgef amount of uncertainty that agents have about

5The weights displayed in Figure 1 are those obtained fromirrapestimates, discussed later.
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the reference model described in Section 1. The SPF is aci@ate survey for this measurement because it provides
a long time series of data (the data begins in 1968) and itigeesvpredictions at many different horizons. Each
quarter participants are asked for predictions of the sewélariables for the previous quarter, this quarter, aed th
next four quarter$. The forecasters selected for the SPF come primarily frogeléinancial institutions. The series
we use from the SPF are forecasts of output (before 1992G¢ ttunsist of forecasts of GNP and after of GDP),
the output deflator (before 1992Q1 these consist of foreadthe GNP deflator and after of the GDP deflator), and

Corporate Profits After Taxes.

Some of our analysis requires predictions on variables hvthicnot directly appear in the SPF. For example, we
need forecasts of the real market return and the real risk+iate but the SPF only provides forecasts of the level
of nominal corporate profits and aggregate prices. AppeAdiiscusses how we use the Gordon Growth Model to
infer forecasts of real market returns from forecasts oporate profits and aggregate prices; and how we construct
forecasts of the real return on a nominally risk-free bondgiactual nominal returns and forecasts of aggregate

prices.

4.2. Uncertainty and disagreement

This section informally gives an overview of our procedune rheasuring uncertainty. Section 4.3 provides more
details. Recall from the discussion in Section 1 that theditmmal expected excess return of assets in the agents’
reference model is approximately. Agents are concerned, however, that the reference modebmmyisspecified
and think that the expected excess return could;ben, g; instead of)\;. The matrixr,n; represents how confident
agents are in their beliefs about the expected returns alalblaassets. Thél, 1) element ofiy,7; is a measure of
market uncertainty and the other elements in the first colafnpn, represent the covariance of the uncertainty in
other assets with market uncertainty. In this section weprsent an overview of a method for measuring the first

column of the matrix,7,.

Assume that agents believe that the true conditional eggdestcess stocks returns agproximatelynormally
distributed with mean\; and variance proportional tgn;.2 We suggest that solving the robust control problem
described in Section 1 is a reasonable strategy for agemtedthis first note that an approximate (1-p)% confidence

region for agents’ beliefs about the true (unknown) condal expected excess returmis+ ;. g; whereg; satisfies

1
919t < (E) Cp (24)

"The survey also includes annual and longer horizon forecastspite the fact that surveys of professional forecaster more reliable
than other surveys, Ghysels and Wright (2005) report thsgtamses in the SPF data appear to have some evidence oéstaleith respect
to the reference reporting date of the survey.

8Note that this is not a statement about the variance of exettss but rather a statement about what agents view aikéhg inean
squared error of their beliefs about the conditiomgbectedexcess returns.
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w is an unknown scalar, ar@), is thep% critical value from thex?(m) distribution, withm equal to the dimension

of gt.

As agents’ beliefs about the distribution Xf are only an approximation and the valuezois unknown they do
not know how to compute the correct distribution and theegoBayesian approach is not feasibl®ne reasonable
strategy for agents is to maximize their lifetime expectéttyunder “constrained” worst case values i@r The
constrained worst case values could be found by choosirapted) values fog; for all ¢t to minimize lifetime utility
while penalizing deviations from the reference model whih quadratic terms of the forgjg;. This is a reasonable
strategy because equation (24) tells us that @sncreases\; + 1, g; is statistically farther from the reference model.
The penalty imposed in the robust control problem present&sction 1 is an infinite horizon version gfg; with

¢, playing the role ofl /= at each daté®

We suggest that the uncertainty in the market return, wisithe(1, 1) element of the matrix;», and a measure
of agents’ beliefs about the mean-squared error of the ¢éxgenarket excess returky;, can be proxied by a
weighted variance of the predictions of the market retuatest by professional forecasters. The predictions of
forecasters are a reasonable measure of the universe &f tidataagents in the economy are exposed to. It is
reasonable that agents, at least partly, base their beliethe predictions of professional forecasters and assign
approximate probabilities that each forecast is correemvibrming their beliefé! A weighted variance across these
probabilities is a reasonable approximation for agentfiefseabout the mean-squared error)of Our measured
market uncertainty is just this weighted variance. If ateftasters are in agreement then agents have very littld doub
that the reference model is correct and market uncertasrggnall, hence the first element of the optimal endogenous
perturbationn; g; will also be small as agents only worry about models that arg glose to their reference model.
In contrast, if forecasters state very different forecsén agents are unsure that their reference model is correct
and the first element of the optimal endogenous perturbatignwill be large so that outcomes relatively far from

the reference model (as well as outcomes that are closef aomcern to agents.

To further illustrate the link between uncertainty and gisgment consider a situation where agents have very
little confidence in the prediction of the reference modeluitihe conditional mean of the market return. Subse-
quently, agents acquire the predictionsnoforecasters about the market return and use the forecaiianaheir

beliefs. Let the vectoy be the collection of all forecasts. Agents believe that axipnately

y=1lpu+v (25)

%If the conditional expected excess stocks returnsaxastlynormally distributed, according to agents’ beliefs, witban), and variance
wn:n; then one could argue that the optimal strategy would be tlikeca Bayesian, put a prior probability on the value\ef and maximize
expected utility taking into account parameter uncerjaint

Hansen, Sargent, Turmuhambetova, and Williams (2006ysssthe formal link between penalized robust controls jemisland prob-
lems in which the perturbations are constrained to be closa¢ference model.

Hn our formulation, there is a separation between forecasied agents. Agents are all alike and assign the same apgtexprobabilities
while forecasters are heterogeneous.
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wherey is the true mean of the market retulinis an dimensional vector of ones,is a normally distributed vector
with mean zero and covariance matixR. Assume agents know perfectly but have no prior information about
the value of2.1? They estimate: ando? from the predictions of forecasters using maximum likeditioneglecting
any prior information they might have aboutando?. Maximum likelihood estimates are a weighted mean and a
weighted variance

_ 1
i=(1'RM) VR Yy 6% = —(y—1p) R (y - 1j1) (26)
of forecasts. The value @f /n can be taken to be an approximation of the amount of unceytafragents:3

As described in the next section, we will use the Beta distidin to determine the weights used to estimate
The Beta distribution is used because it is a convenientllefiinctional form that can approximate a wide range of
different weighting schemes. We will take estimatesdfo be approximations to the amount of market uncertainty,
M. If forecast data was plentiful and if we understood the meismas by which agents form expectations, an
appealing research strategy would be to fully specify anidnese a structural model of how agents form beliefs
about uncertainty. However, this is not feasible becauseetis not enough data to estimate the many unknown
parameters in such a structural model. Such a structurakhwauld also have to deal with many forecasters

entering, leaving and sometimes returning to the sample.

While the above may be a plausible behavioral descriptidmoaf agents compute uncertainty one may wonder
whether it is optimal? In particular, is the uncertainty difly rational agent necessarily linked to disagreement?
The answer depends crucially on how beliefs, informatiaon] models are distributed among forecasters. In Ap-
pendix B we describe an environment in which there is a diiekt In this environment, uncertainty is always
proportional to disagreement and it is reasonable to iévas equaling a time-invariant constant times uncertainty.
Although the environment we describe makes reasonablengsisuns, in reality uncertainty probably is not always
proportional to disagreement. To the extent disagreenmrbaimates the amount of uncertainty in the economy
the approach taken in this paper is reasonable. In this papeefer toM; as uncertainty but it is important to

remember that it is at best approximately proportional &éamount of uncertainty in the econorfy.

How should the other elements of the first columnngf;, be measured? The other elements represent the
covariance of the uncertainty in other assets with marke¢uainty. Data on the covariance of disagreement across
stocks is difficult to obtain. Consequently we devise a mgfbocomputing the other elements of the first column of

nen, without actually observing agents’ beliefs about otheclsto The method exploits the fact the model in Section

21t is important to emphasize that this is only an approxiomafirom the point of view of agents. The vectomay not be normally
distributed and agents might not know the valugigberfectly.

BWhen computing uncertainty in later sections we do not @itigl the number of forecasters,because the number of forecasters agents
pay attention to is likely different from the number of foasters in the SPF.

¥In an ideal world, we would not only have mean forecasts acammlysts for each stock, but we would also have some measure
dispersion of each forecasters’ beliefs about the meanhaaraand Harvey (2003), using survey data of CFOs about thectegb risk
premium, are able to obtain a distribution of beliefs forteeividual respondent. In the future, work along the liné&raham and Harvey
(2003) may eventually yield better measures of uncertainty
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1 entails that covariance of the uncertainty in any assédt thié market should affect expected returns. Section 6

describes the details.

Our method of measuring uncertainty, does not attempt tatifgeg; directly with data. Instead, as sketched
above, we measure the first columngf; and let the model described in Section 1 determine the emdogevorst

case, summarized hy, that agents worry about.

4.3. A flexible functional form for uncertainty

We use a parsimonious flexible functional form for measutingertainty as we have very little information about
the actual mechanisms by which agents compute uncertaithiyce, we opt for a reduced form approximation
rather than a fully specified structural approach which igassible to implement with the data and information we

have at our disposal.

To measure uncertainty the issues are different from theessgaced in measuring risk, yet the key is still par-
simony. Or challenge is to summary the plentiful predictiah professional forecasters to reflect the fundamental
uncertainty in the economy. Our approach makes extenswefufiexible functional forms similar to those sug-
gested in a time series volatility prediction context by &dig, Santa-Clara, and Valkanov (2005). In particular, we

emphasize the use of a symmetric beta distribution to wéabtasts.

To capture uncertainty we need to apply weights crosses®ity across different forecasts. The Beta specifica-
tion is suitable to tightly parameterize the distributidrfarecasts and helps determine which part of the distriputi
of predictions matter for asset pricing. The Beta weightobeme adapts easily to a cross-sectional application
application among forecasters because settirgy (and hence requiring an even smaller set of parametersisyiel

various bell-shaped weighting schemes.

To construct the weights we proceed as follows: we pick onesecall itz, and rank the forecasts each period
of = from low to high. (For us: will usually be forecasts of the market return.) The weightlzeith lowest forecast
is
R O ) ke

S (1)

wir (V)

where f; forecasts are available at tirn@ndv is a parameter. This is the discretized Beta distributiostdieed in
section 3 withae = v, x = v, a = 0 andd = f; + 1. Instead of letting the first power parameter equal to one (as
when we computed conditional volatility), and letting trecsnd power parameter determine the decay pattern,

we set both power parameters of the Beta distribution eguedd¢h other and estimate the single common parameter
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as a free parametet This specification forces the weights to be symméftid-he disagreement or uncertainty is

then measured by a Beta-weighted variance of forecasts of

2

ft fi
ung (v) = Z wit(V) | Tig1ye — Z Wit (V)T gt | - (27)
i=1 =1

The uncertainty component is thus constructed as a weightéthce of predictions on a single financial/macroecoromi

variable where the weights are determined by a discretiztd @istribution.

In Section 5 we estimate from quarterly daily on excess market returns and in Sediare estimates using

only information from the cross-section.

4.4. An example of flexible weights

Ghysels, Santa-Clara, and Valkanov (2006a) and Ghysalko Sand Valkanov (2006b) give detailed discussions of
the advantages of using flexible functional forms for captyvolatility. Here we give a brief example that illustrate

one benefit of using flexible functional forms for computirigss-sectional variances.

A big problem we face when estimating cross-sectional waga is that a few outlying observations can have
a large effect on estimates. Although we believe most psafeal forecasters state reasonable forecasts most of
the time, there always is some chance there will be extremeedsts which could introduce large amounts of noise
into our estimates of variances. The extreme forecastdaoedur because forecasters may occasionally make
mistakes and sometimes base their forecasts on incompleteomeous information. We would like a measure of

the cross-sectional variance that only includes infornoeddasts and ignores extreme forecasts.

Consider the following example. Let there be 30 informeedasters. Assume in the population of informed
forecasts, each forecast is distributed normal with me@8 &nd variance 0.00010. If we randomly generate 30
forecasts from this distribution and take the sample vasame would usually get a number close to 0.00010. For
example, from one set of 30 draws, we found the estimated-@®stional variance to be 0.0009. Now what if in
addition to these 30 informed forecasts there was onedmnatiforecaster who believes that the excess returniwas
We will examine what happens to the estimated cross-sedti@miance when the data consists of the 30 randomly
generated forecasts from the informed population and tleeextreme forecast. If the extreme forecast is close
to 0.02 then it will not have a large effect on our estimatedaveces. For example for the same set of 30 draws
discussed above, if = 0.05 then the estimated cross-sectional variance becdn®®811. In this case the one

extreme observation has a noticeable but not a large effect= 0.10 then the estimated cross-sectional variance

B53ee for instance the bottom plot in Figure 1 for an exampléefiteights.
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become).00029. In this case, one extreme caused the estimate of the cro$srse variance to increase by almost

three times. Ifr = 0.20 then the estimated cross-sectional variande(i8113 which is a 10 fold increase.

To deal with this problem we use the Beta weights describdtisnsection to compute weighted variances of
forecasts® These flexible weighting schemes can assign more or lesshimeigextreme forecasts. In the next
section we estimate the weights. Our estimates entail iigmdine extremes and placing all the weight on the center
of the distribution. The estimates entail that a forecast ef 0.20, in the example above, would have a very small
effect on the estimated cross-sectional sample weightédnez. The flexible weights we use may cause us to
underestimate the true cross-sectional variance sinoemiaid forecasts that are far from the median receive little
weight. For our purposes this does not matter because, ashliEsin the next section, in addition to estimating

parameters determining flexible weights, we will estimapaammeter that scales cross-sectional variances.

5. The empirical impact of risk and uncertainty on the market return

In this section, we estimate the amount of market risk ancketamcertainty in the economy and investigate the
relative importance of risk and uncertainty for the expéatearket return. The estimates allow us to construct an

index which measures the amount of uncertainty in the ecgnom

The risk-return trade-off has been the subject of much eogpiresearch. Most papers have used an ARCH-type
model, see e.g. French, Schwert, and Stambaugh (1987), i@irapd Hentschel (1992), Nelson (1991), Glosten,
Jagannathan, and Runkle (1993), Harvey (2001). Recenllyséls, Santa-Clara, and Valkanov (2005) suggested
estimating conditional volatility with MIDAS estimation ethods. The MIDAS estimator forecasts the conditional
variance with a weighted average of lagged daily squaredeior alternatively laggedemeanedquared returns)
using a flexible functional form to parameterize the weigeg to each lagged daily squared return (or lagged
squared demeaned return). Ghysels, Santa-Clara, and\galka005) estimate the coefficients of the conditional
variance process jointly with other parameters from theeetqu return equation with quasi-maximum likelihood
and show that a parsimonious weighting scheme with only rampeters works quite well. In this paper we will

also measure risk using the approach of Ghysels, Santa;@lad Valkanov (2005).

To measure uncertainty we face a different challenge. We Hata reflecting various predictions about future
variables that affect expected returns such as predictibtisee market return, corporate profits, etc. Our approach
summarizes the cross-sectional variation among forasasith a parametric specification that allows us to compute
a measure of uncertainty in the economy. We proxy for theritirtion of uncertainty to the excess return with,

O M,, wheref is a time-invariant constant and; measures the disagreement among forecasters about théngrow

8A formal statistical argument for computing weighted vades can be made. For example in the behavioral model deddritSection
4.2, itis optimal to measure uncertainty with a weightedarare.
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rate of a single variable. We focus on measurivig with the disagreement about (1) the market return, (2) real

output growth, and (3) real corporate profits growth.

We consider again a version of the decomposition suggesteection 1
Ei(ret1) = b+ Vi + 0M, (28)

where we also include a constant tebneven though according to the reference model this term dhmeilzero.
The constant is added to allow for the possibility that tHenence model is misspecified. Including a constant also
guarantees that the empirical regressions have well-behasiduals and as discussed later, testing the stdtistica
significance ofb can also be used as model validation test. We assume thaethextess returns are normally
distributed with time-varying volatility (the assumptiarfi normality is made only for the purpose of estimation,
yielding a quasi-MLE setting):

Tet+1 ~ N [b+ Vi + 0M, Vi) . (29)

As discussed in Sections 3 and 4 we measure Vigkyith o%vol;(w) and uncertainty);, with unc (v). To estimate

the parameter, 7, 6, w, andr, we maximize the (quasi-)likelihood of quarterly excessimes based on:
Tet41 ~ N [b+ 7vol;(w) + 6 ung,(v), o?vol,(w)] (30)

wherer = yo?.

It is important to remember that the agents inside our moaeivarried that the reference model is false and
if their worries are justified then our empirical regressi@re misspecified as well. The reference model may be
misspecified because we have ignored the hedging compondréxaess returns may not really be conditionally
normally distributed. In addition to including the condtamve take into account the possibility that (29) is misspec-
ified in several other ways. We report quasi-maximum lilkedith standard errors. We include additional constant
terms [not present in Ghysels, Santa-Clara, and Valkan@95g that potentially could pick up some aspects of
model misspecification if;. Finally, we estimate an alternative specification in whigtarterly volatility partly

depends on the amount of uncertainty in the economy.

5.1. Results for risk in the absence of uncertainty

The combination of quarterly returns and daily returnsdgethe MIDAS setup. Using this setup, Ghysels, Santa-
Clara, and Valkanov (2005) find there is a significant positi#lation between risk and return in the stock market.

This finding is robust to asymmetric specifications of théarare process, and to controlling for variables associated

17See Appendix A for a discussion of how we construct foredastthese variables.
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with the business cycle. It also holds in many subsampleger@hese empirical findings it is a good benchmark
reduced form regression to introduce uncertainty. GhySsasata-Clara, and Valkanov (2005) focused on monthly
returns whereas we devote our attention to quarterly sagtequencies because the professional forecast data
used to construct our measure of uncertaiity, is only available quarterly. We expect, however, that theigoon

the quarterly sampling frequency weakens empirical evidenf the risk-return trade-off, and the results reported

below confirm this.

In this section we investigate whether there is a risk-rettade-off in our data set in the absence of uncertainty.
Quasi-likelihood estimates of the parameters in equa®) Which determine risk are displayed in the first three
estimations in Table Il. We see that according to a t-testadlilctlihood ratio test, estimates ofare not significant,
though estimates dbg w are extremely significant. The results suggest that, in ata det, although there is
no evidence of a risk-return trade-off, MIDAS does provideetter measure of conditional volatility than current

realized volatility.

Further evidence that MIDAS captures volatility can be jted by examining the relationship between;vol

and realized volatility. We define realized volatility as

2

qt 1 qt
_ E qt—1i,qt—i+1 E : qt—3,qt—j+1
Qt =qt Tet - q_ Tet +
=1 tj=1

qt—1 1 qt 1 qt
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2Qt Tet - Tet Tet - Tet (31)
i=1 qt j=1 at j=1

whereg, is the number of days in a quartet® Table 1l shows that future realized volatility)¢. 1) is more highly
correlated with vagl than it is with current realized volatility(#;). This confirms that vgldoes provide a better

measure of conditional volatility than current realizediatity.

Our implementation differs from the implementation in Gélgs Santa-Clara, and Valkanov (2005) in that in
this paper we estimaie?, rather than fixing it at one. If the reference model is colyespecified therns? should
equal one since we designed v be the conditional variance of the market and our modes Hagtyvol, should
be the conditional mean of the market excess return. Howibe reference model is misspecified thehneed
not be equal to one. We find estimatessdfare significantly greater than one in models that perfornrigdmut
are close to one in models that perform well. This provideth@r evidence that the poorly performing models are
misspecified. Another diagnostic test of the model is if 8aisstime series alpha, denotedbda the table, is close
to zero. We find Jensen’s alpha is not significantly diffefemn zero in Table Il, supporting the reference model.

The standard errors are computed with QMLE robust standandse

BNote thatQ; is similar to vol except the weights are uniform apddoes not necessary equalSinceQ: is realized volatility within a
quarter,g: corresponds to the number of days in a quarter.
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Our results differ from Ghysels, Santa-Clara, and Valkg20@5). The bulk of their analysis focuses on monthly
horizons though they do provide quarterly regressions éeti 964 and 2000 of a specification similar to equation
(30), without uncertainty, and find a significant and positielation between risk and return. The most important
reasons our results differ are that we consider a differiemd period (1969-2003) and our definition of a quarter
refers to a calendar quarter (matching forecasts) whebreasgldfinition of quarter in Ghysels, Santa-Clara, and

Valkanov (2005) corresponds to a fixed number of trading eldyish are not directly related to calendar quartérs.

5.2. Results for risk and uncertainty

In this section investigate if there is an uncertainty-nmettrade-off. Quasi-likelihood estimates of the paranseter
appearing in equation (30) are displayed in Table 1l when isha Beta-weighted variance of market return fore-
casts. In the fourth regression we include uncertainty lrasure uncertainty with an unweighted (or flat weighted)
variance which is obtained by settihgz v = 0. We see in this case the estimatedag not significant and there is
very little improvement to the log likelihood without unt&inty. Thus, including uncertainty with flat weights does
not improve much upon specifications in which uncertaintiefisout. In the 5th, 6th and 7th estimations we esti-
mated andlog v along with other parameters. In these regressiongiarcnon-degenerate Beta-weighted variance.
Estimates of) andlog v are significant (by likelihood ratio tests and t-tests) drefé is a large improvement to the
log-likelihood. Including Beta-weighted uncertainty ificantly improves the fit. It is also interesting to notettha
estimates ofr? are not significantly different from one and estimates ofdbestan® are not significantly different

from zero. Both of these results confirm the predictions efréference model.

Further informal evidence for a uncertainty-return tradfeis provided in Table 11l — in particular the correlation
between our estimated measure of uncertainty in the lastgsign and the excess return is 0.28. In comparison the
correlation of our measure of risk with the excess returmlg 6.15. The visual evidence in the joint plots in Figure
2 yield additional insights into the nature of the relatioipsbetween uncertainty and excess returns. We see that
when uncertainty is high, excess returns also tend to be Kifiten uncertainty is low however there is not a strong

relationship between uncertainty and excess returns.

In Table IV we consider the uncertainty-return trade-offamhuncertainty is measured by the Beta-weighted
variance in variables other than the market return foreca®ne could make an argument that the dispersion of
alternative variables should affect uncertainty and thuess returns. For example uncertainty in future output

could reflect underlying structural uncertainty in the emog that perhaps should be priced. In Panel A we consider

%There are several other differences in our implementatiictndo not have a large effect on our results. As explaindéeeave estimate
o2 (rather than set it equal to one), allow for serial correfatin daily returns in equation (23) and subtract sample mé@aequation (23).
[Some of the results in Ghysels, Santa-Clara, and ValkaB00%) subtracted sample means.] We also use the Beta weidyasated by
Ghysels, Santa-Clara, and Valkanov (2006a) and Ghyselko Sind Valkanov (2006b) rather than the normal weights@X lags) used by
Ghysels, Santa-Clara, and Valkanov (2005).
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the uncertainty in constructed real output growth forecastd in Panel B we consider the uncertainty in growth rate
of corporate profits at many different horizons. We see thatincertainty in real output forecasts does not have a
significant effect on excess returns. At long horizons @haed four) the uncertainty in corporate profits forecasts
does have a significant effect but at shorter horizons (odetwan) it has essentially no effect. The Jensen alpha
time series estimate is also significant for the short horizhbile it is insignificant with long horizon corporate profit
model uncertainty measures. Since our market return feteease constructed from a combination of short term and
long term corporate profits forecasts, the results in Pargldgest that the underlying driving force for our earlier

results comes from long term corporate profits forecastsahdhort term forecasts.

We now briefly consider some alternative specifications\vestigate if our results crucially depend on measur-
ing uncertainty with a symmetric beta distribution. In Fakef Table V we measure uncertainty with a symmetric

normal weighted variance in which the weights are

(i fe1)?
oo (A522)
wit(g) = 54102
Z;tzl exXp (7_(3_527) )

where¢ is a parameter. The results in Panel A are very similar toakalts in specifications six and seven of Table

(32)

Il. The coefficients on uncertainty are virtually identicdlhe estimated normal weights place positive weights on
the same parts the distribution of forecasts that the Beighitsedo. There is strong evidence for a uncertainty-return
trade-off even with a different specification of the crosst®n weights. The estimates of Jensen’s alpha also remain

insignificant in all cases.

In Panel B of Table V we measure uncertainty with weights #rat not restricted to being symmetric. We
consider non-symmetric weights because forecasters imaylet significantly different beliefs than agents. The bias
of forecasters might lead agents to be concerned about tteztaimty in pessimistic (or alternatively optimistic)

forecasts. To allow for the possibility of bias, we use Betglits in which the weights are

@ (fe+1 -t

wit (o, x) = - -
zt( X) zglzlja_l(ft +1— j)x—l

(33)

wherea andy are free parameters. This is the discretized Beta disimibutescribed in Section 3 witlh = 0 and

d = fi + 1. Allowing the weights to be non-symmetric lets the agentstpwed uncertainty depend on any part of
the distribution of forecasts. If agents pay more attentimthe variance in worse case forecasts theshould be
greater thar likewise if agents focus on rosy forecasts theshould be less than. We find in Table V that the
estimates ot andy are not significantly different from each other. Since thineste value ofy is slightly greater

than «, the estimated weights slightly emphasize the variance s$ipastic forecasts over optimistic forecasts,

23



however there is not compelling evidence to suggest thassgormetric weights more precisely measure perceived

uncertainty than symmetric weight$.

In Panel C of Table V we measure uncertainty by the Beta-viethariance of constructed market return
forecasts when the long term horizon is three periods rdlttaer four periods. Setting the long term horizon at three
does better than setting the long term horizon at féuf.he Gordon growth model requires a long term horizon
forecast and it is most natural to let the long term horizorfdug because that is the longest horizon for which
data is plentiful. It is slightly puzzling that a horizon dfree performs better empirically than a horizon of four.
Perhaps a horizon of four is too far ahead for forecastersdorately report their beliefs. In this paper we choose to
emphasize a horizon of four rather than three but it is ingsdinto note that our results would become stronger if we
used a horizon of three. In particular, there is much stroegelence for a uncertainty trade-off when the long term
horizon is three rather than four. Finally, it is also worthting again that the estimates of Jensen’s alpha remain

insignificant in all cases.

In Table VI we display results for several different typedigéd weighting schemes. In Panel A we fix, rather
than estimatdpg v at many different values. We see that uncertainty has afgigni effect on market excess returns
whenlog v is not small. In Panel B we measure uncertainty with a triett&ariance where the lowestpercent
of forecasts and the highesipercent of forecasts are discarded each quarter. We seasthatg ag is not small,
uncertainty has a significant effect on market excess returm Panel C we Winsorize forecasts each quarter by
replacing the lowest percent of forecasts and the highggtercent of forecasts with lowest and highest forecasts in
the middlel — 2p percent of forecasts. We again see that as longssot small, uncertainty has a significant effect
on market excess returd@$.We also see that the likelihoods using the best settingsnith truncated variances or
Winsoration are virtually identical to the likelihoods Wwithe optimal setting ofog v. Because less parameters are
being estimated the standard errors for the uncertaintyrréradeoff can appear to be much smaller whgn or p
is fixed. One advantage of our weighting scheme is that ialla researcher to estimate the weights and it provides
a truer picture of standard errors. We conclude that oudtseate robust to weighting/truncation/Winsorization as

long as extreme forecasts are down-weighted, removed @cesp

To allow for additional ways in which the reference modellddue misspecified we estimate a specification in
which

Tetr1 ~ N [b + 7voly(w) + 6 ung(v), o2vol,(w) + Jiunq(y)] (34)

20This is not a test of whether or not agents are worried aboustvease outcomes. According to our approach agents choeseorst
case based on their perceived amount of uncertainty [sestiequ9)]. The issue in this paragraph is simply when commguperceived
uncertainty should the weights across forecasts be synmeetshould they place more weight on the low or high end ofdiséribution.

ZlGiven our results in Panel B of Table IV this is perhaps nopssing. Corporate profit growth forecasts at a horizon cé¢hare more
related to excess returns than corporate profit growth &stsat a horizon of three.

2Whenlog v is extremely large ang is close to 50, the significance can start to break down becanly the very middle part of the
distribution of forecasts are considered. For example nwyhis 49 only the middle two percent of forecasts are used to coengncertainty.
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wheres, > 0 ando, > 0. The termo2unc(v) in the variance of;, 1 embodies the notion that if the reference
model is false then at the quarterly frequency the expecteelss return should have a higher variance than is found
in previous daily returns and the variance should dependemtagnitude of un¢v). In Table VII we show that
estimates ofr, are not statistically significant. Moreover the mean ofreates ofs2unc (v) is typically at least

an order of magnitude smaller than the mean of estimateg\wafl;(w) and sometimes much smaller. In Panel A,
we estimater,,, log v, andf simultaneously which, because of singularities, leadsgh ktandard errors for most
parameters, including. In Panel B, we fix the value dbg v at several different values and show thad significant,
providedlog v is not small, andr,, is never significant. In all of the specifications allowiag to be greater than
zero has almost no effect on the likelihood. We concludeithateasonable to assume thatis close to zero and

in the rest of the paper we keep fixed exactly at zero.

One possible concern about our empirical measure of modmrtainty is the implementation of a modified
Gordon growth model to construct aggregate forecasts okehaeturns. Given that the first term of the model
employs forecasted aggregate corporate profits scaled bgeav@riable, the critique exists that prices are driving
our results. However this is not the case. Panel B of Tablehts that the underlying driving force for our results
is the second term, disagreement in long term forecastofifgrwhich is not scaled by a price variable. In line four
we see that disagreement in long term forecasts of profits dearly as well as disagreement about our constructed
market return. Moreover, one can show that the first term efntilodel is quantitatively small. This makes sense
because there is more disagreement about long term praitsstiort term profits. The first term does have some

predictive power and we include it because our theoreticadehsays it should be included.

Finally, as an additional robustness check, we break oupkaimto four subsamples of equal length and allow
for time-varying aversion to uncertainty. Because thisoiditices several new parameters we do not also consider a
risk-return tradeoff. We estimate differefis for each subsample simultaneously withr?, log w, andlog v. The

later parameters are required to have the same value thooutite sample. In particular we estimate

Tetr1~ N [b+ Z 01 14 ) ung(v), JQVOIt(w)
ke
where

Q = {1968:4-1977:2 1977:3-1986:1 1986:2-1994:4 1995:1-2003:3 (35)

and where the indicator functidh ;, is one ift € k and zero otherwise. The results in Table VIII show that est&s

of 0, are positive in all four subperiods and significantly diffier from zero in three of the four subperiods. When
we allow for time-varying aversion to uncertainty, the mase in the likelihood, as compared to the likelihoods
Table Il, is small. We can not reject the hypothesis thatfathed’s are equal and aversion to uncertainty is constant

over time.
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5.3. Anindex of uncertainty

This section discusses a few of the empirical propertiesstifmated uncertainty. We let the index of uncertainty
be the uncertainty series, ut5.346), estimated in the last regression in Table Il. We plot the xnideFigure 3
along with plots of excess returns and volatility. We prevebme simple statistics in Table Il and estimates of

autoregressions in Table IX. Table Il also presents cati@is of ung with the Fama-French factors.

It is well known that volatility is highly persistent. In owtata, Table IX shows that quarterly volatility is
positively and significantly related to its first three latigt is three quarters. Uncertainty is also persistent but n

as much as volatility. Uncertainty is positively and sigrafitly related to its first two lags, or half a year.

Panel A of Table IX shows there is not a significant relatigmdietween uncertainty and lagged volatility. We
see from Table Ill, there is very little contemporaneousealation between uncertainty and volatility. This suggest
that the actual conditional variance (past volatility) lsasne, but not much, impact on the beliefs of agents about

uncertainty.

Uncertainty is not highly correlated with future volaglitPast uncertainty does not predict future volatility and
vice versa. Hence, volatility and uncertainty appear aslyweasthogonal processes. From Table Il we see that
unweighted uncertainty is slightly more related to futuodatility than the optimally weighted uncertainty. Maybe
the fringes of forecasts matter for volatility (i.e. maybhey are noise traders) but not for expected returns. However

this effect is not strong.

In Figure 4 we graph uncertainty with several different égefWe see that uncertainty is often large just be-
fore the onset and just before the end of a recession. Whenagertainty has been unusually large, the market
excess return in the following quarter has also been larg®. dF the lowest readings of uncertainty occurred when

incumbent presidents were re-elected (Nixon in 1972 anat@liin 1996).

6. Risk, uncertainty, and the cross-section of stocks

In the previous section, we showed that market uncertairtigars for market returns. In this section, we investigate
whether market risk and uncertainty matter for the crosti@eby (1) studying the returns on portfolios with varying
degrees of exposure to risk and uncertainty and (2) tedtegbsure to risk and uncertainty can explain the returns

on many other often studied portfolios.

The model presented in Section 1 implies that the conditiexigected excess return of any asset

Eiriis1 = BokY Ve + Bur0 M, (36)
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where G, and G, are regression coefficients of the the risk in agseh market risk and of the uncertainty in
assett on market uncertaint§? In Section 5 we estimated equation (36) for the market exetas using flexible
functional forms for riskV; = o2vol,(w) and uncertainty/; = ung(v). In particular we estimated the nonlinear

regression

Tet+1 = b+ VOl (w) + OUNG (V) + €cr41 (37)

wherer = o2 and the conditional variance ef; ; is o2vol;(w). In most of this section we keép 7, 6, w andv
fixed at their optimal market estimatés= —0.012, 7 = 0.120, = 1453.191, & = 14.939 and> = 15.346 from
Section 5, though we do present some results in whietmdr are estimated entirely from the cross-section using

no information (directly) from the market.

Taking unconditional expected values of equation (36)dge@n expected return beta-formulation of our model

Erkt—i-l = ka)\v + Buk)\u

where the prices of risk and uncertainty are

Ao = E OM,. (39)

This formulation is straightforward but does not take ad&ga of the information abou,;, in the contemporaneous

correlation ofre;11 andry;. 1.

An alternative expected return beta-formulation whichleitp the contemporaneous correlation recovers
andg, from a time series regression9f;+1 on[r..+1 — b — fung(v)] andfung(v). To verify the alternative we

write equation (36) for assétas

Thit1 = BoTVOl(w) 4+ BurfunG(v) + €prs1 (40)

and decompose the error teen, 1 into two components:

€kt+1 = Pok€et+1 + Okt+1- (41)

ZWe make the assumption throughout this paper thatand 3., are constant over time. As noted earlier, this assumptiguliés
restrictions on the exogenous processes for the statenaudasset prices.
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The first component,;e..+1 depends on market noise and the second companent is idiosyncratic noise for
assetk which is uncorrelated with market noise, 1, market risk, and market uncertairtfy. The timet expected

values of both errors terms,.+1 andoy:. 1, are zero. Substituting (41) into (40) and rearranging eld

Thit1 = Buk [TVOl (W) + €cr1] + BurfUNG (V) + Opty1- (42)

Sinceoy:+1 is orthogonal to volw), e..+1, and ung(v) it follows that a population regression @f;.1 on [resr1—
b— ung(v)] anddung () will yield estimates of the coefficients,;, and 3,;.2°> When we run the regression we
also include a constant term, denotged We can think of this representation as a two factor model thighfactors

being a measure of market risk and a measure of market uimterta

In Section 6.1 we construct portfolios that are designedate tlarge and small values 8f;, and 5, and study
their returns. In Section 6.2 we use GMM to estimégg and3,,;, for 130 portfolios that have been studied in recent
research and investigate the prices of risk and uncertaintysection 6.3 we use GMM to estimate a stochastic
discount factor formulation of our model which allows us sy estimate market risk, market uncertainty, and

their impact on the cross-section of returns simultangousl

6.1. The return on uncertainty and risk portfolios

We regress individual stock returns {ntﬂ —b— éunq(ﬁ)] andéunq(ﬁ) to yield estimates of,, andg,; from
equation (42). In order to efficiently estimate the betas seeairolling sample regression method approach for each
firm in the sample. We require that firms have a minimum of 20rtgus of returns in order to have well-behaved
estimates. From the over 25,000 firms in the CRSP universeckatfourth quarter 1969 and fourth quarter 2003,
only 14,252 meet the requirements for rolling sample regoes. Rolling sample regressions are run for each firm
where at least 20 quarters of returns are available, antasts of3,,, andj,; are collected from each firm in each

quarter.

Portfolios of individual stocks are formed in two ways. Eiwse investigate portfolios sorted only on sensitivities
to uncertaintyéunct(ﬁ). In order to form portfolios, stocks are ranked each quarteomling to the coefficient,
on uncertainty. Stocks are then sorted into quintiles basethe exposure to uncertainty in each quarter. Within
each quintile, stocks are value-weighted relative to therfirms in the quintile, which are then cumulated to form
the portfolio return. Table X presents summary statisticstie five portfolios over the 121 quarters of the sample.

Average returns to portfolios sorted on sensitivities toartainty range from 1.7% to 3.6% per quarter on average.

%4The assumption that,, is constant over time allows us to make this decomposition.
Note that equation (37) guarantees that, 1 — b— 0unc ()] = 7 Vol; (w)+ €ci+1. AlSo note that Sinc€B,reci+1 + orir1) andeqy1
are orthogonal to un¢v), it follows thatg:+1 is orthogonal to ungv).
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Even though our standard errors for all of the portfolioslarge and the returns cannot be statistically distin-
guished due to our small sample size, it is still interestmipvestigate if there is any evidence that firms with large
exposure to uncertainty have higher returns. Excludingjthetile of stocks with the very lowest exposure to uncer-
tainty, stocks with a larger exposure to uncertainty hagédr returns. The returns on stocks with the most exposure
to uncertainty are especially large. Table X also providemrary statistics on the weights of each portfolio over
the time period relative to the CRSP universe. Because thplsacontains approximately 60% of the number of
stocks in the CRSP universe, the weights do not sum to 100%ifolas with extreme sensitivity to uncertainty
tend to be smaller as a fraction of the CRSP universe; howthedistributional characteristics show that there is

high variation in the weights of stocks within the portf@iover the sample.

We also form portfolios by sorting on sensitivities to risidauncertainty. Similar to the method described above,
we first rank stocks according 16, and form three portfolios. For each of these portfolios, entrank stocks
by G,x and sort into three portfolios. The resulting nine portislhave varying exposure to risk and uncertainty
and we examine summary statistics for these portfolios bierXl. Even though our standard errors for all of the
portfolios are again large and the returns cannot be $tatiigt distinguished due to our small sample size, it is
again interesting to investigate if there is any evideneg finms with large exposure to risk and uncertainty have
higher returns. Regardless of the level of risk exposueatlerage returns on portfolios are increasing in exposure
to uncertainty with one exception: medium uncertainty, hisk stocks have a higher return than high uncertainty,
low risk stocks. Regardless of the level of uncertainty expe, the average returns on portfolios are increasing
in exposure to risk with two exceptions: medium risk stocksehlower returns that low risk stocks when the
stocks have either a low or medium exposure to uncertaingyinAable X, a summary of portfolio weights is also
included. Stocks with low exposure of risk are generallgdaithan stocks with high exposure to risk, while stocks
with moderate uncertainty exposure tend to be larger oragecthan stocks in either the low or high uncertainty

portfolios.

6.2. Estimating an expected return-beta representation

In this section we use GMM to estimate an expected-retura tegresentation and investigate if risk and uncertainty
can help explain the returns on 130 portfolios which haventibe subject of many previous studies. The 130 port-
folios include 25 portfolios sorted on size and book to mirké portfolios sorted on size and short-term reversal,
25 portfolios sorted on size and momentum, 25 portfoliosesbon size and long-term reversal, 10 portfolios sorted
on earnings to price, 10 portfolios sorted on dividend teagrand 10 portfolios sorted on cashflow to price. Data
for all the portfolios was obtained from Kenneth French'dwgée. Real excess returns were formed by subtracting

the nominal risk-free rate and adjusting for inflation witle {CP[26

Z8summary statistics are available upon request.
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Our two factor risk and uncertainty model implies that th@exted excess return on any portfoliBry:, 1,

should be linearly related

Ergie1 = Bok Ao + BukAu + e (43)

to sensitivities to market risk, . and market uncertaintg,, where., is a pricing error for assét which according
to our model should be zero. Hefg, andg3,; are coefficients in a time-series regressiom;@f ; on a constant,

market risk and market uncertainty:

Trta1 = ag + Bor Vi + Bur My + opes1 (44)
where

Vi = #voly (&) 4 €era1

M, = 6ung(p)

and where the hats denote variables fixed at market estimaevestigate if the price of risk,, and the price

of uncertainty,\,,, are significant; and if the pricing errors,, for all assets are jointly close to zero.

We estimate the cross-sectional relationships in equ#étiB8hand the time-series regressions in equation (44)

simultaneously using GMM. For each askate have the moment conditions

Priv1 — ak — Bok Vi — Buk M
<7"kt+1 —ag — BokVi — ﬁukMt> Vi
<7”kt+1 —ay, — B Vi — 5ukMt> M,

Tkt+1 — 5vk)\v - Buk)\u

=0. (45)

The moment conditions for all assets combined yield a sy$ternwhich we can estimate the scalars and )\,
(which do not vary across assets) as welkasg,;, and 3, (which vary across assets). When therea@ssets

there areln moment conditions an(Bn + 2) parameters.

The GMM estimation of our joint system involves settif8 + 2) linear combinations of the sample moments
equal to zero. More formally GMM sets

argr =0

wherear is a(3n + 2) by 4n matrix andgr is a4n by 1 vector of sample means corresponding to the moment
conditions in equation (45) for all assets. Similar to Cacler (2005) we specify the matrixy so that GMM
estimates of the time series parameters (.., and (.. for all assets) are identical to their least squares estsnat

and GMM estimates of the cross-sectional parameters (diarse,, and\,) are identical to their GLS estimates.
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Unlike Cochrane (2005) we use the covariance matrix of alétssas the weighting matrix for the GLS estimates
of \, and\, rather than the covariance matrix of the residuals fromithe series regressioR$.Even though our
GMM estimates are identical to least squares and GLS eg#nastimating our system with GMM is convenient
because GMM allows us to easily produce asymptotic staretaods for), and )\, which take into account that the

time-series and cross-sectional regressions are estirsiaeltaneous|y?

We find in Table Xll that the price of risk is negative and nagrsficant. While our sample has a quarterly
frequency, this result is in line with the analysis of Ang,dfick, Xing, and Zhang (2006) who examine the pricing
of aggregate volatility risk in a monthly cross-sectionablysis of stock returns. In contrast to the price of risk,
the price of uncertainty is relatively large and positive. estimating the prices of risk and uncertainty we have
used standard reduced form econometric techniques evegittaur model has predictions for these values which
were displayed in equations (38) and (39). The price of uao#y, \,, should be the unconditional expectation
of fung (») and the price of risk should be the unconditional expeatatibrvol, (). We see that in model one of
Table XlI the estimate ok, 0.027, is very close to the sample mear@mﬁq(ﬁ) which is 0.025. The standard error
of the estimate oA, tell us that we can not reject its value being 0.025, configrarprediction of our model. Our

estimate of the price of risk,, -0.011, is also statistically close to the sample meai#vof; () which is 0.0012°

In Table XII we also present results for the CAPM and the F&remch factors (including factors for momentum,
short-term reversal, and long-term reversal). We use GMBktonate various versions of the joint time-series and
cross-sectional system where in some specification wedadhe market excess return, the HML, the SMB, the
UMD, the STR (Short-Term Reversal), and the LTR (Long-Terewdtsal) factors, in addition to risk and uncertainty
factors3® The results for specification six in Table XII shows that irdihg additional factors does not affect
estimates of the price of uncertainty or its standard efirbe prices of all of the Fama-French factors are signifigantl
positive except for the price of SMB which is insignificanthggative. In specifications five, six and seven the
estimates of the standard errors of the price of uncertairgysmaller than estimates of the standard errors for the

price of any other factor and estimates of its t-statistreslarger than the estimates for any other factor.

In specifications two and seven we measure risk ¥l () rather than withr.;+1 — b — fung,(2)] and find

that the price of risk is not significantly altered.

One way to evaluate the performance of models is to look aingrierrors. The J-stats presented in Table XII
provide a measure of how big the pricing errors are for allsskds and the corresponding P-values tell us how likely

it is to see pricing errors at least this large. Our resultsstiat with probability one we should see pricing errors

2'In our approach the GLS weighting matrix does not depend etitthe-series estimates and thus is the same regardlessabf fabtors
are included, though using the weighting matrix advocate@dachrane (2005) would not lead to a substantial changerinesuilts.

28To compute the spectral density matrix at frequency zer@yangredient of GMM standard errors, we use the method ofdyeand
West (1987) with eight lags.

*Note that the sample mean ol (&) is equal to the sample mean [of;+1 — b — func, ()] .

%0The data for these factors were obtained from Kenneth Fiemab page. The factors were adjusted for inflation with tiRs.C
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as large as observed for all our models. However given tige laumber of moment conditions and the fact that
J-stats require the pseudo-inversion of a term which ir&the spectral density matri&, the results for the J-stats
should be viewed with caution. Estimates of standard eobpsrameters do not require an inversionScéind can

be viewed as being more reliabte.

One drawback of the approach taken in this section is thabadth the standard errors reported in Tables XIi
are GMM standard errors for joint time-series and cros$iesgal system that take into account that the betas are
estimated, they do not take into account that the nonlinaearpeterss andv were pre-estimated from the market.
The next section will study the same 130 portfolios with ak#stic discount factor representation that allows us
to jointly estimate the betas, the lambdas, and the nonlip@eametersy andr using information from the cross-

section.

6.3. Estimating a stochastic discount factor represeatati

In this section we estimate a stochastic discount factaesgmtation of our model. We form the stochastic discount
factor

Sttt = a+ sy [FVOl (w)] + 54 [éunq(y)]

and use the implication of our model that

Esipirji =1

for any asset return;;; 1, at any date, to estimatg s,, ands, as well asv and v.32 As discussed by Cochrane
(2005) estimates of, ands,, are directly related to estimates ®f and \,, in the expected return beta-formulation

of our model, equation (43), but answer the question whetbleand and uncertainty can help explain the return on
assets given the other factors rather than the questiorisérarnd uncertainty priced. For us the stochastic discount
factor representation is especially convenient becausedtsily amendable to estimating the nonlinear parameters
andv from the cross-section. For asset returns, we use data es ggturns rather than excess returns and emphasize
the measurévol, (w) of risk though we present results for both of our specificatiof risk33 We discuss results for

the fixed weighting matrix proposed by Hansen and Jaganmgf@97) [hereafter referred to as the HJ weighting
matrix] and the optimal GMM weighting matrix discussed byndan (1982). For comparison purposes we also

study specifications of the stochastic discount factor eliee Fama-French factors enter linearly.

31When computing the spectral density matrix we did not sebsample means. Asymptotically, subtracting sample mehosld not
matter if our models are correct. However in finite sample®és matter and would drastically change our reportedts-aital P-values. It
would however have no noticeable effect on our estimatetaofisrd errors.

32The parameters andé are fixed at* andé throughout to achieve a convenient scaling of risk and tairety. This has no effect on the
fit of the model.

*We emphasizervol:(w) as a measure of risk because it is not possible to estimaiad v together when risk is measured with
[Fet+1 — b — Qunc(v)] .
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In Table XIIl we estimate the contributions of risk and uriagtty to the stochastic discount factor when at-
tempting to explain the returns on the same 130 portfolindist in Section 6.2. Estimates of the contribution of
uncertainty,s,,, are fairly constant across specifications and independeahe aveighting matrix employed. For the
HJ weighting matrix estimates ef, are significant: (1) in the two factor model both whers estimated and when
it is fixed, and (2) in the presence of the Fama-French fagtbeny is fixed but not whemw is re-estimated. For the
optimal weighting matrix, estimates ef, are significant in all specifications regardless of whichdexare present

or if v is re-estimated.

When we re-estimate the nonlinear parametedy, we find that estimates are similar to the market estimates
presented in Section 5. Estimated@f v range from2.230 to 2.717 which are very close to its market estimate of
2.731. Estimates ofog w range from4.116 to 4.491 which, given its large standard errors, are statisticdlge to
its market estimate df.704. This provides additional confirming evidence for our estedaveighting scheme that
emphasizes the dispersion of non-extreme forecasts andIib&S weighting scheme which places more weight

on recent daily volatility.

In Panel A of Table XIlIl we provide results for the Hansenalagathan distance (hereafter the HJ-dist) which
measures how far a candidate stochastic discount factmnsd stochastic discount factor which can uncondition-
ally exactly price all assets. We find that all models perf@morly on this criteria and the standard errors of the
HJ-dist indicate that the performance of the models aresiimdjuishable. There is not a significant drop in the HJ-
dist when uncertainty is added to the Fama-French factoiseo€EAPM. The Fama-French factors and the CAPM
do not perform any better: there is not a significant drop eniJ-dist when the Fama-French factors are added to

the CAPM or, in results available upon request, when the ataskadded to a constant stochastic discount factor.

Given the large number of moment conditions used and theHatthe optimal weighting matrix requires the
inversion of the spectral density matrix the results foragp#émal weighting matrix should be viewed with caution.
The results for the HJ weighting matrix, including the Ht@ind the standard errors for parameters, do not require

inverting S and are not as problematic.

6.4. Summary

Uncertainty by no means provide a complete explanation efcthss-section of stocks but there is evidence that
uncertainty matters. In particular for portfolios oftendiid in the literature we find that: (1) estimates of thegoric
of uncertainty are very significant in all specifications sidered and are consistent with market estimates; (2) in the
two factor model, uncertainty significantly contributeghie stochastic discount factor for both the optimal weiggti
matrix and the HJ weighting matrix regardless of whethemibiglinear parameters are fixed or re-estimated; (3) in

the presence of the Fama-French factors, uncertaintyfisigmnily contributes to the stochastic discount factor when
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the optimal weighting matrix is used (regardless of whether nonlinear parameters are fixed or re-estimated)
and with the HJ weighting matrix, uncertainty significantigntributes to the stochastic discount factor when the
nonlinear parameters are fixed but not when they are re-a&iinand (4) estimates of the nonlinear parameter
are very significant and similar to its market estimate fahiibe optimal weighting matrix and the HJ weighting

matrix.

On the other hand, there is not a significant drop in the Hwlien uncertainty is added to the CAPM or
when uncertainty is added to the Fama-French factors. Tdl@lgms we face in the cross-section are similar to
the problems all models face in explaining the cross-sectimr example, when Fama-French factors are added to
the market return there is not a significant drop in the Hil-@gmilar negative results for asset pricing models are
abundant in the literature. Hansen and Jagannathan (1B6W&) that the CAPM and consumption based models
are not much of an improvement over a constant discountrfacwellen, Nagel, and Shanken (2006) show that
although many models perform well on the 25 portfolios sbde size and book to market the same models perform

poorly on other assets.

7. Conclusions

An important strand of recent research in finance conteratsuthcertainty, in addition to risk, should matter for
asset pricing. Uncertainty exists when agents are unsutteeaforrect probability law governing the mean market
return and thus demand a higher premium to hold the markatrend stocks whose uncertainty is correlated with
the uncertainty of the market. We derive equilibrium imations for the market excess return and the cross-section
of returns in the presence of uncertainty. Although undastais difficult to measure, we suggest a reasonable
proxy for the amount of uncertainty in the economy is the degsf disagreement of professional forecasters. In
contrast to prior literature, which has focused on disagere about individual stocks, our emphasis is on aggregate
measures of disagreement. In addition, we offer an alt@meakplanation for why disagreement is priced, namely

that economic agents interpret disagreement as modeltaimdgr

We propose a measure of uncertainty which is constructed) wsilexible weighting scheme that can accom-
modate assigning more or less weight to extreme forecasiise€limates of the optimal weights entail ignoring the
extremes and placing nearly all of the weight on the centehefdistribution. We find that uncertainty is empiri-
cally significantly related to market returns only when wmgveighting schemes are implemented. Flat weighted
measures of uncertainty are not highly correlated with tlzeket return and do not have a significant effect in

regressions.

Uncertainty seems to be different from risk and seems to hairéferent effect on returns than risk. Uncertainty

is highly correlated with the market excess return wheris&ss not. Uncertainty has a very weak correlation with
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risk and past uncertainty has no predictive ability of fatusk or vice versa. We find stronger empirical evidence
for a uncertainty-return trade-off than for the traditibriak-return trade-off. Further, our measure of uncettain

does not seem to encompass risk.

Our results are generally not sensitive to the measure d@rtainty we construct as long as extreme forecasts
are removed, replaced or down-weighted. We find similarlte$uaggregate corporate profits forecasts are used
instead of constructed aggregate market return forechbtsertainty aversion is significant across sub-periods of
our sample and whenever uncertainty has been unusualby, idrg market excess return the subsequent quarter has
also been large. Interestingly, two of the lowest valuesraientainty occurred when Presidents Nixon and Clinton

were re-elected.

We also investigated the importance of uncertainty for thessection and found that the price of uncertainty is
significantly positive and that uncertainty contributeghi® explanation of the returns on other assets in the presenc
of the Fama-French factors. However uncertainty can ndagxghe complete cross-section of stocks and does not

lead to a significant reduction in the HJ-dist.

Our results, thus, provide empirical support to recentaes$ein finance which contends that uncertainty, in

addition to risk, matters for asset pricing.
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A. Data

This Appendix describes the details of the data and is orgdrinto several subsections. Subsection A.1 describeutvey of Professional
Forecasters. Subsection A.2 discusses how we computelgratetforecasts from level forecasts and how we computdoesdasts from

nominal forecasts. Subsection A.3 explains the compurtsitidd asset return forecasts.

A.1. The Survey of Professional Forecasters

The Survey of Professional Forecasters (henceforth SRfankia the fourth quarter of 1968 as a joint project betweerftimerican Statistical
Association (ASA) and the National Bureau of Economic Refe@\BER). In the first quarter of 1990, the ASA/NBER disdonged the

project. The Federal Reserve Bank of Philadelphia (FRBaB&iphia) reinstated the SPF in the third quarter of 890he SPF provides
a long time series of data. Each quarter participants amddsk predictions of the levels for the previous quartes tfuarter, next quarter,

two quarters ahead, three quarters ahead and four quanead’a

The number of forecasters participating in the SPF hasddhimugh time. The average (median) number of forecastseaset 1968
and 2004 is 39.5 (36). In the early years, the number occaldyoimcreased to greater than 100 forecasters, but begdediine nearly
monotonically throughout the 1970s and 1980s. After the fRiBadelphia took over the SPF in 1990, the average (mgdiamber of
forecasters each quarter is 36 (35), with a low of 29 and a6idi23® Not all forecasts are usable because some are incompletesshall

dates, we were able to use a median of 26 forecasts, a min nfi® max of 74.

Since the survey began, several series have been added haveween dropped, and some have been replaced with signiles.sIn
the early 1990's, (1992Q1) output forecasts switched fremdpforecasts of GNP to being forecasts of GDP. At the same fbrecasts of
the GNP deflator were replaced by forecasts of the GDP deflBiar switch coincided with the substitution of GNP by GDP emaken by
the Bureau of Economic Analysis. Forecasts of real consiomgixpenditures and the consumer price index were bothdaiddihe survey

in the third quarter of 1981.

The series we use from the SPF are nominal GDP (GNP), GDP (@a&fRgtor, and corporate profits after taxes. We discard éstsc
that were incomplete at a particular date. In order for adaseer’s forecasts to be included at a particular date gégssary that he provide
forecasts for the three variables for this quarter, nexttguatwo quarters ahead, and three quarters ahead. Frega® not dropped if

forecasts four quarters ahead were not provided.

A.2. Computing quarterly real growth rate forecasts

For some of our variables we need to construct implied readtr rates from nominal forecasts. For example, we needdsts of the real

rate of corporate profit growth but in the SPF only forecasti® nominal level of corporate profits are provided. We cate@pproximate

¥See the web-paghttp://www.phil.frb.org/econ/spf/index.htrahd a comprehensive overview Croushore (1993) for morerirdtion
about the survey.

*Data on forecasts four quarters ahead is sparse in the iyétias of the survey. Data on forecasts for the previoustgquare included
because the actual final values for last quarter may not berkperfectly. Respondents are given preliminary estimafdast quarter’s
values and most respondents report these estimates afotkensts.

*There are some extreme low numbers in the second and thirtegaiaf 1990 and they correspond to the transfer of the gureen the
ASA/NBER to the FRB-Philadelphia. To avoid having a missilega point, they included a 1990Q2 survey with the 1990Q8esurThe
total number of respondents was nine.
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real forecasts from nominal forecasts and forecasts ofribe [evel. The constructed gross quarterly forecastedafteal growth, according

to forecastet, in the nominally forecasted variablé between quarters: andn is

_1
<EitX7L ELth) } (1)

EitXm E'LtPn

whereP, is the price level at timg. In general this is only an approximation since usually

1 1
Xan n—m E'LtXn Ethm n—m
- 2
(XmPn) :| 75 <ELtXm EitPn) ( )

even when: = m andn = m + 1. For forecasts of the price level we use forecasts of the outgflator since forecasts of the CPI only

Eiy

became available in the fourth quarter of 1§91.

A.3. Computing asset return forecasts

In this section we discuss how we compute forecasts of tHamrakket return and forecasts of the real return on a nonyimalk-free bond.
We construct forecasts of the real market return from fatscaf nominal corporate profits and the price level by usiigg@ordon growth
model. We construct forecasts of the real return on a notginiak-free bond from the known (actual) nominal risk-frege and forecasts

of the price level.

The Gordon growth model (or dividend discount model) is aaljidised method of stock valuation linking the current stpike, the
current level of the dividend, the expected growth rate gfdginds, and the capitalization rate. Wiese (1930) andi&kiks (1938) were
among the first to apply present value theory to common stduakgever, their models suffered from the assumptions att@utagnitude
and timing of dividend payouts. Gordon (1962) popularizes model by assuming a constant growth rate of dividendsti@duture and
a terminal price for the holding period. Anderson, Ghysals] Juergens (2005), Brav, Lehavy, and Michaely (2004)mBez (2001),
Gebhardt, Lee, and Swaminathan (2001), and Guay, KothatiSau (2003), among others, have utilized short-term egsrand long-term
earnings growth forecasts of investment analysts as inpuke Gordon growth model. Jagannathan, McGrattan, anerBicta (1996) have

used variations of the Gordon growth model, related to Caathpind Shiller (1988), in resolving the equity premium dezz

In this paper we use corporate profits forecasts rather thanirgs forecasts as inputs to the Gordon growth modelrLbe aggregate
corporate profits ang, the market value of all domestic corporations at tirié For us, the Gordon growth model amounts to assuming that

forecastel’s constructed prediction of the return on the market is

T,
Eirmir1 = By { Hl} + it (3)
qt
where¢;, is forecastei’s predicted gross growth rate of corporate profits over g loorizon.

We face a difficult timing issue when implementing equati®yn Forecasts in the SPF are given in the middle of a quarterexample
forecasts made during the first quarter of 2001 had to berredito the Federal Reserve Bank of Philadelphia no laterfearuary 12, 2001.
In the 2001Q1 survey, forecasters were asked to providegiats for the previous quarter (2000Q4), the current gug2001Q1), the next
quarter (2001Q2), two quarters ahead (2001Q3), threeemahead (2001Q4), and four quarters ahead (2002Q1). Sinwe information
about the values of the variables in the first quarter may @&l in January it would be inappropriate to view the fosecéor the current

quarter as being forecasts stated durirg 2000Q4 of t+1 = 2001Q1 values. One could view the forecasts for next quarter asathiring

$"When we deflate thactual level of variables we do use the CPI.
*deally we would like forecasts of corporate profits withauty seasonal adjustment but in the SPF forecasters are askeddict
deseasonalized corporate profits.
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t = 2001Q1 and oft + 1 = 2001Q2 values. However this neglects the short term informatichéncurrent quarter forecasts. Consequently,
when implementing the Gordon growth model, we interpretstina of forecaststatedfor the current quarter’s and next quarter’s corporate
profits (deflated by forecasts of the price level), dividedwy, as effectively being forecasts stated during 2001Q1 of ¢t + 1 = 2001Q2

corporate profit$®

For the long term growth ratg;:, we use forecasters predicted growth rate of corporate profits over the lohgesizon available in
the SPF. Since in the early years of the survey forecaste¥etd four quarters ahead are very sparse, we usually Iéoteeast horizon
be from last quarter to three quarters ahead. We refer tathéshorizon of four. So in the first quarter of 1975 we considerforecasted
growth rate from the fourth quarter of 1974 to the fourth ¢etaof 1975.

We also need to compute the expected real return on a nowniigktree bond. We approximate forecastsrprediction of the real
return on a nominally risk-free bond with

Ry 1P

4
EitPt+1 ( )

Eiﬂ’bt+1 =
whereRy:+1 is nominal return on the bond (which is known at timend P; is the timet value of the output deflator. In general this is an
approximation because usually

Ry 1 Py
Ei Py

1
# Ryt1P: By l:Pt+1:| .

Table | shows that for the real market, the Gordon growth rhgides a reasonable approximation of the unconditionalmmeturn. For
the period between 1968 and 2003 the average median forddhstmarket return computed from the Gordon growth modéh(¢¢ being
the forecasted average return from the last perigtreequarters ahead — a horizon of four) slightly overestimdiesattual average market
return. Table | also shows that the average median forecastiputed using the formula in equation (4) are very closééarctual average

real return on a nominally risk-free bond.

B. Uncertainty and disagreement

In this appendix we describe an environment in which disamgent is directly related to uncertainty. We assume foteca$have prior
information about the market return and every period olesarwector of information that is related to the market retuvide provide

conditions under which the amount of uncertainty in the econis always proportional to the amount of disagreement.

In order to illustrate the relationship between uncertaartd disagreement we take strong stand on the types of mimdetasters are
using. We assume each forecaster’s uncertainty is limitethtertainty in the mean of the market return. Assume there forecasters and
that before observing a vector of observations at tirferecaster believes that theneanof the market return is approximately;;—:. The

confidence of forecastéiin this belief is measured with
P11 =FEyu_ [(/Mt—l — Mt71)2] (5)

wherepu;—1 is the true mean of the market return afig _; denotes the expectation with respect to information abtiléo forecastef at
timet — 1.9° We call P;;_; the uncertainty of forecastér We assumeP;;_; (but notu;;—1) is constant across forecasters. We will call

P;_1 = P;;—; the amount of uncertainty in the economy at the end of pdried .

39This assumption does not have a large effect on our restiliee implemented the Gordon growth model literally and igrebcurrent
quarter stated corporate profits forecasts, our resultssmentially the same.
4% this appendix we recycle notation. The definitions of sptalapply only for this appendix.
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The true mean of the market return evolves over time:
e = Av_1pe—1 + Lt (6)

wherew, is an unobserved scalar standard normal random variabttemétin zero and variancg,—1. Forecasters know the values.é4f 1

andQ—: attimet — 1.

Each period, all forecasters simultaneously observe ardifit vector of random variables. Forecastainserves the vector
zit = Ge—1fte—1 + Wt + Wiz @)

wherepu:—1 is the true mean of the market retumn; is a vector of independent normal random variables with nzesia and covariance
matrix H:—1; andw;:—1 is a vector of normal random variables with mean zero andr@vee matrixK;_1. We assume&;_1, H;—1 and
K:_, are constant across forecasters and that their values ammlat timet — 1. We assumev;; is independent ofv; for any s, independent

of wis whens # ¢, and independent af;s whenj # i for any s, The vectorw, includes information that is common to all forecasters and
the vectorw;; includes information that is specific to forecasteForecastef does not observe;; or pj.—1 for j # 4, pe—1, we Or w;, for
anyi. He only observes;:. We assuméX;_; is positive semi-definitef{;_, is positive semi-definite, and the suki_1 + H;_1 is positive

definite.

After seeingz;:, forecaster’s belief about the mean of the market return for the nextqakis
pie = Avo1 [1+ Poa Gy (Heo1 + Koo1) 7 Gieoa] ™ (pitm1 + P Gy (Heoy 4+ K1) ™" 240) 8)
and a measure of his confidence in this belief is
P, =A% P, 1+ Gy (Hi1 + Ki 1)t Gi-1Pi1] Rt Qi—1. 9

These formulas are a special case of the updating equatiotisef Kalman filter. Heré®; is the amount of uncertainty at the end of period

Let the amount of disagreement before forecasters obsgrige denotedD;_;. This is measured as the variance of_; across
forecasters. Since in this simple example all forecastave the same amount of uncertainty an equally weightednegiss sensible. After

observingz;; the amount of disagreement about the return at timeel, which is the variance qfi;; across forecasters, is

D, =A? | [1 + PGy (Hi—1 + Kt—1)71 Gt71]71

(thl + PGy (Hi—1 + Kt—1)71 Ki 1 (He—1 + Kt—1)71 thlptfl)

-1

[1 + Pt71G,,571 (Ht—l + l{tfl)i1 thl} (10)
Define the scalars
Dy Gy (Hi a4+ K ) " K (Hi o+ K1) G
bar1 = t—1 bre1 = tl( t—1 / tl) tl( t711 tl) t—1 (11)
Py Gi_y (Hi-1+ Ki—1) " Gea

to be respectively the ratios of the amount of a priori disagrent to uncertainty and a measure of the ratio of the andudipsyncratic
observation noise to the total observation noise. Thepnégation of¢ .+ is valid whenG:_1, H,—, and K;_; are all scalars, in which

case

K
<Z>ft—1:H —

e 12
t—1+ K1 (12)

and heuristic otherwise.
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Consider an example in whiad@; = 0 for all ¢. In this case ifp4;—1 and¢s;—1 are equal to each other, call their common vapye:,
thenD;—1 = ¢+—1P—1 and
Dt = ¢t71Pt (13)

so that the ratio of uncertainty to disagreement will be tree at time — 1 and timet. More generally, ifpq: and¢ . are are equal to the
same time-invariant constant at all dates
Gar = ¢5t = ¢, vt (14)

then the ratio of uncertainty to disagreement will alwaysbestant:

D, = ¢ P, V. (15)

Over time, since&) = 0, eventuallyD., = P~ = 0 regardless of the values g@funder weak assumptions on the other parameter values.

More generally wherQ: is not necessarily zero at all dates, there are conditiongrand ¢, which guarantee that the ratio of
uncertainty to disagreement will always be constant. Theliton is thatgs: = T:¢5. be constant over time for particular sequence
of time-varying constant§r }. If the parametersd;, Q:, G+, H; and K, are constant over time then under weak assumpti&nsyill
converge to a positive numbé?P.. andD, will also converge to a positive numbé&p,. . At the limit the ratio of uncertainty to disagreement

is necessarily constant over time.

If K1 is not positive definite it is possible thak._1 is zero which would make the link between disagreement andrtainty not very
useful. For example, if;_; is a matrix of zeros then eventually; would be identical across agents and there would be no disagmt,
even if there was a large amount of uncertainty. In this clideracasters are eventually alike, so that even if eachdaster has a large
amount of uncertainty there is no disagreement. It is nareid thatK;_; have large eigenvalues. For exampléif_, is a scalar then it

is fine if K;_; is arbitrarily close to zero.

In this appendix, we have provided conditions in two difféarexamples that guarantee uncertainty is proportionalisagieement.
We have shown how with the accumulation of new informatiois possible that the proportionality is preserved. In tgahe beliefs of
forecasters may respond to new information in more comglicavays than we have described. In addition the disperdiamdels across

forecasters may be more heterogeneous.
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Table |
Data summary and description

In each row, we list a number of different statistics for tltuals and constructed forecasts of a single variable. drralv beginning
with the labelr,,:, the “actuals” columns provide statistics for the actual rearket return. In the row beginning with the labgl, the
“actuals” columns provide statistics for the actual realime on the nominally risk-free bondEx:+1 is the unconditional actual expected
value ofx measured with the sample meamofSz; is the unconditional actual standard deviatiorzoheasured with the sample standard
deviation ofz. E med i,.41)¢ iS the unconditional expected value of the median forecastsied /., 1; i the unconditional standard
deviation of the median forecast. metu,;¢11¢ iS the unconditional median of the conditional standardiatens of the forecasted

means.\/E |:(l’t+1 - med#zit+1\t)2i| is the square root of the unconditional expected squaret#st error. The forecast data starts with

forecasts made in the fourth quarter of 1968 and ends wittcémts made in the third quarter of 2003. The actual datafromsthe first
quarter of 1969 to the fourth quarter of 2003. Daily and mhntiominal actual asset pricing data is from Kenneth Frenelgb site. They
are deflated by the CPI from FRED Il to obtain real returnswkd funds data, used to compute the constructed marketréuecasts, is
from the Federal Reserve Board.

Actuals Forecasts Forecast errors
Variable Exip1 Szeqr | Emedpugigqq)e S MeGpgiiri)y  MedStpigiryqe \/E [(It+1 - med#ziwl\t)ﬂ
Tmt 1.0168 0.0901 1.0230 0.0179 0.0173 0.0917
Tht 1.0034  0.0064 1.0051 0.0045 0.0025 0.0050
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Table Il

This table displays estimates of several versions of théimear regression

of quarterly excess returms;.+1 on the measure of risk, vdlv), specified in equation (23), and the measure of uncertainty(u), specified

in equation (27). Uncertainty is measured by the Beta-wejhariance of market return forecasts. The estimatésepresent time series
Jensen alpha estimates. The variance of the error tgrm, is o?vol, (w) whereo? is a constant which we estimate. The measuresamud
unc are based on information available in the previous quatter quarter before + 1). Quasi-likelihood standard errors are listed under
the estimates in parenthesis. If there is no standard eresept then the variable was fixed and not estimated. In #sis the value of the
variable in the estimate column is the value at which it isdix€he data for..+1 is quarterly from 1969:1 to 2003:4. The forecast data and

Risk-return and uncertainty-return trade-offs

Tet+1 = b+T1 V0|t(u}) + 6 UnQ(IJ) + €t41

the daily data used to compute yalre from 1968:4 to 2003:3.

Specification b T 0 logw logv o2  Log Likelihood

1 0.012 0.000 0.000 0.000 0.000 1.277 147.297
(0.007) (0.160)

2 0.011 0.000 0.000 2.780 0.000 1.582 151.111
(0.006) (0.446) (0.237)

3 0.009 0.812 0.000 2.768 0.000 1.577 151.184
(0.009)  (1.759) (0.448) (0.240)

4 0.007 0.742 4.626 2.764 0.000 1.576 151.193
(0.011)  (1.840) (34.170)  (0.450) (0.240)

5 -0.012 0.000 1540.556 0.000 2.708 1.179 152.867
(0.010) (658.146) (0.564) (0.148)

6 -0.012 0.000 1455.415 2.705 2.730 1.459 155.800
(0.009) (677.966) (0.515) (0.548) (0.229)

7 -0.012 0.120 1453.191 2.704 2.731 1.458 155.802
(0.010)  (1.713) (678.866)  (0.515)  (0.549)  (0.230)
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Table Il
Properties of uncertainty and volatility

This table displays quarterly statistics of realized viitgtQ, the estimated ve(®) series, witho = 14.939 and the estimated up@) series
with © = 15.346. Panel A reports means and standard deviations and PangbBgeorrelations. Panel C reports correlations at theteya
frequency among unthe market excess return and the Fama-French factors.

Panel A: Means and standard deviations of vol and unc

Mean Standard Deviation

@ 0.006592 0.007634
vol(&) 0.005876 0.005428
ung(1l)  0.000345 0.000233
ung(?)  0.000017 0.000016

Panel B: Correlations of market excess returns with vol amd u

Tet+1 Qi1 Q: voly(®) unc(l) unc(?)
ret+1 1.000 -0.397 0.128 0.154 0.175 0.283
Qi1 1.000 0.202 0.312 0.051 0.004
Q+ 1.000 0.748 0.145 0.081
vol (&) 1.000 0.211 0.075
unc(1) 1.000 0.662
unc: () 1.000

Panel C: Correlations of unthe excess market return, and the Fama-French factors

unG(?)  Tet41  Thmlt+1l  Tsmbt+l  Tumdt+l  Tstredl  Tleredl
unc () 1.000 0.283 -0.073 0.240 -0.122 0.157 0.084
Tet+1 1.000 -0.482 0.478 -0.227 0.313 -0.146

Thmlt+1 1.000 -0.179 -0.092 -0.077 0.489
Tsmb t+1 1.000 -0.358 0.383 0.237
Tumd t+1 1.000 -0.514 -0.151

Tstrt+1 1.000 0.071

Tltr t41 1.000
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Table IV
The effect of uncertainty in output and the effect of uncertanty in corporate profits

This table displays estimates of the same regression asie Teexcept the variables used to measure uncertainty ifezaht. In Panel
A uncertainty is measured by the Beta-weighted varianceon$tructed forecasts of real output growth between lastguand different
horizons and in Panel B uncertainty is measured by the Betghited variance of corporate profits growth forecasts betwast quarter and
different horizons. If the horizon is 1 (respectively 2, B4pthen uncertainty in the growth between last quarter bisdfuarter (respectively
next quarter, two quarters ahead, or three quarters ateadhsidered.

Panel A: The effect of uncertainty in constructed real outguowth forecasts

Horizon b 0 logw logv o  Log Likelihood

1 0.008 166.650 2.675 0.319 1.540 151.626
(0.007) (173.054)  (0.528) (0.361)  (0.246)

2 0.010 123.087 2.745 0.074 1.570 151.180
(0.008) (402.416)  (0.483)  (0.651)  (0.242)

3 0.017 -4653.506 2.808 1.452 1.583 151.462
(0.009) (6298.592)  (0.448)  (0.438)  (0.234)

4 0.020 -69343.288 2.737 3.404 1.543 152.305
(0.009) (84256.607)  (0.414)  (1.552)  (0.221)

Panel B: The effect of uncertainty in constructed real caamprofit growth forecasts

2

Horizon b 0 logw log v o Log Likelihood

1 0.020 -2.922 2.838 -29.102 1.583 151.887
(0.006) (0.837) (0.436) 44 x 107) (0.227)

2 0.003 263.542 2.831 2.630 1.574 152.181
(0.008) (182.651) (0.457) (0.494) (0.243)

3 -0.008 930.048 3.009 2.760 1.537 156.436
(0.008) (234.035) (0.379) (0.238) (0.218)

4 -0.010 1551.778 2.759 2.796 1.480 155.492
(0.009) (807.618) (0.481) (0.591) (0.228)
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Table V
Alternative specifications of the uncertainty regressions
This table displays estimates of the same regression ashie Taexcept the specification of unés different. In Panel A uncertainty
is measured with the a symmetric normal weighted varianctefsame constructed market return forecast as in TablenlPahel B,
non-symmetric cross-sectional weights are allowed ane@maioty is measured with a Beta-weighted variance of tlmeseonstructed

market return forecast as in Table Il with two free paransateand y. In Panel C uncertainty is measured by a Beta-weighted \aiah
constructed market return forecasts when the long ternzdwoiis three periods rather than four periods. The spedditahumbers for each

row correspond to the specification numbers in Table II.

Panel A: Normal weighted variance

Specification b T 0 logw  logé o Log Likelihood
6 -0.011 0.000 1546.979 2.699 -2.113 1.458 155.763
(0.009) (654.824)  (0.519) (0.239)  (0.230)
7 -0.012 0.121 1544776 2.698 -2.113 1.457 155.764
(0.010) (1.706) (655.849) (0.519) (0.239) (0.230)

Panel B: Non-symmetric cross-sectional weights

Specification b T 0 logw loga logp o  Log Likelihood
6 -0.012 0.000 2281.821 2.743 3.096 3.241 1.458 156.321
(0.009) (1386.986)  (0.550)  (0.761)  (0.788) (0.238)
7 -0.012 -0.085 2290.205 2.743 3.099 3.244 1.458 156.322
(0.010) (1.716) (1397.800)  (0.554)  (0.759)  (0.786)  (0)238

Panel C: Uncertainty in the constructed market return witing term horizon of three

Specification b T 0 logw logv o2 Log Likelihood
6 -0.009 0.000 899.286 2.977 2.713 1519 156.630
(0.008) (231.007)  (0.387)  (0.219)  (0.218)
7 -0.009 0.046 899.091 2.977 2713 1519 156.763
(0.009)  (1.734) (230.739)  (0.391)  (0.221)  (0.220)
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Table VI
Fixed weighting schemes

This table displays estimates of regressions similar teghin Table 1l except that the weights for yrare fixed at many different values.
In Panel A, we fixlog v at several different values. In Panel B we measure uncéytaiith a truncated variance in which the lowesand
highestp percent of forecasts are discarded and flat weights are us#teaniddle(1 — 2p) percent of forecasts. In Panel C we measure
uncertainty with Winsorized forecasts in which the lowgsind highesp percent of forecasts are replaced with the lowest and highes
forecasts in the middlél — 2p) percent of forecasts.

Panel A: Fixedog v

Specification b T 0 logw logv o2 Log Likelihood

1 -0.004 0.259 144161 2.754 1.000 1.547 152.344
(0.011)  (1.767) (97.594)  (0.453) (0.237)

2 -0.009 0.131 356.786 2.759 1.500 1.518 153.731
(0.011)  (1.748) (146.648)  (0.462) (0.233)

3 -0.012 0.102 701.305 2.750 2.000 1.488 155.026
(0.010)  (1.739) (214.382)  (0.476) (0.228)

4 -0.011 0.142 1779.780 2.680 3.000 1.454 155.716
(0.010)  (1.696) (432.869)  (0.529) (0.230)

5 -0.004 0.340 2877.538 2.632 4.000 1.464 154.609
(0.009)  (1.653) (697.124)  (0.564) (0.237)

6 0.002 0.495 3583.219 2.674 5.000 1.503 153.290
(0.009)  (1658)  (1071.177)  (0.525) (0.238)

Panel B: Truncated Variance

Specification b T 0 logw p 02 Log Likelihood

1 -0.006 0.201 135.773 2.782 10 1.546 152.765
0.011)  (1.777) (75561)  (0.454) (0.232)

2 -0.008 0.119 217.263 2.783 15 1.530 153.501
(0.010)  (1.755) (95.362)  (0.452) (0.233)

3 -0.012 0.064 395563 2.725 20 1.479 155.096
0.011)  (1.729) (133.198)  (0.455) (0.221)

4 -0.013 0.121 608.248 2.746 25 1.474 155.618
(0.010)  (1.757) (178.836)  (0.503) (0.231)

5 -0.012 0.064 956.099 2.799 30 1.483 155.924
(0.010)  (1.767) (248.391)  (0.463) (0.224)

6 -0.002 0.311 1836.949 2625 40 1.473 154.094
(0.009)  (1.659) (483508)  (0.622) (0.248)

Panel C: Winsorization

Specification b T 0 logw p 02 Log Likelihood

1 -0.003 0.290 74.634 2.757 10 1.553 152.105
(0.011)  (1.793) (57.550)  (0.456) (0.233)

2 -0.005 0.104 121.159 2.768 15 1.539 152.878
(0.010)  (1.765) (64.195)  (0.464) (0.235)

3 -0.009 0.089 199.377 2752 20 1.511 153.945
(0.010)  (1.752) (81.381)  (0.447) (0.225)

4 -0.011 0.148 323.817 2724 25 1481 154.998
(0.011)  (1.750) (112.623)  (0.528) (0.236)

5 -0.010 0.091 486.001 2.841 30 1.515 154.985
(0.010)  (1.803) (154.000)  (0.445) (0.227)

6 -0.001 0.182 1173.149 2693 40 1.508 153.301
(0.009)  (1.719) (404.200)  (0.580) (0.247)
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Table VII
The impact of uncertainty on volatility

This table displays estimates of regressions in which daicey is permitted to have an effect on quarterly volatiliVe run several versions
of the nonlinear regression
Tet+1 = b+ TVO|t(w) +0 UnQ(V) + €41

of quarterly excess returns.+1 on a constant, the measure of volatility, Ma}), specified in equation (23), and the measure of uncertainty,
unc:(v), specified in equation (27). The variance of the error tefm, is

o2vol; (w) + oounc (1)

whereo,, ando, are constants which we estimate. In Panel A we estiiogte along with other parameters and in Panel B wddixv.

Panel A: Impact whetbg v is estimated

Specification b T 0 logw logv o2 o2 Log Likelihood

1 0.011 0.000 0.000 0.000 0.924 1.051 9.105 148.053
(0.006) (0.383)  (0.219) (7.301)

2 0.010 0.000 0.000 3.215 1.306 1.172 23.693 152.967
(0.006) (0.475)  (0.584)  (0.260) (18.992)

3 0.009 0.491 0.000 3.187 1.315 1.170 23.726 152.997
(0.009)  (1.781) (0.498)  (0.582)  (0.265) (19.112)

4 0.008 0.202 13.496 3.155 0.000 1.191 5.220 152.402
(0.011)  (1.905) (33.321)  (0.599) (0.287) (3.608)

6 -0.011 0.000 1196.519 2.874 2,553 1.389 21.063 155.822
(0.011) (2073.468)  (1.495)  (1.519)  (0.648)  (153.534)

7 -0.012 0.122 1196.632 2.869 2.555 1.389 20.856 155.824
(0.012)  (1.729) (2070.585)  (1.477)  (1518)  (0.646)  (13@)6

Panel B: Impact wheiog v is fixed

Specification b T 0 logw logv o2 o2 Log Likelihood

1 0.008 0.202 13.496 3.155 0.000 1.191 5.220 152.402
(0.011)  (1.905) (33.321)  (0.599) (0.287) (3.608)

2 -0.003 0.092 143.135 3.150 1.000 1.155 15.640 153.930
(0.012) (1.793) (98.851) (0.513) (0.265) (9.029)

3 -0.008 0.084 331.960 3.101 1.500 1.209 22.958 154.834
(0.011) (1.768) (160.395) (0.481) (0.279) (16.644)

4 -0.010 0.083 651.765 3.038 2.000 1.286 27.866 155.534
(0.011)  (1.762) (248.298)  (0.533) (0.295) (32.160)

5 -0.011 0.142 1779.780 2.680 3.000 1.454 0.000 155.716
(0.012)  (1.832) (965.816)  (1.377) (0.429)  (207.629)

6 -0.004 0.340 2877.538 2.632 4.000 1.464 0.000 154.609
(0.009)  (1.640) (754.125)  (0.646) 0.279)  (222.246)

7 0.002 0.495 3583.219 2.674 5.000 1.503 0.000 153.290
(0.010) (1.675) (2795.576) (0.934) (0.341)  (869.256)
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Table VIl
Time-varying uncertainty aversion

This table displays estimates of regressions in which taitgy aversion is permitted to be time-varying. We run tbalmear regression
Tet+1 = b+ <Z Ok 1tk unq(u)) + €41
keQ
of quarterly excess returns.+1 on a constant and the measure of uncertainty; ()¢ specified in equation (27). Here
Q = {1968:4-1977:21977:3-1986:1 1986:2-1994:4 1995:1-2003:3

and uncertainty aversion assumes four different valuesvahee for each of the periods i?. The variance of the error terma; 1, is
o?vol;(w) wheres? andw are constants which we estimate.

b Oi968:4-1077:2  Oro77:3-1086:1  O1086:2-1994:4  01005:1-2003:3 logw  logv o Log Likelihood
-0.013 764.199 1332.698 1505.093 2179.550 2.645 2.660 71.42 156.540
(0.010) (1083.007) (571.077) (644.735) (952.561)  (0.594) (0.469)  (0.242)
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Table IX
Time series properties of uncertainty and volatility

The table displays estimates of regressions
Yy =b+ Z ;s VOl (@) + z ©; UNG—; (D) + et41
i=1 i=1

on past predictors of volatility vel ; (w) and measures of past uncertainty un¢v) where the variance of the error term, 1, is assumed
constant over time. We vary the dependent variables andalobew ofn. andm. Ordinary least squares standard errors are listed under the
estimates in parenthesis. If there is no standard erroeptelen the variable was fixed and not estimated. In this tesgalue of the
variable in the estimate column is the value at which it isdixien Panel A we se§; = unc () wherei = 15.346 and consider regressions

of uncertainty on past predictors of volatility and pastenmtainty. In Panel B we set: = Q: and consider regressions of realized volatility
on past predictors volatility and past uncertainty. In P&hee sety; = vol,(&) with @ = 14.939 and consider regressions of predictors of
volatility on past predictors volatility and past uncentgi We report estimates of the coefficiefts}!_, and{¢}.", for various values of

n andm.

Panel A: Regressions of uncertainty on past predictors latility and uncertainty

b i 2 3 01 ©2 o2 Log Likelihood
0.000 0.00043 0.000 0.000 0.288 0.00®.3 x 10~1° 1325.435
(0.000) (0.00039) (0.119) 0(9 x 10~ 19)

0.000 0.00044 0.000 0.000 0.211 0.238.2 x 1071 1329.742
(0.000) (0.00038) (0.106) (0.066) 08 x 10~ 10)

Panel B: regressions of realized volatility on past pred&bf volatility and uncertainty

b U1 P2 )3 Y1 P2 o?  Log Likelihood
0.004 0.440 0.000 0.000 -10.264 0.000:.323 x 1075 479.700
(0.001) (0.088) (32.786) 3455 x 107 10)

0.003 0.388 0.033 0.174 0.000 0.0005.230 x 107° 480.914
(0.001) (0.092) (0.064) (0.087) 3(470 x 107°)

Panel C: Regressions of predictors of volatility on pastiimters of volatility and uncertainty

b i o 3 01 V2 o2 Log Likelihood
0.004 0.290 0.000 0.000 -0.620 0.0002.733 x 107° 525.365
(0.001)  (0.065) (18.734) 0628 x 10~5)
0.002 0.190 0.077 0.339 0.000 0.002.359 x 1075 535.438
(0.001)  (0.064)  (0.057)  (0.130) 0(501 x 10~5)
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Table X
Summary statistics on uncertainty-sorted portfolios

This table presents summary statistics on portfolios dooi@ sensitivity to uncertainty. Portfolios are constrdcfeom rolling sample
regressions of equation (42), where regressions are fafedrd each quarter throughout the life of the stock. Oniyné with at least 20
quarters of return data are used in the sample (N = 14,252¢¢e Gensitivities are obtained, firms are sorted into qestiased on those
sensitivities in each quarter, and portfolios are conséadiby value-weighting the stocks within the portfolio e@glarter. The sample span
ranges from fourth quarter 1973 through fourth quarter 20@8vever, in order to construct rolling samples, data isldsam first quarter
1969. In addition to summary statistics on the returns topthifolios presented in Panel A, summary statistics on te@hts of each
portfolio are described in Panel B. The weights do not sunD@94 since the firms analyzed are only a fraction of the entR&E universe
in each quarter.

Panel A: Portfolio returns
Portfolios | Average  StdDev Min Q1 Median Q3 Max

Low | 1.02166 0.10975 0.6985 0.9693 1.03686 1.08081 1.55788
2| 1.01746 0.07946 0.7308 0.9755 1.02470 1.06202 1.24392
3| 1.02036 0.08987 0.7483 0.9743 1.03362 1.06667 1.38004
4| 1.02196 0.11226 0.7291 0.9634 1.02372 1.07857 1.54622
High | 1.03620 0.16307 0.6667 0.9525 1.01698 1.10283 1.95674

Panel B: Portfolio weights
Portfolios | Average  StdDev Min Q1 Median Q3 Max

Low | 0.14060 0.10054 0.02266 0.05674 0.12068 0.17859 0.39831
2 | 0.22441 0.05014 0.12242 0.18890 0.22669 0.25365 0.39153
3| 0.22513 0.04715 0.10865 0.19435 0.21913 0.25818 0.38801
4] 0.19359 0.06514 0.04486 0.15450 0.19912 0.22849 0.32638
High | 0.09411 0.04443 0.01685 0.06085 0.08706 0.12631 0.23053
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Table XI
Summary statistics on risk and uncertainty sorted portfolios

This table presents summary statistics on portfolios doote sensitivity to risk and uncertainty. Portfolios are stoncted from rolling
sample regressions of equation (42), where regression®léed forward each quarter throughout the life of the stoGkly firms with at
least 20 quarters of return data are used in the sample (N2521,0nce sensitivities are obtained, firms are sortedffitsthree portfolios
based on those sensitivities to uncertainty in each quanithen sorted again into three portfolios based on seitistito risk. Portfolios
are constructed by value-weighting the stocks within thefplio each quarter. The sample span ranges from fourtiteu&973 through
fourth quarter 2003, however, in order to construct roliagnples, data is used from first quarter 1969. In additiomimeonsary statistics on
the returns to the portfolios presented in Panel A, summiaitjstics on the weights of each portfolio are describedandPB. The weights
do not sum to 100% since the firms analyzed are only a fractidheoentire CRSP universe in each quarter. LU = low uncegtaMU =
medium uncertainty; HU = high uncertainty; LV = low risk; MVmedium risk; and HV = high risk.

Panel A: Portfolio returns
Portfolios | Average  StdDev Min Q1 Median Q3 Max

LULV | 1.01633 0.05776 0.8229 0.9849 1.02470 1.05283 1.15094
LUMV | 1.01535 0.08951 0.7258 0.9733 1.02970 1.07391 1.20936
LUHV | 1.02070 0.15469 0.6239 0.9386 1.03697 1.11232 1.61220
MULV | 1.02382 0.06551 0.7819 0.9901 1.02123 1.05749 1.32888

MUMV | 1.01829 0.09110 0.6966 0.9770 1.02146 1.06727 1.40082
MUHV | 1.02281 0.13446 0.6371 0.9512 1.03233 1.09148 1.41384

HULV | 1.01902 0.10581 0.7531 0.9667 1.00554 1.06709 1.61462
HUMV | 1.02806 0.13635 0.6950 0.9551 1.03415 1.09470 1.70379
HUHV | 1.04302 0.20693 0.5936 0.9165 1.03637 1.14097 1.99053

Panel B: Portfolio weights
Portfolios | Average  StdDev Min Q1 Median Q3 Max

LULV | 0.10887 0.06575 0.01356 0.05077 0.09404 0.15556 0.28723
LUMV | 0.12195 0.06061 0.04003 0.07193 0.10475 0.15985 0.29937
LUHV | 0.05740 0.03133 0.01812 0.03079 0.04715 0.08371 0.13159
MULV | 0.11474 0.05342 0.02224 0.06833 0.12251 0.15229 0.27020

MUMV | 0.15562 0.04251 0.06769 0.12456 0.15268 0.18736 0.26384
MUHV | 0.10065 0.04579 0.02468 0.06104 0.09219 0.14001 0.21620

HULV | 0.08006 0.04463 0.01712 0.05273 0.06514 0.09897 0.19952
HUMV | 0.09344 0.04752 0.01667 0.06279 0.08106 0.13111 0.22539
HUHV | 0.04511 0.01949 0.00923 0.03010 0.04499 0.05436 0.11598
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Table XII
GMM estimates of the prices of factors

This table displays GMM estimates of the prices of factors/érious versions of the joint time series and cross-seatisystem

Trtr1 = ak + Bi fer1 + Okt k=1...n,
Eres1 = B + i

whereay, is a time-series pricing errat; is a cross-sectional pricing errgt, is a vector of regression coefficienfs,.1 is a vector of factors,
and ) is a vector of prices. In some of our specifications we inclaaearket risk factor, an alternative measure of the markktfactor, a
market uncertainty factor, the market excess return, thé lfddtor, the SMB factor, the UMD factor, the STR factor, ahd LTR factor:

Bk = [ﬂvk ka Buk ﬂmk mal k Bsmb k ﬂumd k Bstr k ﬂltr k} ' )
A= [Au S\v Au )\m )\hml Asmb )\umd Astr Altlr] ' )

“ N N “ “ A “ !
fee1 = [TVO|t(w) + €et+1 TVOl(®)  OUNG(D) Tmt+1 Thmit+1 Tsmbt+1 Tumditl Tstritl 7“1ms+1] .
The moments conditions for assetre

Tkt+1 — A — ﬂ]lgft
E | (roesr —ar — Bft) ® fe| =0.
Thet1 — B

The moment conditions for all assets are combined and GMivhatas of the prices of factors are listed below for the fixeighting matrix
described in the text. GMM standard errors are listed inqtaesis below estimates and are computed using the methdelefy and West
(1987) with eight lags. Variables without standard erroesenixed at zero. (Wheh, is fixed at zero for some factar we remove the
corresponding regression coefficieft, from the vectors, for eachk. ) Estimates ofi,, and 3, are not displayed but are available upon
request. The nonlinear parametersindv are fixed at their market estimatesiaf.939 and15.346 throughout this table. The asset return
data is quarterly from 1969:1 to 2003:4 and consists of neeg®s returns for 130 portfolios which includes 25 portsisorted on size and
book to market, 25 portfolios sorted on size and short-teewensal, 25 portfolios sorted on size and momentum, 25 qdar$f sorted on
size and long-term reversal, 10 portfolios sorted on egmto price, 10 portfolios sorted on dividend to price, ancfifolios sorted on
cashflow to price.

Specification Ay 5\11 Ay Am >\hml )‘smb >\umd >\1tr Astr J stat Pyal
1 -0.011 0.000 0.027 0.000 0.000 0.000 0.000 0.000 0.000 2@6.41.000
(0.007) (0.003)

2 0.000 -0.000 0.027 0.000 0.000 0.000 0.000 0.000 0.000 216.41.000
(0.000)  (0.003)

3 0.000 0.000 0.000 0.016 0.000 0.000 0.000 0.000 0.000 8&6.40.000
(0.007)

4 0.000 0.000 0.000 0.016 0.019 -0.004 0.024 0.012 0.023 906.31.000
(0.007)  (0.005)  (0.006)  (0.005)  (0.005)  (0.005)

5 0.000 0.000 0.027 0.016 0.019 -0.004 0.023 0.012 0.023 916.31.000
(0.003)  (0.007)  (0.005) (0.005)  (0.005)  (0.005)  (0.005)

6 -0.011 0.000 0.027 0.000 0.019 -0.004 0.023 0.012 0.023 3976. 1.000
(0.007) (0.003) (0.005) (0.005)  (0.005)  (0.005)  (0.005)

7 0.000 -0.000 0.027 0.000 0.019 -0.004 0.023 0.012 0.023 4136. 1.000
(0.000)  (0.003) (0.005)  (0.005)  (0.005)  (0.005)  (0.005)
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This table estimates

Table XIlI
GMM estimates of the stochastic discount factor

Esiparjirr =1 j...m

for various formulations of the stochastic discount factor

where

s = [sv

/
St41 =0+ S fr41

’
Sy Su Sm Shml Ssmb Sumd Sstr Sltr] 5

~ ~ ~ A /
fr41 = [TVO|t(w)+6et+1 7voli(w)  OunG () Tmig41 Thmlt+1 Tsmbitl Tumdi+l  Tstretl Tltrt+1] .

The assets considered are the same 130 portfolios used |l Xkthough the returns are gross real returns rather teahexcess returns.

(The factors are real excess returns.) In Panel A, the fixéghtierg matrix proposed by Hansen and Jagannathan (198®)psoyed and we
report the HJ-dist and its standard error. In Panel B, thengptGMM weighting matrix is employed and we report the J-atad its P-value.

Panel A: The Hansen and Jagannathan (1997) weighting matrix

Specification a Sy Sy Su Sm Shml Ssmb Sumd Sltr Sstr logw logv HJ gist
1 2319 -0.975 0.000 -52.384 0.000 0.000 0.000 0.000 0.000 0000. 2.705 2.731 6.856
(0.334) (1.586) (16.188) (0.571)
2 2027 0.000 4493.637 -53.443 0.000 0.000 0.000 0.000 0.000.000 2.705 2.731 6.851
(0.376) (3557.785) (16.072) (0.574)
3  1.084 0.000 0.000 0.000 -4.797 0.000 0.000 0.000 0.000 00.0@.705 2.731 6.948
(0.049) (1.368) (0.568)
4 1864 0.000 0.000 0.000 -11.330 -11.994 7.425 -10.865 723.4-11.980 2.705 2.731 6.871
(0.166) (2.220) (2.940)  (2.881) (2139)  (3.563) (3.235) (0.577)
5 3.031 0.000 0.000 -51.368 -7.891 -11.462 9.219 -10.7145541. -11.100 2.705 2.731 6.782
(0.394) (16.997) (2.366) (3.824)  (3.784) (2.464)  (5.345) 3.882) (0.580)
6 3126 -7.891 0.000 -59.259 0.000 -11.462 9.219 -10.714 5541. -11.100 2.705 2.731 6.782
(0.402)  (2.366) (17.281) (3.824)  (3.784) (2.464)  (5.345) 3.882) (0.580)
7 2549 0.000 6845.720 -55.725 0.000 -6.706  5.370 -9.3221521. -15.790 2.705 2.731 6.791
(0.410) (5460.552) (16.509) (3.963)  (3.299) (2.660) (@92  (6.630) (0.583)
8 1.857 0.000 8380.267 -52.586 0.000 0.000 0.000 0.000 0.000.000 4.491 2.694 6.822
(0.384) (4399.430) (35.915) (1.271)  (0.578) (0.579)
9 3.132 0.000 0.000 -40.718 -7.858 -11.473 9.342 -10.712 383L. -11.297 2.705 2.423 6.781
(0.404) (30.969) (2.440) (3.873)  (3.974) (2521)  (5.440) 3.962) (0.663) (0.580)
10 2.470 0.000 10703.046 -46.665 0.000 -5.212  7.024 -9.166.466 -18.179 4.393  2.496 6.754
(0.426) (6143.905) (32.043) (4.056)  (3.894) (2973)  (B)24  (7.154)  (1.143)  (0.621) (0.589)
Panel B: Optimal GMM weighting matrix
Specification a So Su Su Sm. Shml  Ssmb Sumd Sltr Sstr  logw  logv J stat Poal
1 2337 -1.664 0.000 -51.896 0.000 0.000 0.000 0.000 0.000 0000. 2.705 2.731 16.414 0.000
0.012)  (0.086) (0.372)
2 2.080 0.000 3594.745 -53.478 0.000 0.000 0.000 0.000 0.000.000 2.705 2.731 16.420 0.000
(0.028) (346.567) (0.304)
3  1.102 0.000 0.000 0.000 -5.110 0.000 0.000 0.000 0.000 00.0@.705 2.731 16.400 0.000
(0.004) (0.067)
4 1913 0.000 0.000 0.000 -11.698 -12.336 8.166 -10.612 113.5-12.747 2.705 2.731 16.391 0.000
(0.010) (0.121) (0.192)  (0.170) (0.153) (0.136) (0.217)
5 3.068 0.000 0.000 -49.192 -8.516 -12.684 8.341 -11.403 426l. -11.454 2.705 2.731 16.393 0.000
(0.021) (0.663) (0.226) (0.335)  (0.264) (0.194)  (0.371) (0.259)
6 3.171 -8516 0.000 -57.708 0.000 -12.683 8.341 -11.403 426el. -11.454 2705 2.731 16.395 0.000
0.022)  (0.226) (0.638) (0.335)  (0.264) (0.194)  (0.371)  .2%9)
7 2539 0.000 7380.880 -56.989 0.000 -6.704  5.589 -9.484 1301. -15.151 2.705 2.731 16.413 0.000
(0.028) (397.807) (0.858) (0.259)  (0.345) (0.186)  (0.346) (0.454)
8 1.736 0.000 9249.235 -51.730 0.000 0.000 0.000 0.000 0.000.000 4.262 2.717 16.420 0.000
(0.025) (356.096) (0.968) (0.065)  (0.014)
9 3.206 0.000 0.000 -32.700 -8.383  -12.481 9.207 -11.624 6271. -11.809 2.705 2.230 16.361 0.000
(0.023) (1.103) (0.212) (0.350)  (0.267) (0.216) (0.296) (0.341) .080)
10 2.480 0.000 10737.625 -46.165 0.000 -5.603 6.842 -9.982.773 -19.144 4116 2.471 16.410 0.000
(0.026) (300.410) (0.946) (0.257)  (0.305) (0.221) (0.203) (0.400)  (0.066)  (0.020)
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Figure 1. Volatility and uncertainty weights

Quasi-likelihood estimates of the parameters appeariniaie 1l are used to compute volatility vél), specified in equation (23), and
a measure of uncertainty wic), appearing in (27). The top graph displays the weights onddgtgily volatility whenw = 14.939 and
the bottom graph displays the weights on forecasters when15.346. In the top graph, the x-axis represents lagged trading datysnw
a quarter and the y-axis represent weights. The weight dy dalatility on the last day of the quarter correspondscte- 1 and is a little
less than 0.1. The bottom graph displays the weights ondstecs for a quarter in which there are 26 available forecagf; = 26). The
weights on the lowest and highest indexed forecasters amdyreero and the weights on the 13th and 14th indexed forexsaare about
0.16.

Volatility Weights
T T

Weight

0.02 - B 1

Uncertainty Weights
T T

0.16 o o i
0.14 g
(] (]
0.12f g
01t o o g
§=3
2 o0.08- g
=
0.06 - o o g
0.04 B
(e (]
0.02 B
o o
o o o o o o © © © S 0 o o o o o
. . . . . .
o 5 10 15 20 25

Rank of Forecaster

57



Figure 2. Uncertainty and returns

The top graph displays a quarterly scatter plot of the acell market excess return (x-axis)+1 and the unweighted (or flat-weighted)
lagged variance of market return forecasts (y-axis) (ic The bottom graph displays a quarterly scatter plot of theadceal market excess

return (x-axis)re:+1 and the Beta-weighted lagged variance of market returrcésits (y-axis) ung?).
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Figure 3. Time series plots

In the top row the left figure displays a plot of the quartertgess returm.:1 and the right figure displays a plot of uncertairtync. (v/),
wheref = § = 1453.191 andv = » = 15.346 are set at their optimal estimates from specification se¥dmalale II. In the bottom row the
left figure displays a plot of quarterly realized volatiity:, and the right figure displays a plot of volatilityyol; (w), wherer = 7 = 0.120
andw = @ = 14.939 are set at their optimal estimates from specification sev@alae I1.

Quarterly Excess Return Uncertainty
03 T T T 02 T
oasf Bl
o2 B
o6l Bl
o1r 7 0.4 B
o12f Bl
£ of 7 =
E Z
2 S oaf 4
8 s
< =
& -o01f B
0.08F q
o2 il 0.06F 4
0.0af Bl
—o3l i
002 Bl
—0.4 . . . . . . . o . . . . . . .
1965 1970 1975 1980 1985 1990 1995 2000 2005 1965 1970 1975 1980 1985 1990 1995 2000 2005
Date Time
Quarterly Realized Volatility x10°° Volatility
0.08 T T T T T T T 35 T T T T T T T
0.07F B sL il
0.06F R
251 B
0.05F B
£
E] _2r b
s 3
3 o.04f il e
s 1.5F -
&
o.03f B
s i
o.02f B
0.01F B 051 7
o . . . N . T . 0 . . . . . .
1965 1970 1975 1980 1985 1990 1995 2000 2005 1965 1970 1975 1980 1985 1990 1995 2000 2005
Date Time

59



Figure 4. Uncertainty and events

All of the figures plotdunc (v) with other events wheré = 6 = 1453.191 andv = © = 15.346 are set at their optimal estimates from
specification seven of Table II. The top figure includes rsices (as defined by the NBER) in the shaded regions. The enfidplire displays
the excess return in the following quarter at the peaks oéaamty. The bottom figure indicates changes in presidevittya circle.
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