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To the memory of Yu. Stroganov

Abstract. We consider the tensor product V = (CN )⊗n of the vector representation of glN
and its weight decomposition V = ⊕λ=(λ1,...,λN )V [λ]. For λ = (λ1 > · · · > λN ), the trivial
bundle V [λ]×C

n → C
n has a subbundle of q-conformal blocks at level ℓ, where ℓ = λ1−λN

if λ1−λN > 0 and ℓ = 1 if λ1−λN = 0. We construct a polynomial section Iλ(z1, . . . , zn, h)
of the subbundle. The section is the main object of the paper. We identify the section
with the generating function Jλ(z1, . . . , zn, h) of the extended Joseph polynomials of orbital
varieties, defined in [DFZJ05, KZJ09].

For ℓ = 1, we show that the subbundle of q-conformal blocks has rank 1 and Iλ(z1, . . . , zn, h)
is flat with respect to the quantum Knizhnik–Zamolodchikov discrete connection.

ForN = 2 and ℓ = 1, we represent our polynomial as a multidimensional q-hypergeometric
integral and obtain a q-Selberg type identity, which says that the integral is an explicit poly-
nomial.

1. Introduction

The bundle of conformal blocks was introduced in conformal field theory. The bundle has
a projectively flat Knizhnik–Zamolodchikov (KZ) connection which is a flat connection for
conformal blocks on the sphere, see, for example, [KZ84, KL93]. The equations for flat sec-
tions of the bundle of conformal blocks on the sphere are called the KZ differential equations.
In [SV91, FSV94a, FSV94b] solutions of the KZ differential equations were constructed as
multidimensional hypergeometric integrals.

The qKZ difference equations were introduced in [FR92]. The glN q-conformal blocks
were defined in [MV98, MV99], cf [EF99]. The bundle of q-conformal blocks has a discrete
flat connection defined by qKZ operators, see [MV98, MV99]. In [TV97] solutions of the gl2
qKZ equations were constructed as multidimensional q-hypergeometric integrals.

We consider the tensor product V = (CN)⊗n of the vector representation of glN and its
weight decomposition V = ⊕λ=(λ1,...,λN )V [λ]. For λ = (λ1 > · · · > λN), the trivial bundle
V [λ] × C

n → C
n has a subbundle of q-conformal blocks at level ℓ, where ℓ = λ1 − λN if

λ1 − λN > 0 and ℓ = 1 if λ1 − λN = 0. We construct a polynomial section Iλ(z1, . . . , zn, h)
of the subbundle. The section is the main object of the paper. We identify the section with
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2 R.RIMÁNYI, V.TARASOV, A.VARCHENKO, AND P. ZINN-JUSTIN

the generating function Jλ(z1, . . . , zn, h) of the extended Joseph polynomials of the orbital
varieties, defined in [DFZJ05, KZJ09].

For ℓ = 1, we show that the subbundle of q-conformal blocks has rank 1 and Iλ(z1, . . . , zn, h)
is flat with respect to the qKZ discrete connection.

ForN = 2 and ℓ = 1, we represent our polynomial as a multidimensional q-hypergeometric
integral and obtain a q-Selberg type identity, which says that the integral is an explicit
polynomial. The simplest of these identities is

(1.1)

∫ i∞

−i∞

Γ(a + s)Γ(b+ s)Γ(c− s)Γ(d− s) ds = 2πi
Γ(a+ c)Γ(a+ d)Γ(b+ c)Γ(b+ d)

Γ(a+ b+ c+ d)
,

which is a formula for the Barnes integral in [WW27]. The integral representation for Iλ
gives an integral representation for the extended Joseph polynomials if N = 2 and ℓ = 1.

For N = 2 we also give a presentation for Iλ as a multiple residue of a suitable rational
function.

The fact that the generating function Jλ(z1, . . . , zn, h) with λ1 − λN 6 1 satisfies the qKZ
equations at level 1 was conjectured in [DFZJ05] and proved in [KNST09] by a different
method, by relating the generating function with non-symmetric Jack polynomials.

The results of this paper may be considered as a “quantization” of the results of [Var10,
RV11, RSV10], where the bundle of (non-quantum) conformal blocks at level 1 in (CN)⊗n

was considered. The bundle is of rank 1 and has a flat connection defined by the KZ
differential operators. A rational flat section of the bundle was constructed. The section was
interpreted as a generating function of the Euler classes of the fixed points of the GLn-action
on a suitable space of partial flags in Cn. A Selberg type identity was obtained that equates
the rational section and a multidimensional hypergeometric integral.

In Section 2 we introduce q-conformal blocks and qKZ equations. In Section 3 we define our
main object – the polynomial Iλ(z1, . . . , zn, h). In Section 4 we identify the polynomial with
the generating function of the extended Joseph polynomials of orbital varieties. In Section 5
we prove all properties of the generating function. In Section 6 we prove a q-Selberg type
identity. In Section 7 we give an alternative integral formula for Iλ(z1, . . . , zn, h), if N = 2.

2. Quantum conformal blocks and qKZ equations

2.1. Operators on representation-valued functions. Let N > 2 be a positive integer.
Let ei,j, for i, j = 1, . . . , N , be the standard generators of the complex Lie algebra glN satis-
fying the relations [ei,j, es,k] = δj,sei,k − δi,kes,j. Consider the standard vector representation
CN of glN , and its n-th tensor product V = (CN)⊗n. The space V splits into the direct sum
of weight subspaces

V =
⊕

λ=(λ1,...,λN )

V [λ],

where
∑N

i=1 λi = n, and V [λ] = {v ∈ V | ei,iv = λiv}.
In this paper we will be concerned with V -valued functions of z1, . . . , zn also depending on

a complex parameter h. Now we recall some operators acting on the space of such functions.

• Elements of glN act naturally on any factor of the tensor product. When x ∈ glN
acts in the i-th factor, we denote its action by x(i).
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• Following [MV98] define an operator

e(z) =
n∑

j=1

(

zj − he
(j)
N,N + h

n∑

s=j+1

(
e
(s)
1,1 − e

(s)
N,N

))

e
(j)
1,N + h

N−1∑

j=2

∑

16r<s6N

e
(r)
j,N e

(s)
1,j .

• Let P (i,j) be the permutation of the i-th and j-th factors of
(
CN

)⊗n
.

• The deformed Sn-action on V -valued functions of z1, . . . , zn. The i-th elementary
transposition si ∈ Sn acts by the formula

si : I(z1, . . . , zn) 7→(2.1)

(zi − zi+1)P
(i,i+1) + h

zi − zi+1
I(. . . , zi+1, zi, . . .)− I(. . . , zi, zi+1, . . .)

h

zi − zi+1

This defines an action of Sn. Observe that, despite the presence of denominators,
polynomials are mapped to polynomials by elements of Sn. In the whole paper an
Sn-action will always mean this deformed action unless otherwise stated.

• Let u be a new variable. We define the following R-matrix operator

R(i,j)(u) =
u− hP (i,j)

u+ h
.

Observe that R(i,j)(u)R(i,j)(−u) = 1 and

R(i,j)(u− v)R(i,k)(u)R(j,k)(v) = R(j,k)(v)R(i,k)(u)R(i,j)(u− v) .

2.2. Yangian Y (glN ). The Yangian Y (glN) is a unital associative algebra with generators

T
{s}
i,j , i, j = 1, . . . , N , s ∈ N. Organize them into generating series

Ti,j(u) = δi,j +
∞∑

s=1

T
{s}
i,j u−s, i, j = 1, . . . , N .

The defining relation in Y (glN) have the form

(2.2) (u− v)
[
Ti,j(u), Tk,l(v)

]
= Tk,j(v)Ti,l(u)− Tk,j(u)Ti,l(v) ,

for all i, j, k, l = 1, . . . , N .
The Yangian Y (glN) contains U(glN) as a subalgebra. The embedding is given by ei,j 7→

T
{1}
j,i for any i, j = 1, . . . , N .
Let

T (u) =

N∑

i,j=1

Ei,j ⊗ Ti,j(u)

where Ei,j is the image of ei,j ∈ glN in End(CN). Relations (2.2) can be written as the
equality of series with coefficients in End(CN⊗ CN)⊗ Y (glN) :

(u− v + P ) T (1)(u)T (2)(v) = T (2)(v)T (1)(u) (u− v + P ) ,

where P is the permutation of the CN factors, T (1)(u) =
∑N

i,j=1Ei,j ⊗ 1 ⊗ Ti,j(u) and

T (2)(u) = 1⊗ T (u) .
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More information on the Yangian Y (glN ) can be found in [Mol07]. Notice that the series
Ti,j(u) here corresponds to the series Tj,i(u) in [Mol07].

The assignment

T (u) 7→ R(0,1)(z1 − hu) . . .R(0,n)(zn − hu)

n∏

i=1

zi − hu+ h

zi − hu

defines an action of the Yangian Y (glN) on V -valued functions of z1, . . . , zn. We identify
here the space (CN)⊗(n+1) with CN ⊗ V and count the tensor factors by 0, 1, . . . , n.

The action of e(z) on V -valued functions coincide with that of h
(
T

{2}
N,1 − T

{1}
N,N T

{1}
N,1

)
.

Lemma 2.1. The Yangian action commutes with the Sn action (2.1).

Proof. The commutativity with the first term in (2.1) follows from the Yang-Baxter equation
for R(u), the last formula in Section 2.1. The commutativity with the second term in (2.1)
is the commutativity with multiplication by functions of z1, . . . zn. �

2.3. Singular vectors, q-conformal blocks, and qKZ equations. Let λ be a partition,
i.e. assume that λ1 > . . . > λN . Define d(λ) = λ1 − λN .

A vector v ∈ V [λ] is a singular vector, if
∑N

a=1 e
(a)
i,j v = 0 for all i < j.

Let ℓ > d(λ) be a positive integer, and z = (z1, . . . , zn) ∈ C
n. Following [MV98] we call

v ∈ V [λ] a level ℓ q-conformal block, if it is a singular vector and

e(z)ℓ−d(λ)+1v = 0.

Note that if v ∈ V [λ] is a level ℓ q-conformal block, then v is a level ℓ′ q-conformal block for
any ℓ′ > ℓ.

For i = 1, . . . , n, define the qKZ operators at level 1 by the formula

Ki(z1, . . . , zn) = R(i,i−1) (zi − zi−1 − (N + 1)h) · · ·R(i,1) (zi − z1 − (N + 1)h)×
× R(i,n)(zi − zn) · · ·R(i,i+1)(zi − zi+1).

The qKZ difference equations at level 1 for a V [λ]-valued function I is the system of equations

(2.3) I(z1, . . . , zi − (N + 1)h, . . . , zn) = Ki(z1, . . . , zn)I(z1, . . . , zi, . . . , zn), i = 1, . . . , n.

Lemma 2.2. Let d(λ) 6 1. For generic z = (z1, . . . , zn) ∈ Cn the space of q-conformal
blocks at level 1 is at most one-dimensional.

Proof. The space of conformal blocks for h = 0 is defined as

CBλ(z) =
{
v ∈ V [λ] is a singular vector and

( N∑

j=1

zae
(j)
1,N

)ℓ−d(λ)+1

v = 0
}
.

For generic z ∈ Cn the dimension of CBλ(z) is calculated by the Verlinde formula. For
ℓ = 1 and d(λ) 6 1 the Verlinde formula gives 1, so in this case the space of (non-quantum)
conformal blocks for generic z is one-dimensional. The space of q-conformal blocks specializes
to CBλ(z) at h = 0. At this specialization the dimension may only increase, hence the
dimension of q-conformal blocks is at most 1. �

Below we will show that for generic z the dimension is equal to 1.
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3. The minimal degree skew-symmetric polynomial Iλ

Recall that λ ∈ NN is a partition of n. Define k(λ) =
∑N

i=1 λi(λi − 1)/2.
Let v1, . . . , vN be the standard basis in CN , ei,jvk = δj,kvi. For a multi-index L =

(l1, . . . , ln) define vL = vl1 ⊗ . . .⊗ vln . A V [λ]-valued function I can be expressed as

I =
∑

L

fL(z1, . . . , zn, h) vL

for multi-indices L = (l1, . . . , ln) with |{j : lj = i}| = λi. Denote the multi-index

(3.1) L0 = (1, . . . , 1
︸ ︷︷ ︸

λ1

, 2, . . . , 2
︸ ︷︷ ︸

λ2

, . . . , N, . . . , N
︸ ︷︷ ︸

λN

).

In what follows we will be concerned with the degree of polynomials and rational functions
in zi, h. Our convention is that deg zi = deg h = 1. With this convention, the deformed
Sn-action of Section 2.1 is homogeneous. Hence, if I is a skew-symmetric V [λ]-valued poly-
nomial, then its homogeneous parts are also such. Now we study what the homogeneous
degrees of skew-symmetric polynomials can be.

Define another Sn-action on functions of z1, . . . , zn, where the i-th elementary transposition
si ∈ Sn is acting by the formula

si : f 7→ ŝif ,(3.2)

ŝif(z1, . . . , zn) =
zi − zi+1 + h

zi − zi+1
f(. . . , zi+1, zi, . . .)−

h

zi − zi+1
f(. . . , zi, zi+1, . . .) .

For a permutation σ ∈ Sn and a multi-index L = (l1, . . . , ln) set σ(L) = (lσ−1(1), . . . , lσ−1(n)).
The following lemma is obvious.

Lemma 3.1. A V [λ]-valued function I is skew-symmetric with respect to action (2.1) if and
only if fsi(L) = − ŝifL for every multi-index L and every i = 1, . . . , n− 1.

Lemma 3.2. If a polynomial f(z1, . . . , zn) is skew-symmetric with respect to the Sn-action (3.2),
then it is divisible by

∏

16i<j6n

(zi − zj + h).

Proof. Skew-symmetry with respect to ŝi implies

(3.3) (zi − zi+1 + h) f(. . . , zi+1, zi, . . .) = (zi+1 − zi + h) f(. . . , zi, zi+1, . . .) .

Therefore zi − zi+1 + h divides f . This further implies that zi−1 − zi+1 + h divides f(. . . , zi,
zi−1, . . .), which using (3.3) again yields that zi−1− zi+1 +h divides f . Iterating this idea we
obtain the statement of the lemma. �

Lemma 3.3.

(i) If I 6= 0 is a V [λ]-valued skew-symmetric polynomial, then its degree is at least k(λ).
(ii) A V [λ]-valued skew-symmetric polynomial of homogeneous degree k(λ) is unique up

to multiplication by a number.
(iii) There exists a nonzero V [λ]-valued skew-symmetric polynomial of homogeneous degree

k(λ).
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Proof. (i) By Lemma 3.1, a V [λ]-valued skew-symmetric polynomial I is uniquely deter-
mined by the coefficient fL0 , and deg I = deg fL0 .

Denote by Sλ1 × . . . × SλN
⊂ Sn the isotropy subgroup of L0 . By Lemma 3.1, for si ∈

Sλ1 × . . .× SλN
we have ŝifL0 = −fL0 . Using Lemma 3.2 for each Sλi

we obtain that fL0 is
divisible by

(3.4) D0 =
∏

16a<b6λ1

(za − zb + h)
∏

λ1<a<b6λ1+λ2

(za − zb + h) · · ·
∏

n−λN<a<b6n

(za − zb + h)

and has degree at least k(λ).

(ii) If fL0 has degree k(λ), then it is proportional to D0.

(iii) Define

(3.5) Iλ =
∑

σ∈Sn/Sλ1
×...×SλN

sgn(σ) σ̂(D0) vσ(L0) ,

where sgn(σ) is the sign of the shortest permutation in the coset, and σ̂ denotes action (3.2).
Then Iλ is a nonzero V [λ]-valued skew-symmetric polynomial of homogeneous degree k(λ).

�

The V [λ]-valued polynomial Iλ, defined by (3.5), is the main object of this paper. Now
we reformulate its definition.

Definition 3.4. Let λ ∈ N
N be a partition of n. Let Iλ be the V [λ]-valued skew-symmetric

polynomial of degree k(λ) normalized in such a way that the coefficient of vL0 is D0, see
(3.1), (3.4).

Example. We have

I(1,1) = v12 − v21 ,

I(2,1) = (z1 − z2 + h)v112 + (z3 − z1 − 2h)v121 + (z2 − z3 + h)v211 ,

I(2,2) = (z1 − z2 + h)(z3 − z4 + h)(v1122 + v2211) + (z1 − z4 + 2h)(z2 − z3 + h)(v1221 + v2112)

+
(
−(z1 − z2 + h)(z3 − z4 + h)− (z1 − z4 + 2h)(z2 − z3 + h)

)
(v1212 + v2121).

Note that the last coefficient function in the third formula does not factor.

Remark. In the quasiclassical limit h = 0, the vector Iλ is the minimal degree skew-
symmetric polynomial under the Sn-action

sh=0
i : I 7→ P (i,i+1)I(. . . , zi+1, zi, . . .).

Its explicit form is

(3.6) Ih=0
λ =

∑

L

(

sgn(L)
∏

a<b,la=lb

(za − zb)
)

vL ,

with an appropriately defined sgn(L). Rescaled by the the discriminant
∏

a<b(za− zb) , this
function was studied in [RV11], see also [RSV10]. It is shown there that this function satisfies
(non-quantum) conformal block properties and (non-quantum) KZ differential equations.
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4. Geometric description of Iλ

In this section we provide the connection of the Iλ to geometry which was advertised in
the introduction.

4.1. Orbital varieties and Joseph representation.

4.1.1. Orbital varieties. Consider some conjugacy class of nilpotent elements inside g = gln.
Such a conjugacy class is characterized by the unordered set of sizes of the Jordan blocks,
which form a partition λ′ = (λ′

1 > λ′
2 > · · · > λ′

K) of n. It is more convenient to use instead
of λ′ its conjugate partition λ = (λ1 > λ2 > · · · > λN). If we depict partitions as Young
diagrams, then the diagram of λ is the transpose of that of λ′: the lengths of its columns are
the sizes of Jordan blocks. For example, for one block of size 3 and one block of size 1, we
use λ = (2, 1, 1), that is .

Let D̄λ ⊂ g be the closure of the conjugacy class Dλ associated to the partition λ. D̄λ is
known to be an irreducible algebraic variety, but if we denote by n the space of strict upper
triangular matrices, then the intersection Oλ := D̄λ ∩ n is in general reducible: its geometric
components (i.e., reduced irreducible components) are called orbital varieties.

Given an element of x ∈ Oλ, note that x leaves stable the natural flag 0 ⊂ C ⊂ C2 ⊂ · · · ⊂
Cn associated to the standard basis. So the restriction of x to Ci, i = 0, . . . , n, is a nilpotent
element to which can be attached a partition of i as described above, say ϕi(x). Note that
generically, ϕn(x) = λ. The following results were found:

Theorem (Spaltenstein [Spa82]). Let λ be a partition of n, and x ∈ Oλ.

• The sequence ϕi(x) forms an increasing chain of Young diagrams, so there is a map
ϕ from Oλ to the set of standard Young tableaux with n boxes (i.e., fillings of Young
diagrams with numbers {1, . . . , n} which are increasing along rows and columns) such
that the subdiagram of ϕ(x) made of the boxes labelled from 1 to i is ϕi(x).

• The irreducible components Oλ;α of Oλ are the closures of ϕ−1(α), where α runs over
SYT(λ), the set of standard Young tableaux of shape λ.

• The Oλ;α all have the same dimension which is one half of that of Dλ.

The dimension of Dλ is easily calculated by computing the stabilizer of any element of the
orbit and its dimension

∑

i,j min(λ′
i, λ

′
j) =

∑

i λ
2
i (cf [Hum95, p. 11]), so that we find:

(4.1) dimOλ;α =
n(n− 1)

2
− 1

2

n∑

i=1

λi(λi − 1) .

When there is no risk of confusion, we shall drop the index λ: Oλ,α = Oα.

4.1.2. The case λ1−λN 6 1. Define the dominance order on partitions by λ ≺ µ iff
∑

i6k λi 6
∑

i6k µi for all k. Then one has [Hum95, p. 139] Dµ ⊂ D̄λ iff λ ≺ µ. The next proposition

gives a more explicit description of D̄λ and Oλ in a special case which is important for our
purposes:
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Proposition 4.1. Let λ = (λ1 > · · · > λN) be a partition such that λ1 − λN 6 1. Then

D̄λ = {x ∈ g : xN = 0} ,
Oλ = {x ∈ n : xN = 0} .

Proof. According to the discussion above, the first equality amounts to saying that among
all the partitions µ of n with at most N parts, λ is the smallest for the dominance order.
By direct computation, if n = Nq + r, λ = (q + 1, . . . , q + 1

︸ ︷︷ ︸

r

, q, . . . , q
︸ ︷︷ ︸

N−r

); and assuming a

µ = (µ1, . . . , µN),
∑

i µi = n, breaks one of the inequalities
∑

i6k λi 6
∑

i6k µi leads to a
contradiction with µ being decreasing.

The second equality follows immediately from the first. �

Example. If λ = (1, 1) there is only one tableau 1
2
, and O 1

2

= n =

{(
· ⋆
· ·

)}

, where ⋆

denotes a free entry and · a zero in the lower triangle.
Next,

O(2,1) =











· x12 x13

· · x23

· · ·



 : x12x23 = 0






= O 1 2

3

∪ O 1 3
2

O 1 2
3

=











· 0 ⋆
· · ⋆
· · ·










O 1 3

2

=











· ⋆ ⋆
· · 0
· · ·










.

Similarly, one computes

O(2,2) = {x 4× 4 : x2 = 0} = O 1 2
3 4

∪ O 1 3
2 4

O 1 2
3 4

=













· 0 ⋆ ⋆
· · ⋆ ⋆
· · · 0
· · · ·













O 1 3
2 4

=













· x12 x13 ⋆
· · 0 x24

· · · x34

· · · ·







: x12x24 + x13x34 = 0







.

4.1.3. Hotta’s construction of the Joseph representation. In the rest of Section 4 we fix a
partition λ. Define Wλ to be the finite-dimensional space of maps from SYT(λ) to C. Its
dimension is that of the irreducible representation of Sn associated to λ. Orbital varieties
provide us with a natural action of Sn on Wλ, which we describe now following [Hot84].

Given i = 1, . . . , n− 1, define ni to be the subspace of x ∈ n whose entry xi,i+1 vanishes;
and Pi to be the parabolic subgroup of GLn made of invertible matrices x which are upper
triangular except possibly at xi+1,i. Note that the map f : Pi×g → g, f(p, x) = pxp−1 sends
Pi×ni to ni. We shall now describe the action of the elementary transposition (i, i+1) ∈ Sn

by giving its matrix elements.
Given a α ∈ SYT(λ), two situations can occur:

(1) Either Oα ⊂ ni, in which case set mi;α,β = −δα,β for all β.
(2) Or Oα 6⊂ ni, in which case consider the scheme-theoretic intersection (i.e., with

multiplicities) Oα ∩ ni, and then its image by f , i.e., f(Pi× (Oα ∩ ni)) (again keeping
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track of the degree of the map on each irreducible component of Oα ∩ ni); Clearly
f(Pi × (Oα ∩ ni)) ⊂ Oλ ∩ ni, so its top-dimensional components are again orbital
varieties (necessarily distinct from α). Then set

mi;α,β =

{

1 β = α

multiplicity of Oβ in f(Pi × (Oα ∩ ni)) β 6= α

Finally, if (eα)α∈SYT(λ) is the standard basis of Wλ: eβ(α) = δα,β, then define

(4.2) ρ(i,i+1)eβ = −
∑

α∈SYT(λ)

mi;α,βeα .

Theorem 4.2 (Hotta). The (mi;α,β)α,β∈SYT(λ), i = 1, . . . , n− 1, satisfy the symmetric group

relations; and equipped with the action ρ(i,i+1) above, Wλ is the standard Sn-module associated
to the partition λ.

Example. For the three cases (1, 1), (2, 1), (2, 2), we find:

λ = (1, 1) : ρ(1,2) =

(
1
2

1
2

−1

)

,

λ = (2, 1) : ρ(1,2) =





1 2
3

1 3
2

1 2
3

1 0

1 3
2

−1 −1



 ρ(2,3) =





1 2
3

1 3
2

1 2
3

−1 −1

1 3
2

0 1



 ,

λ = (2, 2) : ρ(1,2) = ρ(3,4) =





1 2
3 4

1 3
2 4

1 2
3 4

1 0

1 3
2 4

−1 −1



 ρ(2,3) =





1 2
3

1 3
2

1 2
3 4

−1 −1

1 3
2 4

0 1



 .

4.2. Extended Joseph polynomials. Now consider the (complex) torus T = (C×)n+1

acting on n as follows: the first n variables correspond to conjugation by diagonal matrices,
whereas the last variable corresponds to scaling. Explicitly, if x ∈ n has entries xij and
t = (t1, . . . , tn, q) ∈ T , then (t · x)ij = q tit

−1
j xij .

Observe that Oλ, and therefore its irreducible components Oλ,α, are invariant by T -action.
Thus, they have natural Poincaré-dual classes in equivariant cohomology. It is convenient
to describe them in the language of multidegrees (see [MS05]).

4.2.1. Multidegrees. Given a torus T acting linearly on a complex vector space W , we assign
to a closed T -invariant sub-scheme X ⊆ W its multidegree mdegW X ∈ Sym(T ∗) (here T ∗ is
viewed as a lattice inside the dual of the Lie algebra of T ), which can be computed inductively
using the following properties (as in [Jos97]):

(1) If X = W = {0}, then mdegW X = 1.
(2) If the scheme X has top-dimensional components Xi, where mi > 0 denotes the

multiplicity of Xi in X , then mdegW X =
∑

i mi mdegW Xi.
(3) Assume X is a variety, and H is a T -invariant hyperplane in W .

(a) If X 6⊂ H , then mdegW X = mdegH(X ∩H).
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(b) If X ⊂ H , then mdegW X = [W/H ]T mdegH X , where [·]T ∈ T ⋆ denotes the
weight of the T -action.

One can readily see from these properties that mdegW X is homogeneous of degree codimW X ,
and is a positive sum of products of the weights of T on W .

In our case, Sym(T ⋆) ∼= Z[z1, . . . , zn, h], and the weights on C[xij ]16i<j6n of the T -action
are defined by

[xij ]T = h+ zi − zj

The multidegree of Oα with respect to this T -action, Jα := mdegn Oα, is called the extended
Joseph polynomial of Oα. Jα is by definition a homogeneous polynomial in Z[z1, . . . , zn, h],
of degree the codimension of Oα, which is nothing but k(λ) = 1

2

∑

i λi(λi − 1) defined in
Section 3, according to Eq. (4.1). The reason for the name, first given in [DFZJ05], is that
if we remove the scaling equivariance, i.e., set the variable h = 0, these polynomials reduce
to the ones Joseph introduced in [Jos84].

Example. All the examples of orbital varieties given above are complete intersections (the
number of equations is equal to the codimension); their multidegree is therefore the product
of weights of the equations:

J 1
2

= 1 ,

J 1 2
3

= h + z1 − z2 ,

J 1 3
2

= h + z2 − z3 ,

J 1 2
3 4

= (h + z1 − z2)(h+ z3 − z4) ,

J 1 3
2 4

= (h + z2 − z3)(2h+ z1 − z4) .

4.2.2. Divided Differences. The geometric construction given in Section 4.1.3 has a direct
counterpart for multidegrees. Here our reference is [KZJ09, Sect. 5.1.1].

Define the divided difference operator ∂i = 1
zi−zi+1

(τi − 1) where τi is permutation of

variables zi and zi+1. Note that both ∂i and τi are operators leaving Z[z1, . . . , zn] stable.
Let B be the group of invertible upper triangular matrices of size n. We use the following

special case of [Jos84] (see also [KZJ09, Lemma 8]):

Lemma 4.3. Let X ⊂ n be a B-invariant variety such that f(Pi × X) ⊂ n. Let k be the
degree of the map f |X : (Pi × X)/B → n, or zero if the generic fiber is infinite (i.e., X is
Pi-invariant). Then

− 1

h + zi+1 − zi
∂i((h + zi+1 − zi)mdegn X) = kmdegn f(Pi ×X) .

The proof is a standard equivariant localization argument which we shall not repeat here.
We now discuss separately the two cases of the construction of Section 4.1.3. Given a

α ∈ SYT(λ),
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(1) If Oα ⊂ ni, then f(Pi × Oα) ⊂ ni ∩ Oλ, is irreducible and contains Oα; therefore it is
equal (set-theoretically) to Oα, i.e., Oα is Pi-invariant. Lemma 4.3 implies

(4.3) ∂i((h+ zi+1 − zi)Jα) = 0 .

(2) If Oα 6⊂ ni, we have mdegn(Oα∩ni) = (h+zi−zi+1)Jα by property (3b) of multidegrees,
and then by applying Lemma 4.3 to each irreducible component of Oα ∩ ni we find:

(4.4) − (h+ zi − zi+1)∂iJα =
∑

β 6=α

mi;α,βJβ .

Adding the diagonal term to the sum, Eq. (4.4) can be rewritten under the equivalent form

(4.5) ŝiJα =
∑

β

mi;α,βJβ

where we used the Sn-action ŝi = τi − h∂i of Eq. (3.2). Note now that Eq. (4.3) is a special
case of Eq. (4.5) where mi;α,β = −δα,β. So Eq. (4.5) is valid in all cases. At h = 0, which is
the case that Joseph considered in [Jos84], ŝi reduces to the action of Sn on C[z1, . . . , zn] by
permutation of variables.

4.3. Identification with Iλ. There is a natural object in Wλ ⊗C[z1, . . . , zn, h], namely the
map Jλ : α ∈ SYT(λ) 7→ Jα. Combining Eqs. (4.2) and (4.5), we find:

(4.6) ρ(i,i+1)Jλ = −ŝiJλ .

According to Theorem 4.2, Wλ carries the structure of Sn-module which is the same, by
Schur–Weyl duality, as that of the space of singular vectors in V [λ] (where Sn acts by
permutation P (i,i+1) of tensors). Tensoring with C[z1, . . . , zn, h] (on which we do not make
Sn act), we obtain an Sn-intertwiner φ : Wλ ⊗ C[z1, . . . , zn, h] → V [λ]sing ⊗ C[z1, . . . , zn, h].
The equation above becomes

P (i,i+1)φ(Jλ) = −ŝiφ(Jλ)

which means φ(Jλ) satisfies the hypothesis of Lemma 3.1. Note that φ is only defined up to
a non-zero multiplicative constant.

We now want to identify φ(Jλ) with Iλ by using Lemma 3.3. By definition the entries of
φ(Jλ) are linear combinations of those of Jλ and therefore are homogeneous polynomials of
degree k(λ) in the variables z1, . . . , zn, h. We have just derived the skew-symmetry of φ(Jλ)
from Lemma 3.1. Therefore, we have proved:

Theorem 4.4. Let λ be a partition of n. Then there exists a unique intertwiner φ such that

φ(Jλ) = Iλ .

In particular, all properties that we shall prove for Iλ are true for Jλ as well.

Example. By comparing the formulae for Iλ and Jλ, we find

λ = (1, 1) : φ(e 1
2

) = v12 − v21 .

λ = (2, 1) : φ(e 1 2
3

) = v112 − v121 , φ(e 1 3
2

) = v211 − v121 .

λ = (2, 2) : φ(e 1 2
3 4

) = v1122 + v2211 − v1212 − v2121 , φ(e 1 3
2 4

) = v1221 + v2112 − v1212 − v2121 .
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1 2 3 4 5 6 7 8 9

7→ 1 2 4 7 8
3 5 6 9

Figure 1. From link patterns to standard Young tableaux.

We next investigate in more detail two special cases for which everything can be worked
out explicitly; the reader is invited to check all the results on our running examples, which
belong to both.

4.4. Case of two rows. In this section, we assume that the partition λ has only two rows:
λ = (n − p, p). This case was investigated in detail in the paper [KZJ09], so that we shall
omit proofs of the results that were already contained in it.

4.4.1. Link patterns. Call link pattern (or non-crossing matching) an unordered collection
of disjoint pairs of {1, . . . , n} such that if {1, . . . , n} are represented as ordered vertices on
a line, then the two elements of each pair can simultaneously be connected in the upper
half plane in a non-crossing fashion (we sometimes call these connecting lines arches) and
unpaired elements can be connected to upwards infinity (i.e., they must be outside all arches);
cf Fig. 1 left.

There is a simple bijection from link patterns with p arches to standard Young tableaux
of shape λ = (n − p, p), obtained by recording in the first row the locations of openings of
arches and of empty spots, and on the second row the locations of closings of arches. see
Fig. 1.

Given α ∈ SYT(λ), we can therefore consider its associated link pattern, and in particular,
we shall use the following notation: if i and j are paired in the link pattern, write α(i) = j,
α(j) = i; if i is unpaired, write α(i) = ∅.

There is an action of the Temperley–Lieb algebra on the space of linear combinations of link
patterns, which we identify with Wλ by identifying eα with the corresponding link pattern.
It is defined graphically by the action of the generators E(i,i+1), i = 1, . . . , n − 1, of the
Temperley–Lieb algebra which corresponds to reconnecting vertices i and i+ 1, e.g.,

E(1,2)

1 2 3 4

=

1 2 3 4

= 0

E(1,2)

1 2 3 4

=

1 2 3 4

=
1 2 3 4

E(1,2)

1 2 3 4

=

1 2 3 4

=
1 2 3 4
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E(1,2)

1 2 3 4

=

1 2 3 4

= 2
1 2 3 4

with the additional rules that reconnecting two unpaired points produces zero and that closed
loops must be erased at a cost of multiplication by 2.

The Temperley–Lieb algebra (at loop weight 2) is a quotient of the symmetric group alge-
bra, and in fact it is shown in [KZJ09, Sect. 5.1.2] that if one sets ρ(i,i+1) = 1−E(i,i+1), then
the action defined above coincides with the Joseph representation defined in Section 4.1.3.

4.4.2. Description of orbital varieties. When λ has only two rows, Oλ is a “spherical variety”,
i.e., the group of invertible upper triangular matrices B acts on it by conjugation with a
finite number of orbits. This gives us a first description of its irreducible components as
B-orbit closures. Define α< to be the upper triangular matrix with values in {0, 1} such
that (α<)ij = 1 iff j = α(i) > i. Then it is easy to show that Oα = B · α<, where · denotes
conjugation action.

An alternative description is in terms of equations:

Proposition 4.5. Oα is defined by the following equations:

(1) x2 = 0.
(2) The rank of any lower-left submatrix of x is lower or equal to the rank of the same

submatrix of α<.

This statement can be extracted with some effort from [Mel06] or can be deduced directly
from the results of [KZJ09].

4.4.3. Exchange relation. We rewrite explicitly the dichotomy of the Hotta construction
(Sections 4.1.3 and 4.2.2) since it will be needed in the next section.

Consider α ∈ SYT(λ) and its associated link pattern. The two cases are:

(1) Either α(i) 6= i+1 (there is no arch connecting i and i+1 in the link pattern), which
means (α<)i,i+1 = 0 and according to Proposition 4.5 (2), among the equations of Oα

there is xi,i+1 = 0, i.e., Oα ⊂ ni, and Eq. (4.3) holds, or equivalently, Jα is h+zi−zi+1

times a symmetric polynomial in zi, zi+1.
(2) Or α(i) = i+1 (there is an arch connecting i and i+1 in the link pattern), in which

case (α<)i,i+1 = 1, which implies Oα 6⊂ ni. Then we can rewrite Eq. (4.4) as:

−(h + zi − zi+1)∂iJα =
∑

β:E(i,i+1)β=α

Jβ

where, to keep notations simple, we have identified standard Young tableaux and link
patterns when we write “E(i,i+1)β = α”.

4.4.4. Change of basis. Finally, we investigate the intertwiner φ. In fact, in the case of two-
row diagrams, there is a well-known explicit formula for φ, which was rediscovered many
times and dates back (at least in the special case p = n/2) to [RTW32] (see [SZJ10] for more
references and background). Roughly speaking, a pairing between i and j corresponds to a

sl(2) singlet v
(i)
1 ⊗ v

(j)
2 − v

(i)
2 ⊗ v

(j)
1 , whereas an unpaired i is a v

(i)
1 (where superscripts are as
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usual locations in the tensor product (C2)⊗n). With the present sign conventions, the exact
statement is:

Proposition 4.6. The intertwiner φ is given by

φ(eα) =
∑

L=(l1,...,ln)∈{1,2}n

li 6=lj if j=α(i)
li=1 if α(i)=∅

(−1)⌊
n−p

2
⌋+#{i even: li=1}vL .

Proof. Checking that the φ thus defined intertwines the actions of the symmetric group is
a routine exercise. Because of the conditions on the conditions on the multi-index L, there
are k 2’s and n− k 1’s, so φ(eα) ∈ Vλ. So the only issue is normalization of φ, which is fixed
by Theorem 4.4. Consider the multi-index L0 = (1, . . . , 1

︸ ︷︷ ︸

n−p

, 2, . . . , 2
︸ ︷︷ ︸

p

). We have

IL0 = D0 =
∏

16i<j6n−p

(h+ zi − zj)
∏

n−p+16i<j6n

(h+ zi − zj) .

On the other hand, by inspection the entry φ(eα)L0 is zero unless α is the tableau α0 =

1 ··· n−p

n−p
+1 ··· n

, corresponding to the link pattern

p

. Jα0 is the

multidegree of the orbital variety indexed by α0, which according to Proposition 4.5 is a
linear subspace of the form

Oα0 =























· 0 · · · 0 ⋆ · · · · · · ⋆

· · . . .
...

...
...

· · · 0
...

...
· · · · ⋆ · · · · · · ⋆
· · · · · 0 · · · 0

· · · · · · . . .
...

· · · · · · · 0
· · · · · · · ·

















p

n− p







so that Jα0 = IL0 . We conclude that the normalization of φ is fixed by φ(eα0)L0 = 1. This
fits with the formula of the proposition. �

4.4.5. Cyclicity. Consider the special case n = 2p, i.e., the Young diagram is rectangular,
and the corresponding link patterns have no unpaired vertices. One can then define a rotation
of link patterns in the natural way, i.e., move the vertices cyclically 1 → 2 → · · · → n → 1
keeping the pairings intact. Via the one-to-one correspondence from link pattens to SYT(λ),
this defines a bijection ρ from SYT(λ) to SYT(λ). One observes empirically the following
relation:

(4.7) Jρα(z1, . . . , zn) = (−1)p−1Jα(z2, . . . , zn, z1 − 3h)
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It is well-known that if Eq. (4.5) is satisfied, then Eq. 4.7 is equivalent to the qKZ equation
(2.3) (in which N = 2). Indeed we shall prove in Section 5 that the case λ = (p, p) is among
the cases where Iλ and therefore Jλ satisfy the qKZ equation.

The case λ = (p, p) will be considered again in Section 6.

4.5. Case of two columns. Let λ = (2, . . . , 2
︸ ︷︷ ︸

p

1, . . . , 1
︸ ︷︷ ︸

N−p

), n = N + p. In this section we show

that all orbital varieties Oα for such λ are complete intersections and we describe explicitly
their equations as well as the extended Joseph polynomials Jα.

Note that the codimension of Oλ is simply k(λ) = p. Furthermore, λ satisfies the hypoth-
esis of Proposition 4.1, so that

Oλ = {x n× n : xN = 0} n = N + p, p 6 N .

There is a general duality of orbital varieties which corresponds to conjugation of partitions
and standard Young tableaux (related to the duality of [Spa82, Chapter 3]). It means that
the cases of two rows and two columns are dual to each other.

4.5.1. The dual symmetric group action. As mentioned above, there is a bijection ′ from
SYT(λ) to SYT(λ′) which is just conjugation (reflection through the diagonal) of Young
tableaux. Using this bijection we shall define a new “dual” action on Wλ starting from that
onWλ′ as defined in Section 4.4.1. Recall that the action is defined by the mi;α,β, cf Eq. (4.2).

Given α ∈ SYT(λ), define the sign of α to be

(4.8) εα = (−1)#{i < j : j strictly south-west of i in α} .
Now given α, β ∈ SYT(λ) and their conjugate α′, β ′, define

(4.9) mi;α,β = −εαεβmi;β′,α′ .

Due to the easy lemma the mi;α,β 6= 0, α 6= β, implies εα 6= εβ, we can write equivalently

mi;α,β = (−1)δα,βmi;β′,α′

i.e., negate the diagonal entries and transpose.

4.5.2. Defining equations of the orbital varieties. There is again a bijection between SYT(λ)
and the set of link patterns in size n with p arches, obtained by composing the bijection
of Section 4.4.1 with conjugation of Young tableaux. So we shall use the same notations
α(i) = j, α(i) = ∅, for paired i, j and unpaired i, respectively.

For α ∈ SYT(λ) and 1 6 i < j 6 2n, denote

pα(i, j) := j − i+ 1−#{k : i 6 k < α(k) 6 j} .
We have pα(i, j) >

j−i+1
2

, with equality if and only if all elements of [i, j] are paired between
themselves; in particular,

pα(i, j) =
j − i+ 1

2
i < j = α(i) .

An important property is that if i 6 i′ 6 j′ 6 j, then pα(i
′, j′) 6 pα(i, j) (enlarging an

interval by one can either leave pα unchanged if a new pairing has been absorbed in the
interval, or increase pα by 1 otherwise). This implies that pα(i, j) 6 pα(1, n) = n − p = N
for all i < j.
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Define

(4.10) Ôα :=
{

x ∈ n :
(
xpα(i,j)

)

i,j
= 0, i < j = α(i)

}

.

We want to show that Ôα = Oα. First we prove the following lemma:

Lemma 4.7. If x ∈ Ôα then (xa)i,j = 0 for all i < j and a > pα(i, j).

In fact, these are all the (xa)i,j in the ideal of equations of Ôα.

Proof. By induction on j − i.
If j = i+1 then either a > 1 in which case (xa)i,i+1 = 0 because x is strict upper triangular;

or a = 1 = pα(i, i + 1) which implies i + 1 = α(i), in which case xi,i+1 = 0 is part of the

defining equations of Ôα.
Next, assume j > i + 1. We are going to divide into cases depending on the position of

α(i) (and similarly for α(j)). If α(i) = j and a = pα(i, j), once again (xa)i,j = 0 is part of

the defining equations of Ôα. If α(i) 6∈ [i, j] or α(i) = j and a > pα(i, j), consider

(xa)i,j =
∑

i<k<j

xi,k

(
xa−1

)

k,j
.

We claim that every term in the sum is zero. Indeed if α(i) 6∈ [i, j], pα(i+1, j) = pα(i, j)− 1
so that a− 1 > pα(i, j)− 1 = pα(i+1, j) > pα(k, j) and we apply the induction to (xa−1)k,j.

Similarly if α(i) = j and a > pα(i, j), a− 1 > pα(i, j) = pα(i+ 1, j) > pα(k, j).
So we can assume in what follows that α(i) ∈]i, j[. The exact same reasoning applied to

j allows to conclude that α(j) ∈]i, j[, so that i < α(i) < α(j) < j.
We now come to the crucial remark that

pα(i, j) = j − i+ 1−#{pairings of α inside [i, j]}
= j − α(j) + 1−#{pairings of α inside [α(j), j]}
+ α(j)− α(i)− 1−#{pairings of α inside [α(i) + 1, α(j)− 1]}
+ α(i)− i+ 1−#{pairings of α inside [i, α(i)]}
= pα(i, α(i)) + pα(α(i) + 1, α(j)− 1) + pα(α(j), j)

where in the last line, if α(i)+1 = α(j) then conventionally pα(α(i)+1, α(j)−1) = 0. Indeed
the configuration does not allow for mixed pairings between the three intervals [i, α(i)],
[α(i) + 1, α(j)− 1], [α(j), j]. So we can write

(xa)i,j =
∑

i<k<ℓ<j

(
xpα(i,α(i))

)

i,k

(
xa−pα(i,α(i))−pα(α(j),j)

)

k,ℓ

(
xpα(α(j),j)

)

ℓ,j
.

The first factor is zero if k 6 α(i) by the induction hypothesis, noting that pα(i, k) 6

pα(i, α(i)) and similarly the third factor is zero if ℓ > α(j). If α(i) + 1 = α(j) the proof is
finished; otherwise note that pα(k, ℓ) 6 αα(α(i) + 1, α(j)− 1) 6 a− pα(i, α(i))− pα(α(j), j)
and the second factor vanishes for the same reason. �

Taking a = N > pα(i, j) in Lemma 4.7, we find that Ôα ⊂ O (set-theoretically).
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Now observe that Ôα is defined by p equations, but O is equidimensional of codimension p,
so that Ôα is (a complete intersection) of pure codimension p, and so is a union of irreducible
components of O.

One could with more effort conclude geometrically that Oα = Ôα, but instead we shall use
multidegrees and the uniqueness property of Lemma 3.3. Define Ĵα := mdegn Ôα. Since the

Ôα are complete intersections, one can calculate directly

(4.11) Ĵα =
∏

i<j=α(i)

(
j − i+ 1

2
h+ zi − zj

)

.

Note that an identical formula (really, at h = 0, but this can be absorbed in the shift of the
z’s) appears in [KL00] in an indirectly related context.

We can then check

Lemma 4.8. Ĵλ =
∑

α Ĵαeα satisfies Eq. (4.6).

Proof. Recall that Eq. (4.6) amounts to saying that the entries Ĵα of Ĵλ must satisfy Eq. (4.5).
Taking into account that we use the dual action defined above, we find the same dichotomy
as in Section 4.4.3, but inverted:

(1) If α(i) = i+1, then according to Section 4.4.3 case (2), mi;α′,α′ = +1, so mi;α,α = −1,
i.e. we are in case (1) of Section 4.1.3; so Eq. (4.5) can be rewritten as Eq. (4.3),

which is trivially satisfied by Ĵα = C(h + zi − zi+1) where C does not depend on
zi, zi+1.

(2) If α(i) 6= i+1, then according to Section 4.4.3 case (2), mi;α′,α′ = −1, so mi;α,α = +1,
i.e. we are in case (2) of Section 4.1.3; so Eq. (4.5) can be rewritten as Eq. (4.4), or
more explicitly,

−(h+ zi − zi+1)∂iĴα =

{

0 α(i) = α(i+ 1) = ∅

ĴE(i,i+1)α otherwise

where again we have identified standard Young tableaux and link patterns when we
write “E(i,i+1)α”.
This equation can also be checked directly case by case:
• If α(i) = α(i+ 1) = ∅, Ĵα does not depend on zi, zi+1, so ∂iĴα = 0.

• If α(i) = ∅, α(i+1) = j > i+1, Ĵα = C( j−i
2
h+zi+1−zj), so −(h+zi−zi+1)∂iĴα =

C(h + zi+1 − zi) which is indeed ĴE(i,i+1)α since E(i,i+1)α differs from α only in
pairing i, i+ 1 and having j unpaired.

• The case α(i) = j < i, α(i+ 1) = ∅ can be treated similarly.

• If α(i) = j < i, α(i+ 1) = k > i, Ĵα = C( i−j+1
2

h+ zj − zi)(
k−i
2
h+ zi+1 − zk), so

−(h+ zi − zi+1)∂iĴα = C(h+ zi − zi+1)(
k−j+1

2
h+ zj − zk) which again coincides

with ĴE(i,i+1)α, since E(i,i+1)α pairs i, i+ 1 and j, k.
• The other two cases i < i+ 1 < α(i+ 1) < α(i) and α(i+ 1) < α(i) < i < i+ 1
can be treated similarly.

�
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Applying the intertwiner φ and then Theorem 4.4 and Lemma 3.3, we conclude that the
Ĵα coincide up to normalization with the multidegrees Jα of the orbital varieties: Ĵα = cJα

for some c 6= 0.
Now according to the above, Ôα is a union of a certain certain subset of Oβ , so we can

write at the level of multidegrees Ĵα = mdegn Ôα =
∑

β kα,βJβ where kα,β is the multiplicity

of Oβ in Ôα (or zero if Oβ 6⊂ Ôα). In order to conclude, we only need to note that according
to Eq. (4.5) and Theorem 4.2, the Jβ, β ∈ SYT(λ), generate a subspace of C[z1, . . . , zn, h]
which is an irreducible representation of the symmetric group under the action ŝi (associated
to the conjugate partition λ′, with our sign convention), and so in particular are linearly

independent. So cJα =
∑

β kα,βJβ implies kα,β = cδα,β and Ôα = Oα (set-theoretically). In
other words, we have proved:

Theorem 4.9. Oα is defined by the equations

(

x
j−i+1

2

)

i,j
= 0, i < j = α(i) .

In fact, since all coefficients of Ĵα = kα,αJα at h = 0 are ±1 and Jα ∈ Z[z1, . . . , zn, h], we

have kα,α = c = 1, i.e., Ĵλ = Jλ (and Ôα being a complete intersection, the equations above
define Oα as a reduced scheme). In particular,

(4.12) Jα =
∏

i<j=α(i)

(
j − i+ 1

2
h+ zi − zj

)

.

4.5.3. Change of basis. We can use again duality (conjugation of partition and Young tableaux)
to find the intertwiner:

Lemma 4.10. The intertwiner is:

φ(eα) = (−1)p(p−1)/2 εα
∑

L=(l1,...,ln)
permutation of (1,...,p,1,...,n−p)

Jα′ |
z
l1−1
1 ···zln−1

n
vL

where |
z
l1−1
1 ···zln−1

n
denotes the given coefficient of a polynomial.

Proof. We need to check that this φ intertwines the symmetric group action. Note that
deg Jα′ = p(p− 1)/2 + (n − p)(n − p− 1)/2 so zl11 · · · zlnn exhausts the degree and we might
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as well set h = 0 in Jα′ .

P (i,i+1)φ(eβ) = (−1)p(p−1)/2εβ
∑

L

Jβ′ |
z
l1−1
1 ···zln−1

n
vl1,...,li+1,li,...,ln

= (−1)p(p−1)/2εβ
∑

L

(τiJβ′)|
z
l1−1
1 ···zln−1

n
vL

= (−1)p(p−1)/2εβ
∑

L

∑

α′

mi;β′,α′Jα′ |
z
l1−1
1 ···zln−1

n
vL by Eq. (4.5) at h = 0

=
∑

α′

εβεαmi;β′,α′φ(eα)

= −
∑

α

mi;α,βφ(eα) by Eq. (4.9)

= φ(ρ(i,i+1)eβ) by Eq. (4.2)

Next we check the normalization, which is fixed by Theorem 4.4. Consider the same

tableau α0 that was used in the proof of Proposition 4.6, i.e., α0 =
1 ··· n−p

n−p
+1 ··· n

, which

is a tableau of λ′. Then we have as before Jα0 =
∏

16i<j6n−p(h + zi − zj)
∏

n−p+16i<j6n(h+

zi − zj), so that φ(eα′

0
) = (−1)(n−p)(n−p−1)/2An−p ⊗ An where Ak is the antisymmetrizer

∑

σ∈Sk
(−1)σvσ(1) ⊗ · · · ⊗ vσ(k).

Now consider the multi-index L = (n − p, . . . , 1, 1, . . . , p). According to Eq. (3.6), IL =
(zn − zn−2p+1)(zn−1 − zn−2p+2) · · · (zn−p+1 − zn−p). But this is also Jα′

0
|h=0 according to

Eq. (4.12). Recalling that Theorem 4.2 implies that the Jα|h=0 are linearly independent, we
conclude that the coefficient of vL in φ(eα′

0
) must be 1, which is consistent with the formula

above. �

4.5.4. Cyclicity. In order to simplify the discussion, we assume now that n = 2p = 2N , i.e.,
the Young diagram is rectangular, and use again the rotation ρ of Section 4.4.5 (in principle
the content of the present section is valid for p < n/2 but more work would be needed to
define ρ).

Then it is obvious from the explicit form (4.12) that the Jα satisfy the extra “cyclicity”
relation

Jρα(z1, . . . , zn) = −Jα(z2, . . . , zn, z1 − (N + 1)h)

Indeed if n is paired to say i, there is a factor n−i+1
2

h+ zn− zi, but once rotated, the pairing

1, i+ 1 produces a factor i+1
2
h + zi+1 − z1 which corresponds to the substitution zi → zi+1,

zn → z1 − n+2
2
h and a change of sign.

This together with Eq. (4.5) implies the qKZ equation.
We shall see in next section the condition on λ for Iλ (and therefore Jλ) to satisfy qKZ, a

condition which is satisfied if λ has two columns.

5. Iλ is a q-conformal block, Iλ satisfies the qKZ equations if d(λ) 6 1.

Theorem 5.1. Let λ ∈ N
N be a partition of n. If d(λ) > 0 then Iλ is a q-conformal block

at level d(λ). If d(λ) = 0 then Iλ is a q-conformal block at level 1.
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Proof. First we prove that Iλ is a singular vector. Observe that the ei,j-image of a V [λ]-
valued function is a V [µ]-valued function with µk = λk except µi = λi + 1 and µj = λj − 1.
The action of ei,j and the deformed action of Sn commute, hence ei,jIλ is skew-symmetric.
If i < j, then the degree k(λ) of ei,jIλ is strictly less than k(µ) = k(λ) + λi − λj + 1. Hence
ei,jIλ must be 0 by Lemma 3.3.

The operation e(z) also commutes with the deformed action of Sn, hence we can argue for
the q-conformal block property similarly.

First let d(λ) > 0. The function e(z)Iλ is a skew-symmetric V [µ]-valued function of
degree k(λ) + 1, where µk = λk except µ1 = λ1 + 1, µN = λN − 1. Calculation shows that
k(µ) = k(λ) + d(λ) + 1 which is strictly greater than the degree k(λ) + 1. Hence e(z)Iλ = 0
by Lemma 3.3.

Now let d(λ) = 0. The function e(z)2Iλ is a skew-symmetric V [µ]-valued function of
degree k(λ) + 2, where µk = λk except µ1 = λ1 + 2, µN = λN − 2. Calculation shows that
k(µ) = k(λ) + 4 which is strictly greater than the degree k(λ) + 2. Hence e(z)2Iλ = 0 by
Lemma 3.3. �

Corollary 5.2. Let d(λ) 6 1. For generic z ∈ Cn the space of q-conformal blocks at level 1
is one-dimensional.

Proof. We recalled in Lemma 2.2 that for generic z the dimension of q-conformal blocks is
at most 1. We proved in Theorem 5.1 that Iλ is a (generically nonzero) q-conformal block.
Hence, for generic z this space is one-dimensional. �

Consider z ∈ C
n for which Corollary 5.2 holds and for which the qKZ operators have no

singularities, e.g. z1 − z2 + h 6= 0 etc. Over the configuration space of these z’s one may
consider the bundle of singular vectors. The q-conformal blocks form a rank 1 subbundle.
It is proved in [MV98] that the subbundle of q-conformal blocks is preserved by the qKZ
connection. In our language this means the following theorem.

Theorem 5.3. [MV98, Theorem 2] If, for the z’s defined above, the space of q-conformal
blocks at level 1 is spanned by a V [λ]-valued function I, then a scalar function multiple of I
satisfies the qKZ difference equations (2.3).

Theorem 5.4. Let d(λ) 6 1. Then Iλ satisfies the qKZ equations (2.3).

The rest of this section is the proof of this theorem.

Proof. The function Iλ is a q-conformal block at level 1. By Theorem 5.3, there is a scalar
function f(z1, . . . , zn) such that fIλ satisfies the qKZ equations. We obtain

f(. . . , zi − (N + 1)h, . . .)Iλ(. . . , zi − (N + 1)h, . . .) = KifIλ, i = 1, . . . , n.

After rearrangement we have

(5.1)
f(. . . , zi − (N + 1)h, . . .)

f
Iλ(. . . , zi − (N + 1)h, . . .) = KiIλ, i = 1, . . . , n.

Since Iλ(. . . , zi − (N + 1)h, . . .) and KiIλ are rational functions of z1, . . . , zn, the ratios

gi =
f(. . . , zi − (N + 1)h, . . .)

f
, i = 1, . . . , n,

are rational functions of z1, . . . , zn of degree 0.
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Our first goal is to show that g1 is a constant function equal to 1 . We start with two
lemmas.

Lemma 5.5. Let I be a V [λ]-valued skew-symmetric function (for example I = Iλ). Then

R(i,i+1)(zi − zi+1)I = −P (i,i+1) I(zi ↔ zi+1) .

Proof. Skew symmetry with respect to the transposition si implies the formula by direct
calculation. �

Lemma 5.6. K1Iλ is a polynomial.

Proof. By Lemma 5.5, K1Iλ = (−1)n−1P (1,n) · · ·P (1,2) Iλ(z2, . . . , zn, z1) . �

We claim that the components of Iλ do not have a common polynomial factor of degree > 1.
Indeed, if a polynomial, necessarily homogeneous, divides all components of Iλ, then in the
quasiclassical limit h = 0 a polynomial would divide all components of Ih=0

λ . One sees from
the explicit form of Ih=0

λ in the Remark in Section 3 that this is not the case.
This claim together with Lemma 5.6 implies that the denominator of g1 is a constant

function, and since g1 is a rational function of degree 0, g1 must be a constant function. The
h = 0 limit of equation (5.1) then implies that g1 = 1. In other words, we proved that Iλ
satisfies the first qKZ equation.

Our next goal is to show that the first qKZ equation implies the others for skew-symmetric
functions.

For brevity we will write p for (N + 1)h. Assume that the i-th qKZ equation

I(zi → zi−p) = R(i,i−1)(zi−zi−1−p) · · ·R(i,1)(zi−z1−p)R(i,n)(zi−zn) · · ·R(i,i+1)(zi−zi+1)I

holds. At the right end of the formula we can use Lemma 5.5 to obtain

I(zi → zi − p) = R(i,i−1)(zi − zi−1 − p) · · ·R(i,1)(zi − z1 − p)×
×R(i,n)(zi − zn) · · ·R(i,i+2)(zi − zi+2)(−P (i,i+1)I(zi ↔ zi+1)).

Applying −P (i,i+1) to this equation, together with the iterated application of

P (i,i+1)R(i,m)(u) = R(i+1,m)(u)P (i,i+1)

we get

−P (i,i+1)I(zi → zi − p) = R(i+1,i−1)(zi − zi−1 − p) · · ·R(i+1,1)(zi − z1 − p)×
×R(i+1,n)(zi − zn) · · ·R(i+1,i+2)(zi − zi+2)I(zi ↔ zi+1).

To this equation we substitute zi ↔ zi+1 and obtain

−P (i,i+1) I(zi → zi+1 − p, zi+1 → zi) = R(i+1,i−1)(zi+1 − zi−1 − p) · · ·R(i+1,1)(zi+1 − z1 − p)

× R(i+1,n)(zi+1 − zn) · · ·R(i+1,i+2)(zi+1 − zi+2) I .

We can use Lemma 5.5 to write the left hand side in the form of

R(i,i+1)(zi − zi+1 + p)I(zi+1 → zi+1 − p).

Then applying the R(i,i+1)(zi+1 − zi − p) operator to both sides results in the i + 1-st qKZ
equation. This finishes the proof of Theorem 5.4. �
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6. A q-Selberg type integral

According to the general principle in [MV00], if a KZ-type equation has a one-dimensional
space of solutions, then the hypergeometric or q-hypergeometric integrals representing the
solutions can be calculated explicitly, see demonstrations of that principle in [FSV03, RSV10,
TV97, TV03, Var10, War09, War10]. In this section we give another example of this type.

In the rest of the paper we fix N = 2 and consider the bundle of the gl2 q-conformal blocks
at level 1 over (C2)⊗n. That bundle is of rank 1. The qKZ operators define a discrete flat
connection on that bundle. In Section 3 we constructed a vector-valued polynomial on Cn

that generates the space of flat sections of the discrete connection. Moreover, in Section 4
we identified that polynomial with the generating function of extended Joseph polynomials
of orbital varieties associated with nilpotent n × n-matrices. On the other hand in [TV97,
MV98, MV99] flat sections of the same connection were constructed as multidimensional
q-hypergeometric integrals. In this section we identify the q-hypergeometric flat sections
constructed in [TV97, MV98, MV99] with the polynomial section constructed in Section
3 and obtain a q-Selberg type identity that a multidimensional q-hypergeometric integral
equals a polynomial.

6.1. Quantized conformal blocks at level 1 and qKZ equations. First we recall some
earlier definitions specialized for gl2, and with the substitution h = 1. We consider the vector
representation C2 of gl2 with the standard basis v1, v2 and denote V = (C2)⊗n. The space
V has a basis of vectors vi1 ⊗ · · ·⊗ vin, where ij ∈ {1, 2}. Every such a sequence (i1, . . . , in)
defines a decomposition L = (L1, L2) of {1, . . . , n} into disjoint subsets, Lj = {l | il = j}.
The basis vector vi1 ⊗ · · · ⊗ vin is denoted by vL. We have V =

⊕

λ=(λ1,λ2)
V [λ], where

λ1 + λ2 = n, and V [λ] = {v ∈ V | ei,iv = λiv, i = 1, 2}. Denote by Lλ the set of all indices
L with |Lj | = λj, j = 1, 2. The vectors {vL | L ∈ Lλ} form a basis of V [λ].

For z = (z1, . . . , zn) ∈ Cn, we define an operator e(z) : V → V , by the formula

e(z) =
n∑

j=1

(zj − e
(j)
2,2 +

n∑

s=j+1

(e1,1 − e2,2)
(s))e

(j)
1,2.

For λ = (λ1, λ2) with 1 > λ1−λ2 > 0, we define the space of quantized conformal blocks at
level 1 as

CBλ(z) = {v ∈ V [λ] | e1,2v = 0, e(z)2+λ2−λ1v = 0 }.
Note that for any n, the space V has a unique subspace V [λ] with 1 > λ1 − λ2 > 0. If

n = 2ℓ, then λ = (ℓ, ℓ) and if n = 2ℓ+1, then λ = (ℓ+1, ℓ). That λ will be called the middle
weight. The middle weight λ is determined by n and we will denote the subspace CBλ(z)
just by CB(z).

Corollary 5.2 claims that for generic z ∈ Cn, dim CB(z) = 1.
For i = 1, . . . , n, the qKZ operators at level 1 on V are

Ki(z1, . . . , zn) = R(i,i−1) (zi − zi−1 − 3) · · ·R(i,1) (zi − z1 − 3)×
× R(i,n)(zi − zn) · · ·R(i,i+1)(zi − zi+1).

The qKZ operators define on V a discrete flat connection,

Kj(z1, . . . , zi − 3, . . . , zn)Ki(z1, . . . , zn) = Ki(z1, . . . , zj − 3, . . . , zn)Kj(z1, . . . , zn)
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for all i, j, see [FR92]. A V -valued function I(z) is a flat section if it satisfies the qKZ
equations,

(6.1) I(z1, . . . , zi − 3, . . . , zn) = Ki(z1, . . . , zn)I(z1, . . . , zi, . . . , zn), i = 1, . . . , n.

The subbundle of conformal blocks at level 1 is invariant with respect to the qKZ connection,

Ki(z1, . . . , zn) : CB(z1, . . . , zn) → CB(z1, . . . , zi − 3, . . . , zn)

for all i, see [MV98, MV99].

Recall the polynomial Iλ from Section 3, with the substitution h = 1. In notation we will
not indicate the h = 1 substitution. Hence in the rest of the paper we have e.g.

I(2,1) = (z1 − z2 + 1)v112 + (z3 − z1 − 2)v121 + (z2 − z3 + 1)v211.

Results of the first part of the paper, in our present conventions, are as follows.

• Iλ is skew symmetric with respect to the Sn-action (2.1) with h = 1.
• Iλ has degree k(λ) = 1

2
λ1(λ1 − 1) + 1

2
λ2(λ2 − 1) (the minimal degree skew symmetric

polynomial).
• Given λ, let L = (L1, L2) be the partition of {1, . . . , n} with L1 = {1, . . . , λ1}. Then
Iλ is normalized in such a way that its L-th coordinate is

∏

16a<b6λ1

(za − zb + 1)
∏

λ1<a<b6n

(za − zb + 1).

That polynomial Iλ will be called minimal.
• If λ = (λ1, λ2) is the middle weight, i.e. 1 > λ1 − λ2 > 0, then Iλ ∈ CB(z) and Iλ
satisfies the qKZ equations (6.1).

6.2. An integral representation for quantized conformal blocks at level 1. In this
section λ is the middle weight for n, λ = (ℓ, ℓ) if n = 2ℓ and λ = (ℓ+ 1, ℓ) if n = 2ℓ+ 1.

Define the master function

Φ(t1, . . . , tℓ, z1, . . . , zn) =
∏

n>j>i>1

Γ((zj − zi + 1)/3)

Γ((zj − zi − 1)/3)

∏

ℓ>j>i>1

Γ((tj − ti + 1)/3)

Γ((tj − ti − 1)/3)
×

×
n∏

i=1

ℓ∏

j=1

Γ((zi − tj − 1)/3)

Γ((zi − tj)/3)
.

For L = (L1, L2) ∈ Lλ with L2 = {i1 < · · · < iℓ}, define the function wL(t1, . . . , tℓ, z1, . . . , zn)
by the formula

wL =
∑

σ∈Sℓ

ℓ∏

j=1

1

tσj
− zij

ij−1
∏

m=1

tσj
− zm + 1

tσj
− zm

∏

16i<j6ℓ, σi>σj

tσi
− tσj

+ 1

tσi
− tσj

− 1

Define the V [λ]-valued weight function by the formula

w(t1, . . . , tℓ, z1, . . . , zn) =
∑

L∈Lλ

wL(t1, . . . , tℓ, z1, . . . , zn)vL.
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Define the trigonometric weight function W (t1, . . . , tℓ, z1, . . . , zn) by the formula

W = πℓ

ℓ∏

j=1

sin(π(z2j − z2j−1 + 1)/3)

sin(π(tj − z2j−1)/3) sin(π(tj − z2j)/3)

2j−2
∏

m=1

sin(π(tj − zm + 1)/3)

sin(π(tj − zm)/3)
.

Using the formula Γ(1− x) Γ(x) = π
sin (πx)

, we can write

ΦW =
∏

n>j>i>1

Γ((zj − zi + 1)/3)

Γ((zj − zi − 1)/3)

∏

ℓ>j>i>1

Γ((tj − ti + 1)/3)

Γ((tj − ti − 1)/3)
×

×
ℓ∏

j=1

1∏

m=0

Γ((z2j−m − tj − 1)/3)Γ(1− (z2j−m − tj)/3)×

×
ℓ∏

j=1

2j−2
∏

i=1

Γ(1− (zi − tj)/3)

Γ(1− (zi − tj − 1)/3)

n∏

i=2j+1

Γ((zi − tj − 1)/3)

Γ((zi − tj)/3)
×

× π−ℓ
ℓ∏

j=1

sin(π(z2j − z2j−1 + 1)/3).

The function ΦWw is a meromorphic function of t1, . . . , tℓ with first order poles at the
hyperplanes

ti − tj = 1 + 3s, i < j, s = 1, 2, ...

tj − zm = −1 + 3s, m 6 2j, s = 0, 1, ...

tj − zm = −3s, m > 2j − 1, s = 0, 1, ...

Define an oriented unbounded one-chain Cn ⊂ C. It consists of the vertical line −1
2
+√

−1R, oriented from −1
2
−

√
−1∞ to −1

2
+

√
−1∞, and 2n circles C1, . . . , C2n of radius

1
4
. The circle Cj for 1 6 j 6 n is centered at j

√
−1 and oriented counterclockwise, while

the circle Cj for n < j 6 2n is centered at −1 + j
√
−1 and oriented clockwise. Define the

integration cycle

C
ℓ
n = {(t1, . . . , tℓ) ∈ C

ℓ | ti ∈ Cn}.
For (z1, . . . , zn) ∈ Cn such that |zj − j

√
−1| < 1

4
, define a V [λ]-valued q-hypergeometric

integral by the formula

Ψλ(z1, . . . , zn) =

∫

Cℓ
n

Φ(t, z)w(t, z)W (t, z) dt1 . . . dtℓ.

Theorem 6.1 ([TV97]). The function Ψλ(z1, . . . , zn) is well-defined and extends to a mero-
morphic function on C

n. Moreover, the function Ψλ(z1, . . . , zn) is a solution of the qKZ
equations (6.1).

Theorem 6.2 ([MV98]). For generic z ∈ Cn, we have Ψλ(z1, . . . , zn) ∈ CB(z).

Theorem 6.3. Let n = 2ℓ, λ = (ℓ, ℓ) or n = 2ℓ + 1, λ = (ℓ + 1, ℓ). Let Iλ(z1, . . . , zn) be
the minimal skew-symmetric V [λ]-valued polynomial as above. Then the q-hypergeometric
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integral Ψλ(z1, . . . , zn) equals the polynomial cnIλ(z1, . . . , zn), where

(6.2) c2 = 2π
√
−1

Γ(2/3)Γ(−1/3)

Γ(1/3)
, c2ℓ = 3−ℓ(ℓ−1)cℓ2, c2ℓ+1 = (−1)ℓ3−ℓ2cℓ2.

By Section 4 the polynomial Iλ is the generating function of the extended Joseph polyno-
mials of the orbital varieties associated with nilpotent n× n-matrices. Hence, Theorem 6.3
gives an integral representation for those extended Joseph polynomials.

Proof. For n = 2 the middle weight is (1, 1) and we have I(1,1) = v12 − v21, Ψ(1,1) = c2I(1,1),
where

c2 = π−1 sin(π(z2j − z2j−1 + 1)/3)
Γ((z2 − z1 + 1)/3)

Γ((z2 − z1 − 1)/3)
×

×
∫

C2

1∏

m=0

Γ((z2j−m − tj − 1)/3)Γ(1− (z2j−m − tj)/3)
dt

t− z1

= 2π
√
−1

Γ(2/3)Γ(−1/3)

Γ(1/3)
,

see (1.1).
For arbitrary n we have Ψλ(z1, . . . , zn) = cn(z1, . . . , zn)Iλ(z1, . . . , zn), where cn(z1, . . . , zn)

is a scalar function 3-periodic with respect to every variable. Indeed, both Ψλ(z1, . . . , zn) and
Iλ(z1, . . . , zn) are quantized conformal blocks at level 1 and both satisfy the qKZ equations.
To check that cn is given by (6.2) we consider the asymptotic zone:

(i) |z2i − z2i−1| 6 1, |Im(z2i)| 6 1 for i = 1, . . . , ℓ,
(ii) Re(z2i+2 − z2i) ≫ 1 for i = 1, . . . , ℓ− 1 and Re(zn − zn−2) ≫ 1 if n is odd,

use the Stirling formula for the Gamma functions,

Γ((x+ α)/p)

Γ((x+ β)/p)
= (x/p)α−β(1 + o(1)), |arg(x/p)| < π,

and similarly to the proof of Theorem 6.7 in [TV97] observe that

c2ℓ = 3−ℓ(ℓ−1)cℓ2(1 + o(1)), c2ℓ+1 = (−1)ℓ3−ℓ2cℓ2(1 + o(1)).

This proves the theorem. �

7. An alternative integral for N = 2

Finally, we formulate an integral representation in the two-row case λ = (n−p, p), distinct
from that of the previous paragraph, and which generalizes that of [RSZJ07] (which was the
case n odd, n = 2p+ 1).

Expanding Iλ =
∑

L ILvL, the multi-indices that contribute to the sum have n− p 1s and
p 2s. Let us parameterize them as follows: denote L(a) the multi-index whose 2s are located
at indices a = (a1 < · · · < ap).

Theorem 7.1.

IL(a) = (−1)p(n−p+1)hp
∏

16i<j6n

(h+zi−zj)

∮ p
∏

k=1

dwk

2π
√
−1

∏

16k<ℓ6p(wℓ − wk)(h+ wk − wℓ)
∏p

k=1

(∏ak
i=1(wk − zi)

∏n
i=ak

(h+ wk − zi)
)
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The integration cycle is the product of p identical 1-dimensional cycles. The 1-dimensional
cycle is any contour that surrounds once counterclockwise each of the z1, . . . , zn but none of
the z1 − h, . . . , zn − h.

Note that the integrals have no pole at infinity (the integrand behaves as w
2(p−1)−(n+1)
k

as wk → ∞) so we may as well consider that the contour surrounds clockwise the z1 −
h, . . . , zn − h but none of the z1, . . . , zn.

Proof. We are going to apply Lemma 3.3. Denote by ÎL(a) the r.h.s. of the formula above.

First one needs to check that ÎL(a) is a polynomial in z1, . . . , zn, h. This is a routine
calculation based on the application of the residue formula for the wk integrals and the
check that would-be poles in the variables zi have vanishing residue (see a similar calculation
in [FZJ08]); since the formula is homogeneous in z1, . . . , zn, h this leaves only a power of h

in the denominator which is cancelled by the factor hp. The degree of ÎL(a) is then (as a
homogeneous polynomial in z1, . . . , zn, h) p + n(n − 1)/2 + p + 2p(p − 1)/2 − p(n + 1) =
p(p− 1)/2 + (n− p)(n− p− 1)/2 = k(λ).

Next, we check that Îλ =
∑

L ÎLvL is skew-symmetric by use of Lemma 3.1. Fixing
i = 1, . . . , n− 1, there are four possibilities:

• If Li = Li+1 = 1, the integrand (including the prefactor in front of the integral) is
h+ zi − zi+1 times a symmetric function of zi, zi+1. This implies that ŝiIL = −IL.

• If Li = Li+1 = 2, say ak = i, ak+1 = i + 1, then the integrand minus itself with
zi ↔ zi+1 is skew-symmetric in wk, wk+1 and therefore its integral is zero. This
implies again that ŝiIL = −IL.

• If Li = 2, Li+1 = 1, say ak = i, ak+1 > i+ 1, then the integrand is h+zi−zi+1

wk−zi
times a

symmetric function of zi, zi+1. Applying ŝi results in − (h+wk−zi)(h+zi−zi+1)
(wk−zi)(wk−zi+1)

times the

same function, which is nothing but minus the integrand with ak → i + 1, which is
precisely L → si(L). That is, ŝiIL = −Isi(L).

• The case Li = 1, Li+1 = 2 is treated similarly.

Therefore all the hypotheses of Lemma 3.3 are satisfied, and Îλ is proportional to Iλ. In
order to fix the normalization, we consider the case a = (n− p + 1, . . . , n), i.e., L(a) = L0.
Then the integrals can be computed one by one as follows. The integral over wp has only
one pole outside the contour, at zn−h. Next, the integral over wp−1 has two poles, at zn−h
and zn−1 − h, but the first one is cancelled by the factor wp − wp−1 in the numerator (since
we have taken the residue at wp = zn − h). So there is only one contribution, the residue at
wp−1 = zn−1 − h; and so on. In the end, evaluating the residues at wk = zk+n−p − h results

in: ÎL0 =
∏

16i<j6n−p(h + zi − zj)
∏

n−p+16i<j6n(h + zi − zj), which coincides with IL0, so

that Îλ = Iλ. �
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