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Abstract. In non-Euclidean data spaces represented by manifolds (or more
generally stratified spaces), analogs of principal component analysis can be

more easily developed using a backwards approach. There has been a gradual
evolution in the application of this idea from using increasing geodesic sub-
spaces of submanifolds in analogy with PCA to using a “backward sequence”
of a decreasing family of subspaces. We provide a version of the backwards
approach by using a “nested sequence of relations” which define the decreas-
ing sequences of subspaces which need not be geodesic. Because these are
naturally inductively added in a backward sequence, they are frequently more
tractable and overcome difficulties with using geodesics.

1. Introduction

Principal component analysis is a widely applied method with many uses, includ-
ing data visualization and dimension reduction (see e.g. Jolliffe [Jol05] for a good
introduction and a comprehensive overview). However, an extension of this method
to non-Euclidean data spaces has not been straightforward because familiar build-
ing blocks such as subspaces and orthogonality are not available. Nevertheless, the
general usefulness of the method has motivated a number of different approaches
to analogs of PCA in the case of data lying in a manifold. These include (see §2
for a description): principal geodesic analysis, Fletcher et al [FLPJ04], geodesic
principal components, Huckemann et al [HHM10], principal arc analysis, Jung et
al [JFM11], principal nested spheres, Jung et al [JDM12], and composite principal
nested spheres, Pizer et al [PJG+13].

In these manifold analogs of principal component analysis, the first three take a
“forward approach”(using familiar terminology from stepwise regression analysis).
Recall in the Euclidean case, one starts at the sample mean and finds the first
eigendirection of the covariance matrix, which determines the line that best fits the
data. This, together with the second eigendirection, then determines the 2-plane
that best fits the data. Iteratively continuing this process results in a sequence of
best fitting affine spaces, nested in order of increasing dimension.

However, principal component analysis could also be developed in the opposite
“backwards direction” (still using the stepwise regression analogy). Instead, one
starts with the best fitting rank r affine space, then within that finds the best fitting
rank r − 1 affine space, etc. This also results in a sequence of best fitting spaces,
indexed by dimension. This approach is generally not widely considered, because
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by the Pythagorean theorem (i.e. analysis of variance type calculations) the two
approaches result in the same sequence of affine spaces.

However, for non-Euclidean data spaces, these are no longer the same. Marron
et al [MJD10] and Jung et al [JLMP10] observed in an empirical way that the
backwards approach is more generally extendable in several cases. For example,
in the case of the special class of manifolds which are spheres in R

n, there is an
alternative approach of Principal Nested Spheres introduced in [JDM12]. It finds a
nested sequence of spherical submanifolds of decreasing dimension (which typically
are not geodesic submanifolds). At each stage the set of data points is replaced by
the set of nearest points in the next lower dimensional spherical submanifold. In
turn, the next nested spherical submanifold is chosen which best approximates the
new set of data points. This was extended to products of spheres and Euclidean
space by [PJG+13].

While these methods provided useful tools in separate contexts, an interesting
question was why the backwards approach seemed to be so generally useful. This
paper answers this question by introducing a general approach which demonstrates
why backwards PCA is very natural. We begin with a collection of data points
S = {xi} on a subspace X of R

n where the coordinates of R
n have physical meaning

for the data points. Now X may denote either a submanifold or more generally
a Whitney stratified set (see §3). We modify the point of view from a sequence
of nested submanifolds Yi of X to a sequence of “nested relations” fi = ci. By a
“relation” for a set of data points we would usually mean an equation which each
of the points satisfies. Because we are considering equations of a given form, there
may be no equation of this form which all of the points satisfy exactly. Thus, we
seek instead an equation of the given form which the data points come closest to
satisfying, as measured by a “closeness of fit criterion”.

Statistical readers should consider the term relation a synonym for equality con-
straint. From traditional regression analysis, the best fitting line to a collection
of data points in R

2 can also be viewed as the equation y = mx + b which the
data points come closest to satisfying. This equation defines a relation between the
coordinates of the data points. In the case of principal nested spheres, the spheres
can be viewed as the subspaces defined by a series of linear functions which best
successively describe the relations between the data points. In the general case for
higher dimensions and spaces, we extend this idea to provide an inductive process
for fitting the best nested sequence of relations for the data. The relations are from
a (succession of) vector space(s) of functions on X , with a function chosen at the
k-th stage to be a function fk and value ck which comes closest to defining a rela-
tion fk = ck for the nearest points already satisfying the preceding k − 1 relations
fi = ci for i = 1, . . . , k − 1.

This provides flexibility in the choice of the form of the relations and avoids
problems involving the use of geodesics. Already for simple subspaces which are a
product of spaces, the geodesics will not generically be closed curves, and can even
be dense in the space. The situation is generally worse on stratified spaces. When
geodesics on a stratum meet a lower dimensional stratum, there is not a locally
well-defined continuation of the geodesic onto another stratum. Such an approach
overcomes the difficulties with data points being far from the mean, the ambiguity of
using geodesics which are not closed, and even having to give well-defined geodesics
on stratified spaces.
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2. Motivating Results from Earlier Work

We begin by placing the approach we propose in the framework of recent work on
PCA for manifolds. We describe in more detail the approaches we had mentioned
in the introduction.

Approaches to PCA on manifolds :

i) principal geodesic analysis [FLPJ04]: develops standard principal compo-
nent analysis in the tangent plane at the geodesic mean, and projects this
back to the manifold, resulting in geodesics passing through the geodesic
mean, which explain maximal amounts of variation.

ii) geodesic principal components of [HHM10]: finds a sequence of best fitting
geodesics. This approach added important flexibility to principal geodesic
analysis by eliminating the constraint that the geodesics pass through the
mean.

iii) The principal arc analysis of [JFM11] who find the best fitting circle to
data on the conventional unit sphere in 3 dimensions. This adds flexibility
to geodesic principal components, by extending the set of circles that can
be fit, from great circles only, to include small circles.

iv) principal nested spheres of [JDM12]: extends principal arc analysis to allow
fitting lower dimensional spheres in arbitrary dimension. This allows natu-
ral extension to more contexts, including Kendall’s shape analysis (see e.g.
[DM98] for good introduction).

v) Composite principal nested spheres, [PJG+13]: extends principal nested
spheres to products of spheres and Euclidean space, which are fundamental
to the medial, and skeletal approaches to object representation in image
analysis (see [SP08] for a good introduction).

In the first three methods, the forward approach is taken to PCA using geodesics
in the appropriate manifolds. In the fourth and fifth approaches, backwards PCA
is used and a nested sequence of subspaces decreasing in dimension is constructed.
These later two provide the starting points for the general approach developed here.
The nested sequence of decreasing spaces is naturally constructed starting with a
high dimension, and then iteratively reducing the dimension through a series of
constraints which arise as the level sets of relations fi(x) = ci. This provides a dual
approach to the process where the emphasis is placed on the functions defining
the relations and the level sets are defined by the relations. This is the standard
approach used in algebraic geometry.

We explain the general framework in Section 3 and in Section 4 we provide the in-
ductive procedure for constructing the sequence of “principal nested relations”which
best fit the data. In Section 5 we describe the abstract form the procedure takes
for several examples and give a series of concrete examples.

3. Whitney Stratified Sets and Vector Spaces of Relations

We let X ⊂ R
n denote a closed Whitney stratified set. This means that it is a

disjoint union of C∞ submanifolds {Si}, called strata, satisfying: i) the “axiom of
the frontier”, which means that if Cl(Sj) denotes the closure of Sj and Si∩Cl(Sj) 6=
∅, then Si ⊂ Cl(Sj); and ii) the Whitney regularity conditions, which ensure that
for each pair of strata (Si, Sj) from i), Sj satisfies Whitney regularity properties
along Si (see e.g. [Mat73] or [GLDPK76]). In the special case where there is only a
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single stratum, we obtain the case of a smooth submanifold of R
n. An interesting

example of a stratified set which is not a submanifold is the one introduced to model
tree structures by [BHV01].

The dimenson of X , denoted dim(X), is the maximal dimension of the strata Si.
In the situations we consider, every stratum is contained in the closure of a stratum
of dimension = dim(X). We also suppose that the coordinates of points on X have
physical meaning, so that any equation f = c for a function f on X gives a relation
between physically meaningful quantities associated to points of X .

Second, we let dim(X) = d. For each k = 1, . . . , d, we suppose that we are given
a finite dimensional inner product vector space Vk of stratawise smooth functions
on X . These vector spaces need not all be distinct. One of the functions fk ∈ Vk

will give the k-th relation fk = ck for an appropriate ck ∈ R. The simplest example
is the case where each Vk is the vector space of linear functions with the induced
dual inner product from R

n. More generally some of the Vj could denote the
homogeneous polynomials of some degree mj with appropriate inner products. It is
also possible to go beyond polynomial relations, such as eigenfunctions of operators,
etc.

We would like these vector spaces to satisfy a spanning condition.

Definition 3.1. Given a closed Whitney stratified set X ⊂ R
n, a vector space

V of stratawise smooth functions on X satisfies the spanning condition if for any
stratum Sj of X and any x ∈ Sj , the set of derivative maps df(x) : TxSj → R for
f ∈ V spans the dual space T ∗

xSj (consisting of the linear functions on TxSj).

The vector space of linear functions on R
n satisfies the spanning condition on

any stratified set X ⊂ R
n. In the case of principal nested spheres, these are the

appropriate spaces of functions defining relations.
Also, if {0} is an isolated stratum of X or 0 /∈ X , then the space of homogeneous

polynomials of some degree m > 1 also satisfies the spanning condition.
One consequence of the spanning condition is the following Lemma.

Lemma 3.2. If the space of functions V satisfies the spanning condition for the
stratified space X ⊂ R

n, then for almost all (f, c) ∈ V ×R (i.e. in the complement
of a set of Lebesgue measure zero), the level set f−1(c) = {x ∈ R

n : f(x) = c} is
transverse to the strata of X. Hence, the intersection X1 = f−1(c) ∩X is again a
Whitney stratified set with strata {f−1(c)∩Si} for {Si} the strata of X. Moreover,
the orthogonal subspace V1 to f again satisfies the spanning condition on X1.

Proof. Define F = (f(x), f) : R
n × V → R× V . Then, a straightforward argument

shows that c ∈ R satisfies that f−1(c) is transverse to a stratum Si of X if and only
if (c, f) is not a critical value of F |Si × V . Then, by Sard’s Theorem, the set of
critical values of F |Si × V has (Lebesgue) measure 0 in R × V . Thus, the union Z
of these sets for all of the (finite number of) strata of X has measure 0. If c /∈ Z,
then f−1(c) is transverse to the strata of X . By a standard result about Whitney
stratified sets (see e.g. [Mat73] or [GLDPK76, Chap. 1]), f−1(c) ∩ X is again a
Whitney set with strata f−1(c) ∩ Si. Lastly, as Txf

−1(c) ∩ Si = ker(df(x)) ∩ TxSi,
a simple argument in linear algebra implies that the orthogonal complement to f
still satisfies the spanning condition on f−1(c) ∩X . �

This provides us the ability to inductively construct the subspaces using the
relations.
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Measures for “Goodness of Fit” for the Relations. Given a relation f(x) = c
on X , we give two ways to measure the failure of a specific point x ∈ X to satisfy
the relation using a difference function δ(x).

i) We let δ(x) = dist(x, f−1(c) ∩ X). We view X as a metric space with a
metric satisfying dist(x, x′) ≥ ‖x− x′‖ (the Euclidean distance between x
and x′). For example, we may define d(x, x′) = length of the minimum
path in X from x to x′ if X is path-connected.

ii) We choose a weighted penalty function ϕ : R+ → R+ which is a smooth
monotonically increasing function on the half-line. Then, δ(x) = |ϕ(f(x))−
ϕ(c)|.

In the second case, the weighted penalty function allows us to alter the weight
assigned to the distance of f(x) from c. Of these two choices i) may be more
natural; however, ii) would be easier to implement.

Example 3.3. Consider X = Sn ⊂ R
n+1 the unit sphere, with Vj the space of lin-

ear functions for all j. In case i) we obtain the geodesic distance from x to the spher-
ical submanifold of Sn. In case ii), we use the weighted penalty functions ϕj(x) =

arcsin( x
rj

) for all j, where rj is defined inductively by rj = rj−1

√

1 − (
cj−1

rj−1

)2 for

fj−1(x) = cj−1 the (j − 1)-st relation. Then, a simple calculation shows that we
obtain for each j a δj which is a constant multiple of the geodesic distance from x
to the spherical submanifold.

4. Inductive Definition of the Nested Relations

Given the stratified set X ⊂ R
n of dim(X) = d, the inner product vector spaces

{Vj}, and difference functions δj, we give an inductive definition of the nested
relations.

In general, consider a finite set of points {xi : i = 1, . . . , r} ⊂ X , forX a Whitney
stratified set of dim(X) = d, with V an inner product vector space of functions on
X , and a difference function δ. We seek to minimize

(4.1) Φ(f, c) =

r
∑

i=1

δ(xi)
2

over (f, c) ∈ SV ×R, where SV is the unit sphere in V about 0. For example, for a
finite set of points in X = R, with V = R

∗, then SV = {±id} and the minimizing
value of c is the Fréchet mean of the points.

Remark 4.1. A potential L1 variation of the squared distances used in (4.1) would
use absolute distances instead. This is expected to result in enhanced robustness
properties. For example, in the case of a finite set of points, this would result in
the Fréchet median.

This minimum is achieved by the following Lemma.

Lemma 4.2. The function Φ attains a minimum ≥ 0 on SV × R.

Proof. This is proven by finding a C > 0 such that if (f ′, c′) ∈ SV × R, with
|c′| > C, then there is an (f, c) with |c| ≤ C such that Φ(f ′, c′) ≥ Φ(f, c). Hence,
min(Φ(f, c)) occurs on the compact set SV × [−C,C].

To see this, we choose an R > 0 so that all xi ∈ DR, for the disk DR about 0
of radius R > 0, and such that for some (f, c) ∈ SV × R, Φ(f, c) ≤ rR2. Then,
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F : SV ×D2R → R defined by F (f, x) = f(x) has compact image Y ⊂ [−C,C] for
some C > 0. Then, for (g, c′) with |c′| > C, if x ∈ g−1(c′), then x /∈ D2R. Thus,
if δ(xi) is achieved as the distance in X from xi to x, then δ(xi) ≥ ‖xi − x‖ ≥ R.
Thus, Φ(g, c′) ≥ rR2 ≥ Φ(f, c) as claimed. �

Generic Properties needed for PCA.

In order to carry out PCA, whether forwards or backwards, the data set must
be assumed to be generic in an appropriate sense. This already occurs even in the
simplest case of usual PCA on Euclidean space, where the data must have a covari-
ance matrix whose eigenvalues are distinct. For the case of data on manifolds, the
properties of the manifolds and the data relative to subspaces becomes important.
In the forward cases these involve the geodesic subspaces, and constraining the
data so the method can be applied. For backward PCA, there is the requirement
that data points have unique minimum geodesics to the subspaces. For the case of
nested relations we identify the following properties that generic data sets should
possess. These are described in terms of the cut locus for a subspace Y ⊂ X (the
definition may vary but we use the following).

CX(Y ) = {x ∈ X : dist(x, Y ) is achieved at more than one point of Y

or at a degenerate minimum point of Y }

Generic properties for data sets:

a) The set of (x1, . . . , xr) ∈ Xr such that Φ does not have a unique minimum
is a set of rd-dimensional measure zero.

b) For almost all (f, c) ∈ SV × R, CX(f−1c)) has d–dimensional measure 0.

It would then follow that for a generic set of data which lies outside CX(f−1(c))
for the minimum (f, c), there will be a unique nearest point to a data point on
f−1(c).

Remark 4.3. These properties can be established for certain symmetric spaces
such as spheres and Lie groups, and they are partially established for manifolds
with generic metrics by Buchner [Buc78]. In general considerable work is needed
to establish the general validity of these properties.

Example 4.4. As a simple example, if V = R
n ∗, then the mapping x 7→ f(x)

defines a linear mapping R
n → V ∗. Hence, if the number of data points r < ℓ =

dimV , then generically the image has dimension r in V ∗. The appropriate c will
correspond to an element of this subspace. Also, the image vanishes on a subspace
V ′ ⊂ V of dimension ℓ− r. Any f ∈ V ′ will vanish on all of the data points and c
so f could be modified by adding any element of V ′. Thus, we would not obtain a
unique (f, c). Hence we would need at least n data points to obtain a unique (f, c).

If a generic set of data {xi} satisfies both a) and b) for the unique minimum
(f, c), then there is a minimum of the distance from xi to X ′ = f−1(c) ∩ X . We
consider the unique x′i ∈ X ′ such that d(xi, x

′
i) is minimum. Suppose moreover that

for the generic relation f(x) = c, f−1(c) is transverse to X . Then, X ′ is a Whitney
stratified set of one lower dimension, and we may replace the data set {xi} by the
corresponding closest set of points {x′i} which lie in X ′. These now exactly satisfy
the relation f(x) = c. We may then proceed inductively.

We now give the inductive procedure for constructing the sequence of nested
relations for a generic set of data points {xi} based on a sequence of vector spaces
Vj of functions and difference functions δj .
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Inductive Construction of Nested Relations:
This procedure will yield in the generic case: i) a sequence of vector subspaces

Wj ⊂ Vj , ii) a sequence of relations (fj , cj) ∈ SWj
× R, iii) a nested sequence of

closed Whitney stratified sets X = X0 ⊃ X1 ⊃ · · · ⊃ Xd, with dim(Xj) = d − j

whereXj = f−1
j−1(cj−1)∩Xj−1, and iv) a sequence of sets of data points {x

(j)
i } ⊂ Xj.

Step 1: Let W1 = V1 and minimize Φ for a unique minimum relation (f1, c1) ∈
SW1

×R. Generically f−1
1 (c1) is transverse to X so we let X1 = f−1

1 (c1)∩X .

Step 2: Generically each xi has a unique closest point x
(1)
i ∈ X1.

Step 3: Repeat steps 1 and 2 for the closed Whitney stratified set X1, and the set

of data points {x
(1)
i } in X1, except if V2 = V1. then we use instead of

V2, W2 = 〈f1〉
⊥. By the independence condition and the transversality of

f−1(c) to X , V ′
2 satisfies the independence condition. We obtain a relation

(f2, c2) ∈ SW2
×R which minimizes Φ for closed Whitney stratified set X1,

and the set of data points {x
(1)
i } in X1. Also, f−1

2 (c2) is transverse to X1

and we let X2 = f−1
2 (c2) ∩ X1. Again generically the {x

(1)
i } has unique

closest points {x
(2)
i } in X2.

Inductive step

j+1: Given Xj and data points {x
(j)
i } in Xj , with j < d, we repeat the argument

in Step 2 where now if Vj = Vji
with ji < j for i = 1, . . . ,m, then we let

Wj = 〈fj1 , . . . , fjm
〉⊥ in Vj .

Conclusion : After d steps, we obtain a nested sequence of subspaces Wj , relations
fj(x) = cj ∈ SWj

× R, j = 1, . . . , d, nested sequence of closed Whitney
stratified sets {Xj} of dim(Xj) = d − j and corresponding data points

{x
(j)
i } ⊂ Xj .

Note that Xd = X ∩d
j=1 f

−1
j (cj) is a finite set of points. This set is what is called

the backwards mean.

f  = c1 1

X

a) b)

Figure 1. a) Stratified space X which is a quadrilateral cone,
with data points. b) The best fit linear relation f1 = c1, measured
with δ denoting the distance (in X) of data points to the dark
quadrilateral X1 = X ∩ P1, where P1 is the plane defined by the
relation.

Example 4.5. We illustrate the algorithm for a stratified space X , which consists
of four planar regions (for different planes) each defined in their plane by linear
inequality constraints. This yields X as a quadrilateral cone in part a) of Figure 1.
In b) of the same figure we show the best fitting linear relation between data points
in X . Here for a data point x ∈ X , two possible choices for δ(x) are either the
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distance in X from x to the intersection X1 = X ∩P1, with the plane P1 defined by
the linear relation f1 = c1; or alternatively, the minimum value of |f1(x) − f1(x

′)|
for x′ ∈ X ∩ P1. On a face Fi of X , these different choices for δ differ by cos(θ),
where θ is the angle between Fi and the normal to P1.

Then, the data points are projected to their nearest points in the dark quadri-
lateral X1 as shown in a) of Figure 2. Then, a second linear relation f2 = c2 is
chosen, with f2 orthogonal to f1, to be the best fit for the projected data points in
X1. The subset satisfying both relations is the intersection of X1 with the plane P2

defined by the second relation f2 = c2. It is the intersection of the line ℓ = P1 ∩P2

with X1.
Part b) of figure 2 shows the two points of intersection. Here for the first choice

of δ(x), all distances are measured in the quadrilateral, so distances of points to
the intersection are measured along the shortest paths illustrated by arrows. The
pair of intersection points represents the nested mean, and the points are divided
into two groups based on which mean point they are closest to.

a)

f = c
2 2

l 

f  = c1 1

a) b)

Figure 2. a) The nearest points in the dark quadrilateral X1

to the original data points from Figure 1. Then, a second linear
relation f2 = c2, with f2 orthogonal to f1, is the best fit for the
projected data points in X1. The subset satisfying both relations
is the intersection with X1 of the plane P2 defined by the second
relation f2 = c2. Part b) shows the line ℓ = P1 ∩ P2 which in-
tersects X1 in the pair of points. Here distance is measured in
the quadrilateral, so the points’ distances are measured along the
paths illustrated by arrows.

5. Examples from Statistics

In this section we consider several examples from statistics which can be viewed
as a form of backwards PCA using principal nested relations. For these examples,
Vj are all the same vector space V = R

n ∗, the space of linear functions on R
n.

Then, as we inductively define the relations fj = cj , Wj = 〈f1, . . . , fj−1〉⊥ for all
j. Then, each Xj is generically the transverse intersection of X with the affine

subspace defined by F−1
j−1(Cj−1) where Fj−1 = (f1, . . . , fj−1) : R

n → R
j−1 and

Cj−1 = (c1, . . . , cj−1).
In the special case where X = R

n, V = R
n ∗, and we use the difference measure

of type i) (or equivalently case ii) with ϕ = Id). Then, we obtain a backwards
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version of PCA and the resulting subspaces are exactly those that would result
from usual PCA, except in reverse order. We explain this in several frameworks.

5.1. Singular value decomposition. Given a d× n data matrix A, of n column
vectors, the singular value decomposition can be written as A = US, where U =

(u1 · · ·ur) is a d × r matrix of orthonormal eigenvectors, S =







s1
...
sr






is an r × n

matrix of scores, for r the rank of A.
This gives a simple form of dimensionality reduction as follows. Given r′ < r,

the best rank r′ approximation (in the least squares sense) of A is
∑r′

k=1 uksk. An
often useful visualization of the relationship between the data vectors (the columns
of A) is the scores scatterplot matrix, where the i, jth entry is a scatterplot of the
elements of si vs. the elements of sj . The 1, 2 scatterplot is the projection of the
data onto Y2, the subspace generated by the first two eigenvectors, u1 and u2. For
k = 1, · · · , r, let Yk denote the subspace generated by u1, · · · , uk. These subspaces
are nested in the sense that {0} = Y0 ⊆ Y1 ⊆ · · · ⊆ Yr. The backwards approach
to singular value decomposition starts with Yr as the subspace generated by the
columns of A. Each Yk can be written as a constrained version of Yk+1,

Yk =
{

x ∈ Yk+1 : xtuk+1 = 0
}

.

where uk+1 is chosen from among unit vectors orthogonal to {uj : j = k+2, . . . , r} to

minimize
∑n

i=1((A
(k+1)
i )tu2

k+1. Here each A
(k+1)
i denotes the orthogonal projection

of Ai onto Yk+1. Thus, in our earlier notation, X = Yr, and Xj = Yr−j = R
r, and

the relations are defined by fk(x) = xtur−k = 0. Because the ur−k are unit vectors,
these are linear functions on R

r which have length 1 for the inner product on R
r ∗.

Here we have restricted to relations f(x) = c for which c = 0.

5.2. Principal component analysis. Then, we can view principal component
analysis as just a mean centered version of the singular value decomposition. In
particular, let ā denote the sample mean of the column vectors of the data matrix
A. Principal component analysis is the application of singular value decomposition
to Ã = A− ā. This results in a rank k approximation of the data by affine spaces
Ỹk = ā + Yk. The nested sequence of affine spaces Ỹ1, · · · , Ỹr can be derived in
terms of relations by starting with Ỹr as the r dimensional hyperplane generated
by the columns of A, and iteratively calculating

Ỹk =
{

x ∈ Ỹk+1 : (x− ā)t uk+1 = 0
}

.

The smallest affine space is the 0 dimensional space {ā}.
Now X = Ỹr = R

r, and Xj = Ỹr−j, and we are using the same vector space of
linear functions as in the preceding case. However, now we allow relations fj(x) = cj
with cj 6= 0. In fact, the relations defining Ỹk are fr−(k+1)(x)(= xtuk+1) = ātuk+1

so cr−k = ātuk+1.

5.3. Principal nested spheres. The first non-Euclidean method generated us-
ing an explicitly backwards approach is the method of principal nested spheres in
[JDM12]. For this approach the data points lie on the unit sphere Sd about the
origin in R

d+1. The method sequentially derives a nested sequence of subspheres of
decreasing dimensions which need not be geodesic spheres. At each step the data
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points are projected along geodesics onto the next lower dimensional sphere. Each
sphere is the intersection of the previous sphere with a hyperplane chosen to best
fit the data points on the preceding sphere.

This approach can be viewed as backward PCA for X = Sd for δ given in Exam-
ple 3.3 with the vector space V = R

d+1∗ of linear functions. This yields the same
decreasing sequence of spherical subspaces as would be obtained using principal
nested spheres. It gives the successive intersection spheres Xj as a constraint on

the preceding sphere Xj−1 defined by a linear relation fj(x) (
def
= xt · uj) = cj . At

the last step, the dimension 0 point is just the geodesic mean of the data projected
to the 1 dimensional circle, which is an intuitively appealing notion of centerpoint.

We remark that if we had weighted the coordinates of the data points, then in

place of a sphere Sn, we obtain an ellipsoid X defined by
∑n+1

i=1
1
a2

i

x2
i = 1. If for

the space of functions we again use V = R
n ∗, then for either choice of δi, we will

obtain a sequence of nested ellipsoids.
As noted in Section 2, Principal Nested Spheres was seen in [JDM12] to give

substantial improvements in landmark based shape analysis. It has also proven to
be very successful in the context of medial (see[SP08]) and skeletal (see [PJG+13])
representations of shape in medical imaging. In particular, [PJG+13] showed that
summarizing population variation using an enhanced version called Composite Prin-
cipal Nested Spheres gave major improvements in automatic segmentation.

5.4. Principal curves and surfaces. Principal curves, introduced in [HS89], is
the foundation of the field called manifold learning. The idea was to find a flexi-
ble one dimensional spline that best approximates higher dimensional data in an
appropriately regularized fashion. This was extended to higher dimensional repre-
sentations by [LT94]. Rank k approximating splines were developed for each k, and
a cross validated choice among these was proposed. These ideas spawned the field
now called “manifold learning”, where the central goal is to find low dimensional
manifolds that explain large amounts of structure in high dimensional data sets.
The papers [RS00] and [TDSL00] were the cornerstones of this development. See
[GTW09] for an elegant mathematical framework for manifold learning.

However, all of these approaches are challenging to interpret in a multi-scale
way, i.e. to analyze the data using insights gained simultaneously from several
values of k (scales), because the solutions are not nested. It is not at all obvious
how to build a nested sequence of manifolds in a forward manner. However, the
backwards approach offers a strategy to construct a nested sequence of principal
surfaces in a straightforward way. In particular, start with a high dimensional
manifold representation, and then successively add constraints to find a nested
sequence of lower dimensional manifolds.

5.5. Tree structured data objects. There have been several approaches to this
data analytic challenge. One of these is the Dyck Path approach of [SSB+12], where
a backwards approach is expected to be useful, because the tree representations are
restricted to lie in the non-negative cone. Another approach uses phylogenetic tree
representations, based on the ideas of [BHV01]. A method for principle component
analysis in the space of phylogenetic trees has been proposed by [Nye11]. This gave
a reasonable notion of first component, but did not consider higher dimensional
approximations, likely because it is not at all clear how this can be done in a
forwards manner. Hence, we suggest a backwards approach to this, via a series of
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constraints in tree space. A major challenge will be finding an appropriate starting
space, in this combinatorially very large space.

5.6. An Example for Products of Spheres. Let X = Sm1 × · · · × Smk , where
each Smi is a unit sphere in R

mi+1. Then we can embed X in Sm where m =
∑k

i=1mi + (k − 1), by ψ(v1, . . . , vk) = 1√
k
(v1, . . . , vk). Viewed as a map ψ :

∏k

i=1 R
mi+1 → R

m+1, this is a vector space isomorphism. Hence, if f is a ho-
mogeneous polynomial of degree r, then so is f ◦ ψ. Thus the vector space of
homogeneous polynomials on R

m+1 yield the vector space of homogeneous poly-

nomials on
∏k

i=1 R
mi+1, and hence restricted to X . The difference between using

the space X and viewing it as a submanifold of Sm is the definition of δi at each
step. For Sm it is that given by principal nested spheres, while for X itself, it re-
quires either the computation of geodesic distance in X or choosing an appropriate
weighted penalty function, which will generally be different.
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