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Abstract 
The simplest approximation of interaction potential between amino-acids in 

proteins is the contact potential, which defines the effective free energy of a protein 
conformation by a set of amino acid contacts formed in this conformation. Finding a 
contact potential capable of predicting free energies of protein states across a variety of 
protein families will aid protein folding and engineering in silico on a computationally 
tractable time-scale. We test the ability of contact potentials to accurately and 
transferably (across various protein families) predict stability changes of proteins upon 
mutations. We develop a new methodology to determine the contact potentials in 
proteins from experimental measurements of changes in protein’s thermodynamic 
stabilities (��G) upon mutations. We apply our methodology to derive sets of contact 
interaction parameters for a hierarchy of interaction models including solvation and 
multi-body contact parameters. We test how well our models reproduce experimental 
measurements by statistical tests. We evaluate the maximum accuracy of predictions 
obtained by using contact potentials and the correlation between parameters derived 
from different data-sets of experimental ��G values. We argue that it is impossible to 
reach experimental accuracy and derive fully transferable contact parameters using the 
contact models of potentials. However, contact parameters can yield reliable predictions 
of ��G for datasets of mutations confined to specific amino-acid positions in the 
sequence of a single protein. 
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Introduction 
A fundamental goal of molecular biophysics is to understand the relationship 

between protein sequence and structure, a problem known as the protein folding problem 
(1-8). Conversely, identifying amino acid sequences that fold rapidly and are stable in a 
target conformation, is known as the protein design problem (9-20). Despite recent 
remarkable successes in protein folding in silico (21-24), the folding time scales of most 
proteins are not accessible to detailed computational techniques, such as molecular 
mechanics simulations. This limitation makes identification of the folding properties of 
naturally occurring and designed proteins intractable. An alternative approach to the 
solution of both protein folding and design problems is the development of a simplified 
model of amino acid interactions that can be used in rapid computational techniques, 
such as Monte-Carlo simulations (25-27) and discrete molecular dynamics (28-31). Such 
models incorporate a coarse-grained description of the polypeptide chain where each 
residue is represented by a limited (one or a few) number of beads connected by a chain. 
Effective interactions are assigned between beads. The model drastically reduces the 
computational cost of folding, and is amenable to detailed statistical mechanical 
characterization. 

One of the widely used form of simplified inter-residue potentials is the contact 
potential in which amino acids interact if they are spatially located within a certain 
distance from each other (31-38). The quasichemical approximation (37) is a method for 
deriving  pairwise contact potentials from the number of residue-residue contacts found 
in a large set of protein structures. The quasichemical approximation has proved to be 
successful in designing and folding proteins on lattices (38). A strategy proposed in Ref. 
(32) to derive pairwise contact potentials for off-lattice protein models was to iteratively 
refine the contact potentials by starting from a trial set of interaction parameters, and 
modifying these parameters until the energy minimum conformation corresponded to 
the native-state of a given protein. Attention has also been paid to find contact 
interaction parameters such that the energies of the native states of a set of proteins are 
simultaneously smaller than their respective decoy conformations (33,36). Potentials 
derived from these methods have successfully captured the main features of the 
statistical mechanics of proteins but have failed to consistently reach protein native 
states in folding simulations. The motivation for these studies was to find a contact 
potential that does not require prerequisite knowledge of protein structures and is 
capable of folding a model protein to native conformation. On the other hand, the 
structure-based G  potential (31,34) has been successful in reaching protein native state 
in molecular dynamics simulations (28,39). However, since G  potential is derived in 
the context of a specific protein native state, it is not transferable to other proteins. A 
fully transferable universal potential, therefore, remains elusive. 

The observed non-transferability of contact potentials raises the questions of 
whether it is possible to derive a set of contact interactions that are able to (a) 
discriminate the native states of a set of proteins from all structural decoys, and (b) 
capture protein thermodynamics to predict the changes in free energy of unfolding of a 
set of proteins upon single or multi-point mutations with the experimental accuracy? It 



 3 

was shown by Vendruscolo et al. (40,41) that no pairwise contact potential exists which 
can stabilize an off-lattice model of some proteins relative to their structural decoys. The 
ability of contact models to predict stability changes upon mutations ( G) has not yet 
been similarly evaluated. Many successful models for predicting stability changes upon 
mutations either use detailed representation of the polypeptide chain with continuous 
potentials (42,43) and/or database-derived statistical potentials (Ref. (44) and references 
therein). 

One approach for deriving interaction parameters for predicting stability changes 
in proteins upon mutation is to “ learn”  these parameters by fitting the interaction model 
to experimental data (43,45). There are two requirements for a derived interaction 
potential for predicting stability changes of proteins upon mutations: such interaction 
potential predicts G (within experimental error) for (i) the set of proteins from which it 
is derived (the criterion of accuracy), and (ii) sets of proteins that were not used for 
derivation of this interaction potential (the criterion of transferability). Here, we ask 
whether simple contact models can be used to predict G and evaluate the reliability of 
contact potentials using the criteria of accuracy and transferability. The contact potentials 
are parameterized from experimental G values using the Singular Value 
Decomposition (SVD) algorithm. We show that contact potentials fail on both the criteria 
i.e. they are neither accurate nor transferable. We argue that it is impossible to determine 
accurate transferable contact parameters to accurately predict the changes in stability of a 
set of proteins simultaneously. 
 

Methods 
Potential models 

We use a hierarchical approach to develop a simplified model of amino acid 
interactions. We approximate the potential energy of amino acids interactions in a protein 
by the sum of terms: 

2 3 sH H H H= + + …,                                   (1) 

where 2H  and 3H  are the contributions from two- and three-body interactions 

respectively, sH is the contribution to the protein potential energy from the solvation  of 

amino acids.  
 
Two-body Hamiltonian 

We use an interaction model for two-body interaction H= 2H , assuming effective 

interactions between pairs of Cβ atoms.  The two-body Hamiltonian 2( , )H SΓ  for a 

protein of conformation Γ with a given sequence of amino acidsS is the sum of the 
pairwise interaction potentials 2( , )a bu σ σ , between amino acids of types aσ  and bσ : 

2 2
, 1

( , ) ( , ) ( ) ( )
a b

M N

a b i a j b ij
i j

H S u s s
σ σ

σ σ σ σ
≠ =

Γ = ∆� � ,                   (2) 

where ˆ( ) ( )i a a is σ δ σ σ≡ − and ˆiσ  is the amino acid type at position i  along the sequence 

1 2ˆ ˆ ˆ{ , , , }NS σ σ σ= � ; δ (x) is 1 if x=0 or 0 otherwise; || ||ij∆  is the contact matrix whose 

elements ij∆  are either 1 or 0 depending on whether amino acids at the positions i  and 
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j along the sequence are in contact or not. The contact between amino acids i  and j  is 
defined to exist if their corresponding C �  atoms (C�  in case of Gly) are separated by a 
distance of 7.5 Å (38). M  is the total number of distinct amino acid types and N  is the 
length of the protein. For the two-body term we account for all 20M = types of amino 
acids. 
 
Solvation Hamiltonian 

Proteins are strongly affected by the solvent, so it is important to take into account 
the contribution of the solvation energy term, sH  to the total amino acid interactions (46). 

We use an approximate method for the determination of the solvent contribution 
originally proposed by Eisenberg (47) which assumes that the effect of solvent is 
proportional to the solvent-accessible surface area buried upon folding. We approximate 
the solvent contribution as: 

( ) ( )
a

M N

s s a i a i
i

H u s
σ

σ σ= Σ��  ,                          (3) 

where ( )s au σ  is the solvent energy term for the amino acid of type aσ , and iΣ  is solvent 

accessible surface area for the ith amino acid. To compute sH we calculate the solvent 

accessible surface area for each amino acid by estimating the surface area swept by the 
center of a solvent probe molecule (modeled as a rigid sphere of finite radius) when it 
rolls about the van der Waals surface of the protein. The van der Waals surface is the 
external surface of the atoms, each represented by a spherical ball of its van der Waals 
radius. The methodology to perform solvent accessible surface area computations is well-
established (47-50). We use freely-available program GETAREA1.1 (48) to estimate the 
solvent accessible surface area of a residue. 
  
Three-body Hamiltonian 

It has been shown that non-additive protein interactions play an important role 
(51,52) in protein folding. We account for the non-additive interactions by adding terms 
corresponding to three-body and higher order terms. Using the same notation as in Eq.(2), 
we approximate the three-body interaction of amino acids as: 

3 3
, , 1

( , , ) ( ) ( ) ( )
a b c

M N

a b c i a j b k c ij jk ki
i j k

H u s s s
σ σ σ

σ σ σ σ σ σ
≠ ≠ =

= ∆ ∆ ∆� � ,  (4) 

where 3( , , )a b cu σ σ σ  are the interaction parameters between amino acids of types aσ , bσ , 

and cσ . Eq.(4) requires the formation of a triad of contacts simultaneously between amino 

acids at positions i, j, and k, so that 3H  contributes to H only when there are triads of 

amino acids that are in contact with each other. The 3H  term has, therefore, an additional 

contribution favoring or disfavoring triad formations. The 3H  and higher-order non-

additive terms drastically increase the number of interaction parameters: for 20M = , the 
number of interaction parameters in 2H  (Eq.(2)) is 210, while the number of parameters 

in 3H  (Eq.(4)) is 1540. We also use a reduced alphabet of amino acids (53) 6M =  in 3H .  

In the reduced alphabet, we group amino acids (53,54)to aliphatic (A, V, L, I, M and C), 
aromatic (F, W, Y and H), polar (S, T, N and Q), positively charged (K and R), 
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negatively charged (D and E), and special (reflecting their special conformational 
properties) (G and P). We have a total of 56 reduced-alphabet three-body interaction 
parameters. 

 
Deriving the interaction parameters 
  To find the interaction parameters ( 2( , )a bu σ σ , 3( , , )a b cu σ σ σ , ( )s au σ ,…) in Eqs. 

(1) – (4) we use experimentally determined changes in the thermodynamic stabilities of 
proteins upon mutations ( G∆∆ ) from a large number of mutant proteins. Our derivation 
is based on the approximation that the changes in entropies between mutant and wild type 
proteins predominantly arise due to the differences in the solvation free energies of the 
mutant and wild type amino acids, so that the structures of both mutant and wild type 
proteins remain close to each other (within 2 Å RMSD), enough to assume that the 
change in conformational entropy is zero (we note that the solvation free energy 
difference can be accounted by the term sH (Eq.(3)). Thus, the difference between 

stabilities of mutant and wild-type proteins is due to the change in contact energies 
arising due to mutation. As contact energies are effective free energies, from the quasi-
chemical approximation, we can equate the experimentally determined changes in 
thermodynamic stabilities G∆∆  to H∆∆ values from our model, i.e. 

u u
mut wt mut mut wt wtG H H H H H H H∆∆ ≈ ∆∆ = ∆ − ∆ = − − + , where mutH , u

mutH , wtH , and 
u
wtH are the energies of mutant native and unfolded and wild type native and wild type 

unfolded states correspondingly. We consider a model of the unfolded state in which 
mutation does not affect the intra-protein contacts in the unfolded state. Since the 
difference in energies of the unfolded states can be approximated by the changes in the 
solvation free energies of the wild-type and mutant amino-acids, accounted by Eq.(3), we 
neglect the difference u u

mut wtH H− and obtain 

mut wtG H H∆∆ = − .                                  (5) 

By substituting Eqs.(1)-(4) to Eq.(5), for each G∆∆  measurement, we obtain a linear 
equation relating experimentally determined free energy change and contact energy 
parameters of our model  with a given alphabet size (e.g. 210 two-body, 1540 three-body 
and 20 solvation interaction parameters for a 20-letter amino acid alphabet). For all the 
measurements in a particular dataset, we obtain a set of linear equations relating the free 
energy changes and the contact interaction parameters. We simultaneously solve the set of 
linear equations using Singular Value Decomposition (SVD) corresponding to a large 
number of mutants to determine these interaction parameters.  
 
Singular Value Decomposition 

Since the number of G∆∆  measurements may not be exactly equal to the total 
number of variables (the interaction parameters 2( , )a bu σ σ , 3( , , )a b cu σ σ σ , ( )s au σ ,… in 

(Eqs. (1)- (4)), it is expected that exact solutions are not achievable. Instead, we find the 
linear least square solution of Eqs (5). The linear least square problem for a set of linear 
equations, Ax b=

�

�

, where A  is a known m n×  matrix, b
�

 is a known m -dimensional 
vector and x

�

 is a n -dimensional solution vector, is defined as finding a solution vector x
�

 

that minimizes the L2 norm of the residual vector 2|| ||Ax b−
�

�

. If m n≥  and ( )rank A n= , 
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we find a unique least square solution. If m n< , there is an infinite number of least square 
solutions, so we seek the minimum norm least square solution which minimizes both 

2|| ||x
�

and 2|| ||Ax b−
�

�

.  

To find the solution for both the above cases, we implement the SVD algorithm 
(55). The SVD of a m n×  matrix A  is given by TA UWV= , where U  and V  are  
orthogonal matrices and W  is a  diagonal matrix whose elements iw , known as singular 

values of A , satisfy 1 2 min 0w w w≥ ≥ ≥ ≥� . The SVD algorithm ensures a unique 

decomposition of this matrix. In our case, A corresponds to the matrix of contact 
interactions, x

�

 is the solution vector of contact energies and b
�

 is the experimentally 

determined ��G values. The dimension of x
�

 and b
�

 are the number of parameters ( pN ) 

to be determined and the number of experimental measurements ( eN ) respectively. We 

identify an approximate solution that satisfies Eqs.(5) for all the mutants simultaneously 
so that 

2 2

1

|| ||
eN

G H α
α

χ
=

≡ ∆∆ − ∆∆� ,         (6) 

is minimized ( 2 2
min minχ χ= ). In Eq.(6) �  enumerates eN experimental measurements. 

In the SVD algorithm, we decompose the matrix A into its singular values, { iw } .  If 

the matrix is singular we find that some iw  are zero. If the matrix A is not singular, but ill-

conditioned (i.e. some iw  values cannot be accurately determined), then the solution 

vector may have a large error-prone component which yields a non-least square solution 
( 2 2

minχ χ≠ ). Therefore, in order to find the least square solution for this case we define 

the relative singular value, i = max/iw w ( maxw is the maximum singular value in 

magnitude). If i is smaller than some threshold value, , we neglect the corresponding iw  

for finding the solution. Thus,  determines the number of non-zero singular values in 
(and consequently the rank of) the design matrix A and hence the solution vector x

�

. In 
order to obtain the most accurate solution, we choose the value of  such that the value of 
χ2 is the minimal ( 2

minχ ). If multiple solutions correspond to a value of 2
minχ , we choose 

the minimal norm (minimizing the length of x
�

) solution. 
 
Tests of reliability of models 
Resubstitution test 

The resubstitution test is an examination for the self-consistency of a prediction 
algorithm. In the resubstitution test ∆∆G for each mutant are predicted for the dataset 
(testing set) from which the model parameters are derived (training set). The 
resubstitution test sets an upper bound on the prediction ability of the derived potential 
when the training and testing sets are not identical. The performance of a model in the 
resubstitution test is an optimistic estimation (56-58). Thus, the resubstitution test is 
necessary but not sufficient for evaluating a prediction method. As a complement, a cross 
validation test is needed because it would reflect the effectiveness of a prediction 
algorithm. 
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Jack-knife test 

We perform jack-knife test, also known as leave-one-out test (59), to cross-
validate in statistical prediction of our interaction model. The jack-knife provides an 
objective assessments (60) of the predictive capabilities of a model. In the jack-knife test 
the experimental data of N points is divided into two groups: the training set consisting of 
N-1 data points and the testing set consisting of 1 data point. We derive the interaction 
model parameters using the training set data and predict the value of G∆∆  for the testing 
set. Then another data point is selected from the experimental data to represent the testing 
set, while the rest N-1 data points represent training set. We repeat this procedure for all 
N data points. The training and testing, thus covers all of the experimental data points. 
 

Results and Discussion 
We derive a hierarchy of amino acid interaction potentials from several datasets 

of experimentally measured changes in free energy upon mutation (Methods). In order to 
test accuracy as well as transferability of potentials, we choose three different datasets 
(Table I). (i) DS1 consists of 303 four-point mutants of eglin c, a small 70-residue, 
protease inhibitor structurally homologous to chymotrypsin inhibitor 2. The G∆∆  values 
for eglin c were determined with high accuracy (upto ±0.087 kcal/mol)  by Edgell et al. 
(61) for (quadruple) mutations at R22, E23, T26 and L27 in the solvent-exposed helix of 
eglin c. (ii) DS2 consists of 658 single, double, triple and quadruple mutants for 
staphylococcal nuclease (149 amino acids). We use G∆∆  values reported for 
staphylococcal nuclease in the ProTherm database (62) and in Zhou et al (63). The 
typical error bar reported for staphylococcal nuclease mutant G∆∆  values are 
approximately ±0.1 kcal/mol. The mutation sites are not localized to any particular sub-
structure of the protein. (iii) DS3 consists of 1356 G∆∆  measurements for a set of eleven 
proteins that are reported in ProTherm (62), Guerois et al. (43) and Zhou et al. (63). The 
mutation sites are scattered throughout the structure of these eleven proteins. The 
maximum error bar for this dataset is 0.48 kcal/mol. We derive potentials for each data 
set and compute the accuracy of our predictions by evaluating the models’  predictive 
capability. We also test the ability of potentials derived from one dataset to predict 
changes in stability of other datasets (transferability).  
 
Predicting ��G using contact models 
Two-body interaction potential 

We consider pairwise two body interaction ( 2H , Eq.(2)) and derive interaction 

parameters 2( , )a bu σ σ  (210 parameters for a 20-letter amino-acid alphabet) from a set of 

equations (such as Eq.(5)) corresponding to all the mutants in a given dataset, by 
employing the SVD algorithm. Using derived interaction parameters, we predict the 
change in free energy ( G∆∆ ) upon mutation and examine our prediction quality by both 
the resubstitution and the jack-knife tests (see Methods) for all the three datasets.  

The resubstitution test is crucial because it reflects the self-consistency of the 
prediction algorithm and sets an upper bound on the performance of a given model. 
When the experimental dataset is limited, the resubstitution test is useful for assessment 
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of the accuracy of an interaction model (64), while the jack-knife test provides a rigorous 
assessment of the model’s predictive power. In both tests, we compute the linear 
regression correlation coefficients between the predicted and actual experimental values 
(Table II). For the more accurate eglin c measurements (DS1), we obtain resubstitution 
(rs) and jack-knife (rj) correlation coefficients of 0.87 and 0.80 respectively (Figure 1(a)), 
while the values for the same quantities are 0.79 and 0.52 for DS2 (Figure 1(b)) and 0.66 
and 0.46 for DS3 (Figure 1(c)).  

The correlation between the predicted and actual values of G∆∆ is expected to 
decrease in the jack-knife test in comparison with the resubstitution test. For both tests, 
we observe that there are common outliers for which predicted G∆∆  values are 
significantly different than the experimental ones. Specifically, for DS1, the outliers are 
the four four-point mutants (R22K/E23K/T26N/L27K, R22N/E23K/T26N/L27A, 
R22E/E23G/T26E/L27G and R22P/E23H/T26E/L27K) for which the G∆∆  values are 
2.488, 2.623, -5.676 and -5.698. Most experimentally measured G∆∆  values in DS1 lie 
between approximately -3.0 and 0.5 kcal/mol (the average and the standard deviations of 

G∆∆ measurements are -1.393 and 0.83 respectively). Such large perturbations of free 
energy in the outliers indicate large structural alterations which, in turn, imply that the 
contact approximation is not valid in these cases. If the outliers are ignored, the values of 
rs and rj are 0.93 and 0.89, respectively. 

The significantly better performance of the model for DS1 compared to DS2 and 
DS3 can be partially attributed to greater accuracy (error of measurement = 0.087 
kcal/mol) and greater consistency in experimental measurements (all data points are 
obtained from one source and at the same experimental conditions). The stability 
determination of any given protein is a function of the conditions under which the 
measurements are made.  For example, pH and salt concentrations can alter the measured 
stability of a particular protein dramatically (65-67). 

Apart from the variability of sources of error in experimental data, the statistical 
properties of the dataset also determine the performance of a model in the jack-knife test. 
The more a given interaction parameter is represented in the set of linear equations, the 
less likely is its estimation to significantly change in the jack-knife test. We estimate the 
representation of parameters in the dataset using the coverage parameter, Cp, which we 
define as: 

1

0

1 f

p f
fp

C fn
N

=

=

= �                            (7) 

where nf is the number of parameters occurring with frequency f and Np is the total 
number of parameters. For a dataset with all parameters represented in all equations, 
Cp=1. Small values of Cp indicate that a large number of parameters are under-
represented in the set of equations corresponding to the dataset. The Cp values for 
datasets DS1, DS2 and DS3 are 0.349, 0.045 and 0.044, respectively (Fig.2). Thus the 
jack-knife performance is directly related to the parameter space coverage. 

In addition, we note that DS1 consists exclusively of mutations localized to four 
specific positions on eglin c (R22, E23, T26 and L27). DS2 consists of mutations in one 
protein staphylococcal nuclease, albeit scattered throughout its structure; DS3 consists of 
a variety of mutations in a variety of proteins. Thus, DS2 and DS3 contact parameters 
average over diverse structural environments. We find that contact energies derived from 
mutations that are localized within similar structural environment (e.g. mutants on the 
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solvent-exposed helix in eglin c, DS1) are more successful in self-consistently predicting 
the respective energetics than contact energies derived from averaging over a large set of 
environments and conditions (as in DS2 and DS3). The above observation confirms that 
contact energies are not independent of mutants’  structural environments suggesting that 
including additional terms in the interaction model may capture sufficient environmental 
detail to successfully predict protein stability. 

 
 Adding solvent and multi-body terms 

It has been argued that solvation and multi-body effects are important to capture 
structural environments of amino acids (46,52,68). Therefore, we add the solvation effect 
Eq.(3) in our potential model and derive the interaction with solvent  ( )s au σ  along with 

two-body interaction parameters 2( , )a bu σ σ . Following Ref. (47), we estimate the 

solvation energy as a linear function of the solvent accessible surface area of the wild-
type residue. There are a total of 230 (20 solvation + 210 two-body) parameters for the 
20-letter amino acid alphabet size. We predict the change in free energy upon mutation 
and examine the prediction quality of the new derived potential (Table II). We obtain 
correlation coefficient for self-consistency and jack-knife tests to be 0.80 and 0.78 for the 
dataset DS1, 0.80 and 0.47 for DS2 and 0.65 and 0.45 for DS3 respectively. We find that 
for all databases, the inclusion of the solvation term does not significantly affect either 
the self-consistency or jack-knife tests performance. An accurate treatment of solvation 
considering atomistic details of the polypeptide chain may increase the possibility of 
finding better correlation between experimental and predicted values of free energy 
changes. 

Finally, we add the three body term H3 (Eq. (4)) in our interaction potential 
model, so that the resulting Hamiltonian consists of the terms H2 (Eq. (2)), Hs (Eq. (3)) 
and H3 (Eq. (4)). There are a total of 1770 parameters (210 two-body, 20 solvation and 
1540 three-body) are to be determined for a twenty letter alphabet size. The correlation 
coefficient including three-body interaction for self-consistency and jack-knife tests are 
0.87 and 0.78 for DS1 0.98 and 0.28 for DS2 and 0.91 0.11 for DS3 respectively. We find 
that the three-body Hamiltonian performs better for the self-consistency test but leads to a 
worse performance on jack-knife tests. This observation can be rationalized as follows: 
we need to determine 1770 parameters on inclusion of three-body interactions while we 
have 303, 658 and 1356 equations in DS1, DS2 and DS3 respectively. Therefore, the set 
of equations corresponding to H3 represents an underdetermined set with more variables 
than the number of equations. The parameter space coverage for the H2+Hs+H3 
Hamiltonian does not significantly change from when we consider only H2 Hamiltonian: 
the Cp values are 0.34, 0.02 and 0.01 respectively for DS1, DS2 and DS3 (Figure 3).  

It is possible that the performance of H2+Hs+H3 Hamiltonian model is a 
reflection of the limited number of data points in any dataset used to calculate the energy 
parameters; consequently, these experimental datasets are not large enough for predicting 
all 1770 parameters. Sufficient sampling of the parameter space can be obtained by 
rationally designed large-scale mutant libraries. While the inclusion of multi-body effects 
may increase the self-consistency and jack-knife tests correlations, we argue below that 
the solutions may not be universal, i.e. we will not be able to predict stability changes 
accurately on datasets other than the one from which the parameters are derived. 
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In order to circumvent the paucity of accurate data, we use a reduced amino acid 
alphabet to obtain a smaller number of parameters. The minimal amino acid alphabet for 
protein folding has been an active area of research (53,69,70). Recent studies have 
suggested (53) that the full sequence complexity is not required to design a foldable 
protein and an alphabet size of 6 may be sufficient to fold a protein. Thus, we reduce the 
number of parameters using six types of amino acids (Methods) for the three body 
interaction; the two-body and the solvent effects are parameterized for the twenty amino 
acid alphabet. There are a total of 286 parameters to be determined (210 two-body and 20 
solvation terms for 20 letter alphabet, 56 three-body terms for 6-letter alphabet size). The 
performance of this partially reduced alphabet model is not significantly different from 
the previous model with the full 20-letter amino acid alphabet. The histograms (not 
shown) of parameter space for this model indicate that the reduction of the alphabet size 
does not lead to significant improvement in the parameter coverage due to the mutual 
cancellation of parameter terms in the equations. 
 
Accuracy of parameters derived from contact models 

The relatively high correlation coefficients obtained, (rs=0.87; with H2 for DS1), 
indicate that a high proportion data can be explained by our model. However, the 
measure of a model’s predictive capability is the uncertainty in the predictions compared 
to the experimental errors. Therefore, we analyze how accuracy of �G predictions and 
compare this accuracy with the experimental uncertainty. 

As described in Methods, we solve a set of linear equations 0Ax b− =
�

�

, where A 
corresponds to the matrix of contact interactions, x

�

 is the solution vector of contact 

energies and b
�

 is the experimentally determined ��G values. Using SVD algorithm, we 

find the linear least square solution, the solution vector for which χ2 = 2|| ( ) || / eAx b N−
�

�

 is 

minimal ( 2
minχ ), where Ne is the number of experimental measurements. χ2 depends on a 

tunable threshold parameter , which determines the number of non-zero singular eigen-
values of the matrix A. For  in the range 10-3-10-14, the χ2 is constant and minimal (see 
Fig. 4). Therefore, we use a value of  corresponding to the above range ( =10-8). With 
this value of  we obtain the solution vector and the associated 2

minχ . The value of 2
minχ  is 

the parameter that represents the average uncertainty in our prediction, and is therefore 
the relevant parameter to compare with experimental uncertainties in measurement. 

For all the datasets, we find that the uncertainty in our predictions ( 2
minχ ) is 

greater than the observed experimental error. Thus, we can never reach 2 2
min expχ χ≤ , 

where 2
expχ is the square of the experimental error-bar. The 2

minχ  for dataset DS1 (using 

only two-body Hamiltonian) is approximately 0.40 kcal/mol, while the experimental error 
bar is 0.087 kcal/mol (61,71) (Fig 4(a)). For the dataset DS2 we obtain 2

minχ  to be equal 

to 0.9 kcal/mol (Fig. 4(b)), while the experimental error bar is approximately 0.1 
kcal/mol (65,72,73). For the dataset DS3 we obtain 2

minχ  to be equal to 1.31 kcal/mol 

(Fig. 4(b)), while the maximal experimental error bar is approximately 0.48 kcal/mol (74) 
(Fig 4(c)).  We obtain similar results upon inclusion of the other interaction terms (Hs, 
H3) (data not shown). SVD, with an appropriate choice of the  parameter, is guaranteed 
to yield the most accurate least square solution for a given dataset. Thus, for all datasets, 
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we show that the uncertainties in prediction are always greater than the corresponding 
experimental error.  

 
Transferability of parameters derived from contact models  

In order to derive a universal set of contact interaction parameters, it is crucial 
that parameters derived from one dataset accurately predict the ��G values for other 
datasets. Therefore, we analyze the transferability of interaction parameters between the 
datasets. We determine the correlation coefficients between the parameters derived from 
different sets using the two-body Hamiltonian and find that the correlation is negligible 
(Fig.5). The lack of correlation between parameters that include solvent and the multi-
body effects derived from different datasets (data not shown) also demonstrates the non-
transferability of interaction parameters.  

The uniqueness of the derived solution depends on the relative number of 
parameters (Np) and number of experimental observations (Ne). There are three 
possibilities to consider for evaluating the uniqueness of a set of contact parameters.  

Case 1: Ne < Np. This case represents an under-determined set of equations, so 
that we always find more than one least square solution. Among these different solutions 
we choose the minimal norm solution vector corresponding to 2

minχ .   

Case 2: Ne > Np. This case represents an over-determined set of equations so that  
no exact solution exists. We find the least square solution which is the closest to 
satisfying all the equations simultaneously (by minimizing 2). However, we find that the 
number of non-zero singular eigenvalues and, hence, the rank of the matrix A (Nk) is less 
than the number of parameters (Np) to be determined. Thus, there is more than one set of 
solution vectors x that correspond to the value of 2

minχ . The number of least square 

solution vectors is determined by the eigenvalue threshold  (Fig. 6). When =0, which 
corresponds to considering all the singular values in the SVD procedure (Nk = Np), we 
obtain a unique solution. As we increase the value of , Nk becomes smaller than Np, and 
we obtain a number of solutions. If each choice of Nk parameters for a given value of Np 
corresponds to a different solution compatible with a given value of 2

minχ , then we 

estimate the number of least square solutions as the number of ways of choosing Nk 
parameters out of Np. When =1, Nk=1, corresponding to solving one equation, and the 
number of solutions is Np. 

Case 3: Ne = Np. This case results in a unique solution if the set of equations is not 
redundant. However, for our datasets, the solution depends on which measurements we 
choose to derive the parameters from, so that we obtain different solutions depending on 
the choice of mutants. If the equations are redundant, then finding the least square 
solution reduces to case 2 and there is more than one solution in this case. 

For all the above cases 1—3, we obtain more than one least square solution. We 
summarize the balance between uniqueness and accuracy of the derived solutions in a 
cartoon representation in Fig. 7. As stated earlier, the threshold value  determines the 
number of non-zero singular values and, hence, both the accuracy and the number of 
solutions. For a specific value of  (�=�min), the value of 2 is minimal. For �< �min, we 
include smaller singular values in the solution, so that the components of the solution 
vector corresponding to these singular values are error-prone (See Methods) and yield �2 
> 2

minχ . For �>�min, we discard some significant singular eigenvalues, and the number of 
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effective parameters is not sufficient to fit the data with experimental accuracy. As a 
result, we again obtain �2 > 2

minχ . Thus, the accuracy of obtained solutions has a 

minimum at �min, and increases for all other values of �. The uniqueness of solutions is 
also a function of �. We obtain a unique solution when �=0, and Np solutions when �=1 
(Figs. 6 and 7). However, for both cases, the corresponding values of �2 are much larger 
than �2

min. For all datasets, when � is minimal (�=�min), which corresponds to the highest 
accuracy of prediction, the number of solutions is much greater than one. Therefore, no 
unique solution exists and we argue that transferability of parameters from one dataset to 
the other can not be achieved. 
 
Implications for the assumptions and usefulness of the contact model 

The implausibility of deriving an accurate and transferable contact potential offer 
insights into the assumptions behind the contact models used and their utility. Two 
assumptions implicit in the contact approximation— first, that contact energies are 
independent of the protein environment, and, second, that the unfolded states are 
unstructured and not affected by mutation—may be violated leading to the observed 
results.   

We observe that when contact energies are derived using studies performed under 
same conditions (e.g. temperature, pH, and salt concentration) for mutations at the same 
residues in a single protein (DS1 for eglin c), we obtain a greater accuracy of prediction 
in both the self-consistency and jack-knife tests than for heterogeneous DS2 and DS3 
datasets. This implies that contact energies are a function of the environment in which a 
given contact is formed. Thus, the usefulness of contact models is dependent on the 
experimental database under consideration. For a dataset of mutants corresponding to 
identical positions in the sequence of a single protein (dataset DS1), contact potentials 
can reliably predict the stability changes upon mutation (correlation coefficient of 0.79 in 
the jack-knife test) and are therefore reasonably adequate for prediction of similar 
mutants in the protein. However, for datasets comprising of either mutants corresponding 
to several distinct amino-acid positions in the sequence of a given protein (dataset DS2) 
or a set of proteins (dataset DS3) the corresponding correlation coefficients in the jack-
knife test are 0.52 and 0.46, indicating their predictive inadequacy. 

Furthermore, it has been noted (75-78) that there is residual structure in the 
unfolded states, and it is likely that effect of mutations on unfolded states may 
significantly contribute to the protein stability. For these proteins, the assumption of 
attributing the ��G exclusively to the change in contact energies from the folded state 
breaks down. A quantitative understanding of the energetics of the unfolded states may 
therefore be necessary for understanding protein stability.  
 

Conclusions 
We develop a new methodology for deriving contact interaction parameters to 

predict stability changes in proteins upon mutation (��G). Using experimental ��G 
measurements, we derive contact interaction parameters for energy functions that include 
two-body, three-body and solvation contributions to protein stability, by solving a set of 
linear equations. Each linear equation relates the changes in the amino-acid contact 
composition of the protein upon mutation to the experimentally measured ��G value. We 
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obtain a reasonable correlation between experimental and predicted ��G with a simple 
two-body contact approximation and find that the inclusion of solvation and multi-body 
interactions does not lead to a significant improvement in predictive capability of our 
models. The differences in the predictive capabilities are related to the frequency of 
occurrence of contact parameters in the set of linear equations being solved. Therefore, 
rationally designed mutant libraries, intended to maximally cover parameter space, will 
aid the estimation of contact parameters. However, we argue that even for well-
represented datasets, the ��G predictions may not be adequately accurate. For all 
datasets in our study – corresponding to ��G measurements for individual proteins (eglin 
c, staphylococcal nuclease) and for a set of eleven proteins – we find that the 
uncertainties in predictions made by using the contact approximation are always greater 
than the corresponding experimental error-bars. Furthermore, we compare interaction 
parameters derived from the three datasets and find negligible correlation between them. 
We show that the number of optimal solutions which satisfy all three datasets is always 
greater than one. Thus, we argue that it may not be possible to determine universal, fully 
transferable contact interaction parameters that will be able to accurately and 
simultaneously predict ��G for a set of proteins. Our results suggest that a more 
atomistic form of potential and/or inclusion of the unfolded state into contact models may 
be necessary for both an accurate estimation of protein stability and achieving 
transferability of derived potentials across a set of proteins.  
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DataSet  Protein/PDB  

Code 
Number 
of 
mutants 

Source References 

DS1 Eglin c (1EGL) 303 Edgell et al. 
  

(61,71) 

DS2  
Staphylococcal 
nuclease (1STN) 

658 ProTherm database 
Guerois et al., 
Zhou et al. 

(43,62,63,79) 

DS3 1STN, 1ARR, 1BNI,
1BPI, 1BP2, 1BVC, 
1C90, 1FKJ, 2ABD, 
2LZM,1EGL 

1356 Edgell et al. 
ProTherm database, 
Guerois et al., 
Zhou et al. 

 (43,61-63,71,79) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table I: Summary of datasets that we use to derive the contact interactions in proteins. 
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∗  indicates that the  three-body interactions are calculated  using only six different types of amino acids 

Self-consistency test Jack-knife test 

Protein Number of 
mutants 

Terms included 
    in H rs log10p rj log10p 

H2 0.87 -52 0.80 -44 

H2+Hs 0.87 -52 0.78 -42 

H2+Hs+H3 0.87 -52 0.78 -42 

eglin c 303 

H2+Hs+H3
∗ 0.87 -52 0.77 -41 

H2 0.79 -91 0.52 -39 

H2+Hs 0.80 -92 0.47 -33 

H2+Hs+H3 0.98 < -100 0.28 -12 

 
staphylococcal 
nuclease 

658 

H2+Hs+H3
* 0.88 < -100 0.47 -33 

H2 0.66 < -100 0.46 -64 

H2+Hs 0.65 < -100 0.45 -62 

H2+Hs+H3 0.91 < -100 0.11 -05 

 
combined 

1356 

H2+Hs+H3
∗ 0.69 < -100 0.45 -62 

Table II: The correlation coefficient between predicted and experimental values of ��G  for self-
consistency (rs) and jack-knife (rj) tests using Hamiltonians of various complexities. H2, H3, and Hs 
denote two- and three-body and solvation Hamiltonian interaction terms respectively. p is the 
measure of the statistical significance of the correlation coefficient (the probability of observing 
these correlations by chance).  
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Figure2. The fraction of occurring parameters as a function of frequencies for the 
two-body interaction Hamiltonian (H=H2): for (a) DS1, (b) DS2 and (c) DS3 
respectively.  
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 Figure 3. The fraction of parameters as a function of their frequency of occurrence for datasets (a) 

DS1, (b) DS2 and (c) DS3 respectively. The histograms are obtained for interaction models that include 
two- and three-body and solvent interactions terms (H= H2+Hs+H3). The comparison of Figs. 2 and 3 
indicates that the inclusion of three-body interactions reduces the parameter space coverage in the 
composite Hamiltonian (H= H2+Hs+H3) compared to the two-body Hamiltonian (H= H2) parameter 
coverage. 
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Fig. 4(a) 

Figure 4. The dependence of χ2 on  for datasets (a) DS1, (b) DS2, and (c) DS3. The χ2 values 
remain constant for a range of  (10-3 to 10-14) and increases for values of  outside this range. For, 
DS3 the increase for smaller values of  is less pronounced. For each dataset, we calculate the 
linear least square solution at  =10-8 and obtain the minimal χ2 value.  
 



 26 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. The comparison of the interaction parameters derived from datasets (a) DS1 
and DS2, (b) DS2 and DS3, and (c) DS1 and DS3. The interaction parameters for each 
individual dataset DS1, DS2, and DS3 are obtained by minimizing simultaneously the 
�

2 and the length of the solution vector (see Methods). The solid line represents the 
linear regression between the parameters derived from different datasets. The linear 
regression correlation coefficient between parameters derived from datasets DS1 and 
DS2, DS2 and DS3, and DS1 and DS3 are is 0.06, 0.15 and 0.21 respectively. 
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Figure 6. The number of solutions as a function of the threshold value  for datasets (a) DS1, 
(b) DS2, and (c) DS3. For all datasets, at =0, the rank of the contact matrix A is equal to the 
total number of parameters, and we obtain a unique solution. As we increase , the rank 
becomes smaller than the number of parameters, and the number of least square solutions is 
much greater than 1. When =1, the set of linear equations is reduced to one equation, and we 
obtain Np solutions. 
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Figure 7. A Cartoon representation of the balance between uniqueness and accuracy of 
obtained solutions. The parameter  determines the number of singular values used in SVD 
and, consequently, the rank of the contact matrix A (see Methods). For any set of data, the 
number of solutions (top panel) is minimal when  is close to 0 and when  is close to 1. 
However, the corresponding �2 values, a measure of the accuracy of prediction (bottom 
panel), is much greater than 2

minχ . The �2 values reach a minimum in the range 0< <1. We 

obtain multiple solutions at values of  corresponding to 2
minχ . In all cases, the 

obtained 2
minχ is greater than the error in experimental measurements 2

expχ . Thus, we argue 

that a solution that is both unique and accurate ( 2 2
min expχ χ≤ ) can not be obtained. 


