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Evidence on the Extent and Potential Sources of Long Memory 

in U.S. Treasury Security Returns and Yields 

 
 

Abstract 
 
 Unlike equity returns, many fixed-income return and volatility measures appear to display 
long memory.  Granger and others have argued that long memory may only reflect infrequent 
structural breaks.  We show that the extent of long memory in U.S. Treasury debt returns differs 
strongly for gross and excess holding period returns.   We explore the impact of structural instability 
on tests for long memory using a version of the supLM test developed by Andrews (1993).  We find 
only weak indications that structural instability lies behind the long memory in gross and excess 
returns.  We also show that the evidence of long memory remains strong for yield and term premia 
series even after accounting for underlying structural changes.  

 



Evidence on the Extent and Potential Sources of Long Memory 

in U.S. Treasury Security Returns and Yields 

 
I. Introduction 

Long memory is a widely accepted characteristic of asset return volatility.  Many studies 

have shown that both exchange rate and stock market volatility display long memory.  Bollerslev 

and Mikkelsen (1996), Liu (2000), and Andersen, Bollerslev, Diebold, and Labys (2001) have all 

proposed and applied volatility models that capture long memory properties.   

By contrast, the evidence for long memory in asset returns is very spotty.  For example, Lo 

(1991) and Lobato and Savin (1998) have both shown that equity returns display little evidence of 

long memory.  There is some evidence that long memory may exist in exchange rates (Cheung, 1993) 

and gold (Booth, Kaen, and Kaveos, 1982).  Nonetheless, a reasonable summary of the evidence 

would almost surely conclude that there is no significant case for long memory in asset returns.  

Indeed, Granger (1999) concludes that there is no reason to expect to see long memory in asset 

returns.   

This paper extends the existing empirical research on long memory by documenting the long 

memory properties of Treasury security returns and yields.  Our research is prompted by the fact 

that bill and bond returns display a leading characteristic of long memory: their autocorrelations are 

large, but die out very slowly (especially compared to equity return autocorrelations).  This 

autocorrelation property is an important feature of fractionally-differenced time-series models, 

analyzed by Granger (1980), Hosking (1981), and Geweke and Porter-Hudak (1983).  

The first contribution of this paper is to show that holding period returns and yields on 

short-term U.S. Treasury securities display strong evidence of long memory.  This contrasts sharply 

with the results for returns on long-term U.S. Treasury securities where we find no evidence of long 

memory.  An interesting puzzle emerging from this aspect of our work is that while there is long 

memory in gross holding period returns, excess holding period returns display only short-term 

memory.  We consider potential explanations of this result later in the paper. 
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Why should finance researchers take an interest in long-memory models, particularly since 

there is so little evidence of their relevance to equity data?  Perhaps the most consequential answer 

is that (unlike the equity literature) we find strong evidence of long memory in all of our data series 

except excess returns.  This empirical regularity is important because Mandelbrot (1971) shows that 

there may be arbitrage opportunities in asset markets with long memory. 

There are other considerations, too.  Financial risk management systems typically use time-

series representations of return behavior, but long memory does not appear to be incorporated into 

these products.1  This assumption may be a reasonable approximation for short-horizon risk 

management, but neglected long-memory components in return and volatility phenomena may lead 

to inaccuracies in modeling and managing longer-horizon risks.  The consequences of using an 

inappropriate time series model in this setting are not well known at present. 

The unique long-horizon forecasting properties of long-memory models (discussed in 

Section II.A.) make them interesting to study, especially given the current interest in return 

predictability, particularly at long horizons.  Andersson (1998) shows that ignoring long memory in 

forecasting exercises when it exists is worse than imposing long memory when it does not exist. 

Finally, long memory is also important for pricing models.  Backus and Zin (1993), Bollerslev 

and Mikkelsen (1996), and Comte and Renault (1996) are a few examples of papers that explore the 

consequences of long memory for pricing bonds, equity options, and interest rate options.  It isn’t 

clear yet whether there are significant gains to incorporating long memory into pricing models, but 

many of the earliest applications focused on equity markets where the evidence of long memory is 

weak. 

Before reworking pricing models to include long memory components, there is a potentially 

important alternative interpretation of the long memory test statistics.  Lobato and Savin (1998) 

warn that structural instability may lead to misinterpretation of long memory evidence.  Granger 

and Hyung (1999) show that a linear process with structural breaks can mimic long memory, and 

they present simulation evidence that long memory in absolute S&P 500 returns (a volatility 

measure) is more likely due to structural breaks than an underlying I(d) process.  Hightower and 

Parke (2001) demonstrate that certain structural stability tests and particular tests for long memory 

are related to one another.  Each is a specific function of a common statistic based on the cumulative 

 
1. Riskmetrics™ is one example.  The documentation provided for the software appears to indicate clearly that 
ARIMA(p, d, q) models with d set either to zero or to one are standard in this risk management product. 
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sums of the error process.  This implies that there is ambiguity in the interpretation of tests for long 

memory: evidence of an I(d) process may actually be structural instability in disguise.   

Recent theoretical research has demonstrated that structural instability can produce the 

appearance of long memory in time series.  Granger and Hyung (1999), Diebold and Inoue (2002), 

and Parke (1999) all demonstrate circumstances under which different types of structural instability 

can mimic the properties of long memory.  Gray (1996) and Ang and Bekaert (2002a, 2002b) provide 

ample evidence of regime switching in short-maturity yields that can, at least in principle, generate 

long memory. 

The second principal contribution of the paper, then, is an extended inquiry into whether the 

evidence for long memory in U.S. bond markets is simply an artifact of structural instability.  

Specifically, we reconsider the strength of the evidence for long memory using three different 

approaches to controlling for potential structural instability.  We find only weak indications that 

structural instability explains our long memory evidence. 

In the end, we conclude that there is still significant evidence of long memory in holding 

period returns and yields on short-maturity U.S. Treasury securities.  In turn, this implies that 

efforts to price long bonds and interest rate derivatives may need to embrace models that include 

long memory components.     

In the next section, we discuss the properties of fractionally-differenced time series and their 

potential use in modeling expected returns.  We briefly review the properties of long memory, 

discuss tests for long memory, and show the connection between long memory and structural 

change tests.  Section III describes our data and presents the basic results of our tests for long 

memory using U.S. Treasury security holding period returns and yields.  Our empirical work uses a 

sample of hand-collected weekly holding period returns on seven (nearly constant-maturity) 

Treasury bills and bonds covering the July 1962 – May 1996 period.  We analyze the structural 

stability issues in Section IV, and a final section summarizes the results of our study, and considers 

some of the implications of our findings.   

 

Section II.  Interpreting Tests of Long Memory  

A. Introduction to Long Memory 

 Normally, only integer powers of d are considered in ARIMA(p, d, q) models, but there is no 

mathematical or statistical requirement that d take on only integer values (e.g., d = 1 yields a first-

difference model).  In a fractionally differenced model, d can take on noninteger values and the 
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resulting time series can exhibit some particularly interesting dependencies.  Granger and Joyeux 

(1980) and Hosking (1981) show that extending the lag operator to noninteger powers of d results in 

a well-defined time series that is fractionally integrated of order d.2  The differencing operator may 

be written 
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leading to the following representation of a time series where p = q = 0:  
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Here, Γ is the usual gamma function.  

 In his excellent survey paper, Baillie (1996) reviews a number of different long-memory 

models.  One simple model is an ARFIMA (0, d, 0) process given by 

 ( ) ( )1− −L yd
t tµ ε          (3) 

This model is studied in Granger (1980), Granger and Joyeux (1980), and Hosking (1981).  Their 

work shows than when d < .5, the series has finite variance, but for d = .5, the series has infinite 

variance.  The time series is stationary and invertible when -.5 < d < .5.  For d = .5, standard Box-

Jenkins techniques will indicate that differencing is required and provided that d < 1, differencing 

will produce a series whose spectrum is zero at zero frequency.  This heavily used model is a special 

case of an ARFIMA (p, d, q) process given by 

 φ µ( )( ) ( ) ( )L L y Ld θ εt t1− − = .       (4) 

where p = q = 0. 

 Fractionally-differenced time-series models have very interesting long-run forecasting 

properties.  A fractional white noise series yt ~ I(d) may be represented as an MA(∞) process where 

the moving average coefficients decline slowly following the form bj ~ Ajd-1 where A is a constant.  

A stationary ARMA(p, q) with infinite p and q will have coefficients that decline at least 

exponentially: bj  ~  Aθj.  One important implication of these stark differences in coefficient decay 

rates is that a fractionally-differenced model may provide better long-run forecasts from a very 

simple model compared to ARMA(p, q) models where p and q are large.3   

                                                      
2.  See also Robinson (1994a) for early analysis of long-memory models. 
3.  For further discussion of the autocorrelation, autocovariance, and general forecasting properties of long-memory 
models, see Baillie’s (1996) survey paper. 
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 In principal, parameterizations of both finite-order ARMA and fractionally-differenced time 

series can produce dependence in a time series.  The rate at which past information ceases to be 

useful in forecasting future values differs importantly across these models.  Figure 1 provides an 

example of the autocorrelogram for a fractionally-differenced time series with d = .4 and an AR(1) 

process with ρ  =  . 5 .4  The first autocorrelation for each series is nearly identical (.5 vs. .6) but the 

decay rates are quite different.  The autocorrelations decline very slowly for the fractionally-

differenced series, but fall quite rapidly to zero for the AR(1) process.  This is an example of a 

fractionally-differenced time series displaying greater persistence than AR (or ARMA) processes, 

and why they may be interesting in research on debt instrument yield and return distributions.5 

B.  Testing for Long Memory  

 Kwiatkowski, Phillips, Schmidt, and Shin (1992) develop a test for I(0) behavior which is 

consistent against an I(d) alternative and can be helpful in distinguishing long memory from short 

memory.  The null hypothesis of their test is that a time series is I(0), but under the alternative 

hypothesis, the time series displays I(d) behavior (with d ≤ 1).  Lee and Schmidt (1996) provide 

further analysis of this approach to testing for long-memory effects.  Their Monte Carlo evidence 

suggests that the KPSS test has power comparable to Lo’s (1991) robust R/S statistic in 

distinguishing I(0) from I(d) behavior. 

The first step in calculating the KPSS test statistic is to form the partial sum (St) of the 

residuals from the demeaned series. 6  The KPSS test statistic is given by 

 2 2 2
1

( )
T

t Tt
T S sµη
−

=
= ∑          (13)  

where the denominator is the autocorrelation-consistent variance estimator given by  

 st
T

1
T

1t t
1T

1t
2
t

12 TT2Ts −= =
−

=
− ∑ ∑∑ +++= εενκε

+ν ν
ˆˆ))(/(ˆ)( .   (14) 

                                                      
4.  Following Lo, we simulated 5000 observations for each model.  We discarded the first 3000 simulated data points 
and estimated the autocorrelations in the diagram from the remaining data.  
5.   In fact, Lo shows that a fractionally-differenced model can reproduce the general pattern of variance ratio results 
reported in the equity literature.  In particular, he shows that a combination of an AR(1) and fractionally-differenced 
model with d = .25 will produce variance ratios above one at short horizons and below one at longer horizons.  This 
suggests that fractionally-differenced models may have special importance in ongoing empirical investigations of 
long-range dependence in capital markets.  Lo's own results suggest that there is little evidence of long-term memory 
in U.S. equity index returns once short-run dependencies have been accounted for in tests for long memory. 
6.  There is another version of the KPSS test, τη , which is constructed in the same way except that the residuals are 

derived from a regression that involves a time trend as well as an intercept term.  
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This robust variance estimator is based on Phillips (1987), who demonstrates its consistency under 

certain conditions and Newey and West (1987), who suggested the weighting scheme 

 to guarantee that the variance estimate is positive semi-definite. ( / ( )) 1 /( 1)T jκ ν = − +

 This robust estimator is important to use.  Lo (1991) shows that short-range dependence 

(well documented in equity prices by Lo and MacKinlay (1988), and Conrad and Kaul (1989)) may 

compromise inferences about the presence of long-range dependence.  Since the optimal number of 

autocovariances is not known ex ante, we compute ˆµη  using a number of different lag lengths ( ).  

The tradeoff is that using too few autocovariances produces an inadequate bias correction, but using 

too many leads to low power since the higher-order autocovariances are more imprecisely 

estimated. 

Long memory tests have a very different basis than long horizon return dependence tests.  

Aside from some technical conditions, the null hypothesis of no long-range dependence eliminates 

infinite variance marginal distributions and encompasses a strong-mixing condition that requires 

higher-order autocorrelations to fall in size as the lag length increases.  This means that the series of 

autocorrelations displayed by a time series under the null hypothesis decays rapidly.  Included in 

the null hypothesis, then, are all finite-order ARMA models.  The null hypothesis of no long-range 

dependence includes well-known models of return dependence (see Campbell, et. al. (1997), pgs. 59-

64 for details).  Put another way, the null hypothesis of the KPSS test excludes return behavior that 

is quite different from the autocorrelation properties commonly reported in earlier studies of long-

horizon return dependence.   

C.  Interpreting Long Memory Tests 

The long history covered by our time series samples of holding period returns is essential to 

empirical studies of long-memory processes, but it creates a potential difficulty.  With a stable 

underlying structure, high frequency effects may be found by sampling very frequently, but over a 

relatively short time period (i.e., sample every 15 seconds for three business days).  The long-

memory phenomenon we are interested in may be measured accurately only in long samples, i.e., 

samples which extend over many realizations of the long-memory process.  This is perhaps best 

achieved with samples that cover many years (say, 200 years), but where the process is not sampled 

with high frequency.7  What is needed for long memory empirical studies is a long sample 

                                                      
7.  Bollerslev, Cai, and Song (2000), among others, provide a clever alternative approach to identifying and 
estimating long-run properties of return distributions from intraday day.  The relative strengths of these different 
approaches remain an interesting topic for further research. 
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realization of the process (i.e., 200 years), particularly one that is not sampled so often that short-run 

dependencies dominate the sample properties of the data.   

The difficulty here is that the underlying structures of debt markets, instruments, and 

trading institutions and practices have not been stable over periods of even 50 years, let alone 100 to 

200 years.8  In our setting, the task is to provide the longest possible sample while recognizing that 

extending the length of the sample increases the probability of structural instability.9   

 The relationship between long memory and structural change has been the focus of 

increasing research in recent years.  Some researchers (Diebold and Inoue (2002) and Granger and 

Hyung (1999)) see long memory as an artifact of processes that exhibit certain types of structural 

change over time.  Others (Parke (1999) and Taqqu, Willinger and Sherman (1997)) propose models 

where many structural breaks that last for random durations give rise to time series properties that 

are associated with long memory (slowly decaying autocorrelations).  Taken together, these lines of 

research point to a blurring of the differences between long memory and structural change.   

Lobato and Savin (1998a) assess the fragility of evidence for long memory by splitting their 

sample of daily returns and squared returns into sub-samples.  They recomputed their tests for, and 

measures of, long memory for each sub-sample, and then compared inferences from the whole 

sample and the sub-samples.10   

In empirical studies, whether a process is deemed to be long memory or a structural break 

may come down to what types of tests are performed on the data.  Hightower and Parke (2001) 

clarify this point by showing that structural shift tests and the KPSS test for I(d) (versus I(0)) 

behavior are both functions of the same term: the ratio of the partial sums of the series to a 

consistent variance estimate for that series.  One interpretation of their theoretical results is that 

“large” KPSS test statistics may actually be evidence of structural shifts. 

Andrews (1993) suggests a supremum test for a one-time structural change with an 

unknown break point as a way to account for the criticism that researchers may ``eyeball'' the most 

likely point for a break before running a typical test.  Given a time series iε , residuals defined in the 

                                                      
8.  One example is the Treasury Fed Accord of 1953 that ended the Fed’s explicit policy of managing Treasury 
borrowing costs.  A more recent example is the shift in Fed operating procedures in October 1979. 
9.  Ideally, instability tests such as those developed in Hansen (1992) might be used to resolve the instability issue 
empirically.  Unfortunately, these tests are not available for our application.  Hidalgo and Robinson (1996) have 
studied the issue of structural change in the mean with long memory for the case where the time series are Gaussian.  
There is substantial evidence rejecting Gaussianity for financial market return series, so this test does not seem to be 
particularly appropriate for the problem we are studying here.  
10 . There is evidence of sub-sample instability from the equity market mean-reversion literature.  In particular, see 
Kim and Nelson (1998) and the references therein. 
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If  is taken to be the Bartlett kernel,  is identical to the denominator of the KPSS 

statistic.  The Andrews supLM test is then simply given by sup

))(/( Tνκ

( )TLM
π

π
∈Π

 where Π is bounded away 

from 0 and 1. 

 The relationship between tests of stationarity and tests of structural change can be seen by a 

comparison of (13) and (26).  The KPSS test for stationarity can be viewed as an average of the 

( )TLM π terms weighted by (1 )π π− .  Hightower and Parke (2001) show that these two tests (as well 

as the Andrews and Ploberger (1994) avgLM and expLM tests) have nearly identical power against 

many common alternatives including structural change, unit roots and long memory.  In this 

context, the supLM test can provide insight into candidate breakpoints that may be driving 

rejections of short memory, if indeed these rejections are driven by a structural shift in the sample. 

 Bai and Perron (2001) develop this idea further, showing that multiple breakpoints may be 

estimated by using a sequential procedure.  In Section IV, we use their procedure to assess whether 

instability in several potential macroeconomic state variables may lie behind the long memory 

evidence that we present next. 

 

Section III.   Data and Preliminary Results 

A.  Return and Yield Data   

 In the subsequent empirical analysis, we analyze gross and excess holding period returns on 

U.S. Treasury securities in addition to yields and term premia, all observed on a weekly basis.  The 

basic return data set contains weekly holding period returns on one-, three-, six-, and 12-month 

Treasury Bills and three-, five-, and 10-year Treasury Bonds for the July 1962 through May 1996 
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period.11    The yield data consist of weekly observations on three-, six-, and 12-month Treasury Bills 

and three-, five-, and 10-year Treasury bonds.  We describe each in turn. 

 Weekly holding period returns were calculated by taking the log difference of this 

Wednesday's bid price and last Wednesday's ask price and adding in the percentage return 

associated with accrued interest.  The bid and ask prices used to calculate the weekly return were for 

the same security.  However, the security used in the computations was frequently changed so as to 

maintain a fairly constant maturity return series.  In no case, though, were prices on different 

securities used to make return computations.  The basic Treasury bill and bond price data is from 

the Wall Street Journal.12   

 We computed six excess return measures: the weekly holding period return on 10-year 

bonds (and five-year, three-year, 12-month, six-month, and three-month) less the weekly holding 

period return on one-month bills.  This gives the extra return earned by holding a longer-maturity 

Treasury debt instrument vs. short-maturity Treasury debt.   

 The yield data is from the Federal Reserve Bank of St. Louis.  The term premia studied here 

are calculated as the difference between the yield on 12-month (bill), three-year, five-year, and 10-

year bond yields and the yield on three-month bills. 

Figure 2 provides a graphical representation of the autocorrelations for gross holding period 

returns for Treasury Bills based on the full sample.  Autocorrelations for shorter-maturity gross bill 

returns display the basic slow decay indicative of long memory.  By contrast, the autocorrelations of 

Treasury Bond gross holding period returns presented in Figure 3 give no indication of long 

memory. 

In Figure 4 (5), we provide a graphical representation of the autocorrelations of excess 

holding period returns for Treasury Bills (Bonds).  By contrast with the gross holding period 

autocorrelations for bills, the decay in autocorrelations is very rapid.  Based on the diagram alone, it 

would be hard to imagine these series would produce any evidence of long memory.   

We present graphically Treasury Bill and Bond yield autocorrelations in Figures 6 and 7.  

Both show that yields are very persistent, a fact well known from the literature on bond pricing.  

The autocorrelations of term premia, presented in Figure 8, also display considerable persistence.  

                                                      
11.   The original weekly return data was collected by Gautam Kaul and very graciously provided to us.  We are 
grateful to Paisan Limratanamongkol who updated all the data series for us.   
12.  One motivation for using individual security data is to avoid aggregation of multiple security returns where 
possible.  Granger (1980) provides an analysis of conditions under which aggregation can produce long memory. 
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The extent of this persistence is inversely related to the maturity of the bond for which the term 

premium is being calculated.   

B.  Long Memory Test Results 

 A fractionally-differenced model may produce the kind of dependence indicated by our 

autocorrelation graphs.  We use the KPSS statistic (described in Section III, A.2) to test for the 

existence of fractional differencing.  The results of the KPSS tests are reported in the panels of Table 

1.  For all nine return series except the weekly returns on five- and 10-year Treasury bonds, the null 

hypothesis of stationarity is strongly rejected in favor of an I(d) process.   Together with the 

autocorrelation evidence, the KPSS test statistics clearly imply that weekly gross fixed income 

holding period returns display long memory which can be described using a fractionally-

differenced ARIMA(p, d, q) model.  The evidence of persistence is even stronger in the yields and 

term-premia, where almost every time series rejects stationarity for all choices of autocorrelation 

truncation parameter,  .

Applied to weekly excess holding period returns, the KPSS test statistics show very little 

evidence of long-term dependence.  This stands in sharp contrast to our just-noted findings about 

long memory in gross holding period returns.  It suggests that empirical asset pricing work that 

focuses on excess returns can safely ignore the implications of neglected long memory. 

 

Section IV.  Diagnosing Long Memory 

 In this section, we examine whether the long memory evidence presented in this study is an 

artifact of structural breaks in the data.  Since information on structural breaks in the data is not 

directly observable, to infer the timing of potential breaks we followed three approaches.  In the 

first, we take a change in the Federal Reserve System operating procedures as a break point.  Since 

changes in central bank behavior are known to affect financial markets, this choice seems to be a 

credible candidate for a structural break point.   

In the second approach, we use the Bai-Perron tests to estimate the break points for two 

fundamental variables, namely money supply and inflation, that are expected to affect bond returns 

and yields.  This method implicitly assumes that severe money supply and inflation shocks will 

produce immediate structural breaks in the bond return and yield series that we analyze here.  We 

take the estimated structural break points for these fundamental variables as break points for the 

bond return and yield series.  Subsamples constructed from these break points are analyzed for 

evidence of long memory.  The advantage of this approach is that we are not looking at the series 
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with the apparent long memory to find a structural break (and then using the structural break to 

argue that the long memory is an artifact of the structural break).   

 Instead of pinpointing structural change in a fundamental variable as the cause of a 

structural break/long memory in the bond return and yield series, the last method assumes that 

structural instability is precipitated by a latent variable.  However, we assume that we can identify 

the shifts in this latent variable by analyzing the return and yield series directly.  Accordingly, we 

apply Hamilton’s (1994) Markov switching model methods to time the structural breaks in our bond 

return and yield series.  In the rest of this section, we present findings based on applying the long 

memory tests discussed in Section II to subsamples chosen using these different methods.   

A. Instability and Fed Operating Procedure 

Borrowing from the Lobato-Savin approach, we initially explore the fragility of long 

memory evidence by comparing inferences across sub-samples and our full sample.  More 

specifically, because of the shift in Federal Reserve System operating procedures in early October 

1979, we split our U.S. Treasury bill and bond data at September 1979.  As a first check on our earlier 

findings, we recalculated the KPSS test statistics using these sample breakpoints and checked the 

stability of the long-range dependence test statistics across the early and later samples.  In this way, 

we hope to provide some initial evidence on the impact of potential structural instability on our 

inferences about long memory.   

 The various panels of Table 2 contain the sub-sample estimates of the KPSS test statistics for 

return series for which we reported results in Table 1.  Analysis of the U.S. Treasury sub-sample 

results reveals that there is virtually no difference between the full sample and sub-sample 

inferences for any of the return, excess return, yield, or term premia series.  Thus, it appears unlikely 

that the shift in Fed operating procedures is the culprit behind the long memory documented in 

Table 1. 

B.  Shifts in Fundamental Variables 

B.1. Shifts in Money Supply (MS) Process 
 
 We also investigated the possibility that instability in Treasury debt markets may be related 

to instability in the underlying money supply or demand processes.  The transmission mechanism 

from money supply or money demand shocks to bond markets has been a long-standing, central 

research theme in monetary economics.  We chose M2 as the monetary aggregate in our empirical 

work. 



 12  
 

)

)

The advantage of this approach is that we are not cooking the answer by searching for break 

points in the return series until we make the long memory evidence disappear.  The disadvantage is 

that if the KPSS tests still find long memory, we can only conclude that potential structural 

instability in this series is probably not the source of long memory.  Given the long history of 

research connecting money supply and demand processes with interest rates, this seems like a 

reasonable approach. 

 To assess the potential contributions of money supply or demand shifts to long memory in 

debt returns and yields, we sequentially estimate break points in the M2 series using the Bai-Perron 

procedure.  We then use these break points to split our gross and excess return, yield, and term 

premia series and then retest the resulting subsamples for long memory using the KPSS test.  The 

idea behind this is simple enough: if instability/persistence in the return series reflects instability in 

the monetary aggregate series, the evidence for long memory will be significantly weakened once 

the samples are chosen to isolate underlying structural breaks.   

 We report the estimated break points and the results of the KPSS tests in Table 3.  The 

specific dates of the sample breaks are as follows: 1: July 4, 1962  – January 29, 1969, 2: February 5, 

1969  – August 5, 1970, 3: August 12, 1970 – February 18, 1987, and 4: February 25, 1987 – May 29, 

1996.  Based on samples constructed using the four structural breaks that we found with the Bai-

Perron procedure, we conclude that for the series analyzed there is still long memory in three of the 

four subsamples.  Only in the second subsample did the evidence for long memory disappear, but 

the sample is so short (only 78 observations) that we believe it would be unwise to place much 

weight on this reversal. 

B.2.  Shifts in Inflation Process 

 Recall from Section III.B that we find persistence in yields, term premia, and gross (but not 

excess) returns.  In the term premia analysis, the evidence favoring long memory appears to 

strengthen as the maturity difference increases.  One partial explanation for this collection of results 

may come from an underlying instability in the inflation process that, in turn, produces differential 

persistence.  There is some basic intuition that may prove useful.  Hassler and Wolters (1995) find 

considerable evidence that inflation rates display long memory.  Using the Fisher relation, we split 

the holding period return at time t on a riskless debt security with maturity of j months ( ) into 

three components, an expected real return over that horizon ( ), an inflation premium for that 

horizon (

N
jtR

( R
jtE R

( tE π ), and a contemporaneous random market-wide shock terms ( tυ ) with mean zero: 
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 ( ) ( )N R

jt jt t tR E R E π υ= + +         (21) 

The excess return is a linear combination of two holding period returns for securities with j and k 

months until maturity (and k =1 in practice): 

 1( ) ( ) ( ) ( )N N R R
jt 1t jt t t t t tR R E R E E R Eπ υ π− = + + − − −υ

)

)

     (22) 

 .        (23) 1( ) (N N R R
jt 1t jt tR R E R E R− = −

Here, we rely on the assumptions that the inflation premium is independent of security maturity 

and the shock term is dominated by a market-wide component common to both maturities.  This 

simple algebraic manipulation leads to our conjecture that if inflation is the source of the long 

memory in gross holding period returns (not expected returns), excess holding period returns will 

not display long memory.   

 In yields, by contrast, the expected inflation varies with maturity because the yield reflects 

the expected inflation over the life of the bond.  We hypothesize that the nominal yield at time t on a 

riskless debt security with j periods until maturity (Y ) depends on four factors: the real yield for 

that maturity ( ), the expected inflation rate over the life of the bond (

N
jt

R
jtY ( jtE π ), a maturity-specific 

disturbance term that captures shocks idiosyncratic to a particular maturity segment of the market 

( jtν ), and a market-wide shock term ( tυ ).  Algebraically, we decompose the nominal yield as 

follows 

 ( )N R
jt jt jt jt tY Y E π ν= + + +υ .        (24) 

The term premium is then given by 

 1, 1 1 1 1( ) ( )N N R R
j t jt t jt jt jt t t t t tTP Y Y Y E Y Eπ ν υ π ν υ− = − = + + + − − − −    (25) 

 1, 1 1 1( ) ( )R R
j t jt t jt t jt tTP Y Y E Eπ π ν ν− = − + − + − .      (26) 

From (26), it is clear that structural breaks in the expected inflation series or maturity-specific 

shocks, either one-time or in a continuing sequence as in Parke (1999), might produce evidence of 

long memory in the term premium series.  Of course, by (24), it is clear that structural breaks in the 

expected inflation series or maturity-specific shocks might be able to produce long memory in the 

yield series, too. 

 The initial step in this portion of our empirical work is to find break points in the inflation 

series.  The Bai-Perron procedure selects a three-break representation, with breaks in May 1967, 

January 1973, and July 1982.  The shifts are matched against the underlying series in Figure 9.  This 
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selection of break points agrees closely with results in Bai and Perron (2001) who model U.S. real 

interest rates, proxied by the quarterly 3-month Treasury bill rate deflated by the CPI. 

 Despite this, running the KPSS tests on the subsamples based on inflation breaks seems to 

have very little impact on the evidence for long memory (see Table 4).   

C.  Modeling Shifts in Latent Variable  

 Finally, we investigated the possibility that structural instability might be due to a latent 

variable.  In particular, we assume that a markov-switching model where which shifts between 

states follow an unobservable variable provides a straightforward approach to modeling structural 

change.  Since markov-switching models have been analyzed extensively elsewhere (see Hamilton 

(1994), Ch. 22), we offer only a brief review of this modeling approach.   

An easy starting point is to consider a segmented trends model where a latent variable 

takes a value of 1 or 2 thereby indicating whether a time series is increasing in value or 

decreasing.  The average change in the time series in the first state is given by 

ts

1µ , and the average 

change in state 2 is 2µ .  The variance in each state is indicated by 2
1 and .2

2σ σ   The model is 

completed by assuming that a Markov chain describes the evolution of the latent (state) variable: 

   1 1( 1| 1)t tp s ps −= = = 1 221( 2| 2)t tp s s p−= = =

2 1( 1| 1) 1t tp s s p−

     

  1 2p−( 1| 2) 1t tp s s −= = = 11= = = −      (1) 

where the ijp

ts −

j are transition probabilities between states i and j.13  Given the Markov chain 

assumption,  is sufficient to describe all past history of a time series and the latent variable.   1

The joint distribution of observed data (the value of the time series at time t is indicated by 

ty ) with sample size T may be written as 1 1( , ..., , ,..., |t tp y y s s )θ  where is the latent variable and 

.  Given values for the parameter vector, the probability of being in 

regime at date t given the available information at that time is the filter inference: 

ts

2 2
1 2 1 2 11 22{ , , , , ,p pθ µ µ σ σ

ts

}

)t

=

 1( | , ..., ;tp s y y θ .         (2) 

Alternatively, computing this probability with the full sample produces a “smoothed” inference 

about the regime: 

 1( | , ...,tp s y y ; )T θ .         (3) 

When t=T, (2) and (3) produce the same value.   
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 If the long memory evidence presented earlier is being produced by structural instability 

related to a latent variable, the smoothed state probabilities given by (3) are very interesting because 

they signal the timing of shifts in the time series from one state to another.  Accordingly, if this type 

of structural instability is behind the long memory evidence, we expect the evidence for long 

memory to weaken considerably (if not disappear) when we limit long memory tests to samples 

drawn from only one state. 

 For the return and yield series where we find strong evidence of long memory (reported in 

earlier tables), we found clear evidence of switching between two regimes over the full sample.  In 

addition, the state persistence is considerable so that there are long stretches of time when the return 

or yield series is in a single state.  This makes it relatively less difficult to identify the dates of breaks 

in these time series.  For the series where we don’t find robust evidence of long memory, state 

persistence parameters are uniformly smaller, and the state probabilities indicate much more 

frequent switching between states.  Dating the breaks is correspondingly more difficult, of course.   

 We report results of long memory tests for a subset of our time series using samples that are 

split using the state probabilities estimated by the markov-switching model.  Figures 10 – 15 plot the 

smoothed state probabilities for six of our series.  There is significant state persistence in the yield 

and term premia as well as three-month bill return series, but there is markedly less state persistence 

in the 10-year bond return and three-year excess return series. 

 If evidence of long memory is taken to be equivalent to evidence of structural instability, the 

smoothed state probabilities evidence just cited is potentially quite interesting.  For the series where 

we find evidence of long memory, there seems to be clear evidence of regime switching and 

considerable state persistence.  On the other hand, for the series where we find weak or nonexistent 

evidence of long memory, the states switch back and forth frequently making identification of a 

specific regime more difficult.  We note in passing that many of the subsamples chosen from the 

inflation break dates overlap regimes from the Markov-switching model. 

 Perhaps the most interesting test centers on whether the long memory tests produce the 

same evidence on samples split using the regime shifts identified by the markov-switching model.  

In Table 5, we report results from these tests for an illustrative subsample of our series.  On the 

whole, the test statistics appear to indicate nothing new: long memory (or the lack of long memory) 

where it is indicated in Table 1.  Many of the test statistics, however, are considerably smaller than 

 
13.  In this application, we assume that the transition probabilities are constant, but Diebold, Lee, and Weinbach 
(1994) studied a markov-switching model in which the transition probabilities depend on a set of exogenous 
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before, suggesting that structural instability may have some role in explaining the long memory 

results reported in Table 1. 

 

Section V.  Summary and Further Discussion 

As we noted in the introduction, a number of researchers have studied the relevance of long 

memory for macroeconomic and financial time series.  There is reasonably widespread agreement 

that financial asset volatility displays long memory, but the evidence is mixed at best for other time 

series.  One aim of this paper has been to extend the analysis of long memory models to U.S. bond 

markets.  The other purpose of our research has been to explore potential foundations for the long 

memory evidence.   

Our long memory tests show that Treasury security gross holding period returns, yields, 

and term premia all display long memory, but excess returns do not have this characteristic.  We 

also document evidence that the long memory in returns decreases as the maturity of the debt 

instrument increases. 

As we noted early in the paper, there is an important ambiguity in the interpretation of the 

KPSS test for long memory.  This test shares an important connection with structural instability 

tests, and this renders the interpretation of large KPSS test statistics problematic.  Accordingly, we 

have gone to some lengths to establish the sensitivity of these findings to structural instability.  

We explored the impact of three different approaches to accounting for structural instability.  

The first method identified shifts in Federal Reserve operating procedure as the critical structural 

break.  The second method used break dates in two fundamental variables, namely money supply 

(M2) and inflation, to date the critical structural breaks in return and yield series analyzed in this 

paper.  These break dates in fundamental variables are identified by the Bai-Perron procedure.  Our 

third approach relied on a latent variable approach and used Hamilton’s markov-switching model 

to pick out potential breaks in the individual return, yield and term premia series.  The first two 

methods have the advantage that they rely on more structural approaches to identifying sources of 

instability and do not use the return, yield and premia series themselves to find structural breaks.  

The third method makes fewer assumptions about the economic sources of instability, and dates any 

structural breaks using the time series themselves.  This should give the sharpest identification of 

structural breaks. 

 
variables.   
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The evidence from this analysis of structural instability is interesting, but it does not seem to 

provide an authoritative explanation of the long memory test results.  The Federal Reserve operating 

procedure analysis identifies long memory as a feature of the post-October 1979 period.  Indeed, 

even Treasury bond returns appear to display long memory in this subperiod.   The M2-based 

analysis shows that long memory exists in all of the subsamples with a reasonably large set of 

observations.   The inflation-based analysis also provides little new evidence of a structural 

instability explanation of our long memory results.  

We also evaluated the sensitivity of long memory tests to splitting samples based on 

markov-switching model estimates.  This portion of our work is grounded in the analytical results 

reported by Diebold and Inoue (2002).  Here, we found that while test statistics were generally far 

smaller than in the tests reported in Table 1, our assessment was largely unchanged.  That is, we still 

found long memory in gross return, yield and term premia series, but not in excess returns.  We 

found long memory in shorter maturity return series, but not in returns of long maturity debt 

instruments. 

 We believe there is at least one alternative path yet to be explored.  In particular, this 

involves assessing the impact of long memory on term structure, bond pricing, and fixed income 

derivative models.  Specifically, it would be useful to know whether long memory is related to any 

pricing biases and whether there are circumstances in which the impact of ignoring long memory is 

the most (and the least) noticeable.   
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Table 1 
 

Results of KPSS Test for Long Memory 

 
 Autocovariance Lag Length  Autocovariance Lag Length 
Returns 0 4 8 12 Yields 0 4 8 12 

1-month 22.298 5.334 3.069 2.178 3-month 30.114 6.078 3.412 2.388 
3-month 12.067 4.420 2.806 2.098 6-month 30.950 6.240 3.501 2.449 
6-month 5.109 2.632 1.932 1.595 12-month 33.886 6.829 3.828 2.676 

12-month 1.991 1.235 1.034 0.951 3-year 45.847 9.226 5.163 3.602 
3-year 0.601 0.405 0.356 0.347 5-year 52.849 10.628 5.941 4.140 
5-year 0.415 0.310 0.272 0.260 10-year 63.024 12.661 7.068 4.917 

10-year 0.174 0.141 0.129 0.128      
        
Excess Returns     Term Premium    

3m-1m 0.708 0.562 0.515 0.493 12m-3m 1.807 0.391 0.230 0.169 
6m-1m 0.209 0.154 0.140 0.138 3y-3m 27.981 5.799 3.333 2.383 

12m-1m 0.231 0.164 0.150 0.150  5y-3m 32.850 6.753 3.856 2.742 
3y-1m 0.422 0.293 0.261 0.257  10y-3m 39.207 8.017 4.560 3.232 
5y-1m 0.243 0.186 0.165 0.159       

10y-1m 0.097 0.079 0.073 0.072       
 
 
Notes:  The KPSS test statistics reported here are calculated using (13) in the text.  The number of lags in 
the autocovariance adjustment affects the nature of the consistent covariance matrix estimate ((14) in the 
text).  KPSS test statistics that indicate a rejection of the null hypothesis at the five per cent significance 
level are shaded. 
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Table 2 

Results of KPSS Test for Long Memory With Sample Split at October 1979  

 
Panel A: First Half Sample 

 Autocovariance Lag Length Autocovariance Lag Length 
Returns 0 4 8 12 Yields 0 4 8 12 

1-month 32.327 7.460 4.316 3.061 3-month 39.557 8.062 4.557 3.206 
3-month 13.020 5.399 3.561 2.641 6-month 42.799 8.705 4.916 3.459 
6-month 5.806 3.231 2.527 2.099 12-month 47.825 9.722 5.491 3.865 

12-month 1.393 0.918 0.823 0.742 3-year 64.515 13.073 7.358 5.158 
3-year 0.539 0.369 0.348 0.340 5-year 71.096 14.374 8.070 5.643 
5-year 0.319 0.232 0.221 0.215 10-year 78.760 15.887 8.897 6.206 

10-year 0.122 0.085 0.086 0.084      

Excess Returns   Term Premium   
3m-1m 0.278 0.260 0.259 0.241 12m-3m 3.735 0.848 0.507 0.371 
6m-1m 0.151 0.116 0.116 0.118 3y-3m 11.386 2.374 1.360 0.963 

12m-1m 0.111 0.081 0.079 0.076  5y-3m 10.947 2.260 1.287 0.908 
3y-1m 0.106 0.073 0.069 0.068  10y-3m 11.240 2.304 1.307 0.921 
5y-1m 0.105 0.076 0.073 0.071       

10y-1m 0.065 0.045 0.045 0.044       
 
Panel B: Second Half Sample 

 Autocovariance Lag Length Autocovariance Lag Length 
Returns 0 4 8 12 Yields 0 4 8 12 

1-month 42.398 10.537 6.107 4.366 3-month 58.795 11.892 6.697 4.703 
3-month 22.157 8.362 5.380 4.093 6-month 60.778 12.277 6.906 4.844 
6-month 8.567 4.532 3.362 2.831 12-month 62.365 12.587 7.073 4.955 

12-month 2.918 1.835 1.551 1.472 3-year 64.880 13.076 7.333 5.128 
3-year 1.396 0.935 0.811 0.792 5-year 65.780 13.254 7.428 5.190 
5-year 1.114 0.841 0.725 0.690 10-year 67.247 13.542 7.581 5.290 

10-year 0.455 0.383 0.344 0.343      

Excess Returns   Term Premium   
3m-1m 0.974 0.761 0.703 0.694 12m-3m 9.829 2.097 1.236 0.910 
6m-1m 0.215 0.158 0.142 0.140 3y-3m 4.211 0.882 0.514 0.374 

12m-1m 0.141 0.100 0.092 0.093  5y-3m 6.178 1.283 0.743 0.537 
3y-1m 0.391 0.272 0.241 0.239  10y-3m 9.512 1.965 1.133 0.816 
5y-1m 0.412 0.321 0.281 0.270       

10y-1m 0.180 0.154 0.139 0.139       
 
 
 
Notes:  The KPSS test statistics reported here are calculated using (13) in the text.  The number of lags in 
the autocovariance adjustment affects the nature of the consistent covariance matrix estimate ((14) in the 
text).  KPSS test statistics that indicate a rejection of the null hypothesis at the five per cent significance 
level are shaded. 
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Table 3 
 

KPSS Tests from Samples Split Using M2 Break Points 

 
Panel A: Returns and Yields 

Returns Autocovariance Lag Length Yields Autocovariance Lag Length 
1st Subsample 0 4 8 12 1st Subsample 0 4 8 12 

1-month 20.548 5.164 3.041 2.187 3-month 28.020 5.744 3.270 2.322 
3-month 14.315 4.760 2.955 2.162 6-month 28.784 5.895 3.356 2.383 
6-month 4.953 2.481 1.795 1.453 12-month 29.133 5.959 3.387 2.402 

12-month 1.461 0.919 0.741 0.639 3-year 30.164 6.158 3.493 2.470 
3-year 0.106 0.070 0.060 0.053 5-year 30.849 6.298 3.571 2.522 
5-year 0.102 0.070 0.059 0.054 10-year 30.464 6.222 3.525 2.488 

10-year 0.060 0.045 0.049 0.050      
 

2nd Subsample 0 4 8 12 2nd Subsample 0 4 8 12 

1-month 0.950 0.438 0.329 0.263 3-month 2.277 0.503 0.313 0.249 
3-month 0.363 0.294 0.231 0.234 6-month 2.042 0.448 0.279 0.221 
6-month 0.081 0.071 0.070 0.086 12-month 2.048 0.460 0.294 0.239 

12-month 0.143 0.105 0.107 0.140 3-year 4.762 1.046 0.646 0.501 
3-year 0.395 0.281 0.284 0.330 5-year 5.625 1.227 0.751 0.572 
5-year 0.311 0.220 0.224 0.267 10-year 6.243 1.355 0.830 0.635 

10-year 0.045 0.044 0.054 0.090      
 

3rd Subsample 0 4 8 12 3rd Subsample 0 4 8 12 

1-month 19.450 4.950 2.898 2.085 3-month 28.505 5.780 3.263 2.297 
3-month 8.951 3.720 2.496 1.937 6-month 29.171 5.906 3.331 2.343 
6-month 3.478 1.946 1.525 1.333 12-month 31.868 6.447 3.634 2.554 

12-month 1.614 1.019 0.887 0.847 3-year 40.750 8.223 4.619 3.234 
3-year 0.334 0.226 0.208 0.215 5-year 43.956 8.861 4.968 3.473 
5-year 0.340 0.251 0.225 0.220 10-year 49.027 9.868 5.520 3.849 

10-year 0.312 0.246 0.230 0.231      
 

4th Subsample 0 4 8 12 4th Subsample 0 4 8 12 

1-month 14.518 3.612 2.063 1.449 3-month 23.107 4.640 2.588 1.800 
3-month 11.113 4.173 2.474 1.763 6-month 23.729 4.768 2.662 1.853 
6-month 4.487 2.640 1.785 1.358 12-month 24.558 4.938 2.761 1.925 

12-month 1.159 0.915 0.726 0.636 3-year 28.252 5.701 3.202 2.245 
3-year 0.304 0.248 0.211 0.200 5-year 30.472 6.164 3.472 2.441 
5-year 0.150 0.136 0.124 0.123 10-year 33.894 6.864 3.869 2.721 

10-year 0.116 0.106 0.094 0.093      
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Table 3 (cont.) 
 

KPSS Tests from Samples Split Using M2 Break Points 
 

Panel B: Excess Returns and Term Premia 

Excess Returns Autocovariance Lag Length Term Premia Autocovariance Lag Length 
1st Subsample 0 4 8 12 1st Subsample 0 4 8 12 

3m-1m 1.327 1.041 0.915 0.801 12m-3m 2.051 0.451 0.268 0.198 
6m-1m 0.306 0.222 0.195 0.186 3y-3m 1.673 0.367 0.220 0.163 

12m-1m 0.146 0.107 0.094 0.087 5y-3m 4.218 0.896 0.526 0.385 
3y-1m 0.158 0.108 0.092 0.082 10y-3m 9.895 2.066 1.200 0.870 
5y-1m 0.264 0.182 0.155 0.141      

10y-1m 0.148 0.112 0.120 0.123      

2nd Subsample 0 4 8 12 2nd Subsample 0 4 8 12 

3m-1m 0.127 0.135 0.124 0.149 12m-3m 0.647 0.186 0.125 0.105 
6m-1m 0.040 0.037 0.040 0.055 3y-3m 4.595 1.162 0.730 0.567 

12m-1m 0.107 0.080 0.084 0.115 5y-3m 4.649 1.114 0.693 0.537 
3y-1m 0.371 0.265 0.267 0.313 10y-3m 4.094 0.913 0.554 0.424 
5y-1m 0.300 0.213 0.217 0.259      

10y-1m 0.047 0.046 0.056 0.093      

3rd Subsample 0 4 8 12 3rd Subsample 0 4 8 12 

3m-1m 0.637 0.503 0.476 0.468 12m-3m 4.372 0.949 0.563 0.414 
6m-1m 0.239 0.171 0.156 0.155 3y-3m 8.509 1.775 1.027 0.739 

12m-1m 0.339 0.234 0.214 0.214 5y-3m 8.300 1.720 0.991 0.710 
3y-1m 0.149 0.102 0.094 0.096 10y-3m 8.359 1.726 0.993 0.711 
5y-1m 0.187 0.139 0.124 0.121      

10y-1m 0.226 0.178 0.165 0.165      

4th Subsample 0 4 8 12 4th Subsample 0 4 8 12 

3m-1m 0.568 0.506 0.402 0.341 12m-3m 4.256 0.885 0.509 0.364 
6m-1m 0.138 0.138 0.126 0.119 3y-3m 3.334 0.685 0.392 0.280 

12m-1m 0.134 0.125 0.113 0.112 5y-3m 4.748 0.966 0.546 0.386 
3y-1m 0.556 0.448 0.379 0.356 10y-3m 5.732 1.159 0.651 0.456 
5y-1m 0.176 0.162 0.148 0.148      

10y-1m 0.156 0.144 0.128 0.127      
 
 
 
 
Notes:  The KPSS test statistics reported here are calculated using (13) in the text.  The number of lags in 
the autocovariance adjustment affects the nature of the consistent covariance matrix estimate ((14) in the 
text).  KPSS test statistics that indicate a rejection of the null hypothesis at the five per cent significance 
level are shaded. The specific dates of the sample breaks are as follows: 1: 7/4/62  – 1/29/69, 2: 2/5/69  – 
8/5/70, 3: 8/12/70 – 2/18/87, and 4: 2/25/87 – 5/29/96. 
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Table 4 

KPSS Tests from Samples Split Using Inflation Break Points 

Panel A: Returns and Yields 

Returns Autocovariance Lag Length Yields Autocovariance Lag Length 
1st Subsample 0 4 8 12 1st Subsample 0 4 8 12 

1-month 15.426 4.162 2.443 1.748 3-month 21.670 4.387 2.471 1.739 
3-month 13.132 4.052 2.407 1.723 6-month 20.751 4.204 2.370 1.671 
6-month 5.438 2.437 1.638 1.256 12-month 20.428 4.141 2.336 1.646 

12-month 2.590 1.268 0.962 0.790 3-year 20.338 4.127 2.328 1.638 
3-year 0.324 0.169 0.139 0.120 5-year 20.631 4.190 2.364 1.662 
5-year 0.243 0.149 0.122 0.107 10-year 20.191 4.139 2.350 1.655 

10-year 0.088 0.057 0.067 0.070      
 

2nd Subsample 0 4 8 12 2nd Subsample 0 4 8 12 

1-month 6.404 1.495 0.872 0.624 3-month 7.667 1.568 0.893 0.634 
3-month 2.312 0.971 0.640 0.493 6-month 7.299 1.497 0.855 0.610 
6-month 0.574 0.376 0.312 0.285 12-month 6.279 1.294 0.743 0.533 

12-month 0.305 0.210 0.182 0.166 3-year 4.472 0.925 0.533 0.384 
3-year 0.314 0.224 0.204 0.191 5-year 5.296 1.096 0.632 0.453 
5-year 0.407 0.277 0.257 0.251 10-year 7.990 1.653 0.951 0.681 

10-year 0.203 0.156 0.158 0.152      
 

3rd Subsample 0 4 8 12 3rd Subsample 0 4 8 12 

1-month 19.786 5.210 3.088 2.243 3-month 29.948 6.109 3.466 2.452 
3-month 7.598 3.383 2.354 1.873 6-month 30.747 6.264 3.553 2.513 
6-month 2.420 1.375 1.126 1.030 12-month 32.215 6.564 3.723 2.632 

12-month 0.585 0.356 0.325 0.333 3-year 35.371 7.199 4.069 2.866 
3-year 0.058 0.039 0.038 0.043 5-year 36.121 7.348 4.147 2.916 
5-year 0.047 0.034 0.032 0.033 10-year 38.147 7.748 4.363 3.059 

10-year 0.037 0.027 0.027 0.030      
 

4th Subsample 0 4 8 12 4th Subsample 0 4 8 12 

1-month 29.155 7.338 4.252 3.022 3-month 42.767 8.698 4.894 3.424 
3-month 20.395 7.141 4.376 3.239 6-month 44.000 8.948 5.036 3.527 
6-month 10.000 5.126 3.392 2.614 12-month 44.987 9.140 5.144 3.606 

12-month 4.271 3.029 2.240 1.842 3-year 49.161 9.994 5.634 3.956 
3-year 2.629 1.779 1.354 1.148 5-year 50.241 10.212 5.756 4.044 
5-year 1.802 1.432 1.159 1.019 10-year 52.057 10.575 5.958 4.183 

10-year 1.017 0.906 0.758 0.685      
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Table 4 (cont.) 

KPSS Tests from Samples Split Using Inflation Break Points 
 

Panel B: Excess Returns and Term Premia 

Excess Returns Autocovariance Lag Length Term Premia Autocovariance Lag Length 
1st Subsample 0 4 8 12 1st Subsample 0 4 8 12 

3m-1m 2.045 1.416 1.100 0.900 12m-3m 0.741 0.184 0.123 0.098 
6m-1m 0.736 0.489 0.401 0.353 3y-3m 7.316 1.704 1.089 0.840 

12m-1m 0.708 0.398 0.330 0.290 5y-3m 14.606 3.155 1.883 1.386 
3y-1m 0.295 0.157 0.130 0.112 10y-3m 18.337 3.819 2.209 1.589 
5y-1m 0.295 0.182 0.150 0.132      

10y-1m 0.149 0.096 0.112 0.119      
 

2nd Subsample 0 4 8 12 2nd Subsample 0 4 8 12 

3m-1m 0.266 0.232 0.208 0.203 12m-3m 5.968 1.338 0.789 0.577 
6m-1m 0.169 0.144 0.143 0.156 3y-3m 17.013 3.577 2.051 1.454 

12m-1m 0.111 0.084 0.078 0.075 5y-3m 18.126 3.746 2.131 1.503 
3y-1m 0.378 0.273 0.250 0.235 10y-3m 17.982 3.679 2.085 1.469 
5y-1m 0.470 0.321 0.299 0.292      

10y-1m 0.239 0.184 0.186 0.179      
 

3rd Subsample 0 4 8 12 3rd Subsample 0 4 8 12 

3m-1m 0.268 0.229 0.239 0.252 12m-3m 10.529 2.296 1.358 0.993 
6m-1m 0.051 0.037 0.035 0.037 3y-3m 3.933 0.834 0.489 0.355 

12m-1m 0.083 0.055 0.053 0.057 5y-3m 5.030 1.057 0.616 0.447 
3y-1m 0.147 0.100 0.098 0.110 10y-3m 5.893 1.230 0.715 0.517 
5y-1m 0.106 0.078 0.073 0.075      

10y-1m 0.133 0.098 0.096 0.106      
 

4th Subsample 0 4 8 12 4th Subsample 0 4 8 12 

3m-1m 2.099 1.425 1.046 0.889 12m-3m 3.440 0.733 0.436 0.325 
6m-1m 1.298 0.983 0.749 0.640 3y-3m 14.702 3.035 1.753 1.268 

12m-1m 0.970 0.824 0.664 0.584 5y-3m 9.582 1.964 1.123 0.803 
3y-1m 1.514 1.069 0.831 0.717 10y-3m 6.426 1.312 0.746 0.529 
5y-1m 1.148 0.943 0.779 0.697      

10y-1m 0.689 0.625 0.529 0.483      
 
 
Notes:  The KPSS test statistics reported here are calculated using (13) in the text.  The number of lags in 
the autocovariance adjustment affects the nature of the consistent covariance matrix estimate ((14) in the 
text).  KPSS test statistics that indicate a rejection of the null hypothesis at the five per cent significance 
level are shaded.  The specific dates of the sample breaks are as follows: 1: 7/4/62  – 5/3/67, 2: 5/10/67 – 
1/3/72, 3: 1/10/72 – 6/16/82, and 4: 6/23/82 – 5/29/96.   
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Table 5 
 

KPSS Tests from Samples Split Using Markov-Switching Model  
 
3-Mth. Returns Number of Lags in 

Autocovariance Adjustment 
3-Mth Yield Number of Lags in 

Autocovariance Adjustment 
start end 0 4 8 12 start end 0 4 8 12 

1 847 9.884 4.178 2.822 2.117 1 852 33.254 6.774 3.832 2.700 
848 1198 0.702 0.391 0.303 0.271 853 1262 16.651 3.443 1.988 1.435 

1199 1769 11.265 4.307 2.570 1.838 1263 1378 7.614 1.722 1.038 0.777 
     1379 1511 10.545 2.200 1.275 0.925 

     1512 1770 10.888 2.207 1.244 0.875 
          

10-Yr. Returns     10-Yr. Yield     
1 280 0.216 0.144 0.157 0.156 1 855 74.474 15.026 8.418 5.874 

281 1769 0.223 0.182 0.166 0.164 856 1258 6.729 1.386 0.793 0.566 
     1259 1322 5.240 1.145 0.704 0.540 
     1322 1505 5.578 1.198 0.721 0.546 
     1506 1770 5.335 1.097 0.629 0.453 
          

3-Yr. Excess Returns    3-Yr. Term Premium   
1 924 0.327 0.214 0.201 0.198 1 469 8.444 1.851 1.100 0.807 

925 1191 0.125 0.090 0.080 0.077 470 567 3.432 0.748 0.453 0.340 
1092 1769 0.535 0.398 0.324 0.294 568 679 7.711 1.719 1.048 0.777 

     680 866 11.102 2.396 1.409 1.036 
     867 1025 3.596 0.787 0.485 0.376 
     1026 1396 7.418 1.576 0.940 0.706 
     1397 1513 8.069 1.753 1.055 0.793 
     1514 1733 2.488 0.525 0.309 0.229 
     1734 1770 2.337 0.539 0.353 0.300 

 

Notes:  The KPSS test statistics reported here are calculated using (13) in the text.  The number of lags in 
the autocovariance adjustment affects the nature of the consistent covariance matrix estimate ((14) in the 
text).  KPSS test statistics that indicate a rejection of the null hypothesis at the five per cent significance 
level are shaded.  Sample break points are as follows:  
 

1)  3-month Gross Returns [1: 7/4/62  – 9/20/78, 2: 9/27/78 – 6/12/85, and 3: 6/19/85 – 5/29/96], 
2)  10-year Gross Returns [1: 7/4/62   – 11/8/67 and 2: 11/15/67 – 5/29/96], 
3)  3-year Excess Returns [1: 7/4/62  – 3/12/80, 2: 3/19/80 – 4/24/85, and 3: 5/1/85  – 5/29/96],  
4)  3-month Yield [1: 7/4/62  – 10/25/78, 2: 11/1/78 – 9/10/86, 3: 9/17/86 – 11/30/88, 4: 12/7/91 – 6/19/91, and 
5: 6/26/91 – 5/29/96], 
5)  10-year Bond Yield [1: 7/4/62   – 11/15/78, 2: 11/22/78 – 8/13/86, 3: 8/19/86  – 11/4/87, 4: 11/11/87 – 5/8/91, 
and 5: 5/15/91  – 5/29/96], 
6)  3-year Term Premium [1: 7/4/62  – 6/23/71, 2: 6/30/71 – 5/9/73, 3: 5/16/73 – 7/2/75, 4: 7/9/75  – 1/31/79, 5: 
2/7/79  – 2/17/82, 6: 2/24/82 – 4/5/89, 7: 4/12/89 – 7/3/91, 8: 7/10/91 – 9/20/95, and 9: 9/27/95 – 5/29/96] 
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Figure 2: Autocorrelations of Weekly Gross Treasury Bill Holding Period Returns
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Figure 3: Autocorrelations of Weekly Gross Holding Period Returns on Treasury Bonds
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Figure 4: Autocorrelations of Weekly Excess Treasury Bill Holding Period Returns
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Figure 5: Autocorrelations of Weekly Excess Holding Period Returns on Treasury Bonds
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Figure 6: Autocorrelations of Weekly Treasury Bill Yields
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Figure 7: Autocorrelations of Weekly Treasury Bond Yields
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Figure 8: Autocorrelations of Weekly Treasury Bill and Bond Term Premia

-0.2

0

0.2

0.4

0.6

0.8

1

1 10 19 28 37 46 55 64 73 82 91 100

Length of Autocorrelation Lag

Es
tim

at
ed

 A
ut

oc
or

re
la

tio
n 

V
al

ue

Autocorrelations of 12-mth. T-Bill  term premium

Autocorrelations of 3-yr. T-Bond  term premium

Autocorrelations of 5-yr. T-Bond  term premium

Autocorrelations of 10-yr. T-Bond  term premium

 
 

1 9 6 5  1 9 7 0  1 9 7 5 1 9 8 0 1 9 8 5 1 9 9 0  1 9 9 5

-0 .0 0 5 0  
-0 .0 0 2 5  
0 .0 0 0 0  
0 .0 0 2 5  
0 .0 0 5 0  
0 .0 0 7 5  
0 .0 1 0 0  
0 .0 1 2 5  
0 .0 1 5 0  
0 .0 1 7 5  

F ig u re  9  -  I n f la t io n  S e r ie s  w ith  E s tim a te d  B re a k  P o in ts  

B re a k  p o in ts  a re : 
   1 9 6 7 (5 ) 
   1 9 7 3 (1 ) 
   1 9 8 2 (7 ) 

I N F L   B re a k s   

 
 



 28  
 

Figure 10 – Three-Month Bill Return Data and Smoothed State Probabilities 
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Figure 11 – Ten-Year Bond Return Data and Smoothed State Probabilities 
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Figure 12 – Three-Month Bill Yield Data and Smoothed State Probabilities 
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Figure 13 – Ten-Year Bond Yield Data and Smoothed State Probabilities 
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Figure 14 – Three-Month Bill Excess Return Data and Smoothed State Probabilities 
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Figure 15 – Three-Year Term Premium Data and Smoothed State Probabilities 
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