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1 Introduction

In this paper, we consider a variational inequality defined by a continuously

differentiable function from Rn to Rn, and a convex set in Rn. The set is

defined by finitely many constraints.

There are a host of effective algorithms on solving variational inequalities.

The book [1] contains a comprehensive treatment on this subject. The focus of

this paper is on the local linear convergence of an outer approximation projection

method, in which the projections are not performed on the original set that

defines the variational inequality, but on a polyhedral convex set defined by the

linearized constraints.

Most existing projection methods require computing in each iteration pro-

jections onto the set that defines the variational inequality. Computation of

the projection is easy, when this set has a simple structure, such as being the

non-negative orthant. When the set is defined by nonlinear constraints, find-

ing such projections amounts to solving a nonlinear convex program, and its

computational complexity becomes an obstacle, that limits the applicability of

projection methods. This motivates the development of outer approximation

projection methods, studied by Fukushima and his coauthors in [2, 3, 4]. In [2],

Fukushima described an algorithm for solving general convex programs. Each it-

eration of the algorithm solves a quadratic program, whose feasible set is defined

by linearized constraints of the original problem. In [3], Fukushima proposed a

relaxed projection method to solve variational inequalitie, which in each itera-

tion computes the projection of some point onto a halfspace that contains the

set that defines the variational inequality. Fukushima and Taji [4] developed a

merit function approach to solve variational inequalities, which in each iteration

solves a quadratic program to find the search direction and then conducts an

exact line search to minimize the merit function along this direction. Evaluation
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of the merit function requires solving a quadratic program.

Recently, Censor and Gibali [5] proposed a scheme that finds a projection

onto a halfspace which separates a ball around the current iterate from the set

that defines the variational inequality, provided the current iterate be not in the

interior of the set. This scheme generalizes the classical projection method and

the relaxed projection method in [3]. Yang [6] proved the global convergence of

the method in [3] under weakened assumptions. In [7], Cruz and Iusem proved

the global convergence of a relaxed projection method under the assumption

that the function defining the variational inequality be paramonotone. See

references of these papers for more work on related methods.

The objective of this paper is to complement the results in [2, 3, 4] by

conducting a local convergence analysis. The major assumptions we use are

that the solution satisfies the linear independence constraint qualification, and

that the Jacobian matrix of the function defining the variational inequality at

the solution be positive definite. We do not require the function to be globally

monotone.

In the algorithm, we use the affine set defined by all of the linearized con-

straints as an outer approximation of the original set that defines the variational

inequality, as in [2, 4]. In each iteration, we compute the projection of some

point onto the affine set. We show that the method converges linearly, when

the starting point is sufficiently close to the solution and the step lengths are

sufficiently small. We also give a formula for computing an upper bound for

step lengths. Our numerical experiments show that the upper bound given by

the formula tends to be too conservative; in practice, one could use step lengths

bigger than that bound and still have fast convergence. The main purpose of

that formula is to provide insights and guidance on step length selection.

In the next section, we introduce the algorithm and discuss its termination
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condition. Section 3 analyzes the behavior of the (skewed) Euclidean projector

onto the outer approximation set, and proves local convergence of the algorithm.

Section 4 contains numerical examples and discussion.

2 The Algorithm

To define the algorithm, we need to introduce some notation. Let F be a C1

function from Rn to Rn, and the set S be defined by m constraints:

S := {x ∈ Rn | gi(x) ≤ 0, i = 1, · · · ,m}. (1)

Throughout the paper we assume each gi be a convex C2 function from Rn

to R. The latter assumption ensures that S is convex. We also assume S be

nonempty. We use the notation NS(x) to denote the normal cone to S at x.

The variational inequality problem is to find a point x ∈ S, such that

0 ∈ F (x) +NS(x). (2)

Given any point x′ ∈ Rn, we define a polyhedral convex set

S(x′) := {x ∈ Rn | gi(x′) + ⟨∇gi(x
′), x− x′⟩ ≤ 0, i = 1, · · · ,m}.

Note that the inclusion

S ⊂ S(x′)

holds for every x′ ∈ Rn under the convexity assumption. Moreover, x′ ∈ S(x′)

if and only if x′ ∈ S. Finally, if x′ ∈ S and a constraint qualification holds at
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x′, then the tangent cone to S at x′, denoted by TS(x
′), can be written as

TS(x
′) := {v ∈ Rn | ⟨∇gi(x

′), v⟩ ≤ 0, i ∈ I(x′)},

where I(x′) denotes the set of active constraints at x′. Note that, for each such

x′, the set x′ + TS(x
′) locally coincides with S(x′) around x′.

Let D be an n × n symmetric positive definite matrix, and C be a convex

set in Rn. We use the notation ΠC,D to denote the skewed projector onto the

set C defined by the matrix D; that is, for every point x ∈ Rn, ΠC,D(x) is the

solution of the following convex program in the variable y:

min
y∈C

1

2
(y − x)TD(y − x). (3)

We use ∥ · ∥D to denote the D-norm on Rn; that is,

∥x∥D := (xTDx)1/2 for each x ∈ Rn.

It is well known that the skewed projector is nonexpansive under the D-norm;

see [1, Exercise 1.8.16].

Algorithm.

Step 0. Choose x0, t0 and a symmetric positive definite matrix D, and let

k := 0.

Step 1. Let

xk+1 = ΠS(xk),D(xk − tkD
−1F (xk)). (4)

Step 2. If xk+1 = xk then stop. Otherwise, choose tk+1 > 0, let k := k + 1,

and go to Step 1.
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Clearly, the algorithm terminates at a point x∗ if it satisfies

x∗ = ΠS(x∗),D(x∗ − t∗D−1F (x∗)) (5)

with t∗ being the step length at that iteration. It is not hard to see that (5)

holds if and only if

−F (x∗) ∈ NS(x∗)(x
∗).

The following lemma further relates (5) to the variational inequality (2), and

shows that the algorithm terminates if and only if it finds a solution of (2).

Lemma 2.1. If x∗ is a solution to the variational inequality (2) and a constraint

qualification holds at x∗, then (5) holds for any t∗ > 0. Conversely, if a point

x∗ ∈ Rn satisfies (5) with some t∗ > 0, then it is a solution to (2).

Proof. First, suppose x∗ be a solution to (2) at which a constraint qualification

holds. By the remarks at the beginning of this section, x∗ + TS(x
∗) locally

coincides with S(x∗). It follows that the tangent cone to S(x∗) at x∗ is exactly

TS(x
∗), and that the normal cone to S(x∗) at x∗ is NS(x

∗). Since x∗ solves (2),

the vector −F (x∗) belongs to NS(x
∗), so it also belongs to the normal cone to

S(x∗) at x∗. This proves (5) in view of the remarks right before the Lemma 2.1.

For the converse direction, suppose x∗ satisfies (5) with some t∗ > 0. This

implies that x∗ ∈ S(x∗), and that −F (x∗) belongs to NS(x∗)(x
∗). The fact

x∗ ∈ S(x∗) implies x∗ ∈ S. The fact that S ⊂ S(x∗) implies that NS(x
∗)

contains NS(x∗)(x
∗), so −F (x∗) belongs to NS(x

∗).

3 Local Convergence

To prepare for the convergence analysis of the algorithm, we first analyze the

behavior of the skewed Euclidean projector onto the set S(x′) as x′ varies. To
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this end, letD be a symmetric positive definite matrix, and consider the problem

of finding ΠS(x′),D(y), namely,

min
x∈S(x′)

1

2
(y − x)TD(y − x). (6)

Since S(x′) is a nonempty, closed and convex set for each x′ ∈ Rn, the problem

(6) has a unique solution, denoted by x(y, x′) for each x′ and y in Rn. We

will show that the function x(y, x′) is B-differentiable at certain points, and will

give a formula for its B-derivatives. The following definition of B-differentiability

follows from [8].

Definition 3.1. A function G : Rn → Rm is B-differentiable at a point z ∈ Rn,

if there exists a positively homogeneous function dG(z) : Rn → Rm, such that

lim
v→0

G(z + v)−G(z)− dG(z)(v)

∥v∥
= 0.

Because S(x′) is defined by linear constraints, the problem (6) is equivalent

to its first-order necessary conditions:

Dx−Dy +
∑

i=1,··· ,m
∇xgi(x

′)λi = 0,

0 ≤ λi ⊥ gi(x
′) + ⟨∇gi(x

′), x− x′⟩ ≤ 0, i = 1, · · · ,m.

(7)

If we define a function f : R3n+m → Rn+m by

f(x, λ, y, x′) =

Dx−Dy +
∑

i=1,··· ,m ∇gi(x
′)λi

−g(x′)−∇g(x′)(x− x′)

 ,

where∇g(x′) denotes the Jacobian matrix of g at x′, then (7) can be equivalently

written as a variational inequality with (x, λ) being the variable, and (y, x′)
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being the parameter:

0 ∈ f(x, λ, y, x′) +NRn×Rm
+
(x, λ). (8)

The equivalence between (7) and (8) follows from the fact that the normal cone

NRn×Rm
+
(x, λ) is exactly the collection of vectors (0, w) ∈ Rn × Rm such that

0 ≤ λi ⊥ wi ≤ 0 for each i = 1, · · · ,m.

Now suppose that x∗ be a solution to (2), which satisfies the linear indepen-

dence constraint qualification (abbreviated as LICQ). In the following theorem,

we apply the sensitivity analysis technique in [9] to (8), to give a formula for

the B-derivative of the function x at (x∗ − t∗D−1F (x∗), x∗) for each t∗ ≥ 0. By

assumption, x∗ solves (2) and satisfies the LICQ, so it follows from Lemma 2.1

that

x∗ = x(x∗ − t∗D−1F (x∗), x∗).

Moreover, there exists a unique vector λ(t∗) in Rm such that (x, λ, y, x′) =

(x∗, λ(t∗), x∗ − t∗D−1F (x∗), x∗) satisfies (7). The function λ(t∗) is positively

homogeneous; if we write λ∗
1 = λ(1) then λ(t∗) = t∗λ∗

1.

Theorem 3.1. Let x∗ be a solution to (2) which satisfies the LICQ, D be a

symmetric positive definite n× n matrix, and t∗ ≥ 0. Define

y∗ = x∗ − t∗D−1F (x∗),

and write λ∗ = t∗λ∗
1, with λ∗

1 being as defined above. Partition the index set

{1, · · · ,m} into three subsets,

I1 = {i : gi(x∗) < 0}, I00 = {i : gi(x∗) = 0, λ∗
i = 0},

I01 = {i : gi(x∗) = 0, λ∗
i > 0},
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and define

Kx =

v ∈ Rn

∣∣∣∣∣∣∣
⟨∇gi(x

∗), v⟩ = 0 if i ∈ I01

⟨∇gi(x
∗), v⟩ ≤ 0 if i ∈ I00

 . (9)

The function x is B-differentiable at (y∗, x∗), and its B-derivative for the direc-

tion (u, v′) is given by

dx(y∗, x∗)(u, v′) = ΠKx,D(u−
∑

i=1,··· ,m
λ∗
iD

−1∇2
xxgi(x

∗)v′). (10)

Proof. Let L be the Jacobian matrix of f with respect to (x, λ) at (x∗, λ∗, y∗, x∗),

L =

 D ∇g(x∗)T

−∇g(x∗) 0

 ,

and let K be the critical cone to Rn×Rm
+ at (x∗, λ∗) associated with the vector

−f(x∗, λ∗, y∗, x∗). Then

K = {(v, w) ∈ TRn×Rm
+
(x∗, λ∗) | ⟨f(x∗, λ∗, y∗, x∗), (v, w)⟩ = 0}

= Rn × {w ∈ TRm
+
(λ∗) | ⟨g(x∗), w⟩ = 0}

= Rn ×

w ∈ Rm

∣∣∣∣∣∣∣∣∣∣
wi = 0 if gi(x

∗) < 0

wi ∈ R if gi(x
∗) = 0 and λ∗

i > 0

wi ≥ 0 if gi(x
∗) = 0 and λ∗

i = 0

 .

It follows that

K = Rn ×

w ∈ Rm

∣∣∣∣∣∣∣∣∣∣
wi = 0 if i ∈ I1

wi ∈ R if i ∈ I01

wi ≥ 0 if i ∈ I00

 .

In order to apply the technique in [9], let us define the normal map induced
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by the linear map L on K as

LK(v′, w′) := L(ΠK(v′, w′)) + (v′, w′)−ΠK(v′, w′).

The LICQ assumption implies that the normal map LK is a homeomorphism

from Rn+m to Rn+m (see [10, Theorem 3.1]). Applying [9, Theorem 3] to (8),

we find neighborhoods X of x∗, Λ of λ∗, Y of y∗ and X ′ of x∗, such that for

each y ∈ Y and x′ ∈ X ′, the variational inequality (8) has a unique solution

in X × Λ, which we denote by h(y, x′). Note that the x-component of h(y, x′)

is exactly x(y, x′). Accordingly, we can write h(y, x′) = (x(y, x′), λ(y, x′)). By

[9, Theorem 4], the function h(y, x′) is B-differentiable at (y∗, x∗), with the

B-derivative dh(y∗, x∗) being given by

dh(y∗, x∗)(u, v′) = ΠK(LK)−1(−dy,x′f(x∗, λ∗, y∗, x∗)(u, v′))

= ΠK(LK)−1

Du−
∑

i=1,··· ,m λ∗
i∇2

xxgi(x
∗)v′

0

 .
(11)

To prove (10), consider the following nonlinear program with u being the

parameter and v being the variable:

min
1

2
(u− v)TD(u− v), s.t. v ∈ Kx, (12)

where Kx is defined in (9). Because Kx is a polyhedral convex set, v solves (12)

if and only if there exist multipliers λi, i ∈ I01 ∪ I00, such that the following
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first-order conditions hold:

Dv −Du+
∑

i∈I01∪I00

λi∇gi(x
∗) = 0,

⟨∇gi(x
∗), v⟩ = 0, i ∈ I01,

λi ≥ 0 ⊥ ⟨∇gi(x
∗), v⟩ ≤ 0, i ∈ I00.

(13)

Define additionally λi = 0 for i ∈ I1. Using the expression of K at the beginning

of this proof, we may rewrite (13) as

−Dv +Du−
∑

i=1,··· ,m λi∇gi(x
∗)

∇g(x∗)v

 ∈ NK(v, λ). (14)

Now, define an affine map L̂ : Rn+m → Rn+m by

L̂(v, λ) =

Dv −Du+
∑

i=1,··· ,m λi∇gi(x
∗)

−∇g(x∗)v

 ,

to further rewrite (14) as

0 ∈ L̂(v, λ) +NK(v, λ).

This is equivalent to v
λ

 = ΠK(L̂K)−1(0).

Note that L̂(v, λ) = L(v, λ) + (−Du, 0). It then follows from the definition of

normal maps that L̂K(v, λ) = LK(v, λ) + (−Du, 0). Accordingly,

(L̂K)−1(0) = (LK)−1(Du, 0).
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We have so far shown that the solution v to (12), together with the associated

multiplier λ, can be equivalently expressed as

v
λ

 = ΠK(LK)−1(Du, 0).

Recall the formula for dh(y∗, x∗) in (11). Write

dh(y∗, x∗) = (dx(y∗, x∗), dλ(y∗, x∗)).

We see that dx(y∗, x∗)(u, v′) is the solution of (12) with u replaced by

u−
∑

i=1,··· ,m λ∗
iD

−1∇2
xxgi(x

∗)v′. This proves (10).

Next, define a function x̂ : Rn × R → Rn by

x̂(x′, t) = ΠS(x′),D(x′ − tD−1F (x′)). (15)

We have

x̂(x′, t) = x(x′ − tD−1F (x′), x′).

By the chain rule, the function x̂ is B-differentiable at (x∗, t∗) for any t∗ ≥ 0,

with the B-derivative given by

dx̂(x∗, t∗)(v, t) =

ΠKx,D(v − t∗D−1∇F (x∗)v − tD−1F (x∗)−
∑

i=1,··· ,m
t∗(λ∗

1)iD
−1∇2

xxgi(x
∗)v).

(16)

The equation above will play an important role in the local convergence

proof. Before we present that proof, we give the following basic lemma. Recall

the definition of the D-norm on Rn in Section 2.

12



Lemma 3.1. Let M be a positive definite n×n matrix, In be the n×n identity

matrix, and D be a symmetric positive definite n × n matrix. Let ∥D−1M∥D

denote the D-norm of D−1M , that is,

∥D−1M∥D = max
x∈Rn,x̸=0

∥D−1Mx∥D
∥x∥D

.

Define a scalar

µ := min
x∈Rn,x ̸=0

xTMx

∥x∥2D
.

Then µ > 0, and for each scalar t one has

∥In − tD−1M∥D ≤ (1 + t2∥D−1M∥2D − 2tµ)1/2,

which is less than 1 when t < 2µ/∥D−1M∥2D.

Proof. The fact µ > 0 follows directly from the positive definiteness of M . For

any x ∈ Rn, we have

∥x− tD−1Mx∥2D = ∥x∥2D − 2txTMx+ t2∥D−1Mx∥2D

≤ (1 + t2∥D−1M∥2D − 2tµ)∥x∥2D.

The lemma follows.

The following theorem is the main result of this paper.

Theorem 3.2. Let x∗ be a solution to (2) which satisfies the LICQ, and let

D be a symmetric positive definite n × n matrix. Let λ∗
1 be as defined before

Theorem 3.1. Suppose that ∇F (x∗) be positive definite. Define

M := ∇F (x∗) +
∑

i=1,··· ,m
(λ∗

1)i∇2
xxgi(x

∗),
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µ := min
x∈Rn,x ̸=0

xTMx

∥x∥2D
,

and let t∗ be a positive scalar satisfying t∗ < 2µ/∥D−1M∥2D. Then there exists

a neighborhood X0 of x∗, such that the sequence {xk} will remain in X0 and

converge Q-linearly to x∗, whenever x0 ∈ X0 and tn = t∗ for all n.

Proof. Let t∗ be as given in the statement of the present theorem, and write

y∗ = x∗ − t∗D−1F (x∗). Let ϵ be a positive scalar satisfying

ϵ < 1− (1 + (t∗)2∥D−1M∥2D − 2t∗µ)1/2.

Because the function x̂ is B-differentiable at (x∗, t∗) with its B-derivative

given in (16), there exist neighborhoods X0 of x∗ and T0 of t∗ such that

∥x̂(x, t)− x̂(x∗, t∗)∥D ≤ ∥dx̂(x∗, t∗)(x− x∗, t− t∗)∥D + ϵ∥x− x∗∥D + ϵ∥t− t∗∥,

for each x ∈ X0 and t ∈ T0. Without loss of generality, we may assume that X0

be a ball around x∗ under the D-norm.

Now, assume that xk ∈ X0. We have

∥xk+1 − x∗∥D = ∥x̂(xk, t
∗)− x̂(x∗, t∗)∥D

≤ ∥dx̂(x∗, t∗)(xk − x∗, 0)∥D + ϵ∥xk − x∗∥D

= ∥ΠKx,D(xk − x∗ − t∗D−1M(xk − x∗))∥D + ϵ∥xk − x∗∥D

≤ ∥xk − x∗ − t∗D−1M(xk − x∗)∥D + ϵ∥xk − x∗∥D

≤ ((1 + (t∗)2∥D−1M∥2D − 2t∗µ)1/2 + ϵ)∥xk − x∗∥D.

This proves that xk+1 remains in X0 and that the sequence {xk} converges

Q-linearly to x∗ with rate (1 + (t∗)2∥M∥2 − 2t∗µ)1/2 + ϵ.

Theorem 3.2 suggests, that for fast convergence, one shall choose t∗ to min-

14



imize

(1 + (t∗)2∥D−1M∥2D − 2t∗µ)1/2.

Clearly, the minimizer of the quantity above is

t∗ = µ/∥D−1M∥2D, (17)

and the minimum value achieved is

(1− µ2/∥D−1M∥2D)1/2.

Thus, the algorithm converges fast locally near a solution, if µ/∥D−1M∥D is

close to 1, for example, when D = In and M is well-conditioned.

Note that one does not know the values of µ and ∥D−1M∥D before finding

the solution x∗. Hence, in reality, one would not use the formula (17) to de-

termine precisely an upper bound for the parameter t∗. The purpose of that

formula is to serve as a general guideline for the choice of t∗.

4 Numerical Examples

We use the following examples to illustrate the algorithm. For all the examples,

we use identity matrices of appropriate sizes as the matrix D. Starting from a

point close enough to the solution, we use the t∗ values computed by (17). For

comparison purposes, we also test some other choices of step lengths. We stop

the algorithm when ∥xk+1 − xk∥ ≤ 0.001.

Example 4.1. Let

F (x) =

 3x1 + 4x2 + 5

2x1 + 5x2 − 4

 ,
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and let the set S be

S =

x ∈ R2

x2
1 + 4x2

2 ≤ 4

2x2
1 + x2

2 ≤ 6

2x1 + x2 ≥ −1

 .

The solution to the problem is x∗ = (−0.9412, 0.8824). The first and third

constraints are binding at the solution. The multipliers for the solution are

(λ∗
1)1 = 0.5404, (λ∗

1)2 = 0 and (λ∗
1)3 = 2.344. The formula (17) gives t∗ =

0.0296. Starting from the initial point (−0.8, 0.8) and letting tk = t∗ for all k,

the algorithm converges to the solution in 3 iterations. The choice tk = 1/k also

gives convergence in three iterations from the same starting point. Indeed, one

can choose tk to be any constant value in the set {0.001, 0.002, . . . , 0.999, 1}, and

still find convergence in three iterations.

Example 4.2. This example is adapted from the example in [3]. Let

F (x) =


2x1 + 0.2x3

1 − 0.5x2 + 0.1x3 − 4

−0.5x1 + x2 + 0.1x3
2 + 0.5

0.5x1 − 0.2x2 + 2x3 − 0.5

 ,

and let the set S be

S =

x ∈ R3

x2
1 + 0.4x2

2 + 0.6x2
3 ≤ 1

0.6x2
1 + 0.4x2

2 + x2
3 ≤ 1

x1 + x2 + x3 ≥
√
3

 .

The solution to the problem is x∗ = (0.9168, 0.4850, 0.3303). The first and third

constraints are binding at the solution. The multipliers for the solution are

(λ∗
1)1 = 1.9091, (λ∗

1)2 = 0 and (λ∗
1)3 = 1.2787. The formula (17) gives t∗ =

16



0.0629. Starting from the initial point (0.9, 0.48, 0.33), the algorithm converges

to the solution in 2 iterations. The choice tk = 1/k gives convergence in 4

iterations.

Example 4.3. This example is modified from the Suzuki Rosen problem in [11].

We changed the function F in that problem so that ∇F is positive definite. Let

F (x) = Ax− b,

where

A =



3.0006 0.0212 0.0141 0.0215 0.0088

0.0212 3.7093 0.4708 0.7193 0.2930

0.0141 0.4708 4.3125 0.4775 0.1945

0.0215 0.7193 0.4775 3.7295 0.2971

0.0088 0.2930 0.1945 0.2971 3.1210


,

and b = (−1.5849, 15.8236, 13.1763, 12.0172, 138.7089). The set S is defined as

S =


x ∈ R5

x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4 + x5 ≤ 0

4x2
1 + 4x2

2 + 5x2
3 + 4x2

4 − 2x1 − 8x2 − 18x3 + 4x4 + x5 − 24 ≤ 0

4x2
1 + 7x2

2 + 5x2
3 + 7x2

4 − 8x1 − 5x2 − 21x3 + 4x4 + x5 − 30 ≤ 0

7x2
1 + 4x2

2 + 5x2
3 + x2

4 + x1 − 8x2 − 21x3 + 4x4 + x5 − 15 ≤ 0

−100 ≤ xi ≤ 0, i = 1, · · · , 5


.

The solution to the problem is x∗ = (0, 1, 2,−1, 44). The first, second and third

constraints are binding at the solution. The multipliers for the solution are

(λ∗
1)1 = 1

3 , (λ∗
1)2 = 1

3 and (λ∗
1)3 = 1

3 , and the remaining components of (λ∗
1)

are zero. The formula (17) gives t∗ = 0.0317. Starting from the initial solution

(0, 1.2, 2,−1, 44.2), the algorithm converges to the solution in 4 iterations. The

sequence tk = 1/k gives convergence in 8 iterations.
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5 Conclusions

This paper proves the local linear convergence of an outer approximation projec-

tion method for solving variational inequalities. Such convergence is guaranteed,

if the function that defines the variational inequality has a positive definite Ja-

cobian matrix at the solution, the LICQ holds there, and the step lengths are

sufficiently small. Most existing projection based algorithms for solving varia-

tional inequalities use step lengths converging to zero. This leads to very small

steps when the iterates are close to the solution. As our results show, the step

lengths need not converge to zero. Using longer step lengths makes it possible

to converge in fewer iterations.

In practice, one does not know in advance if the constraint qualification holds

at the solution, or if the iterate is close enough to the solution. As a general

guideline, when two iterates are close, and the Jacobian matrix of the function

defining the variational inequality is positive definite at the current iterate,

we can use the formula (17) with information given by the current iterate, to

estimate an upper bound for step lengths in the remaining iterations.
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