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Abstract.

The Karlsruhe Tritium Neutrino (KATRIN) experiment investigating tritium β-

decay close to the endpoint with unprecedented precision has stringent requirements

on the background level of less than 10−2 counts per second. Electron emission during

the α-decay of 219,220Rn atoms in the electrostatic spectrometers of KATRIN is a

serious source of background exceeding this limit. In this paper we compare extensive

simulations of Rn-induced background to specific measurements with the KATRIN pre-

spectrometer to fully characterize the observed Rn-background rates and signatures

and determine generic Rn emanation rates from the pre-spectrometer bulk material

and its vacuum components.
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1. Introduction

The observation of flavor oscillations of atmospheric, solar, reactor and accelerator

neutrinos has provided conclusive evidence for lepton mixing and non-zero neutrino

masses [1]. However, neutrino oscillation experiments only allow to assess the mass

splittings of the three neutrino mass eigenstates, but yield no information on their

absolute mass scale. The latter is of fundamental importance for both cosmology and

particle physics [2]. In cosmology, relic neutrinos acting as hot dark matter could play

a distinct role in the evolution of large-scale structures such as galaxies [3]. In particle

physics, the determination of the neutrino mass scale would discriminate among different

mass patterns, such as hierarchical or quasi-degenerate scenarios[4].

Various methods and techniques are employed at present to assess the absolute

neutrino mass scale. Galaxy redshift surveys and observations of the cosmic microwave

background provide information on the large-scale structure of the universe, from which

upper limits on the sum of neutrino masses in the range from 200-600 meV have been

derived [5]. In addition, experiments searching for neutrinoless double beta decay

yield information on the so-called effective Majorana neutrino mass mββ with present

sensitivities of mββ < 200 − 400 meV [6]. In the future, these efforts are expected to

reach sensitivities below 100 meV [7]. However, one has to note that the interpretations

of these observations and experiments with regard to the absolute neutrino mass scale

continue to remain rather model-dependent.

On the other hand, the measurement of the electron energy spectrum close to the

endpoint of nuclear β-decays such as 3H and 187Re or of the electron capture of 163Ho [8]

provides the only direct and model-independent way to determine the absolute neutrino

mass scale, relying only on the relativistic energy-momentum relation and energy

conservation [9]. The Troitsk and Mainz experiments studying the decay of (molecular)

tritium T2 → (3HeT)∗ + e− + ν̄e with electrostatic spectrometers have yielded the

most stringent experimental upper limits on the effective electron antineutrino mass

mν̄e < 2 eV so far [10]. The Karlsruhe Tritium Neutrino experiment (KATRIN) is

a next generation, large-scale tritium β-decay experiment designed to determine mν̄e

with a sensitivity of 200 meV (90% C.L.) [11]. It is currently being assembled by an

international collaboration at the Karlsruhe Institute of Technology (KIT) in Germany.

KATRIN will investigate the kinematics of tritium β-decay with unprecedented

precision in a narrow region close to the β-decay endpoint E0 ≈ 18.6 keV. It is only in this

narrow region of neutrino emission with almost vanishing neutrino momenta that one

can gain access to mν̄e . Figure 1 gives an overview of the 70 m long experimental setup,

which is based on a combination of an ultra-stable high luminosity tritium source [12]

with a spectrometer of the MAC-E filter‡ type [13, 14, 15]. The latter is based on the

magnetic adiabatic collimation of electron momenta to be analyzed by the electrostatic

potential applied to the spectrometer and will be described in more detail in section 3.1.

A segmented Si-PIN diode array allows to count the transmitted electrons as a function

‡ Magnetic Adiabatic Collimation and Electrostatic filter
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of the filter potential, thereby providing an integral β-decay spectrum close to E0. An

essential pre-requisite to obtain the reference sensitivity of 200 meV is a low background

level of < 10−2 counts per second (cps) in the signal region close to E0.

a) b) c) d) e)

Figure 1. Overview of the KATRIN exprimental setup: a) windowless gaseous tritium

source (WGTS): β-decay of molecular tritium, b) transport section: adiabatic guidance

of β-electrons and removal of tritium, c) pre-spectrometer: option of pre-filtering of

β-electrons below 18 keV, d) main spectrometer: high precision β-electron energy

analysis, e) detector: detection of transmitted electrons.

In a previous publication [16] we have reported on measurements with the KATRIN

pre-spectrometer in a test set-up configuration where α-decays of 219,220Rn atoms in

the volume of an electrostatic spectrometer were identified as a significant background

source. In particular, we could demonstrate that a single radon α-decay can produce up

to several thousands of detector hits in the energy region-of-interest over an extended

time period of up to several hours. This background results from the emission of electrons

in the energy range from eV up to several hundreds of keV. The considerable range of

electron energies is a consequence of the variety of processes related to the emission of

the energetic α-particle as well as the reorganization of the atomic shell. A detailed

description of these so called internal conversion, inner shell shake-off, relaxation and

outer shell reorganization processes can be found in [17]. Over almost the entire energy

range, those electrons are trapped in the sensitive volume of the spectrometer due to

the known magnetic bottle characteristic of a MAC-E filter [18, 19]. Owing to the

excellent ultra-high vacuum (UHV) conditions of p < 10−10 mbar [20] in the KATRIN

spectrometer section, electrons remain trapped over very long periods of time, and can

produce secondary electrons via ionization of residual gas molecules. A fraction of

these secondaries can reach the detector, resulting in a background rate exceeding the

KATRIN design limit of 10−2 cps.

In this paper we combine the detailed model of electron emission processes following

α-decays of the isotopes 219,220Rn of [17] with precise electron trajectory calculations in

a MAC-E filter, which allows to describe the initial background investigations reported

in [16], as well as the more in-depth studies performed in the course of this work and

in [21, 22, 23]. In a separate publication [19] we made use of the model of [17] to derive

estimates of the background rates and topologies for the final KATRIN set-up, while an

active background reduction technique concerning trapped electrons is described in [24].

This paper is organized as follows: The field calculation and particle tracking

software package Kassiopeia, used for our extensive Monte Carlo simulations, will
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be presented in section 2. Section 3 then details how a single radon α-decay can lead

to a significant increase in background over a time period of up to several hours. In

section 4, the background model of this work will further be validated by new dedicated

measurements with the KATRIN pre-spectrometer.

2. Simulation Tools

The study of event topologies of electrons from the α-decay of 219,220Rn atoms, and the

estimation of background rates and characteristics due to their subsequent magnetic

trapping are an essential requirement in order to understand and optimize the KATRIN

main spectrometer. To meet this task, a detailed code for particle trajectory calculations

in the complex electromagnetic field configuration of the KATRIN spectrometers has

been developed in the frame of the code Kassiopeia [25]. This package allows to track

trapped electrons over long periods of time with machine precision. For the purpose

of this work a Monte Carlo generator to describe electron emission following 219,220Rn

α-decay was developed, which is described in detail in [17]. Therefore, section 2.1 will

give only a short recap of the physics processes taken into account. Section 2.2 then

describes the field, tracking and scattering modules of the Kassiopeia package, which

are based on FORTRAN and C codes developed between 2000 and 2008 by one of us

(F. G.). The simulation software allows an extremely precise and fast computation of

the relativistic motion of charged particles in electromagnetic fields.

2.1. Particle generation

A major part of the Kassiopeia package is devoted to event generators for the modeling

of different physical processes occurring within KATRIN. For the investigations of

this paper, a Monte Carlo event generator was developed to describe the processes

accompanying the initial radon α-decay.

When an α-particle passes the fast inner atomic electrons, the direct collision

process can lead to the emission of a shake-off electron [26, 27, 28]. The resulting

electron energy spectrum shows a higher-order potential dependence [29] because the

decay energy is shared between the α-particle and the emitted electron, which carries

only a small fraction, usually of the same order of magnitude as the shell binding energy

Eb.

In the decay 219Rn → 215Po∗, there is a probability of about 3% for the daughter

nucleus to be found in an excited state. The inner shell electron wave function in

particular can extend into the nucleus and interact with the excited state, resulting in

the emission of a high-energy (up to 500 keV) internal conversion electron [30, 31].

Both processes leave vacancies in the atomic shell, which gives rise to complex

relaxation cascades [32, 33]. Non-radiative transitions lead to the emission of Auger or

Coster-Kronig electrons. The resulting discrete energy spectrum ranges from a few eV

up to several keV.
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In the specific case of an unperturbed atomic shell or in the case of outer-shell

shake-off, the shell reorganization electrons (6p6 → 6p4) share an energy of 230 eV,

which results in a flat energy spectrum [34, 35]. Due to their identical nuclear charge,

the inner shell shake-off and shell reorganization contributions of the two polonium

isotopes are assumed to be identical.

2.2. Particle tracking

Magnetically trapped electrons from radon α-decay with energies up to several

hundred keV have to be tracked over path lengths of several km down to very low

energies of a few eV to fully understand their impact on background issues. In doing

so, a challenging requirement is to reach a position resolution in the µm range which

corresponds to the typical cyclotron radius in a strong magnetic field region of several T.

In order to perform this task, the Kassiopeia package includes a full particle tracking

module. The equations of motion of the electrons are being solved using Runge-Kutta

methods described in [36, 37, 38]. Owing to the complexity of the inner electrode [39]

and magnet system [40] realized in the KATRIN experimental setup, the calculation

of electric and magnetic fields is most challenging. To do so we make use of the zonal

harmonic expansion [41, 42], and, in the case of electric field computations, the boundary

element method [43].

For the investigations of this paper, all processes resulting in an energy loss of

stored particles play a major role. The corresponding Kassiopeia modules to describe

electron cooling include the processes of elastic scattering, excitation and ionization of

H2 molecules (dominant residual gas species within the KATRIN main spectrometer).

The corresponding cross sections [44, 45, 46, 47], energy loss values [48, 49] and scattering

angles have been implemented in the scattering routine of Kassiopeia.

The scattering cross sections and energy losses vary significantly for different gas

species. Correspondingly, primary electrons with identical start parameters experience

different storage times and generate different numbers of secondary electrons. Initial

mass spectrometry measurements [21] showed that the residual gas inside the pre-spec-

trometer mainly consists of hydrogen, water and nitrogen, while argon was used within

specific test measurements to increase the pressure to a desired value. When studying

electron cooling by scattering off residual gas, the ionization process is the dominant

energy loss mechanism, contributing to >80% of the total energy loss for electrons above

1 keV when scattering off hydrogen takes place. Hence, molecule-specific ionization

cross sections and energy losses are used within the simulation (water, nitrogen [50],

argon [51]). In the case of elastic or excitation processes, energy losses are computed

using molecular hydrogen input data, which is a sufficient approximation. Arbitrary

residual gas compositions consisting of hydrogen, water, nitrogen or argon can be defined

via specific configuration files. The fact that electron cooling strongly depends on the

residual gas pressure and composition has been used to gain insight into background

processes by comparing measurements and simulations at different pressures, which will
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be shown in section 4.

Another source of energy loss of magnetically trapped electrons is synchrotron

radiation. Due to their cyclotron motion, electrons continuously emit synchrotron

radiation. In the non-relativistic limit, the energy loss per unit time interval ∆t (in

SI units) by this radiative process is given by

∆E⊥
∆t

=
4

3

e4

m3
ec
·B2 · E⊥ ≈ 0.4 ·B2 · E⊥, (1)

where B denotes the magnetic field, c the velocity of light, and e and me the electron

charge and mass. To good approximation only the transversal kinetic energy component

E⊥ is reduced by this process. In our simulation, synchrotron energy losses within a

Runge-Kutta step are determined by using the average magnetic field during the step.

From eq. (1) follows that the cooling effect due to synchrotron radiation is most efficient

for large transversal kinetic energies and large magnetic fields. At the same time,

the scattering cross section decreases steeply for increasing electron kinetic energies,

so that synchrotron losses dominate at higher energies. As an example for the standard

operation mode of the KATRIN pre-spectrometer (p = 10−10 mbar, Bmax = 4.5 T,

Bmin = 15.6 mT), we note that a stored electron with a kinetic energy of 300 keV (with

150 keV in the transversal component) typically loses about half of its energy due to

synchrotron radiation. This value can be decreased by increasing the residual pressure

via the injection of argon, thereby increasing scattering losses.

The implementation of these processes into the Kassiopeia package thus allows to

study background generating processes of trapped electrons from 219,220Rn α-decays in

great detail.

3. Radon-induced Background within KATRIN

When discussing the background processes from electrons following radon α-decays,

we first briefly outline the working principle of the KATRIN spectrometers, which

is based on the MAC-E filter principle (section 3.1). Section 3.2 then describes the

trapping mechanism of electrons in a MAC-E filter and the resulting significant increase

in background. The final section 3.3 is devoted to the specific case of radon-induced

background.

3.1. The MAC-E filter principle

Electrons from tritium β-decay are emitted isotropically in the source (WGTS) and

have to be guided adiabatically to the spectrometer by a magnetic guiding system

which consists of a series of superconducting magnets (see fig. 1). In the spectrometer,

the energy analysis takes place via the MAC-E filter technique, which is illustrated

in figure 2. Two superconducting magnets provide a magnetic guiding field for β-

electrons, while an electrostatic retarding potential U0, applied to the spectrometer and

its inner electrode system, allows to filter the signal β-electrons. The area where the
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absolute value of U0 reaches its maximum is defined as the so-called analyzing plane.

The kinetic energy of incoming electrons is composed of a longitudinal component E‖
parallel to the magnetic field lines and a transversal component E⊥ corresponding to

the electron’s cyclotron energy. The electrostatic potential, however, only affects and

filters E‖. Therefore, E⊥ has to be transformed into E‖ by the magnetic gradient force.

In order to achieve this, the magnetic field strength has to decrease from its maximum

value Bmax at the center of the superconducting magnets to its minimum value Bmin

at the analyzing plane. The field gradient ∇B, however, should not be too steep to

guarantee a fully adiabatic electron motion, thereby conserving the magnetic moment

µ = E⊥/B. This principle allows for a high-resolution energy analysis by the retarding

potential. Electrons with sufficient kinetic energy to pass the electrostatic barrier are

re-accelerated and counted at the detector, thus yielding an integral energy spectrum.

transmitted electron

spectrometer on potential U0

trapped electron

magnet

source detector

magnet

analyzing plane

Bmax

Bmin

Bmax

Figure 2. MAC-E filter principle. Superconducting magnets produce a magnetic

guiding field. On the one hand, signal electrons, created in the source with sufficient

kinetic energy, can pass the potential barrier at the analyzing plane and are counted

at the detector. On the other hand, electrons generated inside the volume of the

spectrometer can be trapped due to the magnetic mirror effect.

3.2. Background production within a MAC-E filter

While the magnetic field setup of a MAC-E filter allows for unsurpassed precision in

the scanning of the tritium β-decay spectrum close to E0, it also acts inherently as a

magnetic bottle for electrons created in the flux tube of the spectrometer (see fig. 2).

The longitudinal energy E|| of such an electron is transformed into transversal energy

E⊥ when propagating towards the increasing magnetic field strength at the entrance

and exit region of the spectrometer. At the same time, the electron concurrently gains

longitudinal energy by the accelerating electric potential. If the transversal energy of

the electron is above a certain threshold, the magnetic transformation is dominant and

E|| will be converted completely into E⊥. Consequently, this electron is reflected by

the magnetic mirror effect [18], which results in a stable storage condition within the

spectrometer volume.

When trapped, electrons scatter off residual gas species, thereby slowly cooling

down until their transversal energy drops below the storage threshold and they can
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escape the trap. In the course of this process, which can take up to several hours,

secondary low-energy electrons (< 100 eV) are produced via ionizing collisions. These

secondaries are accelerated by the retarding potential and, when escaping the magnetic

bottle, will hit the detector within the energy region-of-interest, thus producing an

irreducible background class.

Depending on its initial kinetic energy, a single stored primary electron can produce

up to several thousands of secondary electrons which contribute to the background.

Due to its non-Poissonian nature, this background source can significantly constrain the

neutrino mass sensitivity of KATRIN [19], if no countermeasures [24] are taken.

3.3. Radon-induced background in the pre-spectrometer

In the framework of the pre-spectrometer electromagnetic test measurements [21, 16],

a background source with the characteristics described above was identified to stem

from electrons emitted during the α-decay of single 219,220Rn atoms. While background

rates close to the intrinsic detector background of (6.3 ± 0.2) · 10−3 cps were observed

most of the time, specific time intervals of up to two hours duration showed enhanced

background rates of up to 250 ·10−3 cps. These distinct intervals occurred about 7 times

per day, each caused by a single nuclear decay of a specific radon isotope.

There are various potential sources of radon emanation to take into account. First,

the vessel of the pre-spectrometer with its diameter of 1.7 m and length of 3.3 m (see

fig. 2) features a large inner surface of 25 m2 including weld seams which are a potential

source of radon emanation [52]. In addition, several auxiliary devices (vacuum gauges,

glass windows etc.) are attached to the vessel, which can also emanate radon atoms as

a result of their primordial abundance of 232Th, 235U and 238U. A major source of 219Rn

emanation was identified to be the non-evaporable getter (NEG) material [53], used as

an efficient pump for hydrogen. Details on different sources of radon emanation can be

found in [16].

While the α-particle itself and the fluorescence X-rays of atomic relaxation processes

do not contribute to the background, energetic electrons, which are emitted during the

nuclear α-decay (see section 2.1 and [17]), have a large probability to be stored inside

the pre-spectrometer. Thus, they will lose their kinetic energy via secondary processes

such as scattering or synchrotron radiation. If we assume that electrons cool down

exclusively via scattering off molecular hydrogen, the average energy lost per produced

secondary electron is ω ≈ 33 eV. This value was determined with the scattering routines

implemented in Kassiopeia and is in good agreement with the calculated value of 37 eV

in [54].

For primary electrons trapped within the pre-spectrometer flux tube, the number

of secondary electrons is influenced by several effects:

• For the pre-spectrometer field configuration detailed in fig. 2, only electrons with a

kinetic energy above about Emin
⊥ = 60 eV are stored magnetically. Hence, a high-

energy (keV) electron will not transform its entire kinetic energy into secondary
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electrons.

• Electrons experience non-negligible energy losses due to synchrotron radiation.

According to eq. (1), the synchrotron losses increase for larger electron transversal

energies.

• Above 100 keV starting energy, electron trapping is affected by non-adiabatic

effects, resulting from the specific electromagnetic field configuration of the pre-

spectrometer. Non-adiabaticity is induced if the magnetic field changes significantly

within one gyration, so that the transformation of E⊥ into E‖ and vice versa is no

longer proportional to the change of the magnetic field. Consequently, the polar

angle of the electron will change randomly, eventually hitting a value below the

trapping threshold.

• Additionally, electrons with very high energies have large cyclotron radii which can

lead to electrons hitting the spectrometer vessel, thus prematurely terminating the

background-generating process.

To study background-generating processes and non-adiabatic effects, Kassiopeia

simulations with the 219Rn event generator described in [17] were performed. A total of

10000 electrons was tracked in the pre-spectrometer under standard operating conditions

(p = 10−10 mbar, Bmax = 4.5 T, Bmin = 15.6 mT, U0 ≈ −18400 V). Figure 3 shows

the resulting number of electrons produced via ionization processes as a function of the

primary electron energy. From the figure it is evident that primary electrons of several

hundred keV can produce up to 3500 secondary electrons. Furthermore, the number of

secondaries being produced by high-energy primaries is smaller than what is expected

from an average energy loss of ω = 33 eV. This reduction is mainly due to the rather

large synchrotron energy losses in the pre-spectrometer. In addition, electrons released

from the spectrometer magnetic bottle due to non-adiabatic effects contribute to this

behavior.

When transferring these numbers into background rates it is important to note

that only a fraction of the produced secondary electrons will actually reach the detector.

First, only half of the electrons will escape towards the detector side of the spectrometer.

Second, the electrostatic field configuration of this setup features a small Penning trap

in the center of the pre-spectrometer with a depth of up to 12 V in the sensitive volume.

As a result, low-energy secondary electrons are stored within this trap with a probability

of about 60 %. Despite these background-reducing factors, radon-induced events can

still induce enhanced background rates where up to 2000 detector hits were observed

over up to 2 hours (Nbg ≈ 280 · 10−3 cps).

4. Validation of Background Model

In the following we report on a detailed experimental validation of our radon event

generator [17] and the corresponding Monte Carlo simulations described above. The

experimental information is based on specific measurements with the pre-spectro-
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Figure 3. Number of produced secondary electrons as a function of the starting

kinetic energy of the primary electron. In this case the 219Rn event generator was

used and electrons were tracked in the pre-spectrometer. The red line corresponds to

an average energy loss of ω = 33 eV per ionization. The actual number of secondary

electrons remains below this limit because the primary electrons also lose energy due

to synchrotron radiation. The non-adiabatic events are marked as full circles.

meter, described in [21], motivated to give complementary high-precision information on

background characteristics and mechanisms. In the first section 4.1 an overview of the

different measurements will be given. Section 4.2 discusses the specific event topology

of trapped electrons in the form of ring structures at the detector, which gives access to

the spatial distribution of radon decays inside the spectrometer. A further important

background characteristic is the rate of single events where Monte Carlo simulations are

compared to measurements within section 4.3. In the final section 4.4 the Monte Carlo

results are used to determine the radon activities in the pre-spectrometer setup, which

then are compared to the independent values derived in [16].

4.1. Overview of pre-spectrometer radon measurements

In order to validate our model of radon-induced background more reliably, three different

pre-spectrometer background measurements have been investigated in detail. A full

Monte Carlo simulation of each measurement configuration has yielded consistent

results, which will be presented in sections 4.3 and 4.4. This section first gives an

overview of the measurement strategy and experimental results.

As outlined above, the storage time of an electron strongly depends on the residual

gas pressure inside the spectrometer. Therefore, two measurements at different pressures

were performed, first a measurement at the standard pre-spectrometer operating
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pressure of pLPG = 10−10 mbar with the residual gas composed mainly of hydrogen,

water and nitrogen. Secondly, a measurement was performed at a higher pressure

of pHPG = 2 · 10−9 mbar while injecting argon gas into the spectrometer. In both

measurements, the vacuum system consisted of the NEG pump (emanating 219Rn) and

one turbo molecular pump (TMP) for non-getterable species. In the following, these

configurations are labeled LPG (low pressure with getter) and HPG (high pressure with

getter), respectively. In order to definitely confirm the getter material as a major source

for 219Rn, the NEG pump was removed for a third measurement. A second TMP then

had to be activated to compensate for the loss in pumping power. As these modifications

resulted in a relatively high pressure value of pHP = 10−9 mbar, this measurement is

labeled HP (high pressure - without getter). The number of active TMPs influences the

pump-out time for gases, and thus the decay probability of the different radon isotopes,

as shown in table 1. In all cases, the decay of 222Rn can be neglected.

Table 1. Pumping speeds and decay probabilities inside the pre-spectrometer for
219Rn, 220Rn and 222Rn, depending on the number of active TMPs [16]. The total

pre-spectrometer volume amounts to V = 8.5 m3.

# TMPs speed [l/s] 219Rn 220Rn 222Rn

1 194 0.885 0.353 9.2 · 10−5

2 402 0.787 0.208 4.4 · 10−5

The intervals with elevated background rate caused by a single radon decay were

(in close analogy to [16]) categorized into three different event classes, depending on the

number of counts (cts) at the detector: CI (10-50 cts), CII (51-500 cts) and CIII (>500

cts). According to our simulations, CI and CII events originate from radon decays which

produce conversion or shake-off electrons. However, only the high-energy electrons from

the internal conversion process can produce CIII events. These conversion electrons

originate practically only from the decay of 219Rn, with the NEG pump identified as a

major source of this isotope. However, even after the complete de-installation of the

NEG pump (measurement HP), the distinct CIII signature of 219Rn events was still

observed, though at a greatly reduced rate. Consequently, we have implemented a

background model where three different sources contribute to the total radon activity

inside the spectrometer: 219Rn from the getter (219RnG), and 219Rn as well as 220Rn

from the spectrometer and auxiliary equipment attached to it (219RnB,
220RnB).

Table 2 gives a summary of the measurement conditions in the three configurations,

which have been used as input for our Monte Carlo simulations. Furthermore, the

observed occurrence of CI-III events and their contributions to the total spectrometer

background are given. These values will be compared to those derived via simulations

(section 4.4).
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Table 2. Overview of UHV measurement conditions and resulting radon-induced

background rates. For the three different measurement conditions (low-pressure (LPG)

and high-pressure (HPG) with getter installed, and high-pressure without getter (HP))

the events were categorized into three different classes according to the number of

radon-induced counts (cts) at the detector: CI (10-50 cts), CII (51-500 cts), CIII

(>500 cts). Event rates and contributions to the total spectrometer background rbg

are shown for the individual classes.

measurement LPG HPG HP

getter X X ×
# TMPs 1 1 2

pressure [mbar] 1 · 10−10 2 · 10−9 1 · 10−9

gas composition H2, H2O,N2 Ar H2, H2O,N2

events/day (CI) 4.2± 1.4 5.5± 1.2 2.0± 0.6

rbg(CI) [10−3 cps] 0.85± 0.1 1.1± 0.1 0.49± 0.03

events/day (CII) 1.7± 0.9 0.8± 0.5 0.24± 0.24

rbg(CII) [10−3 cps] 3.6± 0.15 1.6± 0.1 0.17± 0.02

events/day (CIII) 1.0± 0.7 0.8± 0.5 0.31± 0.28

rbg(CIII) [10−3 cps] 8.1± 0.2 10.1± 0.2 1.38± 0.05

4.2. Spatial distribution of radon decays

Apart from generating elevated levels of background over extended periods of time, the

event topology of radon-induced background is an important tool to characterize the

background-generating mechanism. The rather complex motion of stored electrons in

a magnetic bottle results in a specific topology. Due to the excellent radial mapping

characteristics of a MAC-E filter (see fig. 4), radon-induced background at the 8x8

silicon pixel detector will form a generic ring pattern [21, 22]. This radon-induced event

topology can be understood by first principles of particle motion, as well as by more

detailed simulations of electron trajectories in the pre-spectrometer set-up. The electron

motion is composed of a fast cyclotron motion around the guiding magnetic field line, an

axial motion between the reflection points of the magnetic mirror, and a slow magnetron

motion around the beam axis. The magnetron motion is caused by the ~E × ~B and the
~∇| ~B|× ~B drift, which result from the inhomogeneous electric ( ~E) and magnetic ( ~B) field

configurations inside the spectrometer. Secondary electrons, originating from ionizing

collisions of the stored primary electron with residual gas molecules, thus monitor this

motion by following the magnetic field lines when escaping the magnetic mirror trap.

Consequently, they produce a characteristic ring structure at the detector. The example

in fig. 4 shows a main hit region (green to red pixels, multiple hits per pixel) which can

easily be identified from the surrounding rather fuzzy region (blue pixels, single hits per

pixel) which is caused by the cyclotron motion of the primary electron. This unique

feature of ring-structures allows to make use of a ring-fitting algorithm to unambiguously
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identify radon-induced background events [21].

cyclotron

axial

magnetron

Figure 4. Simulated trajectory of a single trapped electron with start energy

E = 1000 eV. The electron motion consists of a very fast cyclotron motion around

the magnetic field line, a fast axial motion and a slower magnetron motion around the

beam axis. Secondary electrons generated by the primary electron along its path are

therefore seen as rings on the pixel detector. One can identify the main hit region

(green to red colors, corresponding to a large number of hits) and a surrounding fuzzy

region (blue, only a few hits) due to the cyclotron motion of the primary electron. The

same signature was found within the measurements of [16], where figure 6 shows some

example events.

The ring radius fit determines the radial position r of the primary α-decay

responsible for producing the primary electron relative to the central axis. For a

homogeneous distribution of α-decays inside the spectrometer volume, the number of

rings N(r) in a fixed interval [r, r + dr] is expected to increase linearly with the radius

(see figure 5). When comparing measured and simulated spatial ring distributions,

the good agreement visible in fig. 5 implies that α-decays indeed occur with uniform

probability over the entire flux tube, as expected for neutral atoms emanating into the

UHV region. The smaller number of ring structures with radii rfit > 20 mm is a result

of the limited dimensions of the Si-PIN diode array (length= 40 mm), which does not

cover the entire flux tube (see fig. 4). Nevertheless, events which produce a significant

amount of detector hits in the corner pixels with rfit > 20 mm can still be identified,

albeit with a reduced geometrical efficiency.

4.3. Rate of single events

While the event topology clearly points to a uniform radon decay probability per unit

volume over the entire spectrometer volume, we now investigate whether the two other
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Figure 5. Distribution of fitted ring radii rfit as determined via measurement and

Monte Carlo simulation, and normalized to the total measured event rate. The

measured data was adopted from [16]. The good agreement verifies the assumption of

a uniform distribution of radon decays inside the spectrometer volume.

parameters of radon-induced background, namely the number of secondaries and the

event duration, also agree with expectations. For this investigation we consider two

measurements at different pressures (measurements HPG and LPG). Figure 6 compares

results of measurements and corresponding simulations.

The storage time of a primary electron and the number of secondary electrons it

produces strongly depend on the primaries’ starting kinetic energy and on the residual

gas pressure in the spectrometer volume. The number of secondary electrons will

increase for higher pressure levels as scattering energy losses increase at the expense

of synchrotron energy losses. By the same token, the storage time decreases because

successive scattering events will happen faster. Accordingly, for the HPG measurement,

the electron energy losses are dominated by scattering processes (see fig. 6 (a)).

Interestingly, both measurement and simulation show two separate, distinct regions

with regard to the event duration (ts ≤ 102 s, ts > 102 s). The simulation, which

can distinguish between conversion and shake-off events, reveals that this characteristic

separation is due to differing primary electron emission processes. While the majority of

the shake-off electrons has less than 20 keV kinetic energy, conversion electrons typically

are found above 100 keV. For this pressure regime, the parameter event duration ts
allows to distinguish conversion electrons (t > 102 s) from inner shell shake-off processes

(t ≤ 102 s). On the other hand, at low pressures in the LPG measurement (figure 6 (b)),

synchrotron energy losses tend to smear out this difference. While shake-off electrons at

low energies are barely affected by synchrotron losses, these losses are dominant in the

case of conversion electrons. Consequently, the gap between the two emission classes

is closed. The impact of increased losses due to of synchrotron radiation at excellent
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Figure 6. Number of detector hits over event duration for the HPG measurement (a)

and the LPG measurement (b). The simulations (open circles) reproduce the features

of the measurements (full circles), which is described in more detail in the main text.

UHV conditions is further confirmed by the fact that the overall number of secondary

electrons is reduced by a factor of 1.5 for the LPG measurement.
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4.4. Determination of radon activities

Following the above considerations, the cooling time of a single electron varies between

a few seconds for very low energies at high pressures, and a few hours for the largest

energies at low pressures. In case of the pre-spectrometer background measurements

the radon activity was low enough so that the time between two events was larger than

the event duration. Therefore, individual α-decays can be clearly discriminated, which

allows for their counting.

The excellent agreement between Monte Carlo simulations and experimental data,

as well as the different vacuum conditions of the three measurements (LPG, HPG and

HP), which influence shake-off and conversion electrons differently, can now be used to

determine the α-decay activities of the two isotopes (219Rn or 220Rn), as well as their

origin (getter, bulk) yielding the four observables 219RnB,
219RnG,

220RnB and 220RnG.

To discriminate between 219Rn and 220Rn induced events, we use the simulated decay

probabilities for CI-III events to fit the experimental data of table 2. We finally compare

the more detailed results of this work to our earlier results in [16], which were based on

measurements only.

Table 3 summarizes the simulated probabilities of CI-CIII events following 219Rn

and 220Rn decays for the three experimental configurations. The key experimental

parameters pressure and gas composition are identical to table 2. Furthermore, the

average number of detector hits per event 〈Ndet〉 is shown, which is required to determine

the actual background contribution.

Table 3. Overview of simulation results, comprising 10000 electrons for each

configuration and radon isotope. The probability P for the occurrence of CI-III events

per decay and the average number of detector hits 〈Ndet〉 per event are shown.

measurement LPG HPG HP

radon type 219Rn 220Rn 219Rn 220Rn 219Rn 220Rn

P [10−3] (CI) 8 5.8 9.2 5 6.8 5.7

〈Ndet〉/event (CI) 22.8 19 24.3 21.9 25.3 21.4

P [10−3] (CII) 3.9 2.1 3.3 0.8 3.3 0.8

〈Ndet〉/event (CII) 130.3 71.6 123.2 58.6 134.4 51.3

P [10−3] (CIII) 4.2 0 2.7 0 5.3 0

〈Ndet〉/event (CIII) 677.9 0 932.7 0 1033.8 0

The event rates ri for the individual classes Ci, with i = I, II, III, are determined

from the activities of the three different radon sources A(219RnB), A(219RnG) and

A(220RnB), the corresponding probabilities Pi for the occurrence of an event of class

Ci and the decay probability ε:

ri =
∑

k=219RnB,219RnG,220RnB

ε(k) · A(k) · Pi(k). (2)
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The probabilities Pi(k) are taken from table 3 and the decay probabilities ε(k) from

table 1. The only free parameters remaining are thus the radon activities A(k), which

can be determined by a three-parameter χ2-fit of the simulated event rates ri to the

measured rates of table 2. In fig. 7 we show the fit results for the radon activities

per unit volume in the pre-spectrometer (total volume: 8.5 m3) and compare them

to the activities which were observed in the measurements of Fränkle et al. [16]. The

simulated activities in general are somewhat larger than the measured ones, which can be

explained by two facts. First, the effects of non-adiabaticity were not considered in [16].

Furthermore, our extensive simulations have revealed that some CI events do not appear

as rings on the detector, and, consequently, could not be attributed to radon-induced

background within the analysis of [16].
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Figure 7. Total activity of 219RnB (bulk material of the spectrometer vessel),
219RnG (getter material) and 220RnB inside the pre-spectrometer. The values have

been determined by a three-parameter fit of simulated to measured event rates.

The simulation results of this work (circles) are compared to values derived from

measurements of Fränkle et al. [16] (squares).

Table 4 gives the emanation rates of 219,220RnB into the KATRIN pre-spectrometer

stainless steel vessel per unit volume. The values are compared to the independent

measurement of the 222Rn emanation for the empty and fully equipped GERDA cryostat,

as reported in [55, 56]. Unfortunately, the measurement technique applied in [55]

does not allow detection of the short-lived 219,220Rn isotopes. As the authors of [55]

point out, stainless steel vessels show much larger radon emanation rates than pure

stainless steel samples, which can be caused by surface impurities, in particular due to

welding procedures. Furthermore, any auxiliary equipment attached to the vessel will

significantly increase the radon emanation rate, an effect both observed in KATRIN and

GERDA for different isotopes.

Figure 8 compares the event rates determined according to eq.(2) to those derived
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Table 4. Comparison of radon emanation rates per unit volume in stainless steel

vessels. The simulated 219,220RnB concentrations for the fully equipped KATRIN pre-

spectrometer stainless steel vessel (V = 8.5 m3, A = 25 m2) are compared to the 222Rn

concentrations in case of an empty and a fully equipped GERDA cryostat [55, 56]

(V = 65 m3, A = 70 m2).

concentration [mBq/m3]
219Rn [this work] 0.26± 0.26
220Rn [this work] 6.53± 2.18
222Rn [55] (empty) 0.22± 0.03
222Rn [56] (fully equipped) 0.85± 0.06

within the measurements of this work. The values are in good agreement within their

errors (propagated from the errors on the activities).
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Figure 8. Event rates for the individual classes and measurements, determined

according to eq.(2). The simulations (full symbols, blue) are in good agreement with

the measurement results (open symbols, red).

In figure 9, the background contributions of the individual classes are shown. These

values are determined by multiplying the calculated event rates with the simulated

average number of detector hits per event 〈Nhit,MC〉 of each class for the different radon

isotopes.

After subtracting the contributions of CI-III events from the total measured

background rate, a background component of about 3 · 10−3 cps remains. A fraction

of this background results from radon decays which produce less than 10 detector hits,

or are not detected as ring events by the analysis software (in the following labeled C0
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Figure 9. Background contribution from the individual classes. The simulations (full

symbols, blue) are in agreement with the measurement results (open symbols, red).

events). These are mainly α-decay events where only two low-energy shell reorganization

electrons are emitted [17], which have a low probability of being magnetically stored

in the pre-spectrometer. The simulations reveal that these radon decays produce on

average 0.2 detector hits. Table 5 summarizes the C0 contributions to the background

rate for the three measurements considered. The fact that all simulated rates contribute

significantly, but do not exceed the remaining measured single hit background rate is

another important validation of our background model, showing that radon-induced

processes also contribute to the measured C0 class (possibly saturating it).

Table 5. Simulated and measured background rate (rC0,simu, rC0,meas) due to C0

single hit events.

measurement rC0,simu [10−3 cps] rC0,meas [10−3 cps]

LPG 1.6± 0.03 3.2± 0.3

HPG 1.4± 0.03 3.4± 0.3

HP 0.8± 0.02 2.0± 0.3

5. Conclusions

In the course of this work we have developed a detailed model of electron emission

processes following the α-decays of the two radon isotopes 219Rn and 220Rn. These

investigations were motivated by our earlier observations, reported in [16], of periods
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with significantly enhanced background rates at the KATRIN pre-spectrometer

measurements.

The background model incorporates various processes which lead to the emission of

electrons such as internal conversion, inner shell shake-off and relaxation of the atomic

shells during or after the α-emission. The radon event generator described in [17]

has been used as input for extensive Monte Carlo simulations with the Kassiopeia

simulation package. The validity of our background model and corresponding Monte

Carlo simulations has been confirmed by a comparison with key experimental observables

such as event duration and number of detector hits. The relative contribution of the

two isotopes 219Rn and 220Rn has been determined by varying the pressure in the UHV

recipient. In addition, by removing the NEG strips from the pre-spectrometer pump

port, we were able to assess the contributions from the spectrometer surface. As a result,

the radon-induced background has been fully characterized. An important outcome

of these investigations is the realization that low-energy shell reorganization electrons

comprise a significant fraction of the single hit background rate.

These findings are of major importance for the upcoming KATRIN measurements

with the main spectrometer. In [19] we extrapolated the background model of this

work to the different electromagnetic layout (minimum magnetic field 3 mT instead of

156 mT here) at the large main spectrometer, taking into account also the much larger

NEG pump in operation there. The work presented in this publication has also been

instrumental in developing active [24] as well as passive [57] countermeasures against

trapped electrons following radon α-decays.

It is only by developing and by validating detailed models of background processes

that the KATRIN experiment can realize its full physics potential in measuring the

absolute mass scale of neutrinos.
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