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Fermi gases in strongly coupled regimes, such as the unitary limit, are inherently challenging
for many-body methods. Although much progress has been made with purely analytic methods,
quantitative results require ab initio numerical approaches, such as Monte Carlo (MC) calculations.
However, mass-imbalanced and spin-imbalanced gases are not accessible to MC calculations due
to the infamous sign problem. It was recently pointed out that the sign problem, for finite spin
imbalance, can be circumvented by resorting to imaginary polarizations and analytic continuation.
Large parts of the phase diagram spanned by temperature and polarization then become accessible
to MC calculations. We propose to apply a similar strategy to the mass-imbalanced case, which
opens up the possibility to study the associated phase diagram with MC calculations. In particular,
our analysis suggests that a detection of a (tri-)critical point in this phase diagram is possible. We
also discuss calculations in the zero-temperature limit with our approach.

Introduction - Ultracold Fermi gases have attracted
considerable interest in the past 15 years. The high level
of activity in this field can be traced back to the fact
that quantum many-body phenomena [1, 2], ranging from
Bose-Einstein condensation (BEC) to Bardeen-Cooper-
Schrieffer (BCS) superfluidity, have become accessible to
experiments in a progressively cleaner and more versa-
tile way. The (experimental) control parameters are the
density n and the s-wave scattering length as. The lat-
ter can be tuned by an external magnetic field in the
presence of a Feshbach resonance. For a sufficiently di-
lute Fermi gas, the range of the interaction effectively
represents the smallest length scale in this many-body
problem and therefore the dynamics is completely con-
trolled by the dimensionless parameter kFas, where the
Fermi momentum kF is determined by the density n.

In the limit of large s-wave scattering length, the so-
called unitary regime, the only scale left in the problem
is the density n. For these systems, a small expansion
parameter has not yet been identified and most likely
does not exist. Therefore, the use of non-perturbative
methods is unavoidable, which makes this limit a major
challenge for theoretical approaches [3]. On the other
hand, experimental studies have achieved high precision
in some cases [4]. Apart from their phenomenological rel-
evance, these experiments can therefore be used to bench-
mark theoretical methods.

In the present work, we restrict ourselves to the case
of mass-imbalanced Fermi gases in the unitary regime,
i.e. we are interested in Fermi gases consisting of two
species with unequal masses interacting resonantly with
each other. To study this special class of Fermi gas,
great efforts have been made in recent years, both on
the experimental [5] and the theoretical side (see, e. g.,
Ref. [6] for a review). Nevertheless, mass-imbalanced

Fermi gases remain out of reach for ab initio Monte Carlo
(MC) calculations due to the infamous sign problem (see,
e. g., Ref. [7]). On the other hand, the mass-balanced
unitary Fermi gas is free of these complications [8, 9]
and shows good agreement with experimental data [10].
The situation resembles that of spin-imbalanced Fermi
gases, which are also affected by the sign problem in
MC approaches. For the latter, however, an approach
to circumvent the sign problem has been put forward in
Ref. [11]. In analogy to lattice studies of the QCD phase
diagram [12], this strategy employs an analytic continua-
tion from real to imaginary polarization which opens up
the possibility to study large parts of the spin-imbalanced
finite-temperature phase diagram, potentially including
the determination of the location of the (tri)critical point.

Inspired by the analytic continuation of the theory in
case of spin-imbalanced gases [11], we show here that
a similar analytic continuation could be used to study
mass-imbalanced Fermi gases with ab initio MC calcu-
lations without any kind of sign problem. In fact, we
will demonstrate that, in contrast to the spin-imbalanced
case, not only the finite-temperature phase diagram is ac-
cessible in the present case but also the zero-temperature
limit. This opens up the possibility for a detailed com-
parison of experimental data and results from ab initio
MC calculations, which will help us enhance our under-
standing of the dynamics underlying pairing in strongly
interacting Fermi gases. Note that this strategy of an-
alytically continuing the theory works in any dimension
as well as away from unitarity.

Formalism - In the following we apply a (standard)
mean-field approach to a unitary mass-imbalanced Fermi
gas in three (spatial) dimensions, as also discussed else-
where (see, e.g., Refs. [6, 13, 14]). In contrast to earlier
works, however, we employ real- and imaginary mass im-
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balances for our study of the phase structure. In partic-
ular, we discuss how the phase diagram for imaginary-
valued mass imbalances can be used to determine the
ground-state properties of the Fermi gas in the physical
case, i.e. for real-valued mass imbalances. Of course, we
do not expect our mean-field approach to yield the ex-
act values for physical observables. Nevertheless, it can
be viewed as the lowest-order approximation and, as is
the case for the full evaluation of the associated path in-
tegral, it only depends on a single input parameter (e.g.
kF). This is important because it implies that our results
do not suffer from a parameter ambiguity, but only from
uncertainties associated with the mean-field approxima-
tion, (see, e.g., Refs. [15] for a more general discussion
of this issue). Therefore, we expect that our mean-field
approach is suitable to present our approach based on
imaginary-valued mass imbalances, and allows us to gain
essential insights into the (analytic) structure of the the-
ory. The latter can then be used to guide future ab initio
MC calculations.

Before discussing our mean-field study of the unitary
Fermi gas with imaginary-valued mass imbalance, we give
a more general introduction to the problem. The parti-
tion function of a Fermi gas reads

Z(T,m↑,m↓, µ̄, h) = Tr
[
e−β(Ĥ−µ̄(N̂↑+N̂↓)−h(N̂↑−N̂↓))

]
,

where β = 1/T is the inverse temperature. We assume
that the Hamiltonian Ĥ describes the dynamics of a the-
ory with two fermion species, denoted by ↑ and ↓, inter-
acting only via a zero-range two-body interaction:

Ĥ =

∫
d3x

 ∑
σ=↑,↓

ψ̂†σ(x)
~∇2

2mσ
ψ̂σ(x) + ḡρ̂↑(x)ρ̂↓(x)

 ,

The operators ρ̂↑,↓ are the particle density operators as-

sociated with the two fermion species, and N̂↑,↓ are the
corresponding particle-number operators. The masses of
the two species are given by m↑ and m↓, respectively. For
the sake of generality, we have also introduced the aver-
age chemical potential µ̄ = (µ↑ + µ↓)/2 and the asym-
metry parameter h = (µ↑ − µ↓)/2. From now on, how-
ever, we consider the case h = 0 and allow only for a
finite mass imbalance. To this end, it is convenient to
introduce quantities that allow us to measure the mass
imbalance in simple terms:

m+ =
4m↑m↓
m↑ +m↓

, m− =
4m↑m↓
m↓ −m↑

, m̄ =
m+

m−
. (1)

The dimensionless imbalance parameter m̄ = (m↓ −
m↑)/(m↓+m↑) measures the relative strength of the mass
imbalance. Note that 0 ≤ |m̄| ≤ 1.

As already mentioned above, MC calculations for uni-
tary fermions with h = 0 and m̄ = 0 can be performed
without a sign problem (see e.g. Refs. [7–9]). For the
case h > 0 and m̄ = 0, it has been pointed out in Ref. [11]

that this sign problem can be circumvented by consider-
ing an imaginary-valued asymmetry parameter h. This
corresponds to studying the theory with complex-valued
chemical potentials. The results from such an MC study
can then be analytically continued to obtain the results
for the physically interesting case of a real-valued asym-
metry parameter. For the case h = 0 and m̄ > 0, it turns
out that a similar approach can be used to avoid the ap-
pearance of the sign problem in MC calculations. Assum-
ing that m̄− is imaginary-valued, it is indeed straightfor-
ward to show that the fermion determinants appearing
in the probability measure are complex conjugates of one
another, provided that the parameter m+ is still consid-
ered to be real-valued and m∗↑ = m↓. For convenience,
we define m̄ = im̄I with m̄I ∈ R. Fermi gases with imagi-
nary mass imbalance can thus be studied using standard
MC techniques. As in the case of an imaginary-valued
spin-imbalance parameter, the actual results of physi-
cal interest are to be found by analytically continuing
the partition function to real-valued mass imbalance, to
obtain the original partition function Z(T,m↑,m↓, µ̄, h)
with m↑,↓ ∈ R. From the latter we can, in principle,
extract all experimentally observable equilibrium quan-
tities. As we discuss below in more detail, the zero-
temperature limit is also accessible in the present case,
which is not possible in the imaginary h case.

Mean-field analysis - To illustrate our imaginary mass
imbalance approach and to gain deeper insights into the
analytic structure of the theory (which is required to
guide future MC studies), we employ a mean-field study
with complex-valued masses m↑,↓, such that m∗↑ = m↓.
The real and imaginary parts of these masses can then be
tuned to obtain a certain given value for the imbalance
parameter m̄. In order to compute the order-parameter
potential for U(1) symmetry breaking in the mean-field
approximation, we employ the path-integral representa-
tion of Z:

Z =

∫
Dψ†Dψ e−S[ψ†,ψ] ,

where

S[ψ†, ψ] =

∫
dτ

∫
d3x

{
ψ†
(
∂τ −

1

m+

~∇ 2 − µ̄
)
ψ

− 1

m−

(
ψ∗↑
~∇ 2ψ↑ − ψ∗↓ ~∇ 2ψ↓

)
+ ḡ(ψ†ψ)(ψ†ψ)

}
, (2)

and ψT = (ψ↑, ψ↓) and ḡ denotes the bare four-fermion
coupling. The latter is related to the scattering length as

by

ḡ−1 = Λg−1 =
1

8π

(
a−1

s − creg.Λ
)
. (3)

Here, Λ denotes the ultraviolet cutoff and the con-
stant creg. > 0 depends on the regularization scheme.
We choose units such that m+ = 1 corresponding to
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2m = 1 for m↑ = m↓ = m. This choice also implies
that m̄ = 1/m−.

To compute the order-parameter potential from the
path integral, we introduce an auxiliary scalar field ϕ ∼
gϕ ψ↑ψ↓, where the parameter gϕ is chosen to repro-
duce the four-fermion term in the action. The fermion
fields then only appear bilinearly in the action and can
be integrated out. Assuming a homogeneous ground
state, the resulting fermion determinants can be com-
puted straightforwardly, eventually yielding the order-
parameter potential:

βU(ϕ) = −2βµ̄|ϕ|2−
∫

d3q

(2π)3
ln

[
cosh

(
βm̄~q 2

)
+ cosh

(
β
√

(~q 2 − µ̄)
2

+ g2
ϕ|ϕ|2

)]
. (4)

For conciseness, we have dropped the standard terms
that are required to regularize the potential (see, e.g.,
Refs. [6, 14]).

The order-parameter potential U and the grand canon-
ical potential Ω are directly related, Ω = V U(ϕ0),
where V is the volume of the system and ϕ0 denotes
the value of ϕ that minimizes the potential. In the
ground state, we can identify g2

ϕ|ϕ0|2 with the fermion
gap ∆. The latter serves as an order parameter for spon-
taneous U(1) symmetry breaking associated with a su-
perfluid ground state. From the grand canonical poten-
tial we can extract all thermodynamic observables. As it
should be, our results for dimensionless (universal) quan-
tities in the unitary limit, such as the critical tempera-
ture Tc(m̄)/µ̄ for the superfluid transition or the ground-
state energy E(m̄)/µ̄, are independent of µ̄ and gϕ.

Next, we discuss some of the analytic properties of the
theory. In the case of m̄ = 0 and h > 0, it was found
that the theory is 2π-periodic in βhI, where h = ihI

and hI ∈ R (see Ref. [11]). Using imaginary spin-
imbalances, the accessible spin asymmetries are there-
fore bound to values βhI < π. For the mass-imbalanced
case, we do not have a corresponding simple periodic be-
havior in m̄, as the parameters for mass imbalance and
spin imbalance are associated with different operators (cf.
Eq. (2)). On the contrary, we find that also the zero-
temperature limit is accessible in the case of imaginary-
valued mass asymmetries.

The analytic continuation from imaginary-valued to
real-valued mass asymmetries trivially requires the the-
ory to be analytic in a finite domain around the symmet-
ric point m̄ = 0. For given fixed values of ϕ, T , and µ,
we find that the order-parameter potential (4) can indeed
be expanded in powers of m̄. From the analytic struc-
ture of the integrand in Eq. (4), it follows that a lower
bound rmin for the radius of convergence rm̄ of such an
expansion is given by

rmin(|Φ|2) =

√
β2|Φ|2 + π2

β2|Φ|2 + π2 + β2µ̄2
, (5)
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Figure 1. (color online) Upper panel: Bertsch parameter as
a function of m̄. The (blue) thin dashed-dotted lines are an-
alytic continuations obtained from a Taylor expansion of the
Bertsch parameter in m̄2

I up to order Nmax (indicated by the
numbers, see text). Lower panel: Bertsch parameter as a
function of m̄I.

where |Φ|2 = g2
ϕ|ϕ|2. Notice that this lower bound re-

mains finite as β → ∞. To compute physical observ-
ables O, such as the density or the ground-state energy,
we need to evaluate the potential at its (global) mini-
mum ϕ0. The radius rm̄,O for an observable O is then
bounded from below by rmin(∆ = g2

ϕ|ϕ0|2), provided that
the integrand in Eq. (4) is holomorphic in ∆ and ∆ is
holomorphic in m̄. For m̄ < m̄c(T ), we expect this to
be the case. Here, m̄c(T ) denotes the critical mass im-
balance below which the gap is finite for a given temper-
ature T . The actual radius of convergence may well be
larger than this lower bound since the analytic properties
of the potential may be improved by the momentum inte-
gration in Eq. (4). In the superfluid phase, on the other
hand, an upper bound for the radius of convergence is
given by m̄c(T ), i.e. rm̄,O < m̄c(T ). For the Bertsch
parameter ξ at T = 0, it indeed appears to be the case
that rm̄,ξ ≈ m̄c (see Fig. 1 and our discussion below).

In the high-temperature phase, i.e. T � Tc(m̄=0), the
gap is zero for m̄(I) ∈ [0, 1] and we have rm̄,O ≤ 1. For
the two-dimensional Fermi gas, one can indeed show ana-
lytically that rm̄,O = 1 in the high-temperature limit. In
any case, from the point of view of MC calculations, these
findings suggest to compute physical observables as func-
tion of im̄I with standard techniques without suffering
from the sign problem. The results of physical interest,
i.e. for real-valued m̄, can then be obtained by fitting the
MC data to a polynomial ansatz in m̄I and analytically
continuing this polynomial to the real axis. Note that
only even powers of m̄ can contribute as the partition
function is invariant under the transformation m̄→ −m̄.

Analytic continuation - Let us now demonstrate the
analytic continuation from imaginary-valued to real-
valued mass imbalances. For simplicity, we fit the data
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of a given observable O, such as the Bertsch param-
eter or the critical temperature, to the ansatz O =∑Nmax

n=0 C
(n)
O m̄2n

I , where C
(n)
O are constants determined

by the fit to the data and Nmax represents the trunca-
tion order. The latter is limited by the amount of avail-
able data. Here, we have assumed that O has been made
dimensionless with, e.g., a suitable power of µ̄. From a
simple analytic continuation of this polynomial, one then
obtains the dependence of O on m̄. Within our analytic
study, we can easily check the feasibility of such a pro-
cedure. In Fig. 1, we show our results for the Bertsch
parameter as a function of m̄ as obtained from such a
fit procedure. Here, we have defined the Fermi energy εF
entering the definition of the Bertsch parameter ξ = µ̄/εF
as follows

εF =
(
1−m̄2

) [
(1−m̄)

3
2 +(1+m̄)

3
2

]− 2
3

(6π2n)
2
3 , (6)

where n = n↑ + n↓ is the total density. With this defi-
nition of the Bertsch parameter, we have ξ = 1 for the
free Fermi gas at T = 0 and m̄ ∈ [0, 1]. For the in-
teracting gas at T = m̄ = 0, we recover the standard
mean-field result ξ = 0.59 . . . [3, 6]. For the fit presented
in Fig. 1 we have used the results for ξ for 101 equidistant
values of m̄I ∈ [0, 1]. For Nmax = 5, we already observe
good agreement between the analytically continued poly-
nomial and the exact (mean-field) result for m̄ . m̄c. We
add that a polynomial ansatz is the simplest choice for
such a fit. Of course, more elaborate functions, such as
Padé approximants, can also be employed.

With our imaginary mass-imbalance approach, it is
also possible to study the thermal properties, as the tem-
perature dependence of the radius of convergence already
implies. The critical temperature Tc(m̄) can be com-
puted by studying the gap as a function of the tempera-
ture for a given value of m̄. To be more precise, Tc(m̄) is
the lowest temperature for which the gap vanishes identi-
cally. Since the critical temperature is defined implicitly
by the gap, it appears to be impossible to derive the
radius of convergence for Tc(m̄) analytically. In the fol-
lowing, we shall assume that the radius of convergence
for the critical temperature is finite, as suggested by the
analytic properties of the potential. Moreover, we ex-
pect that the radius of convergence for Tc(m̄) is bounded
from above by the radius of convergence of the potential.
These statements are in accordance with our numerical
results. In Fig. 2 we show the mean-field phase diagram
in the (T, m̄) plane. For m̄ < m̄cp, the finite-temperature
phase transition is found to be of second order, whereas
it is of first order for m̄ > m̄cp. We stress that we are
not interested in a study of inhomogeneous phases (nei-
ther Sarma-type nor FFLO-type) in the present work.
We only discuss the phase boundary between the U(1)-
symmetric phase and the phase associated with a su-
perfluid (homogeneous) ground-state. The (tri)critical
point (Tcp/µ̄, m̄cp) is located within the radius of conver-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.1  0.2  0.3  0.4  0.5  0.6

T
/µ
-

m
-

1

3

5

Figure 2. (color online) Phase diagram of an ultracold Fermi
gas at unitarity in the (T ,m̄) plane. The solid (black) curve
is a line of second-order phase transitions, which ends at a
(tri)critical point (m̄cp, Tcp/µ̄) marked by the black square.
For m̄ > m̄cp, we find a line of first-order transitions. The
(blue) thin dashed-dotted lines are analytic continuations ob-
tained from a Taylor expansion of the phase boundary in m̄2

I

up to order Nmax (indicated by the numbers, see text).
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Figure 3. Phase diagram in the (T ,m̄I) plane. The solid
line is a line of second-order phase transitions below which
the fermion gap is finite. Note that we do not find a line of
first-order phase transitions in this case.

gence of the order-parameter potential when expanded
in powers of m̄. In fact, we find that the radius of con-
vergence is about twice as large as the value of the mass-
imbalance associated with the (tri)critical point. The
latter observation is intriguing since it suggests that the
(tri)critical point is potentially within the reach of lattice
MC calculations based on an imaginary mass-imbalance.

Connection to lattice calculations - From the point of
view of (lattice) MC calculations, one would first com-
pute the phase diagram in the (T, m̄I) plane with stan-
dard techniques without suffering from the sign problem.
In Fig. 3, we show the corresponding phase diagram as
obtained from our mean-field approximation. We find
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that the phase transition line is of second order only and
the phase transition temperature is finite for m̄I ≤ 1.
Thus, the (tri)critical point leaves no obvious trace of
its existence in this phase diagram. At second glance,
however, the information of the existence of this point is
encoded in the shape of the potential at (m̄cp, Tcp/µ̄). In
analogy to the case of imaginary spin imbalance discussed
in Ref. [11] as well as to relativistic fermion models [16],
we expect that the analytic continuation of the phase
transition line can only give the correct behavior up to
the (tri)critical point. From the analytic continuation of
the (full) order-parameter potential, however, the phys-
ical phase diagram in the whole domain defined by the
radius of convergence can be recovered, including the line
of first-order transitions.

In Fig. 2, we also show the results for the finite-
temperature phase boundary in the (T, m̄) plane as
obtained from the analytic continuation of the func-
tion Tc(m̄I) depicted in Fig. 3. For the analytic con-
tinuation, we have employed polynomials in m̄2

I up to
order Nmax (see our discussion above). For the fit to
the data, we have used the results for Tc(m̄I)/µ̄ for
101 equidistant values of m̄I ∈ [0, 1]. For Nmax = 5
and m̄ . 0.4, we already observe good agreement be-
tween the analytically continued polynomial and the ex-
act (mean-field) result, see Fig. 2.

Summary - We have studied the dynamics of mass-
imbalanced Fermi gases using complex-valued fermion
masses. We have argued that this approach allows to
avoid the sign problem in MC calculations and there-
fore opens up the possibility for ab initio MC studies of
mass-imbalanced Fermi gases, in particular at unitarity.
We have found that the (tri)critical point is in princi-
ple within reach in this framework. Moreover, the zero-
temperature limit is directly accessible as well, at least
up to a certain value of m̄ implicitly determined by the
analytic properties of the (full) theory. As studies of
mass-imbalanced Fermi gases are highly challenging on
both the experimental and theoretical side, our present
study constitutes an important development of the re-
cent work of Ref. [11]. Based on our complex-masses
approach, future MC studies may now indeed allow us
to gain deep insights into the collective dynamics under-
lying strongly-interacting Fermi gases which is of great
importance for a large variety of systems, ranging from
superconducting materials in condensed-matter physics
to the nuclear many-body problem.
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