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On the Dynamics of Navier-Stokes and Euler Equations

Yueheng Lan and Y. Charles Li

Abstract. This is a rather comprehensive study on the dynamics of Navier-
Stokes and Euler equations via a combination of analysis and numerics. We
focus upon two main aspects: (a). zero viscosity limit of the spectra of linear
Navier-Stokes operator, (b). heteroclinics conjecture for Euler equation, its
numerical verification, Melnikov integral, and simulation and control of chaos.
Besides Navier-Stokes and Euler equations, we also study two models of them.
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1. Introduction

The dynamics of Navier-Stokes and Euler equations is a challenging problem.
In particular, such dynamics can be chaotic or turbulent. The main challenge
comes from the large dimensionality of the phase space where the Navier-Stokes
and Euler equations pose extremely intricate flows. Here the dynamics we refer
to is the so-called Eulerian, in contrast to the so-called Lagrangian, dynamics of
fluids. The Eulerian dynamics is a dynamics in an infinite dimensional phase space
(e.g. a Banach space) posed by the Cauchy problem of either the Navier-Stokes
or the Euler equations as partial differential equations. The Lagrangian dynamics
of fluid particles is a dynamics of a system of two or three ordinary differential
equations with vector fields given by fluid velocities. The Lagrangian dynamics of
fluid particles in three dimensions can be chaotic even when the Eulerian dynamics
is steady (e.g. the ABC flow [2]). Nevertheless, as shown in Appendix B, the
Lagrangian dynamics of 2D inviscid fluid particles is always integrable.

Even though the global well-posedness of 3D Navier-Stokes and Euler equations
is still an interesting open mathematical problem, 3D Navier-Stokes and Euler
equations have local well-posedness which is often enough for a dynamical system
study in the phase space. To begin such a dynamical system study, one needs to
understand the spectra of the linear Navier-Stokes and/or Euler operators [17].
The spectra of the linear Navier-Stokes operators consist of eigenvalues, whereas
the spectra of the linear Euler operators contain continuous spectra. Existence of
invariant manifolds can be proved for Navier-Stokes equations [17], but is still open
for Euler equations. The size of the invariant manifolds for Navier-Stokes equations
tends to zero in the zero viscosity limit [17]. We find that the spectra of the linear
Navier-Stokes and Euler operators can be classified into four categories in the zero
viscosity limit:

(1) Persistence: These are the eigenvalues that persist and approach to the
eigenvalues of the corresponding linear Euler operator when the viscosity
approaches zero.

(2) Condensation: These are the eigenvalues that approach and form a con-
tinuous spectrum for the corresponding linear Euler operator when the
viscosity approaches zero.

(3) Singularity: These are the eigenvalues that approach to a set that is not in
the spectrum of the corresponding linear Euler operator when the viscosity
approaches zero.
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(4) Addition: This is a subset of the spectrum of the linear Euler operator,
which has no overlap with the zero viscosity limit set of the spectrum of
the linear NS operator.

We also find that as the viscosity approaches zero, the spectrum of the linear Navier-
Stokes operator undergoes a fascinating deformation. Focusing upon the persistent
unstable eigenvalue, we propose a heteroclinics conjecture, i.e. there should be
a heteroclinic orbit (in fact heteroclinic cycles) associating to the instability for
Euler equation. We will present both analytical and numerical study upon this
heteroclinics conjecture. Then we conduct a Melnikov integral calculation along
the numerically obtained approximate heteroclinic orbit. We also compare the
Melnikov prediction with the numerical simulation and control of chaos for the
Navier-Stokes equations. Numerically we mainly use the Liapunov exponent as a
measure of chaos. In some case, we also plot the Poincaré return map. We realize
that the size of Galerkin truncations for the full Navier-Stokes equations is limited
by the computer ability. Thus we propose two simpler models of the Navier-Stokes
equations. For the so-called line model, we obtain numerically exact heteroclinic
orbits for any size of Galerkin truncations. We also realize that due to viscosity, the
chaos in Galerkin truncations of Navier-Stokes equations is often transient chaos,
i.e. the chaos has a finite life time. Infinite life time chaos can be observed in
Galerkin truncations of Euler equations.

Chaos and turbulence have no good averages [21]. The matter is more funda-
mental than just poor understanding of averages. The very mechanism of chaos
leads to the impossibility of a good average [16]. On the other hand, chaos and
turbulence are ubiquitous. In high dimensional systems, there exists tubular chaos
[16] [13] [14] [15] which further confirms that there is no good average. The hope
is that chaos and turbulence can be controlled. Two aspects of control are practi-
cally important in applications: Taming and enhancing. When an airplane meets
turbulence, it will be nice, safer and economic if we can tame the turbulence into
a laminar flow or a less turbulent flow [1] [8] [25]. In a combustor, enhancing
turbulence can get the fuel and oxidant mixed and burned more efficiently [25] [8].
Theoretically, one can also make use of the ergodicity of chaos to gear an orbit
to a specific target [27]. Many other possibilities of applications of control can be
designed too. An advantage of the control is that it can be done in a trial-correction
manner without a detailed knowledge of turbulence.

Clearly, control of chaos and turbulence has great industrial value. From a
mathematical point of view, the question is how much mathematis is in this control
theory. So far, the mathematical merit of the theory of control of chaos is not nearly
as great as proving the existence of chaos [16]. Obviously, a lot of good numerics
is in this control theory. In this article, we will address this control theory from a
mathematical perspective, and try to formulate some good mathematical problems.
One can add a control to any equation. But the only meaningful controls are the
ones that are practical. Consider the 3D Navier-Stokes equations for example

ui,t + ujui,j = −p,i + ǫui,jj + fi + Ci ,

defined on a spatial domain D with appropriate boundary conditions, where ǫ =
1/Re is the inverse of the Reynolds number, and fi = fi(t, x) is the external force.
Assume that without the control Ci, the solutions are turbulent. The goal is to find
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a practical control to either tame or enhance turbulence. For instance, a practical
control Ci = Ci(t, x) should be spatially localized (perhaps near the boundary).

Recently, there has been quite amount of works on numerical simulations of
chaos in Navier-Stokes equations [3] [4] [7] [26] [31] [30]. Here we try to com-
bine numerics with analysis in terms of Melnikov integrals. Unlike the sine-Gordon
system studied in Appendix A, analytical calculation of the Melnikov integrals is
not feasible at this moment for Navier-Stokes equations. So we will resort to nu-
merical calculations. It is an interesting open mathematical problem that whether
or not 2D Euler equation is integrable as a Hamiltonian system in the Liouville
sense. Since 2D Euler equation possesses infinitely many constants of motion, it
is tempting to conjecture that 2D Euler equation is integrable. Another support
to such a conjecture is that both 2D and 3D Euler equations have Lax pairs [11]
[23] [20]. In fact, it is even rational to conjecture that 3D Euler equations are
integrable. As mentioned above, we propose the so-called heteroclinics conjecture
for Euler equations, i.e. there exist heteroclinic cycles for Euler equations. We nu-
merically simulate the heteroclinic orbits and use the numerical results to conduct
numerical calculations on Melnikov integrals. In these numerical simulations, it is
crucial to make use of known results on the spectra of linear Navier-Stokes and
Euler operators [10] [9] [17]. We use the numerical Melnikov integral as a tool for
both predicting and controling chaos. As a measure of chaos, we calculate the Lia-
punov exponents. We find that the calculated Liapunov exponents depend on the
computational time interval and the precision of the computation. Nevertheless, as
a measure of chaos, Liapunov exponents prove to be very robust. Since the chaos
is often transient, we make comparison on the base of fixed time interval and fixed
precision of computation.

Our numerics resorts to Galerkin truncations. But Galerkin truncations are
somewhat singular perturbations of Euler equations. Higher single Fourier modes
have more unstable eigenvalues. Therefore, it is difficult to derive dynamical pic-
tures for Euler equations from their Galerkin truncations. On the other hand, higher
single Fourier modes have more dissipation under Navier-Stokes flows. So Galerkin
truncations perform better for Navier-Stokes equations than Euler equations. To-
day’s computer ability still limits the size of the Galerkin truncations. With better
future computer ability, Galerkin truncations will paint better and better pictures
of Navier-Stokes and Euler equations. It seems also important to design special
models that can picture special aspects of the dynamics of Navier-Stokes and Euler
equations.

2. Zero Viscosity Limit of the Spectrum of 2D Linear Navier-Stokes

Operator

We will study the following form of 2D Navier-Stokes (NS) equation with a
control,

(2.1) ∂tΩ+ {Ψ,Ω} = ǫ[∆Ω + f(t, x) + bδ̃(x)] ,

where Ω is the vorticity which is a real scalar-valued function of three variables t
and x = (x1, x2), the bracket { , } is defined as

{f, g} = (∂x1
f)(∂x2

g)− (∂x2
f)(∂x1

g) ,
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where Ψ is the stream function given by,

u1 = −∂x2
Ψ , u2 = ∂x1

Ψ ,

the relation between vorticity Ω and stream function Ψ is,

Ω = ∂x1
u2 − ∂x2

u1 = ∆Ψ ,

and ǫ = 1/Re is the inverse of the Reynolds number, ∆ is the 2D Laplacian, f(t, x)

is the external force, bδ̃(x) is the spatially localized control, and b is the control
parameter. We pose the periodic boundary condition

Ω(t, x1 + 2π, x2) = Ω(t, x1, x2) = Ω(t, x1, x2 + 2π/α),

where α is a positive constant, i.e. the 2D NS is defined on the 2-torus T
2. We

require that Ψ, f and δ̃ have mean zero
∫

T2

Ψdx =

∫

T2

fdx =

∫

T2

δ̃dx = 0 .

Of course Ω always has zero mean. In this case, Ψ = ∆−1Ω.
In both 2D and 3D, the linear NS operator obtained by linearizing NS at a

fixed point has only point spectrum consisting of eigenvalues lying in a parabolic
region [17]. On the other hand, the corresponding linear Euler can have continuous
spectrum besides point spectrum [17]. The spectra of the linear NS and Euler
operators can be classified into four classes in the zero viscosity limit:

(1) Persistence: These are the eigenvalues that persist and approach to the
eigenvalues of the corresponding linear Euler operator when the viscosity
approaches zero.

(2) Condensation: These are the eigenvalues that approach and form a con-
tinuous spectrum for the corresponding linear Euler operator when the
viscosity approaches zero.

(3) Singularity: These are the eigenvalues that approach to a set that is not in
the spectrum of the corresponding linear Euler operator when the viscosity
approaches zero.

(4) Addition: This is a subset of the spectrum of the linear Euler operator,
which has no overlap with the zero viscosity limit set of the spectrum of
the linear NS operator.

2.1. A Shear Fixed Point. For the external force f = Γcosx1 (b = 0),
Ω = Γ cosx1 is a shear fixed point, where Γ is an arbitrary real nonzero constant.
Choose α ∈ (0.5, 0.84). There is a ǫ∗ > 0 such that when ǫ > ǫ∗, the fixed point
has no eigenvalue with positive real part, and when ǫ ∈ [0, ǫ∗), the fixed point has a
unique positive eigenvalue [17]. Notice that this unique eigenvalue persists even for
linear Euler (ǫ = 0). In fact, for linear Euler (ǫ = 0), there is a pair of eigenvalues,
and the other one is the negative of the above eigenvalue. Precise statements on
such results are given in the theorem below. Later we will discover numerically that
some of the rest eigenvalues of the linear Navier-Stokes operator somehow form the
continuous spectrum of linear Euler (ǫ = 0) as ǫ→ 0, while others do not converge
to the spectrum of linear Euler (ǫ = 0) at all [17] [18]. Using the Fourier series

Ω =
∑

k∈Z2/{0}
ωke

i(k1x1+αk2x2) ,
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where ω−k = ωk (in fact, we always work in the subspace where all the ωk’s are real-
valued), one gets the spectral equation of the linearized 2D Navier-Stokes operator
at the fixed point Ω = 2 cosx1,

(2.2) An−1ωn−1 − ǫ|k̂ + np|2ωn −An+1ωn+1 = λωn ,

where k̂ ∈ Z
2/{0}, p = (1, 0), ωn = ωk̂+np, An = A(p, k̂ + np), and

A(q, r) =
α

2

[

1

r21 + (αr2)2
− 1

q21 + (αq2)2

]
∣

∣

∣

∣

q1 r1
q2 r2

∣

∣

∣

∣

.

(In fact, the An’s should be counted twice due to switching q and r, but the differ-
ence is only a simple scaling of ǫ and λ.) Thus the 2D linear NS decouples according

to lines labeled by k̂. The following detailed theorem on the spectrum of the 2D
linear NS at the fixed point Ω = 2 cosx1 was proved in [17].

Theorem 2.1 (The Spectral Theorem [17]). The spectra of the 2D linear NS
operator (2.2) have the following properties.

(1) (αk̂2)
2+(k̂1+n)

2 > 1, ∀n ∈ Z/{0}. When ǫ > 0, there is no eigenvalue of
non-negative real part. When ǫ = 0, the entire spectrum is the continuous
spectrum

[

−iα|k̂2|, iα|k̂2|
]

.

(2) k̂2 = 0, k̂1 = 1. The spectrum consists of the eigenvalues

λ = −ǫn2 , n ∈ Z/{0} .
The eigenfunctions are the Fourier modes

ω̃npe
inx1 + c.c. , ∀ω̃np ∈ C , n ∈ Z/{0} .

As ǫ→ 0+, the eigenvalues are dense on the negative half of the real axis
(−∞, 0]. Setting ǫ = 0, the only eigenvalue is λ = 0 of infinite multiplicity
with the same eigenfunctions as above.

(3) k̂2 = −1, k̂1 = 0. (a). ǫ > 0. For any α ∈ (0.5, 0.95), there is a unique
ǫ∗(α),

(2.3)

√
32− 3α6 − 17α4 − 16α2

2(α2 + 1)(α2 + 4)
< ǫ∗(α) <

1

(α2 + 1)

√

1− α2

2
,

where the term under the square root on the left is positive for α ∈
(0.5, 0.95), and the left term is always less than the right term. When
ǫ > ǫ∗(α), there is no eigenvalue of non-negative real part. When ǫ =
ǫ∗(α), λ = 0 is an eigenvalue, and all the rest eigenvalues have negative
real parts. When ǫ < ǫ∗(α), there is a unique positive eigenvalue λ(ǫ) > 0,
and all the rest eigenvalues have negative real parts. ǫ−1λ(ǫ) is a strictly
monotonically decreasing function of ǫ. When α ∈ (0.5, 0.8469), we have
the estimate

√

α2(1− α2)

2(α2 + 1)
− α4(α2 + 3)

4(α2 + 1)(α2 + 4)
− ǫ(α2 + 1) < λ(ǫ)

<

√

α2(1 − α2)

2(α2 + 1)
− ǫα2 ,



NAVIER-STOKES AND EULER EQUATIONS 7

where the term under the square root on the left is positive for α ∈
(0.5, 0.8469).
√

α2(1− α2)

2(α2 + 1)
− α4(α2 + 3)

4(α2 + 1)(α2 + 4)
≤ lim

ǫ→0+
λ(ǫ) ≤

√

α2(1− α2)

2(α2 + 1)
.

In particular, as ǫ→ 0+, λ(ǫ) = O(1).
(b). ǫ = 0. When α ∈ (0.5, 0.8469), we have only two eigenvalues λ0

and −λ0, where λ0 is positive,
√

α2(1− α2)

2(α2 + 1)
− α4(α2 + 3)

4(α2 + 1)(α2 + 4)
< λ0 <

√

α2(1 − α2)

2(α2 + 1)
.

The rest of the spectrum is a continuous spectrum [−iα, iα].
(c). For any fixed α ∈ (0.5, 0.8469),

(2.4) lim
ǫ→0+

λ(ǫ) = λ0 .

(4) Finally, when ǫ = 0, the union of all the above pieces of continuous spectra
is the imaginary axis iR.

Remark 2.2. In the current periodic boundary condition case, viscosity does not
destablize the flow in contrast to the non-slip boundary condition case [24]. The
Orr-Sommerfeld equation and Rayleigh equation have the same periodic boundary
condition in the former case, and different number of boundary conditions in the
latter case.

The following invariant manifold theorem of the 2D NS at the fixed point
Ω = 2 cosx1 was also proved in [17].

Theorem 2.3 (Invariant Manifold Theorem [17]). For any α ∈ (0.5, 0.95), and
ǫ ∈ (0, ǫ∗(α)) where ǫ∗(α) > 0 satisfies (2.3), in a neighborhood of Ω = 2 cosx1 in
the Sobolev space Hℓ(T2) (ℓ ≥ 3), there are an 1-dimensional C∞ unstable manifold
and an 1-codimensional C∞ stable manifold.

One of the goals of the work [17] is to study the zero viscosity limit of the
invariant manifolds of the 2D NS. For this study, it is crucial to understand the
deformation of the linear spectra as ǫ→ 0+. Below we will study this numerically.

When k̂1 = 0 and k̂2 = 1, α = 0.7, the unique ǫ∗ in (2.3) belongs to the interval
0.332 < ǫ∗ < 0.339, such that when ǫ < ǫ∗, a positive eigenvalue appears. We test
this criterion numerically and find that it is very sharp even when the truncation of
the linear system (2.2) is as low as |n| ≤ 100. As ǫ→ 0+, we tested the truncation
of the linear system (2.2) up to |n| ≤ 1024 for α = 0.7, the patterns are all the
same. Below we present the case |n| ≤ 200 for which the pattern is more clear.

Figure 1 shows the case ǫ = 0.14 where there is one positive eigenvalue and all the
rest eigenvalues are negative. Figure 2 shows the case ǫ = 0.13 where a pair of
eigenvalues jumps off the real axis and becomes a complex conjugate pair. Figure
3 shows the case ǫ = 0.07 where another pair of eigenvalues jumps off the real axis
and becomes a complex conjugate pair. Figure 4 shows the case ǫ = 0.03 where
another pair of eigenvalues jumps off the real axis and becomes a complex conjugate
pair, while the former two pairs getting closer to each other. Figure 5 shows the
case ǫ = 0.0004 where many pairs of eigenvalues have jumped off the real axis and
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Figure 1. The eigenvalues of the linear system (2.2) when k̂1 = 0

and k̂2 = 1, α = 0.7, and ǫ = 0.14.

a bubble is formed. Figure 6 shows the case ǫ = 0.00013 where the bubble has
expanded. As ǫ → 0+, the limiting picture is shown in Figure 7. Setting ǫ = 0,

the spectrum of the line k̂1 = 0 and k̂2 = 1 of the linear Euler operator is shown
in Figure 8, where the segment on the imaginary axis is the continuous spectrum.
Comparing Figures 7 and 8, we see that the two eigenvalues represent “persistence”,
the vertical segment represents “condensation”, and the two horizontal segments

represent “singularity”. Next we study one more line: k̂1 = 0 and k̂2 = 2 (α = 0.7).
In this case, there is no unstable eigenvalue. Figure 9 shows the case ǫ = 1.5 where
all the eigenvalues are negative. As ǫ is decreased, the eigenvalues go through the
same process of jumping off the real axis and developing a bubble. Figure 10 shows
the case ǫ = 0.00025 where the bubble has expanded. As ǫ → 0+, the limiting
picture is similar to Figure 7 except that there is no persistent eigenvalue. The

cases k̂1 = 0 and k̂2 > 2 (α = 0.7) are all the same with the case k̂1 = 0 and k̂2 = 2
(α = 0.7). Figure 11 shows the limiting picture of the entire spectrum of the linear
NS operator as ǫ → 0+. Figure 12 shows the entire spectrum of the linear Euler
operator (ǫ = 0).

The fascinating deformation of the spectra as ǫ→ 0+ and the limiting spectral
picture clearly depict the nature of singular limit of the spectra as ǫ → 0+. In the
“singularity” part of the limit, there is a discrete set of values for the imaginary
parts of the eigenvalues, which represent decaying oscillations with a discrete set of
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Figure 2. The eigenvalues of the linear system (2.2) when k̂1 = 0

and k̂2 = 1, α = 0.7, and ǫ = 0.13.

frequencies. Overall, the “singularity” part represents the temporally irreversible
nature of the ǫ → 0+ limit, in contrast to the reversible nature of the linear Euler
equation (ǫ = 0).

2.2. A Cat’s Eye Fixed Point. In this subsection, we will study another
important fixed point – a cat’s eye fixed point. The periodic domain now is the
square, i.e. α = 1 (instead of 0.7). The cat’s eye fixed point in physical variable is
given by

(2.5) Ω = 2 cosmx1 + 2γ cosmx2 ,

where m is a positive integer, and γ ∈ (0, 1]. In terms of Fourier modes: Let
p = (m, 0) and q = (0,m), then the cat’s eye is given by

ω∗
p = 1, ω∗

−p = 1, ω∗
q = γ, ω∗

−q = γ ,

and all other ω∗
k’s are zero. The spectral equation for the linear 2D NS operator at

the Cat’s eye is then given by

λωk = A(p, k − p)ωk−p −A(p, k + p)ωk+p − ǫ|k|2ωk

+γA(q, k − q)ωk−q − γA(q, k + q)ωk+q ,(2.6)
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Figure 3. The eigenvalues of the linear system (2.2) when k̂1 = 0

and k̂2 = 1, α = 0.7, and ǫ = 0.07.

where

A(k, r) =

[

1

r21 + r22
− 1

k21 + k22

] ∣

∣

∣

∣

k1 r1
k2 r2

∣

∣

∣

∣

.

First we study the case of m = 1 and γ = 0.5. Changing the value of γ does
not affect the deformation patterns of the eigenvalues of the linear NS (2.6) as
ǫ → 0+. We truncate the system (2.6) via the Galerkin truncation |k1| ≤ 32 and
|k2| ≤ 32. This is the largest Galerkin truncation that we are able to compute in
a reasonable time. For smaller Galerkin truncations, the deformation patterns of
the eigenvalues are the same. When ǫ = 150, all the eigenvalues of the linear NS
(2.6) are negative as shown in Figure 13. When ǫ is decreased to ǫ = 120, a pair
of eigenvalues jumps off the real axis as shown in Figure 14. When ǫ is decreased
to ǫ = 80, three pairs of eigenvalues jump off the real axis as shown in Figure 15.
When ǫ is decreased to ǫ = 10, many pairs of eigenvalues have jumped off the real
axis and form several parabolas as shown in Figure 16. When ǫ is decreased to
ǫ = 1, many parabolas are formed as shown in Figure 17. The ǫ → 0+ limiting
picture of the eigenvalues of the linear NS (2.6) is that the eigenvalues are dense
on the entire left half plane as shown in Figure 18. The continuous spectrum of
the linear Euler, i.e. ǫ = 0 in (2.6), in any Sobolev space Hs(T2) where s is a
non-negative integer, is a vertical band of width 2sσ symmetric with respect to
the imaginary axis {λ : |Re(λ)| ≤ sσ} as shown in Figure 19, where σ > 0 is the
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Figure 4. The eigenvalues of the linear system (2.2) when k̂1 = 0

and k̂2 = 1, α = 0.7, and ǫ = 0.03.

largest Liapunov exponent of the vector field given by the cat’s eye (2.5) [29]. Thus
the width of the vertical band is proportional to the scale s of the Sobolev space
Hs(T2). The union of all such bands for all integers s ≥ 0 is the entire complex
plane. The eigenfunctions of the linear NS (2.6) when ǫ > 0 belong to Hs(T2)
for all integers s ≥ 0. All the eigenvalues of the linear NS (2.6) condense into the
entire left half plane – “condensation”. The right half plane (or right half of the
vertical band corresponding to Hs(T2)) represents “addition”. Thus the possible
instability hinted by the right half band of the continuous spectrum of linear Euler
in Hs(T2) can not be realized by real viscous fluids.

Next we study the case ofm = 2 and γ = 0.5. Changing the value of γ does not
affect the deformation patterns of the eigenvalues of the linear NS (2.6) as ǫ→ 0+.
We truncate the system (2.6) via the Galerkin truncation |k1| ≤ 32 and |k2| ≤ 32.
We increase the value of ǫ up to 2 × 104, there are still eigenvalues with nonzero
imaginary parts. These eigenvalues seem always complex no matter how large is
ǫ. The imaginary parts of these eigenvalues are unchanged between ǫ = 2 × 104

and ǫ = 800 as can be seen from Figures 20 and 21. Decreasing ǫ, the deformation
patterns are similar to those of m = 1. When ǫ = 0.2, many eigenvalues have
jumped off the real axis and form a dense parabolic region as shown in Figure 22.
Decreasing ǫ further, 6 eigenvalues with positive real parts appear, two of which
are real, and the rest four are complex. The limiting picture of the spectrum of
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Figure 5. The eigenvalues of the linear system (2.2) when k̂1 = 0

and k̂2 = 1, α = 0.7, and ǫ = 0.0004.

the linear NS operator (2.6) as ǫ → 0 is the same with the m = 1 case as shown
in Figure 18 except the extra six unstable eigenvalues. The continuous spectrum
of the linear Euler operator (2.6) where ǫ = 0 is the same with the m = 1 case as
shown in Figure 19. There is no analytical result on the eigenvalues of the linear
Euler operator (2.6) where ǫ = 0. The numerics indicates that the 6 eigenvalues in
the right half plane and other 6 eigenvalues in the left half plane, of the linear NS
operator (2.6) persist as ǫ → 0, and result in 6 eigenvalues in the right half plane
and their negatives for the linear Euler operator (2.6) where ǫ = 0.

3. The Heteroclinics Conjecture for 2D Euler Equation

Setting ǫ = 0 in the 2D Navier-Stokes equation (2.1), one gets the corresponding
2D Euler equation for which one has the following constants of motion:

∫

T2

|u|2dx ,
∫

T2

F (Ω)dx

where F is an arbitrary function. Consider the simple fixed point Ω = Γ cosx1
(Γ 6= 0 real constant). It has one unstable and one stable real eigenvalues which
are negative of each other. The rest of the spectrum is the entire imaginary axis
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Figure 6. The eigenvalues of the linear system (2.2) when k̂1 = 0

and k̂2 = 1, α = 0.7, and ǫ = 0.00013.

which is a continuous spectrum [10] [17]. We will use the constant of motion

G =

∫

T2

Ω2dx−
∫

T2

|u|2dx

to build a Melnikov integral for the corresponding 2D Navier-Stokes equation (2.1).
We will try to make use of the Melnikov integral as a measure of chaos and to
conduct a control of chaos, around the line of fixed points Ω = Γ cosx1 parametrized
by Γ. G is a linear combination of the kinetic energy and the enstrophy. The
gradient of G in Ω is given by

∇ΩG = 2(Ω +∆−1Ω)

which is zero along the line of fixed points Ω = Γ cosx1. We define the Melnikov
integral for the 2D NS (2.1) as

M =
α

8π2

∫ +∞

−∞

∫

T2

∇ΩG[∆Ω + f(t, x) + bδ̃(x)]dxdt(3.1)

= M0 + bMc ,
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Figure 7. The (ǫ→ 0+) limiting picture of the eigenvalues of the

linear system (2.2) when k̂1 = 0 and k̂2 = 1, and α = 0.7.

where

M0 =
α

4π2

∫ +∞

−∞

∫

T2

(Ω +∆−1Ω)[∆Ω + f(t, x)]dxdt ,

Mc =
α

4π2

∫ +∞

−∞

∫

T2

(Ω +∆−1Ω)δ̃(x)dxdt .

The question is: Where do we evaluate M? We propose the following conjecture.

• The Heteroclinics Conjecture: There is a heteroclinic orbit of the 2D Euler
equation that connects Ω = Γ cosx1 and −Ω.

The rationality of this conjecture has been discussed in the Introduction. If this
conjecture is true, we can evaluate M along the heteroclinic orbit. Also, under
the perturbation of the ǫ term, the heteroclinic orbits may break and re-connect
somewhere, thereby generating the heteroclinic chaos. In Appendix A, we show
that one can use a Melnikov integral as a criterion to rigorously prove the existence
chaos, and to conduct control of chaos. In the current case of 2D NS, the phase
space is much more complicated. We do not expect the above Melnikov integral to
be a rigorous measure of chaos, rather we believe that it is still relevant to chaos
and control of chaos. In fact, often the chaos in 2D NS is a transient chaos. In
general, the zeros of a Melnikov integral do not immediately imply the existence of
heteroclinic or homoclinic chaos, rather they imply the intersections of the broken
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Figure 8. The spectrum of the linear system (2.2) when ǫ = 0,

k̂1 = 0 and k̂2 = 1, and α = 0.7.

heteroclinic orbit with certain center-stable manifold [16]. In fact, the Melnikov
integral represents the leading order distance between the broken heteroclinic orbit
and the center-stable manifold [16]. Here for 2D NS, rigorous justification even
on the above claim is an open problem due to the fact that existence of invariant
manifolds for 2D Euler is an open problem.

The 2D Euler equation has several symmetries:

(1) Ω(t, x1, x2) −→ Ω(t,−x1,−x2),
(2) Ω(t, x1, x2) −→ −Ω(−t, x1, x2),
(3) Ω(t, x1, x2) −→ −Ω(t,−x1, x2), or Ω(t, x1, x2) −→ −Ω(t, x1,−x2),
(4) Ω(t, x1, x2) −→ Ω(t, x1 + θ1, x2 + θ2), ∀θ1, θ2.

The first symmetry allows us to work in an invariant subspace in which all the ωk’s
are real-valued. This corresponds to the cosine transform in (3.2). In this paper, we
will always work in the invariant subspace where all the ωk’s are real-valued. The
second symmetry maps the unstable manifold of Γ cosx1 into the stable manifold
of −Γ cosx1. The third symmetry maps the unstable manifold of Γ cosx1 into the
unstable manifold of −Γ cosx1. By choosing θ1 = π, the fourth symmetry maps the
unstable manifold of Γ cosx1 into the unstable manifold of −Γ cosx1. To maintain
the cosine transform, the θ1 and θ2 in the fourth symmetry can only be π and π/α.

If the heteroclinics conjecture is true, there is in fact a pair of heteroclinic cycles
due to the above symmetries. Indeed, if there is a heteroclinic orbit asymptotic to
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Figure 9. The eigenvalues of the linear system (2.2) when k̂1 = 0

and k̂2 = 2, α = 0.7, and ǫ = 1.5.

Γ cosx1 and −Γ cosx1 as t → −∞ and +∞, then the third symmetry generates
another heteroclinic orbit asymptotic to −Γ cosx1 and Γ cosx1 as t→ −∞ and +∞.
Together they form a heteroclinic cycle. Finally the second symmetry generates
another heteroclinic cycle. That is, we have a pair of heteroclinic cycles.

Using the Fourier series

(3.2) Ω =
∑

k∈Z2/{0}
ωke

i(k1x1+αk2x2) ,

where ω−k = ωk and F−k = Fk, one gets the kinetic form of the 2D Euler equation

ω̇k =
∑

k=m+n

A(m,n) ωmωn ,

where

A(m,n) =
α

2

[

1

n2
1 + (αn2)2

− 1

m2
1 + (αm2)2

] ∣

∣

∣

∣

m1 n1

m2 n2

∣

∣

∣

∣

.

Denote by Σ the hyperplane

Σ = {ω | ωk = 0 , ∀ even k2} .

Notice that the existence of invariant manifolds around the fixed point Ω = Γ cosx1
is an open problem. We have the following theorem.



NAVIER-STOKES AND EULER EQUATIONS 17

−7 −6 −5 −4 −3 −2 −1 0
−1.5

−1

−0.5

0

0.5

1

1.5

Re(λ)

Im
(λ

)

Figure 10. The eigenvalues of the linear system (2.2) when k̂1 = 0

and k̂2 = 2, α = 0.7, and ǫ = 0.00025.

Theorem 3.1. Assume that the fixed point Ω = Γ cosx1 has a 1-dimensional local
unstable manifold Wu, and Wu ∩ Σ 6= ∅; then the heteroclinics conjecture is true,
i.e. there is a heteroclinic orbit to the 2D Euler equation that connects Ω = Γ cosx1
and −Ω.

Proof. Let Ω(t, x1, x2) be an orbit in Wu parametrized such that

Ω(0, x1, x2) ∈ Σ .

Then by the definition of Σ,

(3.3) Ω(0, x1, x2) = −Ω(0, x1, x2 + π/α) .

By the second and fourth symmetries,

−Ω(−t, x1, x2 + π/α)

is in the stable manifold of −Ω. Thus

Ω(t, x1, x2) and − Ω(−t, x1, x2 + π/α)

are connected at t = 0, and together they form a heteroclinic orbit that connects
Ω = Γ cosx1 and −Ω. �



18 YUEHENG LAN AND Y. CHARLES LI

Figure 11. The (ǫ→ 0+) limiting picture of the entire spectrum
of the linear NS operator (2.2) when α = 0.7.

4. Numerical Verification of the Heteroclinics Conjecture for 2D Euler

Equation

Besides the symmetries mentioned in last section, we will also make use of the
conserved quantities: kinetic energy E =

∑ |k|−2ω2
k (where |k|2 = k21 + α2k22) and

enstrophy S =
∑

ω2
k, which will survive as conserved quantities for any symmetric

Galerkin truncation, to help us to track the heteroclinic orbit. We will only consider
the case that all the ωk’s are real-valued (i.e. cos-transform).

We make a Galerkin truncation by keeping modes: {|k1| ≤ 2, |k2| ≤ 2}, which
results in a 12 dimensional system. We choose α = 0.7. After careful consideration
of the above mentioned symmetries and conserved quantities (E = S = 1), we
discover the following initial condition that best tracks the heteroclinic orbit:

ω(j,0) = ω(j,2) = 0 , ∀j ,
ω(0,1) = 0.603624 , ω(1,1) = −ω(−1,1) = 0.357832 ,(4.1)

ω(2,1) = ω(−2,1) = 0.435632 .

Starting from this initial condition, we calculate the solution in both forward and
backward time for the same duration of T = 11.8, and we discover the approximate
heteroclinic orbit asymptotic to 2 cosx1 and −2 cosx1 as t → −∞ and +∞, as
shown in Figure 23. Then the third symmetry generates another heteroclinic orbit
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Figure 12. The spectrum of the linear Euler operator (2.2) where
ǫ = 0 and α = 0.7.

asymptotic to −2 cosx1 and 2 cosx1 as t → −∞ and +∞. Together they form
a heteroclinic cycle. Finally the second symmetry generates another heteroclinic
cycle. That is, we have a pair of heteroclinic cycles. Notice also that the approxi-
mate heteroclinic orbit in Figure 23 has an extra loop before landing near −2 cosx1.
This is due to the k2 = 2 modes in the Galerkin truncation. For smaller Galerkin
truncations, the heteroclinic orbits can be calculated exactly by hand and have no
such extra loop [12] [22], and existence of chaos generated by the heteroclinic orbit
can be rigorously proved in some case [22].

Remark 4.1. We have also conducted numerical experiments on Galerkin trun-
cations by keeping more modes: {|k1| ≤ 4, |k2| ≤ 4} and {|k1| ≤ 8, |k2| ≤ 8}. We
found orbits that have similar behavior as the approximate heteroclinic orbit in
Figure 23, but their approximations to heteroclinics are not as good as the one in
Figure 23.

5. Melnikov Integral and Numerical Simulation of Chaos in 2D

Navier-Stokes Equation

Without the control (b = 0), using Fourier series for the 2D NS equation (2.1),

Ω =
∑

k∈Z2/{0}
ωke

i(k1x1+αk2x2) , f =
∑

k∈Z2/{0}
Fke

i(k1x1+αk2x2) ,
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Figure 13. The spectrum of the linear NS operator (2.6) where
ǫ = 150, m = 1 and γ = 0.5.

where ω−k = ωk and F−k = Fk (in fact, we always work in the subspace where all
the ωk’s and Fk’s are real-valued), one gets the kinetic form of 2D NS

ω̇k =
∑

k=m+n

A(m,n) ωmωn + ǫ
(

−
[

k21 + (αk2)
2
]

ωk + Fk

)

,

where

A(m,n) =
α

2

[

1

n2
1 + (αn2)2

− 1

m2
1 + (αm2)2

] ∣

∣

∣

∣

m1 n1

m2 n2

∣

∣

∣

∣

.

For the numerical simulation of chaos, we continue the study on the Galerkin
truncation: {|k1| ≤ 2, |k2| ≤ 2}. We will use the Melnikov integral (3.1) to test the
existence of chaos. We always start from the initial condition (4.1). We choose the
external force

(5.1) f = a sin t cos(x1 + αx2) .

Then the Melnikov integral (3.1) has the expression

(5.2) M0 =M1 + a
√

M2
2 +M2

3 sin(t0 + θ) ,
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Figure 14. The spectrum of the linear NS operator (2.6) where
ǫ = 120, m = 1 and γ = 0.5.

where

sin θ =
M3

√

M2
2 +M2

3

, cos θ =
M2

√

M2
2 +M2

3

,

M1 =
α

4π2

∫ +∞

−∞

∫ 2π/α

0

∫ 2π

0

(Ω +∆−1Ω)∆Ω dx1dx2dt ,

M2 =
α

4π2

∫ +∞

−∞

∫ 2π/α

0

∫ 2π

0

(Ω +∆−1Ω) cos t cos(x1 + αx2) dx1dx2dt ,

M3 =
α

4π2

∫ +∞

−∞

∫ 2π/α

0

∫ 2π

0

(Ω +∆−1Ω) sin t cos(x1 + αx2) dx1dx2dt ,

where Ω(t) is the approximate heteroclinic orbit in Figure 23 with Ω(0) given
by (4.1). The time integral is in fact over the interval [−11.8, 11.8] rather than
(−∞,∞). Direct numerical computation gives that

M1 = −29.0977 , M2 = −0.06754695 , M3 = 0 .

Setting M0 = 0 in (5.2), we obtain that

sin(t0 + π) =
430.77741

a
.
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Figure 15. The spectrum of the linear NS operator (2.6) where
ǫ = 80, m = 1 and γ = 0.5.

Thus, when

(5.3) |a| > 430.77741 ,

there are solutions toM0 = 0. Next we will test the Melnikov criterion (5.3) and see
if it is related to chaos. We define an average Liapunov exponent σ in the following
manner: For a large time interval t ∈ [0, T ], let t0 = T and

tn = T + n2π , where 0 ≤ n ≤ N , and N = 103 or 2× 103 .

We define

σn =
1

2π
ln

‖∆ω(tn + 2π)‖
‖∆ω(tn)‖

.

Then the average Liapunov exponent σ is given by

σ =
1

N

N−1
∑

n=0

σn .

We introduce the Poincaré return map on the section given by ω(1, 0) = 0 and
we only record one direction intersection (from ω(1, 0) positive to negative). For a
large time interval t ∈ [0, T ], we only record the last 1000 intersections and we use
• to denote the intersections with the two heteroclinic cycles. All the numerical
simulations start from the initial condition (4.1). The average Liapunov exponent
computed here depends on the time interval, the ensemble of average, and computer
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Figure 16. The spectrum of the linear NS operator (2.6) where
ǫ = 10, m = 1 and γ = 0.5.

accuracy. It only makes sense when it is compared in the same setting. When ǫ = 0,
there is no dissipation and no forcing. For a large time interval t ∈ [0, T ], the average
Liapunov exponent σ is as follows:

T = 4× 104π T = 8× 104π T = 12× 104π T = 80× 104π ,
σ = 0.042 σ = 0.0344 σ = 0.044 σ = 0.0848 .

Figures 24-25 are the corresponding Poincaré return map plots. The dynamics is
chaotic. It seems that the life time of the chaos is infinite (i.e. non-transient chaos).

When ǫ > 0, we find that in all the cases that we tested, the dynamics is
always a transient chaos. The Melnikov criterion is only some sort of necessary
condition for the existence of heteroclinic chaos [16]. When the Melnikov integral
is zero, it gives an indication of a re-intersection of the broken heteroclinic orbit
with certain large dimensional center-stable manifold [16]. We believe that such
a re-intersection will be reflected by the Liapunov exponent as inducing transient
chaos. When ǫ = 10−5, a ∈ [0, 1208], and T = 4× 104π, we find that

σ ∼ 10−4 .
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Figure 17. The spectrum of the linear NS operator (2.6) where
ǫ = 1, m = 1 and γ = 0.5.

For instances,
(5.4)
a = 400 a = 430 a = 440 a = 650 a = 850 ,
σ = 4.9× 10−4 σ = 2.6× 10−4 σ = 5.3× 10−4 σ = 5.9× 10−4 σ = 1.0× 10−4 .

But we discover a sharp jump of σ near a = 1208 as shown below:
(5.5)

T = 2× 104π T = 4× 104π T = 8× 104π T = 8× 105π ,
a = 1208 σ = 3.6× 10−4 σ = 3.9× 10−4 σ = 4.1× 10−4 σ = 0 ,
a = 1208.2 σ = 6.1× 10−2 σ = 6.1× 10−2 σ = 2.5× 10−2 σ = 0 .

For T = 4×104π, the corresponding Poincaré return map plots are shown in Figures
26-27. When T = 80 × 104π, the chaos for the a = 1208.2 case also disappears.
When a > 1208.2, σ can still be ∼ 10−4. But we did not observe any sharp jump of
σ. We believe that the sharp jump of σ near a = 1208 is due to the generation of
new transient heteroclinic chaos. Our Melnikov integral calculation predicts when
|a| > 430.77741, the broken heteroclinic orbit re-intersects with certain center-
stable manifold. This does not mean that new heteroclinic orbit is automatically
generated. Perhaps near a = 1208, new heteroclinic cycle is generated and leads to
transient heteroclinic chaos. Since our analysis cannot access such information in
the phase space, our comments here are purely speculations.
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Figure 18. The limiting picture of the spectrum of the linear NS
operator (2.6) as ǫ→ 0, where m = 1 and γ = 0.5.

Remark 5.1. We have also conducted numerical experiments on Galerkin trun-
cations by keeping more modes: {|k1| ≤ 4, |k2| ≤ 4} and {|k1| ≤ 8, |k2| ≤ 8}. We
found that when ǫ = 0, the strength of chaos increases as the modes are increased:
For T = 8× 103π,

|k1|, |k2| ≤ 2 |k1|, |k2| ≤ 4 |k1|, |k2| ≤ 8 ,
σ = 4.7× 10−2 σ = 1.3× 10−1 σ = 1.7× 10−1 .

Nevertheless, this does not hint that the dynamics of 2D Euler equation is chaotic
since all Galerkin truncations are perturbations of the 2D Euler equation. In fact,
higher single Fourier modes (as fixed points) have more eigenvalues with positive
real parts.

When ǫ > 0, the strength of chaos decreases as the modes are increased. Higher
modes have more dissipations. Also all the chaos are transient. After enough time
(∼ 2 × 104π), the ǫ = 0 chaos is almost smeared away by dissipation, we believe
that at this stage the re-intersected heteroclinic orbits play a role and can enhance
the transient chaos. It is this stage where the Melnikov calculation is effective.
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Figure 19. The spectrum of the linear Euler operator (2.6) where
ǫ = 0, m = 1 and γ = 0.5.

6. Melnikov Integral and Control of Chaos in 2D Navier-Stokes

Equation

Now we turn on the control (b 6= 0). we continue the study on the Galerkin

truncation: {|k1| ≤ 2, |k2| ≤ 2}. We choose δ̃(x) as follows

(6.1) δ̃(x) =
∑

k

ei(k1x1+αk2x2) .

Then the Melnikov integral M in (3.1) is given by

(6.2) M =M0 + bMc ,

where M0 is given by (5.2) and

Mc =
α

4π2

∫ +∞

−∞

∫ 2π/α

0

∫ 2π

0

(Ω +∆−1Ω)δ̃(x) dx1dx2dt ,

evaluated along the approximate heteroclinic orbit in Figure 23. We find that

Mc = −18.6884 .

Thus

M = −29.0977− 18.6884 b + 0.06754695 a sin(t0 + π) .
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Figure 20. The spectrum of the linear NS operator (2.6) where
ǫ = 20000, m = 2 and γ = 0.5.

When

b = −1.557 ,

the Melnikov integral M has roots for any a 6= 0.
All the numerical simulations start from the initial condition (4.1). When

ǫ = 10−5, b = −1.557, and T = 104π, we find that:

a = 1 a = 10 a = 200 a = 400 a = 800 ,
σ = 7.1× 10−4 σ = 8.8× 10−4 σ = 9.3× 10−4 σ = 9.0× 10−4 σ = 6.6× 10−4 .

a = 1000 a = 1208 a = 1208.2 a = 1500 a = 3000 ,
σ = 8.6× 10−4 σ = 8.1× 10−4 σ = 8.4× 10−4 σ = 8.6× 10−4 σ = 7.7× 10−4 .

In comparison with (5.4), the values of the Liapunov exponents under the control
are doubled. Thus the control seems enhancing chaos but not dramatically. We did
not observe the sharp jump of the values of σ around a = 1208 as in the b = 0 case
(5.5). Here the control theory is not as rigorous as that of sine-Gordon system in
Appendix A. But we believe that the Melnikov integral can play a significant role
in the control of chaos in NS equation. After all, the chaos in NS is generated by
instabilities characterized by unstable eigenvalues. And these unstable eigenvalues
persist for Euler equation as shown in a previous section. For Euler equation,
these unstable eigenvalues characterize hyperbolic structures which are very likely
of heteroclinics type due to infinitely many constants of motion. Thus Melnikov
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Figure 21. The spectrum of the linear NS operator (2.6) where
ǫ = 800, m = 2 and γ = 0.5.

integrals supported upon these hyperbolic structures should play an important role
in predicting and controling chaos.

7. Zero Viscosity Limit of the Spectrum of 3D Linear Navier-Stokes

Operator

We will study the following form of 3D Navier-Stokes equation with a control,

(7.1) ∂tΩ + (u · ∇)Ω− (Ω · ∇)u = ǫ[∆Ω + f(t, x) + bδ̃(x)] ,

where u = (u1, u2, u3) is the velocity, Ω = (Ω1,Ω2,Ω3) is the vorticity, ∇ =
(∂x1

, ∂x2
, ∂x3

), Ω = ∇ × u, ∇ · u = 0, ǫ = 1/Re is the inverse of the Reynolds
number, ∆ is the 3D Laplacian, and f(t, x) = (f1(t, x), f2(t, x), f3(t, x)) is the ex-

ternal force, bδ̃(x) is the spatially localized control, and b is the control parameter.
We also pose periodic boundary condition of period (2π/α, 2π/β, 2π), i.e. the 3D

NS is defined on the 3-torus T3. We require that u, Ω, f and δ̃ all have mean zero.
In this case, u can be uniquely determined from Ω by Fourier transform:

U1(k) = i|k|−2[k2ω3(k)− k3ω2(k)] ,

U2(k) = i|k|−2[k3ω1(k)− k1ω3(k)] ,

U3(k) = i|k|−2[k1ω2(k)− k2ω1(k)] ,
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Figure 22. The spectrum of the linear NS operator (2.6) where
ǫ = 0.2, m = 2 and γ = 0.5.

which can be rewritten in the compact form

Uℓ(k) = i|k|−2εℓmnkmωn(k) ,

where εℓmn is the permutation symbol (ℓ,m, n = 1, 2, 3),

k = (k1, k2, k3) = (ακ1, βκ2, κ3) , κ = (κ1, κ2, κ3) ,

uℓ(x) =
∑

κ∈Z3/{0}
Uℓ(k)e

ik·x , Ωℓ(x) =
∑

κ∈Z3/{0}
ωℓ(k)e

ik·x .

Using these Fourier transforms together with

fℓ(x) =
∑

κ∈Z3/{0}
Fℓ(k)e

ik·x , δ̃ℓ(x) =
∑

κ∈Z3/{0}
∆ℓ(k)e

ik·x ,

we can rewrite the 3D NS (7.1) into the kinetic form

∂tωℓ(k) + ks
∑

k=k̃+k̂

|k̃|−2k̃mωn(k̃)[εℓmnωs(k̂)− εsmnωℓ(k̂)]

= ǫ[−|k|2ωℓ(k) + Fℓ(k) + b∆ℓ(k)] .(7.2)

A popular example of fixed points of the 3D NS (7.1) is the so-called ABC flow [2]

(7.3) u1 = A sinx3 +C cosx2, u2 = B sinx1 +A cosx3, u3 = C sinx2 +B cosx1,
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Figure 23. The approximate heteroclinic orbit projected onto the
(ω(1,0), ω(1,1))-plane in the case of the {|k1| ≤ 2, |k2| ≤ 2} Galerkin
truncation of the 2D Euler equation.

where α = β = 1 and Ω = u = f and b = 0. The popularity comes from the fact
that the Lagrangian fluid particle flow generated by the vector field (7.3) can still
be chaotic [2]. On the other hand, in Appendix B, we prove that the Lagrangian
flow generated by any solution to the 2D Euler equation is always integrable.

7.1. A 3D Shear Fixed Point. Below we will study the simplest fixed point
– the 3D shear flow (which is also a special case of the ABC flow (7.3) where A = 2
and B = C = 0):

(7.4) Ω1 = 2 sinx3 , Ω2 = 2 cosx3 , Ω3 = 0 .

Let p = (0, 0, 1), the Fourier transform ω∗ of the fixed point is given by:

ω∗
1(p) = −i, ω∗

2(p) = 1, ω∗
1(−p) = i, ω∗

2(−p) = 1, ω∗
3(p) = ω∗

3(−p) = 0,

and ω∗
ℓ (k) = 0, ∀k 6= p or − p. We choose α = 0.7 and β = 1.3 hoping that the

fixed point ω∗ has only one unstable eigenvalue. The spectral equations of the 3D
linear NS operator at the fixed point ω∗ are given by

[(k1 + ik2)− ik2|k − p|−2]ω1(k − p)

+[i|k − p|−2k1 + i|k − p|−2(k1 + ik2)(k3 − 1)]ω2(k − p)

+[−1− ik2(k1 + ik2)|k − p|−2]ω3(k − p) + ǫ|k|2ω1(k)

+[−(k1 − ik2)− ik2|k + p|−2]ω1(k + p)

+[i|k + p|−2k1 − i|k + p|−2(k1 − ik2)(k3 + 1)]ω2(k + p)

+[−1 + ik2(k1 − ik2)|k + p|−2]ω3(k + p) = −λω1(k) ,
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Figure 24. The Poincaré return map plot projected onto the
plane (ω(0,1), ω(1,1))-plane, in the case of the {|k1| ≤ 2, |k2| ≤ 2}
Galerkin truncation of the 2D Euler equation (i.e. ǫ = 0), where
t ∈ [0, T ], T = 4 × 104π, only the last 1000 intersections are
recorded.

[k2|k − p|−2 − i(k3 − 1)(k1 + ik2)|k − p|−2]ω1(k − p)

+[(k1 + ik2)− k1|k − p|−2]ω2(k − p)

+[−i+ ik1(k1 + ik2)|k − p|−2]ω3(k − p) + ǫ|k|2ω2(k)

+[−k2|k + p|−2 + i(k3 + 1)(k1 − ik2)|k + p|−2]ω1(k + p)

+[−(k1 − ik2) + k1|k + p|−2]ω2(k + p)

+[i− ik1(k1 − ik2)|k + p|−2]ω3(k + p) = −λω2(k) ,

[ik2(k1 + ik2)|k − p|−2]ω1(k − p) + [−ik1(k1 + ik2)|k − p|−2]ω2(k − p)

+[k1 + ik2]ω3(k − p) + ǫ|k|2ω3(k) + [−ik2(k1 − ik2)|k + p|−2]ω1(k + p)

+[ik1(k1 − ik2)|k + p|−2]ω2(k + p) + [−(k1 − ik2)]ω3(k + p) = −λω3(k) .

Thus the 3D linear NS operator also decouples according to the lines k̂+jp (j ∈ Z).
Next we study the zero viscosity limit of the spectrum of this 3D linear NS operator.

When k̂ = (α, 0, 0), we have tested the truncation of the line k̂+ jp up to |j| ≤ 400.
The deformation pattern stays the same. Below we present the case |j| ≤ 100 for
which the pictures are more clear. Figure 28 shows the case ǫ = 2.0 where all
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Figure 25. The same as Figure 24, except T = 80× 104π.

the eigenvalues are negative. Figure 29 shows the case ǫ = 1.8 where a pair of
eigenvalues jumps off the real axis. When ǫ ≤ 0.66, a unique positive eigenvalue
appears. Figure 28 shows the case ǫ = 0.0007 where a bubble has developed.
As ǫ → 0+, the limiting picture is the same with Figure 7. When ǫ = 0, The
spectrum picture is the same with Figure 8. All other decoupled systems have the
same bifurcation patterns but without the pair of persistent eigenvalues. For the
entire spectrum of the 3D linear NS operator, the limiting picture is the same with
Figure 11 as ǫ → 0+; and the spectrum is the same with Figure 12 when setting
ǫ = 0 [28]. It seems that the Unstable Disk Theorem [10] of the 2D linear Euler

case is still valid: |k̂ + jp| < |p| for some j, implies that there is an eigenvalue of

positive real part; while |k̂ + jp| > |p| for all j, implies that there is no eigenvalue
of positive real part.

7.2. The ABC Fixed Point. In this case, the periodic domain is the cube,
i.e. α = β = 1. The ABC flow is given specifically by

Ω∗
1 = A sinmx3+C cosmx2, Ω

∗
2 = B sinmx1+A cosmx3, Ω

∗
3 = C sinmx2+B cosmx1,

wherem is a positive integer, and (A,B,C) are real parameters. In terms of Fourier
modes: Let p = (m, 0, 0), q = (0,m, 0), and r = (0, 0,m), then the ABC flow is
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Figure 26. The same as Figure 24, except ǫ = 10−5, a = 1208,
and T = 2× 104π.

given by

ω∗
1(q) =

1

2
C, ω∗

1(−q) =
1

2
C,

ω∗
1(r) =

1

2i
A, ω∗

1(−r) = − 1

2i
A,

ω∗
2(p) =

1

2i
B, ω∗

2(−p) = − 1

2i
B,

ω∗
2(r) =

1

2
A, ω∗

2(−r) =
1

2
A,

ω∗
3(p) =

1

2
B, ω∗

3(−p) =
1

2
B,

ω∗
3(q) =

1

2i
C, ω∗

3(−q) = − 1

2i
C.

The spectral equation for the linear 3D NS operator at the ABC flow is then given
by

λωℓ(k) = −ǫ|k|2ωℓ(k)− ks
∑

k=k̃+k̂

[

|k̃|−2k̃mω
∗
n(k̃)[εℓmnωs(k̂)− εsmnωℓ(k̂)]

+|k̃|−2k̃mωn(k̃)[εℓmnω
∗
s(k̂)− εsmnω

∗
ℓ (k̂)]

]

.
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Figure 27. The same as Figure 24, except ǫ = 10−5, a = 1208.2,
and T = 2× 104π.

Calculating the eigenvalues of the Galerkin truncations of this system becomes
challenging. Beyond the size {|kn| ≤ 6, n = 1, 2, 3}, the computing time is too long.
Below we present some pictures for the Galerkin truncation {|kn| ≤ 4, n = 1, 2, 3}.
We choose m = 1, A = 1.2, B = 0.7 and C = 0.9. When ǫ = 20000, all the
eigenvalues are negative as shown in Figure 31. As ǫ is decreased, eigenvalues start
to jump off the real axis and form vertical lines as shown in Figure 32 when ǫ = 10,
in contrast to the parabolas in the cases of cat’s eye and 3D shear. When ǫ is
decreased to ǫ = 0.1, many eigenvalues move to the right half plane, i.e. there are
many unstable eigenvalues as shown in Figure 33. Notice that for the full linear NS
operator, there should be an infinite tail of negative eigenvalues to the left. When
ǫ = 0, the eigenvalues of the Galerkin truncation of linear NS are symmetric with
respect to the real and imaginary axes as shown in Figure 34. When ǫ = 0, the full
linear Euler operator at the ABC flow has a continuous spectrum similar to that at
the cat’s eye [28]. That is, the continuous spectrum of the linear Euler at the ABC
flow, in any Sobolev space Hs(T2) where s is a non-negative integer, is a vertical
band of width 2sσ symmetric with respect to the imaginary axis {λ : |Re(λ)| ≤ sσ}
as shown in Figure 19, where σ > 0 is the largest Liapunov exponent of the vector
field given by ABC flow. Thus the width of the vertical band is proportional to
the scale s of the Sobolev space Hs(T2) [28]. The union of all such bands for all
integers s ≥ 0 is the entire complex plane. The eigenfunctions of the linear NS
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Figure 28. The eigenvalues of the line k̂ = (α, 0, 0) are all nega-
tive when ǫ = 2.0.

at the ABC flow when ǫ > 0 belong to Hs(T2) for all integers s ≥ 0. As ǫ is
decreased, the eigenvalues move into the right half plane. The ǫ → 0+ limiting
picture of the eigenvalues of the linear NS at the ABC flow is that the eigenvalues
are dense on the entire plane, in contrast to the left half plane in the case of cat’s
eye as shown in Figure 18. That is, all the eigenvalues of the linear NS at the ABC
flow condense into the entire plane – “condensation”. Thus the possible instability
hinted by the right half band of the continuous spectrum of linear Euler in Hs(T2)
may be realized by real viscous fluids in this case in contrast to the cat’s eye case.

8. Numerical Verification of the Heteroclinics Conjecture for 3D Euler

Equations

For 3D Euler equations, one can also pose the heteroclinics conjecture.

• The Heteroclinics Conjecture: There is a heteroclinic orbit of the 3D Euler
equations that connects Ω (7.4) and −Ω.

As discussed in the Introduction, the rationality of this conjecture comes from the
fact that 3D Euler equations have a Lax pair [23]. Below we will verify this con-
jecture for the Galerkin truncation: |κn| ≤ 1 (n = 1, 2, 3) where k = (ακ1, βκ2, k3).
Even though this is the smallest Galerkin truncation, the dimension of the resulting
system is still very large. For this Galerkin truncation, the fixed point (7.4) is still a
fixed point. The linearized Galerkin truncation operator at this fixed point can be
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Figure 29. A pair of eigenvalues of the line k̂ = (α, 0, 0) jumps
off the real axis when ǫ = 1.8.

obtained by the corresponding Galerkin truncation the 3D linear Euler operator. In

this case, the line segment labeled by k̂ = (α, 0, 0) (ǫ = 0) has a positive eigenvalue
λ = 0.5792, and the corresponding eigenvector v is given by:

ω1(1, 0,−1) = 0.328919− i 0.246347, ω2(1, 0,−1) = −0.246347− i 0.328919,

ω3(1, 0,−1) = 0.230243− i 0.172443, ω1(1, 0, 0) = 0,

ω2(1, 0, 0) = −0.19583− i 0.26147,

ω3(1, 0, 0) = 0.183029− i 0.137081, ω1(1, 0, 1) = 0.328919− i 0.246347,

ω2(1, 0, 1) = 0.246347+ i 0.328919, ω3(1, 0, 1) = −0.230243+ i 0.172443,

and all other ωℓ(k)’s are zero. Starting from the initial condition

(8.1) ω = ω∗ + 10−3v ,

where ω∗ is the Fourier transform of the fixed point (7.4), the approximate hete-
roclinic orbit reaches order ∼ 10−3 neighborhood of −ω∗ during the time interval
[0, 29.33]. This approximate heteroclinic orbit is the lower branch of the approxi-
mate heteroclinic cycle shown in Figure 35. Notice that the approximate hetero-
clinic orbit here does not have the extra loop as in Figure 23. When more modes
are included in the Galerkin truncation, extra loops may be generated.
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Figure 30. A bubble of eigenvalues of the line k̂ = (α, 0, 0) has
developed when ǫ = 0.0007.

9. Melnikov Integral and Numerical Simulation of Chaos in 3D

Navier-Stokes Equation

Setting ǫ = 0 in the 3D NS (7.1), one gets the corresponding 3D Euler equation
for which one has the following constants of motion:

E =

∫

T3

|u|2dx , H =

∫

T3

u · Ωdx

where E is the kinetic energy and H is the helicity. We will use the constant of
motion

G = E −H =

∫

T3

|u|2dx−
∫

T3

u · Ωdx

to build a Melnikov integral for the corresponding 3D Navier-Stokes equation (7.1).
We will try to make use of the Melnikov integral as a measure of chaos and to
conduct a control of chaos, around the 3D shear flow (7.4). The gradient of G in u
or Ω is given by

∇uG = 2(u− Ω) , ∇ΩG = 2 curl−1(u − Ω) ,
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Figure 31. The eigenvalues of the (Galerkin truncation of) linear
NS at the ABC flow when ǫ = 20000.

where curl = ∇× . The gradient is zero at the 3D shear flow (7.4). We define the
Melnikov function for the 3D NS (7.1) as

M =
αβ

16π3

∫ +∞

−∞

∫

T3

∇ΩG[∆Ω + f(t, x) + bδ̃(x)]dxdt

=
αβ

16π3

∫ +∞

−∞

∫

T3

2 curl−1(u− Ω)[∆Ω + f(t, x) + bδ̃(x)]dxdt .

Next we conduct numerical simulations on the Galerkin truncation |κn| ≤ 1
(n = 1, 2, 3). When ǫ = 0, the Liapunov exponent σ = 0 for all the numerical tests
that we run. This indicates that there is no chaos when ǫ = 0. Often the smallest
Galerkin truncation is an integrable system [12] [22]. In such a circumstance, the
Melnikov integral represents the leading order term of the distance between the
broken heteroclinic orbit and the center-stable manifold of the fixed point. But the
dimension of the center-stable manifold is large. The zero of the Melnikov inte-
gral implies that the unstable manifold in which the broken heteroclinic orbit lives,
intersects with the center-stable manifold. Therefore, there is a new heteroclinic
orbit which lives in the intersection. Such a heteroclinic orbit does not immediately
imply the existence of chaos, even though it may lead to some transient chaos char-
acterized by finite time positive Liapunov exponent (infinite time positive Liapunov
exponent is zero). To compute the Melnikov integral, we choose the external force
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Figure 32. The eigenvalues of the (Galerkin truncation of) linear
NS at the ABC flow when ǫ = 10.

and control as follows

f1 = a sin t cos(x1 + αx2) , f2 = f3 = 0 ,

δ̃1(x) =
∑

κ

eik·x , δ̃2 = δ̃3 = 0 ,

where the sum is over the Galerkin truncation. Then the Melnikov integral has the
expression

(9.1) M =M1 + a
√

M2
2 +M2

3 sin(t0 + θ) + bM4 ,
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Figure 33. The eigenvalues of the (Galerkin truncation of) linear
NS at the ABC flow when ǫ = 0.1.

where

sin θ =
M3

√

M2
2 +M2

3

, cos θ =
M2

√

M2
2 +M2

3

,

M1 = −
∫ +∞

−∞

∑

k

Re
{

iεℓmnkm(i|k|−2εnsrksωr − ωn)ωℓ(k)
}

dt ,

M2 =

∫ +∞

−∞
cos t Re

{

i|k|−2ε1mnkm(i|k|−2εnsrksωr − ωn)
}

k=(α,0,1)
dt ,

M3 =

∫ +∞

−∞
sin t Re

{

i|k|−2ε1mnkm(i|k|−2εnsrksωr − ωn)
}

k=(α,0,1)
dt ,

M4 =

∫ +∞

−∞

∑

k

Re
{

i|k|−2ε1mnkm(i|k|−2εnsrksωr − ωn)
}

dt ,

where the sum is over the Galerkin truncation, all the integrals are evaluated along
the lower heteroclinic orbit in Figure 35 for the time interval [−29.33/2, 29.33/2],
rather than (−∞,∞). Direct numerical computation gives that

M1 = 645.7 , M2 = 1.581 , M3 = 0 , M4 = 47.86 .
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Figure 34. The eigenvalues of the (Galerkin truncation of) linear
NS at the ABC flow when ǫ = 0.

When b = 0 (no control), M has roots when

|a| > 408.4 .

When ǫ = 10−5, b = 0, and T = 4× 104π, we find that

a = 300 a = 400 a = 420 a = 600 a = 800
σ = 0.8× 10−5 σ = 1.3× 10−4 σ = 0.8× 10−4 σ = 4.9× 10−4 σ = 4.9× 10−4 .

Around a = 400, σ has a jump of one order which seems to be in agreement with
the Melnikov prediction. However, when a = 100, σ = 3.6× 10−4 which shows that
the Melnikov prediction is not very effective. We do not know the specific reason.

10. Melnikov Integral and Control of Chaos in 3D Navier-Stokes

Equation

Now we turn on the control (b 6= 0). When

b = −M1/M4 ≈ −13.5 ,

the Melnikov integral M (9.1) has roots for any a.
When ǫ = 10−5, b = −13.5, and T = 4× 104π, we find that

a = 1 a = 10 a = 100 a = 200
σ = 0.098 σ = 0.125 σ = 0.095 σ = 0.083 .
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Figure 35. An approximate heteroclinic cycle of the Galerkin
truncation: |κn| ≤ 1 (n = 1, 2, 3) of the 3D Euler equations.

Thus under the control, chaos exists even when a = 1. Also changing the value of
b, σ does not change dramatically. Therefore, our control prediction above may not
be very effective.

11. Numerical Verification of the Heteroclinics Conjecture for a Line

Model

Returning to the 2D Navier-Stokes equation (2.1), numerical simulations on
large Galerkin truncations are still challenging to the current computer ability. Here
we will study a simple line model [12] obtained by a special Galerkin truncation [12].

Let p = (1, 0) and k̂ = (0, α), the line model is given by the Galerkin truncation:

{±p, ±(k̂ + np), ∀n ∈ Z}
We will work in the invariant subspace where ωk’s are real-valued. The governing
equation of the line model is

ω̇n = An−1ω∗ωn−1 −An+1ω∗ωn+1

+ǫ[−(n2 + α2)ωn + Fn + b∆n] ,(11.1)

ω̇∗ = −
∑

n∈Z

An−1,nωn−1ωn + ǫ[−ω∗ + F∗ + b∆∗] ,(11.2)
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where ωn = ωk̂+np, ω∗ = ωp, similarly for F and ∆ as the Fourier transforms of f

and δ̃, and

An = 2A(p, k̂ + np) = α

[

1

n2 + α2
− 1

]

,

An−1,n = 2A(k̂ + (n− 1)p, k̂ + np) = α

[

1

(n− 1)2 + α2
− 1

n2 + α2

]

.

For the line model, verification of the heteroclinics conjecture is relatively easier.
First of all, for the line model (ǫ = 0), it can be proved that the fixed point
Ω = 2 cosx1 has a 1-dimensional local unstable manifoldWu. The basic idea of the
proof is that one can apply the Riesz projections to the spectrum of the linearized
line model operator at the fixed point, and the nonlinear terms have bounded
coefficients so that they are quadratic in a Banach algebra. For the full 2D Euler
equation, the difficulty lies at the fact that the nonlinear term is not quadratic in
a Banach algebra.

Denote by Σ the 1 co-dimensional hyperplane

Σ =
{

ω | ω(1,0) = 0
}

.

We have the corollary of Theorem 3.1.

Corollary 11.1. Assume that Wu ∩ Σ 6= ∅; then the heteroclinics conjecture is
true, i.e. there is a heteroclinic orbit that connects Ω = 2 cosx1 and −Ω.

For any truncation (|n| ≤ N) of the line model, we first calculate the unstable
eigenvector. Then we track the heteroclinic orbit with the initial condition provided
by the unstable eigenvector. Numerically exact heteroclinic orbit is obtained for
any N (|n| ≤ N). That is, for any N (|n| ≤ N), it can be verified numerically that

Wu ∩Σ 6= ∅ .

For |n| ≤ 32, the heteroclinic orbit is shown in Figure 36. In comparison with the
full 2D Euler equation, the hyperplane Σ here is only 1 co-dimensional. This is
the simplest nontrivial case to study the intersection Wu ∩ Σ. We also conduct
calculations on the Liapunov exponents. When ǫ = 0, |n| ≤ 32, σ = 0 for all the
computed time intervals, which means that there is no chaos. This is true for any
N (n ≤ N) and any computational time interval. This indicates that the line model
may be integrable when ǫ = 0. From these facts, it is clear that the line model is a
good starting point for a rigorous analysis. For instance, it is hopeful to make the
Melnikov integral theory rigorous.

12. Melnikov Integral and Numerical Simulation of Chaos in the Line

Model

For the line model, the kinetic energy and enstrophy are still invariants when
ǫ = 0. Choosing the same external force (5.1) and control (6.1), we have the
Melnikov integral which is the same with that of 2D NS except that the Fourier
modes summation is over the line model,

(12.1) M0 =M1 + a
√

M2
2 +M2

3 sin(t0 + θ) + bMc .



44 YUEHENG LAN AND Y. CHARLES LI

−1 −0.5 0 0.5 1
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

ω
(1,0)

ω
(1

,1
)

Figure 36. Numerically exact heteroclinic orbit of the line model
(ǫ = 0) for |n| ≤ 32.

For the truncation |n| ≤ 32, we evaluate these integrals along the heteroclinic orbit
in Figure 36, and obtain that

M1 = −6.0705, M2 = −0.10665, M3 = 0, Mc = 11.9728

For the case of no control (b = 0), when

|a| > 56.92

the Melnikov integral M has roots.
We conduct some numerical simulations on the (transient) chaos. When ǫ =

10−3, and T = 2× 103π, we find that

a ≤ 200 a = 400
σ < 0 σ = 7.2× 10−4 .

According to the roots of the Melnikov integral, when |a| > 56.92, the broken
heteroclinic orbit may re-intersect with certain center-stable manifold. According
the above Liapunov exponent result, transient chaos is generated when a = 400
which may be due to the generation of new heteroclinic cycles. As can be expected,
the Melnikov prediction performs better here for the line model. When ǫ = 0, there
is no chaos. When ǫ > 0, we see that transient chaos appears when |a| is greater
than certain threshold which is in the range |a| > 56.92 predicted by the Melnikov
integral.
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13. Melnikov Integral and Control of Chaos in the Line Model

Now we turn on the control (b 6= 0). When

b = −M1/Mc = 0.50702425

the Melnikov integral M has roots for any a. To test the effectiveness of the
control, we set b to the above value and conduct some numerical simulations on the
(transient) chaos. When ǫ = 10−3, b = 0.50702425, and T = 2× 103π, we find that

a = 1 a = 10 a = 50 a = 200 a = 400
σ = −12.6× 10−4 σ = 2× 10−4 σ = 0.2× 10−4 σ = 2× 10−4 σ = 0.87× 10−4 .

The control clearly enhanced the transient chaos. The control effectively pushed
the threshold of a backward from 400 to 10 for the generation of transient chaos.
This shows that the Melnikov integral control performs better here for the line
model.

14. Numerical Verification of the Heteroclinics Conjecture for a Two

Lines Model

To gain an understanding of the effect of the other modes np (|n| ≥ 2) on the
line model, we introduce the two lines model which is the Galerkin truncation:

{(k1, k2), |k2| ≤ 1}.
We also work in the invariant subspace where ωk’s are real-valued.

For the two lines model, one can derive the governing equations in the physical
variables. Let

Ω = ω(t, x) + eiαyq(t, x) + e−iαy q̄(t, x) ,

where ω is real-valued, q is complex-valued (the Fourier transform of q is real-
valued), and

∫ 2π

0

ω(t, x)dx = 0 .

Let

f + bδ̃ = η(t, x) + eiαyF (t, x) + e−iαyF̄ (t, x) ,

where η is real-valued, F is complex-valued (the Fourier transform of F is real-
valued), and

∫ 2π

0

η(t, x)dx = 0 .

Substituting the above expressions into the 2D NS (2.1), and ignoring the terms
involving ei2αy and e−i2αy, one gets the two lines model in the physical variables,

i∂tq + α
[

(∂xω)(∂
2
x − α2)−1 − (∂−1

x ω)
]

q = iǫ
[

(∂2x − α2)q + F
]

,(14.1)

∂tω + iα∂x
[

q(∂2x − α2)−1q̄ − q̄(∂2x − α2)−1q
]

= ǫ
[

∂2xω + η
]

.(14.2)

Introducing θ = ∂−1
x ω, ϕ = (∂2x − α2)−1q, and h = ∂−1

x η, one gets

i∂tq + α(ϕ∂2xθ − θq) = iǫ
[

(∂2x − α2)q + F
]

,(14.3)

∂tθ + iα(qϕ̄ − q̄ϕ) = ǫ
[

∂2xθ + h
]

,(14.4)

(∂2x − α2)ϕ = q .(14.5)
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When ǫ = 0, then Kinetic energy and enstrophy

E0 =

∫ 2π

0

[

θ2 + 2α2|ϕ|2 + 2|∂xϕ|2
]

dx , E1 =

∫ 2π

0

[

ω2 + 2|q|2
]

dx ,

are still invariants.
Denote by Σ the hyperplane

Σ = {ω | ωk = 0 , whenever k2 = 0} .

For the two lines model, when ǫ = 0, existence of a local unstable manifold for the
fixed point Ω = 2 cosx1 is an open problem due to the fact that the coefficients of
the nonlinear terms are not bounded, i.e. the nonlinear terms are not quadratic in
a Banach algebra. Then we have the corollary of Theorem 3.1.

Corollary 14.1. Assume that the fixed point Ω = 2 cosx1 has a 1-dimensional
local unstable manifold Wu, and Wu ∩ Σ 6= ∅; then the heteroclinics conjecture is
true, i.e. there is a heteroclinic orbit that connects Ω = 2 cosx1 and −Ω.

For any truncation (|k1| ≤ N) of the two lines model, we first calculate the
unstable eigenvector. Then we track the heteroclinic orbit with the initial condition
provided by the unstable eigenvector. For |k1| ≤ 2, numerically exact heteroclinic
orbit is obtained. That is, it can verified numerically that

Wu ∩Σ 6= ∅ .
Figure 37 shows the numerically exact heteroclinic orbit. For |k1| ≤ 4,

Distance (Wu,Σ) ≈ 0.0086 .

Figure 38 shows the approximate heteroclinic orbit. For |k1| ≤ 16,

Distance (Wu,Σ) ≈ 0.012 .

Figure 39 shows the corresponding approximate heteroclinic orbit. Unlike the line
model, here we do not always get numerically exact heteroclinic orbits. This is due
to the influence of the modes (k1, 0).

15. Melnikov Integral and Numerical Simulation of Chaos in the Two

Lines Model

When ǫ = 0, there is very weak chaos for the computational interval t ∈
[0, 4× 104π]:

|n| ≤ 4 |n| ≤ 8 |n| ≤ 16
σ = 9.5× 10−4 σ = 8.2× 10−4 σ = 8.5× 10−4 .

For the two lines model, the kinetic energy and enstrophy are still invariants
when ǫ = 0. Choosing the same external force (5.1) and control (6.1), we have the
Melnikov integral which is the same with that of 2D NS except that the Fourier
modes summation is over the two lines model,

(15.1) M0 =M1 + a
√

M2
2 +M2

3 sin(t0 + θ) + bMc .

For the truncation |k1| ≤ 16, we evaluate these integrals along the heteroclinic orbit
in Figure 39, and obtain that

M1 = −4.9 , M2 = −0.0948 , M3 = 0 , Mc = 12.2498 .
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Figure 37. Numerically exact heteroclinic orbit of the two lines
model for |k1| ≤ 2.

For the case of no control (b = 0), when

|a| > 51.688 ,

the Melnikov integralM has roots. We conduct some numerical simulations on the
(transient) chaos. When ǫ = 10−3, and T = 2× 103π, we find that

a ≤ 200 a = 400
σ < 0 σ = 1.27× 10−2 .

According to the roots of the Melnikov integral, when |a| > 51.688, the broken
heteroclinic orbit may re-intersect with certain center-stable manifold. According
the above Liapunov exponent result, strong transient chaos is generated when a =
400 which may be due to the generation of new heteroclinic cycles. Thus the result
is almost the same as that of the line model. As can be expected, the Melnikov
prediction also performs well here for the two lines model. When ǫ = 0, there is
weak transient chaos. When ǫ > 0, we see that strong transient chaos appears when
|a| is greater than certain threshold which is in the range |a| > 51.688 predicted by
the Melnikov integral. In comparison with the line model, here the transient chaos
seems very strong. On the other hand, when ǫ = 0, the two lines model here still
has weak chaos, in contrast to the fact of no chaos at all for the line model.
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Figure 38. Approximate heteroclinic orbit of the two lines model
for |k1| ≤ 4.

16. Melnikov Integral and Control of Chaos in the Two Lines Model

Now we turn on the control (b 6= 0). When

b = −M1/Mc = 0.4 ,

the Melnikov integral M has roots for any a. To test the effectiveness of the
control, we set b to the above value and conduct some numerical simulations on the
(transient) chaos. When ǫ = 10−3, b = 0.4, and T = 2× 103π, we find that

a ≤ 400 a = 500 a = 600 a = 700 a = 800
σ < 0 σ = 0.97× 10−3 σ = 3.0× 10−4 σ = 4.6× 10−2 σ = 5.0× 10−2 .

The control seems to tame the transient chaos, in contrast to the line model. The
control pushed the threshold of a forward from 400 to 700 for the generation of
strong transient chaos.

17. Conclusion and Discussion

Through a combination of analytical and numerical studies, we now have a
better understanding on the zero viscosity limit of the spectra of linear NS oper-
ators. We proposed and numerically studied the so-called heteroclinics conjecture
for both 2D and 3D Euler equations. We also proposed the Melnikov integral as a
tool for predicting and controling chaos.
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Figure 39. Approximate heteroclinic orbit of the two lines model
for |k1| ≤ 16.

Our numerical verification on the heteroclinics conjecture was limited by reson-
able computing time. We realized that increasing the size of the Galerkin trunca-
tions can quickly reach the limit of our computer ability. We did not try to utilize
today’s supercomputer due to the fact that Galerkin truncations are essentially
singular perturbations of Euler equations. We believe that analysis is the key to a
better understanding of the heteroclinics conjecture.

We realized through our numerical simulations that Liapunov exponent per-
forms very well as a measure of (even transient) chaos. Our Melnikov prediction
for NS equations is of course not as rigorous and effective as that for sine-Gordon
system. In fact, it is a rough indicator for predicting and controling chaos. Nev-
ertheless, we believe that the Melnikov integral theory for NS equations has a lot
of potential especially in the current circumstance that there is no effective tools
dealing with chaos in NS equations.

We also believe that both the line and the two lines models have great potential
in future analytical studies on modeling the dynamics of 2D NS equations.
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18. Appendix A: Melnikov Integral and Control of Chaos in a

Sine-Gordon Equation

Consider the sine-Gordon equation [15]

(18.1) utt =
9

16
uxx + sinu+ ǫ

[

−aut +
(

1 + bδ̃(x)
)

cos t sin3 u
]

,

which is subject to periodic boundary condition and odd constraint

(18.2) u(t, x+ 2π) = u(t, x) , u(t,−x) = −u(t, x) ,
where u is a real-valued function of two real variables (t, x), ǫ is a small perturbation

parameter, a > 0 is the damping coefficient, bδ̃(x) is the spatially localized control,

δ̃(x) is an even and 2π-periodic function of x, and b is the control parameter. The
system (18.1) is invariant under the transform u→ −u.

The natural phase space for (18.1) is (u, ut) ∈ Hn+1 ×Hn (n ≥ 0) where Hn

is the Sobolev space on [0, 2π]. Let P be the Poincaré period-2π map of (18.1) in
Hn+1×Hn. Without the control (b = 0), we have the following chaos theorem [15]
[19].

Theorem 18.1 ([15]). There exists a constant a0 > 0, when ǫ is sufficiently small,
for any a ∈

[

1
100a0, a0

]

there exists a symmetric pair of homoclinic orbits h± (h− =
−h+) asymptotic to (u, ut) = (0, 0). In the neighborhood of h±, there exists chaos
to the sine-Gordon equation (18.1) in the following sense: There is a Cantor set
Ξ of points in Hn+1 ×Hn (n ≥ 0), which is invariant under an iterated Poincaré
period-2π PK for some K. The action of PK on Ξ is topologically conjugate to the
Bernoulli shift on two symbols 0 and 1.

In the product topology, the Bernoulli shift has the property of sensitive de-
pendence upon initial data - the signature of chaos.

When we turn on the control (b 6= 0), we hope to find values of b such that the
chaos in Theorem 18.1 is controlled (tamed - annihilated or less chaotic, enhanced
- more chaotic). Our main tool is the Melnikov function. To build such a function,
we need results from integrable theory. When ǫ = 0, the fixed point (u = 0) of the
sine-Gordon equation (18.1) has a figure eight connecting to it [15]:

(18.3) u = ±4 arctan

[√
7

3
sech τ sinx

]

,

where τ =
√
7
4 (t− t0) and t0 is a real parameter. Along this figure eight, a Melnikov

vector has the expression [15]:

(18.4)
∂F1

∂ut
= ± 7π

12
√
2
sech τ tanh τ sinx

[

9

16
+

7

16
sech2 τ sin2 x

]−1

,

where F1 is a constant of motion. When ǫ 6= 0, the Melnikov function for (18.1) is
given by [15]:

M(t0, a, b) =

∫ +∞

−∞

∫ 2π

0

∂F1

∂ut

[

−aut +
(

1 + bδ̃(x)
)

cos t sin3 u
]

dxdt ,

where u and ∂F1

∂ut

are given in (18.3) and (18.4). Using the odd and even property

of (18.3) and (18.4) in t and x, we obtain

(18.5) M(t0, a, b) = −aMa + sin t0 (M0 + bMb) ,
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where

Ma =

∫ +∞

−∞

∫ 2π

0

∂F1

∂ut
ut dxdt ,

M0 = −
∫ +∞

−∞

∫ 2π

0

∂F1

∂ut
sin

4√
7
τ sin3 u dxdt ,

Mb = −
∫ +∞

−∞

∫ 2π

0

∂F1

∂ut
δ̃(x) sin

4√
7
τ sin3 u dxdt .

In the phase space Hn+1 ×Hn (n ≥ 0), (u, ut) = (0, 0) is a saddle point under the
Poincaré period-2π map of (18.1) with one-dimensional unstable manifold Wu and
one-codimensional stable manifold W s. The Melnikov function ǫM(t0, a, b) is the
leading order term of the distance between Wu and W s. For the entire rigorous
theory, see [16]. When |aMa| < |M0 + bMb|, the roots of M are given by

(18.6) sin t0 =
aMa

M0 + bMb
.

Near these roots, Wu and W s intersect. This leads to the existence of a symmetric
pair of homoclinic orbits and chaos in Theorem 18.1. When |aMa| > |M0 + bMb|,
i.e.

(18.7) − a|Ma| −M0 < bMb < a|Ma| −M0 ,

the Melnikov function is not zero, and we have the following theorem.

Theorem 18.2. When the control parameter b satisfies (18.7), the chaos in The-
orem 18.1 disappears.

Proof. When the control parameter b satisfies (18.7), the Melnikov function
is not zero for any t0, andW

u andW s do not intersect. Thus the pair of homoclinic
orbits and the corresponding chaos in Theorem 18.1 disappear. �

Theorem 18.2 only claims that the chaos in Theorem 18.1 disappears. This does
not mean that there is no chaos in the entire phase space Hn+1 ×Hn (n ≥ 0). An

important point here is that by manipulating the localized control bδ̃(x), one can
change the Melnikov function which leads to the disappearance of the non-localized
(in x) chaos. The control condition (18.7) is also interesting: It is not true that the
larger the control parameter b is, the better the taming is. In fact, when b is large
enough, the chaos will reappear.

When |aMa| < |M0 + bMb|, the Melnikov function (18.5) has roots (18.6), and
Theorem 18.1 holds. As a function of t0, the Melnikov function M has the maximal
absolute value (the L∞ norm),

M∗(a, b) = a|Ma|+ |M0 + bMb| ,

for t0 ∈ [0, 2π]. M∗ is the leading order term of the maximal distance between Wu

and W s. Notice that Wu and W s intersects near the t0 given by (18.6). So the
larger the M∗ is, the more violent the chaos is. Thus M∗(a, b) serves as a measure
of the strength of the chaos. By changing the control parameter b, we can adjust
the strength M∗ of the chaos - enhancing or decreasing.
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19. Appendix B: The Lagrange Flow Induced by a Solution to the 2D

Euler Equation Is Always Integrable

It is well-known that 2D Euler equation is globally well-posed [5] [6]. For any
solution to the 2D Euler equation, let Ψ = Ψ(t, x1, x2) be the corresponding stream
function. Then the Lagrange flow induced by the solution is given by

(19.1)
dx1
dt

= − ∂Ψ

∂x2
,

dx2
dt

=
∂Ψ

∂x1
.

Theorem 19.1. The Lagrange flow (19.1) induced by a solution to the 2D Euler
equation is always integrable.

Proof. Assume that Ψ(t, x1, x2) is not a steady state, i.e. it depends upon
t (in this case ∆Ψ is functionally independent of Ψ, otherwise, Ψ(t, x1, x2) would
be a steady state). Introducing the new Hamiltonian H = Ψ(θ, x1, x2) − ψ, and
converting (19.1) into an autonomous system

(19.2)
dx1
dt

= − ∂H

∂x2
,

dx2
dt

=
∂H

∂x1
,

dθ

dt
= −∂H

∂ψ
,

dψ

dt
=
∂H

∂θ
.

Notice that the vorticity Ω = ∆Ψ is another constant of motion of (19.2) besides
H :

d

dt
∆Ψ = ∂θ∆Ψ− ∂x1

∆Ψ∂x2
Ψ+ ∂x2

∆Ψ∂x1
Ψ = 0 .

Since ∆Ψ is independent of ψ, ∆Ψ and H are functionally independent. Thus
(19.2) is integrable in the Liouville sense. In the case that Ψ is independent of t
(i.e. a steady state), then (19.1) is an autonomous system, thus also integrable in
the Liouville sense. �

A common way to obtain steady states of 2D Euler equation is by solving

∆Ψ = f(Ψ)

where f(Ψ) is an arbitrary function of Ψ, i.e. ∆Ψ and Ψ are functionally dependent.
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