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A B S T R ACT

We investigate power transformations in non-linear regression problems

when there is a physical model for the response but little understanding

of the underlying error structure. In such circumstances and unlike the

ordinary power transformation model, both the response and the model must

be transformed simultaneously and in the same way. We show by an asymptotic

theory and a small Monte-Carlo study that for estimating the model parameters

there is little cost for not knowing the correct transform a priori; this

is in dramatic contrast to the results for the usual case that only the

~ response is transformed.
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1: INTRODUCTION

tOften in scientific work, one observes data y and x = (xl . . xp )

and postulates that these data follow a model

(1.1) y. = f(x.~ 80 ), i = l~ ... , N~
t. t.

where 80 is a k-parameter vector. The function f may be derived, for example,

from differential equations believed to govern the physical system which gave

rise to the data. The deterministic model (1.1) is often inadequate since the

data exhibit random variation, but whereas f was derived from theoretical

considerations, there is really no firm understanding of the mechanism

producing the randomness. In this case, one typically assumes that

(1. 2)

where the {Ei} are i.i.d. N{O,a~). In those cases in which the data suggest

that model (1.2) is also unsatisfactory, one might then assume that the errors

are multiplicative and log-normal, so that

(1. 3)

The point here is that model (l.l) is equivalent to the model

h{y.) = h{f{x., 80 ))
t. t.

whenever h{· ) is a monotonic transformation. Therefore (1.2) and (1.3) are

based on the same theoretical model, but they allow variability into the model

in different fashions.
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A more flexible approach is to take a sufficiently rich family of

strictly monotonic transformations h(Y~A), indexed by the m-vector parameter

A, and to assume that for some value Ao •

•
(1.4)

The model (1.4) is in the spirit of Box and Cox (1964), who suggested the

family of power transformations with m = 1 and

(1 .4b)

= log (y) if A= O.

However, as we will make clear, our proposed model (1.4) has greatly different

ramifications than usually associated with the power family. Box and Cox

(1964) used their family in a study of the transformation model

(1 .5) h(Y~A ) =x~ e + E.
o 0

Notice here that, unlike (1.4), the regression function in (1.5) is not

transformed. Box and Cox sought a transformation which achieves 1) a simple,

additive or linear model, 2) homoscedastic errors and 3) normally distributed

errors. Our model is different. Theoretical considerations already provide

a regression function. We hope to transform the response and the regression

function simultaneously to obtain homoscedasticity and normality.

There are two reasons for using model (1.4) instead of simply fitting

(1.1) by least squares or some other method. First, estimation of e based
o

on model (1.4) should be more efficient than other methods. Second, it may
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be necessary to estimate the entire conditional distribution of y given x;

if the data clearly suggest that the distributions of {y.-f(x.,e )} are not
1" 1" 0

constant, one must go beyond standard regression methodology.

An example, which partly motivated the research of this paper, concerns

the relationship between egg production in a fish stock and subsequent

recruitment into the stock. At least for some species, as egg production

increases, the change in the skewness and variance of recruitment is as large

as the change in the median recruitment, and this change in distributional

shape may have important implications for management of the fishery.

The outline of the paper is as follows. Section 2 discusses a current

controversy concerning the model of Box and Cox. Bickel and Doksum (1981)

have shown that, in model (1.5), the ML estimate of e can be much more
o

variable when A is estimated compared to when A is known. In Section 3,
o 0

4It we demonstrate for our model (1.5) an entirely different result: the ML

estimate of e in model (1.4) turns out to be only slightly more variable
o

when A is unknown compared to when A is known. In Section 4 we prove a
o 0

considerably stronger result. By examining a weighted least absolute devia­

tions estimator, we provide a lower bound of 2/n on the asymptotic relative

efficiency of the ML estimator of e in model (1.4) when A is unknown comparedo 0

to the MLE when A is known.
o

2: RECENT STUDIES OF THE BOX AND COX MODEL

In Section 7 of Box and Cox's original paper they discuss the analysis
A

of effects after transformation. They state that, after finding A, one should
A

-estimate effects (regression parameters) on the scale A which has been chosen

for analysis and not on the true but unknown A scale. However, in discuss-
0

e ing interactions, they go on to state that liThe general conclusion will be
A

that to allow for the effect of analysing in terms of A rather than A , the
0
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residual degrees of freedom need only be reduced by ... the number of

component parameters in A".

Box and Tiao (1968) agree, stating that the only practical effect
A

between using A in the posterior distribution of 8
0

, rather than the true

1..
0

, is an adjustment in the degrees of freedom.

Bickel and Doksum (1981) disagree with this conclusion. Following

calculations for the location problem done by Hinkley (1975) and suggestive

Monte-Carlo results of Spitzer (1978) and Carroll (1980), they calculated
2

for general regression the large sample information matrix of A , a and 8 .
000

They found that the large sample variance of 8 is larger, often much larger,

when A is estimated compared to when 1..
0

is known. They also state that the
o

conclusion of Box and Tiao is not correct. On a technical level, part of the

(A) (1..)/ (0)1..-1z = y y ,

where y is the geometric mean of the {Yi}' However, Hinkley and Runger (1982)

found z(A) unsatisfactory in several respects. The differences may also be

contextual; at the null hypothesis of no interaction effects, one can act as

if 1..
0

were known, with an appropriate change in the degrees of freedom.

See Carroll (1982) and Doksum and Wong (1981).

Since power transformations have been used often and with real satisfac­

tion by applied statisticians, the findings of Bickel and Doksum were surpris-

ing and led to further research. Hinkley and Runger argue that the parameter

8
0

in (1.5) is not physically meaningful; it is defined in an unknown scale

1..
0

so that a unit change in x is not easily interpreted by 8
0

alone. Instead,

~ they argue that in practice, the relevant distribution is the conditional
A A

distribution of e given A. As N ~ 00, the conditional variance of e given A
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and the variance of ewhen A is known converge to the same matrix. Theyo

then argue that, when analyzing 6
0

' no adjustment need be made for the fact

that Ao was estimated. This appealing behavior is somewhat counter-balanced

by difficulties with the conditional mean in hypothesis testing in unbalanced

designs, as pointed out by Carroll (1982).

Carroll and Ruppert (1981) also noticed the difficulty with interpreting

6
0

and studied predicting the median of Y on the originaZ data scale by

t'"backtransforming x 6. This idea of looking at the response surface avoids

the problems of definition inherent with 6
0

being defined in an unknown or

data dependent scale. They found that when predicting the median of Y, the

effect of not knowing Ao can be large but is in general similar to the effect

of adding one more regression parameter, and it is certainly much less

severe than the effect when estimating 6 .• 0

The above discussion establishes the extent ot the controversy

surrounding the Box and Cox model applied (1.5). We believe (1.4) entirely

avoids this controversy. First, the parameter 6
0

has physical meaning even

if Ao is unknown, since f{xiJ 6
0

) is the median of Yi no matter what the

true scale. Secondly, the large sample analysis to follow indicates that
'"6 is only slightly more variable when Ao is estimated than when Ao is known.

3: LIKELIHOOD ANALYSIS

The likelihood analysis proceeds as follows: define

z. = dh{f.{6 ),A )ld6
'/- '/-000

f·(6) = f{x. J6), f· = f·(8 0 )'
'/- '/- '/- '/-

h (y) = h (YJ A) = dh{YJ A)ldYJ and h{y) = h{YJ A).
Y Y

Let h A(y) and hAA (y) be the gradi ent vector and Hessi an of h{YJ A) with respect

to A. By simple algebra we find the joint information matrix of (6
0

,Oo,Ao)
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as (all summations are from 1 to N)

(3.1) s/o L 0 C1/0
0

2
0

N-1 I = C /a lf

• 1/(20 1f
)

2 0

0

C /0 2

J 0

where

(3.2)

C2 = -N-1ELEi[hA(Yi) - hA(fi)]t

CJ = N-1EL{IhA(Yi) - hA(fi )] [hA(Yi) - hA(fi)t

t
+ Ei[hAA(Yi) - hAA(fi )] + (a/aA}(a/aA) log[hY(Yi)]}.

Using the work of Hoadley (1971), it is straightforward, though perhaps

somewhat tedious, to establish conditions sufficient that (8, 02
, ~) is

consistent and asymptotically normal. We will not pursue this matter further,

(
A "2 ") t ( ( 2 tbut rather we will assume that 8, 0, A ;s approximately N 8 0 A),

000

I -1) -1and we will study I .

In general, C1 and C2 are not zero and the asymptotic distribution of

(~, 02
) when A ;s estimated differs from when A is known. At least to this

o 0

point then, the analysis ;s similar to those done in the usual Box-Cox

model (1.5). The key question, of course, is whether or not C1 and C2 are
"sufficiently different from zero to seriously affect the distribution of A.

The expressions C1, C2 and C
J

are complex even when f i (8
0

) has a nice

form such as simple linear regression. To simplify matters sufficiently

that we can gain some insight about the difference between knowing and estima-
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ting Ao ' we follow Bickel and Doksum and others and let 0 0 ~ o. While

Bickel and Doksum let N ~ 00 and 0 + 0 simultaneously, we let N + 00 and
o

then 0 + o. There is no essential difference between the two approaches.
o

Our is very suitable for heuristic arguments.

It should be emphasized that we are not concerned only, or even

primarily, with small 0
0

• In fact, the need for transformation is greater

when 0
0

is large. The small 0 asymptotics do, however, lead to majoro

simplifications, and the Monte-Carlo results presented later agree with them.

Taylor expansions show that under mild regularity conditions

(3.3)

Standard calculations show that when Ao is known,

•

(3.4) N~ Covariance [(8 - e )/0 , (0 2 0 2 )/02 1A known]o 0 000

-1 [-1 ]+ A = S 0

02.

Let D = Diag(o , 0 2 , 1). Then, to find this limiting covariance matrix wheno 0

A is unknown, we must find the upper left (k + 1) x (k + 1) corner of
o

DID =
s

•

o C1/O
o

C /0 2

2 0

C /0 2
;) 0

which by standard results on inverting partitioned matrices is

A-1 + FE-1F t

where A-1 is given in (3.4), t
E = C3/0~ - B A B,

-1
F = A B,
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and

B =

Clearly,

F=

and

In order to obtain simple asymptotics, we will assume that for 00 fixed,

c1/a~, C2/0~, and CJ/o~ converge as N + 00, and that these, in turn, have

limits D1~ D2~ and DJ respectively as 00 + o. We also assume that
t

S + Soo (positive definite) as N + 00. If D
J

- 2D2D
2

is nonsingular, then

Urn Urn
00 + 0 N + 00

Urn

° + 0o

Urn
N+oo

[

S-l 0 ]

= 0 2 + W

THEOREM 1. Assume that the limits D1 ~ D2 ~ D
J

~ Soo mentioned above exist

and that D
J

_ 2D2D2 is nonsingular. As N + 00 and then ° + O~ the limit
o

A

distribu~ion of 6 is the same whether Ao is known or unknown. The limit

distribution of 0 depends on whether Ao is known or unknown.

As an example consider multiple linear regression and the power trans­

fonnation family, i.e., h(Y~A) is given by (l.4b) and
t

h(y.~A) =x. e + E
'/; '/; 0
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where xl' ..• , xn are known k x 1 vectors. Also, suppose that Ao = 0,
A -1 .

i.e., the log transformation is needed. Then hy{Y) = Y - , hA{y) =

(log y)2/2, and hAA(y) = (log y)3/3. We find that

-1 t t 2A = N \ x.x./{x.e )L 1,1, 1,0

C1 = -(2N)-lE\[x./{x~e )J{[log(x~e ) + E.J2_[log{x~e )]2}
L 1, 1, 0 1, 0 1, 1, 0

= -002{2N)-1\ x./{x~e ),
L 1, 1, 0

1 t 2 t 2C2 = -(2N)- ELEi{[Zog{xieo) + Ei] - [Zog{xi 80)] }

= _N-1 \ log{x~e ) 0 2
L 1, 0 0'

and

.
e

-1 t 3 t 3+ (3N) E\ E.{[log(x.e ) + E.] - [log(x.e )] }L 1, 1,0 1, 1,0

t 2= ?/4 0 4 + 20 2 /N \[log{x.e)] •o 0 L 1, 0

Therefore,

D2 = lim N-
1I Zog(x~eo)'

N+oo

and

provided the above limits exists. Thus, the 1 x 1 matrix D3 - 2D;V2 is twice

the 1imi t of the vari ance of log (x;e), ... , log (x;e o ), and wi 11 be nonsi ngu­

1ar except in degenerate situations.

There is thus a fundamental difference between the models (1.4) and

(1.5). A small simulation study is outlined in Section 6 and helps back up

Theorem 1. This result can be extended to non-normal error distributions as
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well as the robust methods of Carroll (1980) and Bickel and Doksum (1981).

The details are not instructive.

4: A LOWER BOUND ON THE EFFICIENCY OF THE MLE.

Let e(~) and 8(~o) denote the ML estimator with Ao estimated and known

respectively. Let ARE(81~82) be the asymptotic relative efficiency of 81 to

82. For fixed 00' it is difficult to find ARE(8(Ao),e(~)) and, in fact, this

may depend on e , Ao' the {x.} and the coordinate of e being estimated. All
o 1--

that can be said for certain is that this ARE is at least one and converges to

one as 00 + o. In this section we will define a weighted L1 or least absolute

deviation estimator 8(w)and show that ARE(8(Ao)' e(w)) ~ rr/2. Under reasonable

regularity conditions, thi's means that ARE(8(A o ), 8(~)) is bounded between

one and rr/2~ in vivid contrast to the Box and Cox model (1.5) in which this

last ARE can approach infinity. We first look at general weighted L
1

esti­

mators. The results stated here seem to be new and are of interest in their

own ri ght.

Let w1~ .... ~ wN be positive numbers and let e(L) be any point which

minimizes the expression

I w. IY· - !.(8(L))\
1-- 1-- 1-- .

Under (1.4), !.(e ) is the unique median of Y.~ so we can expect 8(L) to be
1-- 0 1--

consistent. The unweighted L
1

estimate for linear models was studied by

Ruppert and Carroll (1980). Those results suggest that
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0;' LW. sign (y. - f.(8(L))s ...
~ ~ ~ ~

s. = df.(e )/de.
~ ~ 0

Define r. = y. - f.(e ) and let m. be the density of r.. By a generalization
~ ~ ~ 0 ~ ~

of the strong law, for example Theorem 7.1 of Carroll and Ruppert (1982)

which itself generalizes Lemma 4.2 of Bickel (1975),

(4.2) o ~ lW. {sign(y. - f.(8(L))) -sign(r.)}s.
~ ~ ~ ~ ~

-(ELw.{sign(y. - f.(e))-sign(r.)}s.)! e=8(L)).
~ ~ ~ ~ ~

Now, as E ~ 0.. we obtain that

.
e (4.3) E(sign(r. + E) - sign(r.)) -2Em.(O) ~ o.

~ ~ ~

Combining (4.1)-(4.3) we get to order o(N-Yz ),

(4.4)

Now, since for model (1.4)

E. = h(f.(e )+ r ... A ) - h(f.(e ), A ),
~ ~o ~ 0 ~o 0

we then have

(4.5) m. (0)
~
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Thus, if we chose

(4.6) w. = h (f. (e ), A ),
~ y ~ 0 0

we have by (4.4)-(4.6) and the Central Limit Theorem that

~ALl
N2 (e(L) - e )/ 0 -> N(O,(n/2) S- ).

o 0

Now 8(L) is not a bona fide estimator since w. in (4.6) requires A , e
1- 0 0

to be known. However, if in (4.6) one plugs in any NYz consistent estimators
A

of e and A and calls the L1 estimate based on these new weights e(w), then
o 0

using Theorem 7.1 of Carroll and Ruppert (1982), one can also show that

.
~ Now, because

~ A L -1)N2 (e(A )- e )/0 -> N(O, S .
0 0 0

it then follows that

(4.8)

A A

ARE(e(A ), e(w)) = n/2,o

ARE(8(A ), e(~)) ~ n/2.
o

estimator of e provided that
o

Ei is not needed.

Theorem 1 and the Monte-Carlo results to follow indicate that the

upper bound in (4.8) is quite conservative. The beauty of (4.8) is that

it is a bound that does not depend on 0
0

,

The weighted L1 estimator may well be useful for example if in (1.4)

one suspected that the errors {E.} are not normal. It is a consistent
1-

o is the unique median of E •• Symmetry of
1-
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5: THE K-SAMPLE PROBLEM

Our model (1.4) and Theorem 1 provide some useful insight into the

k-samp1e problem under the formulation (1.5) of Box and Cox. In their

model, for each of k populations we have

(5.l) h{y. " A ) = fl. + E.. j = 1,
1-J 0 J 1-J

... ~ k; i = 1, .. . ,N .•
1-

The equivalent formulation from our viewpoint is

(5.2)

•e
Here ~. is the median of y •. on the original scale and fl. is the expected

J 1-J J

value of y •• in the A scale. The results of Carroll and Ruppert imply
1-J 0

that fo~ estimating the ~IS, there is little cost in not knowing A , while
o

for estimating the fl'S, Bickel and Doksum show that the cost of not knowing

A can be enormous. Since
o

there should be little cost in testing for equality of means when 1.
0

is

unknown. These heuristics are formally proven by Carroll (1982) and Doksum

and Wong (1981).

6: MONTE-CARLO.
"To study 8 when N is finite and a is not necessarily small, we under-

o

took a small simulation of the model

(6.1 ) h{y.,A ) = h{81 + 82 x.,A ) + a E.,
1- 0 1- 0 01-
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where h( ) is the Box and Cox power family (l.4b). In our simulations,

N = 50, the design points {x.} were equally spaced on [-1, 1], the errors
'Z.-

were normally distributed with mean zero and variance one and 81 = 7, 82 = 2.

We considered three estimators:

1)

2)

3)

ML estimator, Ao known (KNOWN)

ML estimator, A unknown (MLE)
o

The ordinary least squares estimator (LSE) without

any transformation.

The median of y is 8
1

+ 8
2
x, so that LSE forms an especially

plausible estimator of the slope 82 (for which it is consistent). We chose

three values of 0
0

:

o = 0.05, 0.10, and 0.50.
o

We present results in Tables 1 and 2 for Ao = 0 (log-normal data) and

A = 0.25. There were 600 replications of the experiment for each (A ,E )o 0 0

and each estimator, all generated from a common set of random numbers. The

normal random deviates were generated from the IMSL routi:ne GGNPM. Estima­

tion of (81, 82 ) for each A was done by the IMSL routine ZXSSQ while ZXGSN

was used to estimate A .
o

The results for the ML estimator with A unknown (denoted MLE) are very
o

encouraging. The mean square errors for MLE are quite close to those for

KNOWN, the ML estimator with A
o

known, especially for the slope 82. These

results agree with our small 0 theory and indicate the minimal cost for not

knowing A. The relative efficiencies of MLE to KNOWN are always well above
o

~ the lower bound of 2/n. To appreciate how well MLE does relative to KNOWN



.e

•

-17~

(line 2 of Tables 1 and 2), it is enlightening to study Table 5 of Bickel

and Doksum (1981); in their model which we call (1.5), they have ratios

MLE(A estimated)/KNOWN(A known) always at least 1.5 and as large as 211,
o 0

while ours never exceed 1.2.

The other valuable point learned from Table 2 is that when estimating

the slope 82 , the ML estimator MLE with A
o

unknown tends to dominate the LSE,

especially for larger values of a. In other words, for our model (1.4),
o

there is real value to transformation when it is appropriate .
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TABLE #1

Results of the Monte-Carlo study described in the text. These results
are for the INTERCEPT. The median response is linear with intercept =
7 and slope = 2.

KNOWN = ML estimate with A known.
MLE = ML estimate with A unknown.
LSE = ordinary least squares estimate.

cr

BIAS OF KNOWN

MSE OF KNmJN

BIAS OF MLE

MSE OF MLE
MSE OF KNOWN

MSE OF MLE ­
MSE OF KNOWN

0.05

0.03

2.41

0.02

1.02

0.05

0.00

0.10

0.06

9.67

0.04

1.05

0.47

0.50

0.56

24.87

0.60

1.14

3.44

0.05

0.01

0.90

0.01

1.01

0.01

0.25

0.10

0.03

3.59

0.02

1.03

0.09

0.50

0.23

9.04

0.19

1. 12

1.09

S.E. OF ABOVE DIFF.

BIAS OF LSE

MSE OF MLE
MSE OF LSE

t1SE OF MLE ­
MSE OF LSE

S.E. OF ABOVE DIFF.

0.02

0.11

0.97

-0.06

0.04

0.15 0.77

0.40 9.48

0.90 0.22

-1.15 -96.62

0.33 4.71

0.01

0.04

1.00

0.00

0.01

0.04

0.13

0.98

-0.06

0.06

0.25

2.60

0.63

-6.07

0.78

In these calculations, the mean square error (MSE) and S.E. of difference
terms are multiplied by T**2. Here T = 10 if cr ~ 0.10, T = 1 if
cr = 0.50.



TABLE #2

Results of the Monte-Carlo study described in the text. These results
are for the SLOPE. The median response is linear with intercept = 7

• and slope = 2.

KNOWN = ML estimate with A known.
MLE = ML estimate with A unknown.
LSE = ordinary least squares estimate.

A 0.00 0.25

a 0.05 0.10 0.50 0.05 0.10 0.50

BIAS OF KNOWN 0.01 0.01 0.03 0.00 0.01 0.02

MSE OF KNOWN 7.08 28.36 72.23 2.71 10.83 27.24

BIAS OF MLE -0.01 -0.04 -0.15 0.00 -0.02 -0.16

MSE OF MLE
MSE OF KNOWN 1.06 1.06 1. 01 1.06 1.06 1.03

e
.. MSE OF MLE -

MSE OF KNOWN 0.41 1.57 0.95 0.15 0.60 0.72

S.E. OF DIFF. 0.10 0.40 0.67 0.04 0.77 0.27

BIAS OF LSE 0.05 0.15 2.97 0.02 0.04 0.50

MSE OF MLE
MSE OF LSE 0.98 0.96 0.59 1.01 1.01 0.91

MSE OF MLE -
MSE OF LSE -0.16 -1.29 -50.54 0.05 0.13 -2.81

S.E. OF DIFF. 0.18 0.80 5.10 0.06 0.23 0.74
•,
• In these calculations, the mean square errors (MSE) and S.E. of di fference

~ terms are multiplied by T**2. Here, T = 10 if a s 0.10, T = 1 if

e a = 0.50.
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