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Abstract

An asymptotic representation of the mean weighted integrated squared
error for the kernel based estimator of the hazard rate in the presence
of right censored samples is obtained for different bootstrap resam­
piing methods. As a consequence, a new bandwidth selector based

. on the bootstrap is introduced. Very satisfactory simulations results
are obtained in comparison to the cross-validation selector for different
models, using WARPed, i.e. binned versions of the estimators.
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1 Introduction.

In survival analysis and reliability, a curve which provides useful information
about a variable XO is the "hazard rate"

ro(x) = lim P (X
O ~ x +dxlXo > x) d

1
= t>~~~ r

dr-O x 1- x
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The curve ro represents the instantaneous failure time at every x, when XO
is assumed to denote the lifetime of a system. See Watson and Leadbetter
(1964a) for discussion of the many useful properties of roo It can be repre­
sented in terms of the density fO and the cumulative distribution po of X O

as ro(x) = 1!;A;(~). When no parametric assumptions are made about the
underlying distribution, kernel estimators provide a useful tool for estimat­
ing roo There are several such available, as defined and discussed in section
2.l.

It is frequently not possible to observe a complete random sample of size
n from the XO population. An effective model for such situations is random
right censorship, as discussed by Koziol and Green (1976). Mathematical
formulation of this estimation is given in section 2.2.

An important problem when estimating the hazard rate function by ker­
nel methods is the choice of the smoothing parameter (i.e. bandwidth)
denoted here as h. Following ideas used in density estimation, Tanner and
Wong (1984) proposed a maximum likelihood cross-validation method for
uncensored hazard estimation. We do not consider that method here, be­
cause least squares cross-validation has been shown to be more appropriate.
See Cao, Cuevas and Gonzalez-Manteiga (1993) for convincing simulation
evidence, and see Hall (1987) for theoretical insights.

Least squares cross-validation was adapted to censored density estima­
tion by Marron and Padgett (1987). It was extended to uncensored hazard
estimation by PatH (1990) and by Sarda and Vieu (1991) and a version in
the censored hazard case was proposed in PatH (1990,1993). In our context
the cross-validated bandwidth is the minimizer Ii of the score function 2 de­
fined in section 2.3. These authors have established asymptotic optimality,
in the sense

ISE (Ii)
infhEH

n
ISE(h) - 1, a.s.

where ISE is the integrated squared error ISE(h) = J(fl"h - ro)2w , for a
suitable weight function W. This weight function plays an important role.
In particular, compact support, contained in (0, T), is required for w, where
T is a value such that 1-PO(T) > O. The range of values for the smoothing
parameter h, Hn , is set following regularity conditions as stated in Patil
(1990) or in Sarda and Vieu (1991). There exist other studies concerning
local choices of the bandwidth. This has been done by Miiller and Wang
(1990), for instance.

While the above asymptotic optimality seems encouraging, it has been
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observed in a variety of related contexts that the rate of convergence for
cross-validation methods is unacceptably slow, see HardIe, Hall and Mar­
ron (1988) and references therein. This has led to a search for improved
methods of bandwidth selection. Among the best of these is the "smoothed
bootstrap" approach, see Marron (1992) for an introduction and more ref­
erences in the context of density estimation. The main goal of this paper is
to develop such effective methods of bootstrap bandwidth selection in the
case of hazard and censored hazard function estimation. In Section 3 we
introduce several bootstrap mechanisms to select the parameter h for the
estimator fO,k. Some asymptotic results are obtained which validate the
resampling method proposed.

As fast computation is often an important need in both curve estimation
and bandwidth selection, we discuss some fast algorithms in Section 4. These
are based on WARP (Le. binning) ideas as discussed in HardIe (1991). See
Fan and Marron (1994) for additional insights, for compelling evidence as
to how much faster this method is, and for alternative fast methods of
calculation. We present fast methods for computing both the estimator
given in 1 and also the various bandwidth selectors discussed here.

In Section 5 we give some results of a Monte Carlo comparison of our
smoothed bootstrap bandwidth selection methods, with least squares cross­
validation. As anticipated, the smoothed bootstrap is much more stable and
effective.

The Appendix contains the proofs.

2 Technical Background

In this section, we give formal definitions of kernel estimators of the hazard
rate TO, and also formulate the censored data setting. Readers familiar with
these topics may want to scan this section quickly with the idea of only
becoming familiar with our notation.

2.1 Kernel hazard estimators.

Kernel estimators ofthe hazard function TO , from a random sample Xp, ...,X~,
have been developed by Grenander (1956), Murthy (1965), Rice and Rosen­
blatt (1976), Foldes, Retjo, and Winter (1981) and Sethuraman and Singpur­
walla (1981). While the bandwidth selection ideas we develop apply equally
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well to all of these proposals, we focus here only on

where {X&)}f=1 is the ordered sample. This estimator was introduced by
Watson and Leadbetter (1964a, 1964b). This one has been chosen because of
its simplicity, because it gives a smooth estimate, and is the "most natural"
in the sense of PatH, Wells and Marron (1994).

2.2 Censored data kernel estimators.

Under random right censorship, the data from the population of interest,
Xf, ...,X~ are not completely observable (e.g. time until death by a certain
cause can be rendered unobservable when the subject dies first from a dif­
ferent cause). For each i = 1, ... , n, under the random right censoring model
there is a "censoring variable" Zi (also unobserved, e.g. the time of death by
some different cause), which obscures Xp when it is smaller. The observed
data are a collection of pairs: {(Xi, ~i)}f=I' where Xi = min{Xp, Zi},
~i = l{Xi=X?}' i = 1,2, ... , n. The variable ~i codifies the presence or
absence of censoring by

We will assume that XO and Z are independent.
As above, 1° and po denote the density and distributions for XO. Let hO

and HO denote the analogs for Z. The distribution function of the observed
variable X, with density I, can be written as F = 1 - (1 - PO)(l - HO),
because of the independence.

The key to extending the estimator in section 2.1 to the censored case is
direct replacement of the empirical distribution function~ by the "censored
version" introduced by Kaplan and Meier (1958):

.'

1 - ~(x) = { n
1

i.:.1 (.2!:;L)6. J

n 3-1 n-3+1

o

4

if x < X(I)

if X(i-l) ~ x < X(i) ,

if x ~ X(n)



.,.

which is usefully rewritten as

(1)

where Fn(x) = n-1 Ei::l1rXi$zj, the empirical distribution function con­
structed using the observed sample {X}, X 2 , • •• , X n }.

This and similar adaptations of other kernel hazard estimators have been
studied by Blum and Susarla (1980), Yandell (1981,1983), by Tanner and
Wong (1984), by Cheng (1987), by Lo, Mack and Wang (1989), and by PatH
(1990). It is seen there that these estimators have the same asymptotic
variance:

TO(X) JK2~
1- F(x) nh

but different asymptotic bias. In fact, the asymptotic bias of the estimator
in section 2.1 is given by:

J1 x-u
E(fo,h(X» = ;;K(-h-)(l- F(u)n)dAo(u),

where
A (x) = r jf(t)p dt° Jo 1 - F(t) ,

jf is the conditional density ofXI~ = 1 and p =P(~ = 1) is the proportion
of censoring.

2.3 Least Squares Cross Validation

See Rudemo (1982) and Bowman (1984) for motivation of this method of se­
lecting the bandwidth for kernel density estimation. Their idea was adapted
to the case of censored hazard estimation by PatH (1990), see page 36. The
Least Squares Cross Validated bandwidth is the minimizer of

C (h) JA ()2 ( )d -1~ ro:~(Xd (XO)
V = TO,h x W x x - 2n ~ (1- Fn(Xi» W i ~i

where ro:~ is the "leave one out" estimator given by

5
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3 Bootstrap bandwidth selectors

To select the bandwidth h in 1, we will focus on the estimation of the h
which minimizes the mean integrated squared error:

(3)

where the weight function w satisfies the assumptions of Section l.
An asymptotic representation of MISEw is given in the following result,

proved by Tanner and Wong (1983),

Theorem 3.1 Under the assumptions given in Section 1, when n -+ 00,

h -+ 0 and nh -+ 00:

M ISEw(h) = AMISEw(h) + o(AMISEw(h»

where

* denotes convolution.

The expression given for AMI SEw comes from the integrated squared
bias and the asymptotic integrated variance. See PatH (1990) for a variety
of similar results.

The bootstrap method is a resampling device to approximate the distri­
bution of statistics of interest. In this case the statistic of interest is rO,h,

and the aspect of its distribution that we will approximate is MISEwo We
define the bootstrap selector of the bandwidth, h*, to be the minimizer of the
estimated MISEwo As noted in Marron (1992), "smoothed bootstraps" are
needed to properly approximate the important "bias" part of MISEw.

Bootstrapping is more complicated than usual in the censored case, as
there are several possible approaches. Here we discuss three, (although they
are really only two, since two turn out to be the same) which mostly differ
in when one should do the "smooth" part:

3.1 SC resampling plan

This smoothed-censored (SC) resampling plan is a smooth version of Efron's
resampling, originally introduced by Efron (1981). Here we introduce "smooth
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bootstrap" ideas as early as possible. Since po and HO are absolutely con­
tinuous, they can be estimated by the smoothed Kaplan-Meier estimators:
~ * K g1 and H~ * K g2 • Here, ~ and H~ denote the Kaplan -Meier esti­
mators of po and HO and 91 and 92 are two initial smoothing parameters
(or pilot bandwidths). Now, the method proceeds as in Efron (1981), but
replacing the Kaplan-Meier estimators by these smoothed versions of them.

1. First draw bootstrap resamples {Xf*, ... ,X~*} from ~ *Kg] •

2. Generate independent bootstrap resamples {Zi, ... ,Z~} from H~ *
K 92 •

3. Finally construct {(XP*, Lli)}f=I' where Lli = 1{xp*=xn and Xt =
min{Xp*, Zi}, i = 1,2, ... , n.

Similar arguments to those used in the proof of Theorem 3.1 lead to:

AMISE:, =Jrp91 ,92 (Kh * ~'92'92 _ ~'92'92 )] 2 Wl 1 Fg1 ,g2 1 Fg1 ,g2 (4)
Jb .+ 1 fK2~ f ],21' 92 'IJJ

nh Pg1og2 (1-F. . )27
91,92

where

and
iQ _ n1 (1 - F91092 )

)1,g1og2 - P- (1 - FP * K )g1,g2 n g1

The distributions ~ * K g1 and H~ *K g2 , in the first two steps of the
algorithm, denote those ones having densities n1(x) = f Kg1 (x - u)dFg(u)
and h~2(X) = f Kg2 (x - u)dH~(u) respectively.

The expression 4, shows how the bootstrap mechanism mimics the theo­
retical asymptotic integrated weighted squared error in 3.1. As indicated
above, smooth resampling (which is the only difference with respect to
Efron's (1981) proposal) is essential for the bias part of 4. A possible boot­
strap bandwidth selector could be defined as the minimizer of 4. An al­
ternative is to minimize MISE~ itself. However this is not easy since no
explicit expression is available for MISE~ in this context, which has been
very important in avoiding the time-consuming Monte Carlo approximation

7



(see, for instance, Marron (1992) or Cao, Cuevas and GonzaIez-Manteiga
(1993), where formulas which avoid simulation have been developed in the
context of density estimation).

3.2 CS resampling plans

With this notation we refer to resampling plans where the censoring part
is done first and then the smoothing is performed. We will consider two
possibilities for these plans.
The CSl plan. It is a smooth version of the naive resampling:

1. For i = 1, ... , n generate Ci from the density K g1 if ~i = 1 and with
density K g2 if ~i = o.

2. Draw a random sample {(Xt, ~:)}f=l choosing every observation uni­
formly from the set {(Xi + Ci, ~i)}f::l.

An equivalent formulation is to draw independently Ii, uniformly from
{I, 2, ... , n}, Ri from the density K, and then define Xi =Xli +~iglRi +
(1- ~ng2Ri.

The CS2 plan. The idea behind this method is to modify Efron's resampling
in order to incorporate the smoothing effect.

1. First draw bootstrap resamples {X?*}f::l' from ~.

2. Generate independent bootstrap resamples {Z;}f=l' from H~.

3. For i = 1,2, ... ,n let ~i = 1{~.<z:}"

4. Draw Xi from ~ *K g1 if Lli =1 and from H~ *K g2 if Lli = O.

An equivalent formulation is to draw I1,i and I2,i independently from
the set {I, 2, ... , n} according to the Kaplan-Meier distributions F~ and H~
respectively. Define ~i = l{x[ ,<XI .} and

1,1 2,1

if ~i =1
if ~i = 0

where Hi, i = 1,2, ... , n is a random sample generated from the common
density K.

The following result connects the last two resampling plans:
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Theorem 3.2 Under the assumptions in 3.1, the resampling plans CS1 and
CS2 are equivalent. Under either of these resamplings we have the following
asymptotic representation of the bootstrap MISE:

AMISE: =J[i (Kh * jp,g~ _ jp,g~)] 2 W

1- Fn 1- Fn

+...L JK2p~J n'91 ·w
nh (1_Fn)2'

where !P,91 is the kernel density estimator of fl constructed with the uncen­

sored observations, p =n-1 L ~i and Fn =p(Kg1 *FP,n)+(1-p)(K92 *HP,n)'
The functions F'P,n and Hf,n are the empirical distribution constructed with
the uncensored and censored observations respectively.

Observe that these two equivalent resamplings also mimic the theoretical
AMISEun as the SE method did. Now, the estimators are simpler (compare
for instance p versus P91,g2). The equivalence in 3.2 ensures that the method
can be implemented in such a way that no Kaplan-Meier weights need to be
computed in order to generate the resamples (in other terms the presentation
given in CS1).

Once more, expression 5 gives no explicit formula for MISE;;', but for
AMISE;;'. As above, we decided to use the minimizer, h*, of AMISE;;'
instead of carrying out a Monte Carlo approximation of MISE;;'. This is
the bootstrap bandwidth selector which is used in the simulation study of
Section 5.

4 WARPing algorithms

This section is devoted to the design of fast algorithms to construct the
estimator, and also fast algorithms for bandwidth selection, including both
traditional least squares cross-validation, and our smoothed bootstrap meth­
ods.

As discussed in HardIe (1991) and Fan and Marron (1994), the key to
the speed of the WARPing idea is to "bin" the data to an equally spaced
grid, so that the number of kernel evaluations can be drastically reduced.
For bins, take the sets

{ B } = {[Zh (z + l)h)}
z zeZ M' M '

zeZ
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where every interval has length 6 = ~ and M E Z+. The censored data
is then summarized by the nz = Ef=l 1Bz(Xi)~i, Z E Z, the number of
uncensored observation in the bin Bz • The large number of kernel differences
Kh(X - Xi) can be approximated by the much smaller set of differences
wM(k) = K(tt), for k = 1 - M, ..., M - 1, when K is supported on [-1,1].
Fan and Marron (1994) show that this results in computational speed savings
of factors up to 100. They also discuss variations such as refined types of
binning.

4.1 WARPing the kernel estimator

A WARPing approximation of To,h' at each bin indexed by z as in the
previous section, is given by

(6)

where
1 - FM(Z) =n-1 L nk

k>z

for nk = Ei::l 1Bk(Xi), the number of all (not just uncensored) observa­
tion in the bin Bk. Note that FM is the cumulative histogram of absolute
frequencies in the bins Bk.

For a fixed h and letting M - 00, we have rO,M(x) - ro,h(x), I.e. the
WARPing approximation error is small when the rounding error, 6, is small.
This point is illustrated in Figure 1.

[put figure 1 about here]

FIGURE 1: Simulated censored hazard estimation example.

Figure 1 shows the true hazard rate function (solid thick line) for a
Weibull(2,1) model, the kernel estimator (dotted thin line) -computed di­
rectly upon a sample of 100 uncensored observations of such a model- and
two WARPing approximations of this curve: 6 = 1 (dashed thin line) and
h = 0.01 (dashed thick line). The role of the rounding error, 6, becomes
clear: the approximation to the kernel estimator gets better as 6 decreases
to zero.
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4.2 WARPing cross-validation

A WARPed version of the score function 2 in 2.3 involves essentially replac­
ing the conventional kernel estimators by their WARPed versions. However,
some additional work is required to get a version which may be rapidly com­
puted. Define the "leave one out bin counts" n;i = 'L'1=l,#i IBz(Xj)Llj, Z E
Z, and use the approximations

Jro,h(x)2w(x)dx ~ 61: ro,M(z)2wM,h(Z)
zeZ

and

" 1 (X) [( 6M)-1 "M-1 UlM(k)n;;" ] ( )Ll
n LJz Bz in. LJk=l-M 1-F-'(z+k) WM,h Z i

= -2n-11: M ~
i=l 1 - Fn(Xi)

n "1 (X)( 6M)-1 ["M-1 UI~k~nz+" WM(O) ] ( )Ll
~ -2n-11: LJz Bz i n LJk=l-M 1... Mz+k) - 1-FM(Z) WM,h Z i ~

i=l 1- Fn(Xd

~ -2n-1t 1: 1Bz(Xi)~ro,M(Z)WM,h(Z)Lli +

i=l zeZ 1- FM(Z)

+2n-1t l: 1Bz(Xi) (n-1)S~(e)FM(Z»WM,h(Z)Lli =

i=l zeZ 1 - FM(Z)

=__2_1: nzrO,M(Z)WM,h(Z) + 2WM(O) 1: nzwM,h(Z) ,
n - 1 zeZ 1 - FM(Z) n(n - 1)6M zeZ (1- FM(Z»2

where WM,h(Z) denotes the value of W at the lower limit of Bz.Putting these
together yields the approximated score function

Note that for h fixed and 6 small enough, GV(M) ~ GV(h). We suggest
fixing the rounding error 6 and minimizing the function GV in M. This leads
to a very fast WARPing approximation of the bandwidth hey.
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4.3 WARPing the smoothed bootstrap

A WARPed version of the function AMI SE~ in 5 is similarly obtained by re­
placing conventional kernel estimates with their WARPed version, but again
some additional work is need to get a fast algorithm. Our fast algorithm is
most clearly motivated through the observation that AMI S Ew ( h), admits
the equivalent representation:

AMISEw(h) = J(Efo,h(x) - ro(x))2 w(x)dx+

+-.!.-JK2pJ JP(x)w(x) dx
nh (1- F(x))2

where
"';;" () _ -1~ Kh(X - Xd~i
rO,h x - n ~ 1 _ F(X.) ,

a=1 a

Le. the "known denominator" version ofro,h. This version of the bias admits
the WARPed app~oximation:

= (nt5M)-1 L1B;(X) 1:1

wM(k)nP(X ~Bjtk'~)=1) - ro(x) =
j k=I-M 1 - M J +

. M-l npJ: jO(u)du
= (nt5M)-1 L 1B;(X) L wM(k) 1_

B;k (~ k) - ro(x):::
j k=I-M M J +

M-l
::: (nt5M)-1 L 1Bj(X) L wM(k)nt5ro,MU + k) - ro(x) =

j k=l-M

M-l
= M-1L 1B;(X) L wM(k)ro,M(j + k) - ro(x).

j k=l-M

where FM(Z) and rO,M(z) denote the values of F and ro at the lower limit
of Bz •
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(8)

Our fast method requires some smoothed c.d.f. estimates, so we study
WARPed versions of these. First recall that the WARPed version of the
kernel density estimator: ih(X) = nIh Li=I Kh(X - Xi) is given by

which be denoted by iM(Z) when it is evaluated at the lower limit of Bz •

Hence, a natural WARP approximation to the smoothed empirical distribu­
tion function: Fn(x) = Kh * Fn(x) = J:oo ih(t)dt, is:

and
. • zh

FM(Z) = F(M)' Z E Z

A fast approximation, which is constant in each bin is, for x E BI,

. 1 M-l I

F(x) ~ 8M L wM(k)8 L njH·
n k=I-M j=-oo

Hence redefine the WARPed version of the smoothed empirical distribution
function as:

. 1 M-I
F(x) = M L 1Bj(X) L wM(k)nj+k,

n j k=l-M

where nz denotes the number of observations less than the right endpoint
of the bin B z •

Now for the bootstrap approximation of AMI SEw ( h), first write

( ....~)2
AMISE:U(h) = J E*fahex) - pi10JJ (x) w(x)dx

, I-Fn(x)

+ 1 JK2 ....J n,!/] ·w
nh P ( .... )2'I-Fn

where
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Then a WARPing approximation as above yields

AMISE;(h) ~ J (Lj 1Bj(X) (M-1 L~l:MwM(k)To.Ml(j+ k) - ro.Ml(j»))2 w(x)dx

+...1.. J K2~J n.Ml (x).w(x) d
nh P 2 x,

where 11
0 M is the WARPing approximation to the nonparametric estima-

, 1

tion of the true density If, of the uncensored data, with parameter M 1 = "
and where

and
A A (Zh)FMl.M2 (z) = F M ,z E Z

is the WARP version of the estimator F, in Theorem 3.2, using suitable
WARPing approximations Fr.Ml and H?M2' constructed by means of ex­
pression 8 with uncensored and censored data respectively.

This results in a WARPed version of AMISE;(h) as

AMISE:(h) =8 I: (M-1 1=1 wM(k)rO.Ml (z + k) _ rO,Ml (Z») 2WM,h(Z)
keZ k=l-M

+...1.. JK2~~ n.M] (Z)WM.h(Z)S
nh PL,.,zEZ (1- FMlo

M
2 (z») 2 •

(9)
The above formulas are frequently computationally unstable, because

the estimated c.d.f. 's can take on the value one. To avoid this problem, we
used slightly modified estimates of the form

- n-1
Fn =--Fnn

and
- n-l
FM=--FM,

n
which yield obvious modifications of the above formulas.

5 Simulation Study

In this section we compare least squares cross-validation and the bootstrap
bandwidth selectors for moderate sample sizes. We considered three under­
lying distributions:

14



a) Weibull model. The distribution of interest is taken as the Weibull,
po = Fa,>.., (a, A> 0):

if X < 0
if X 2: 0

with density jO = fa,>.., satisfying fO = fa,>..(x) =aA(Ax )a-le-(>"X)Q l[o,oo)(x)
and hazard rate function ro(x) =Ta,>..(X) =aA(AX)a-1 l[o,oo)(x).

We chose a "proportional censorship" model (see Koziol and Green
(1976»which means nO is defined by 1 - nO = (1 - PO)11 for certain 'TJ > o.
This gives a probability of censoring of m. This model allows simple con­
trol of the amount of censoring in the simulation through choice of'TJ. The
random number generation was carried out using the routine RNUNF of the
IMSL library (1991) to draw pseudo-uniform random numbers u, and then
the inversion method was used to compute random deviations following the
Weibull distribution:

[
-In(I-U)]l/a 1

y= -.
'TJ A

b) Gumbel model. The underlying distribution is po = Fa,>.., of Gumbel
type (a, A> 0):

if X < 0

if x 2: 0

with density function jO(x) = fa,>.. (x) = aAe>..x-a(e>,z-l) 1[0,00)(x) and hazard

rate TO(X) = Ta,>..(X) = aAeAx1[o,oo)(x).
The proportional censorship model is also used and the random number

generation, again using the inversion method, is carried out through

y =In [1 _ In(1 - u)] !..
'TJa A

c) Truncated normal model. Here again we used a proportional censor­
ship model, but efficient simulation is now accomplished through separately
considering two cases. If the proportion of censoring is greater than or
equal to 1/2, then po is taken as the distribution of the random variable
XO = YIY 2: 0, where Y E N(p.,u2». I.e.

pOe )= ~#l,O'(X) - ~#l,O'(O)
X 1- ~ (0) ,#l,O'
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where ~~.O' is the distribution of Y. Observe that the density function of
XO is given by:

f O() ¢>~,O'(x) 1 ()
x = 1 _ ~ (0) [0,00) x ,

JJ..O'

(¢>~.O'(x) = ~~,O'(x» and hazard rate function:

( ) ¢>~.O'(x)
TO X = 1 _ ~~.O'(x) ,

which coincides with the hazard rate function of a N (p., (72) distribution (a
simple way of seeing this is to recall that the hazard rate is the infinitesimal
risk of "becoming dead" at a given "age". This does not change if we
maintain the shape but the range).

The distribution DO is defined through the relation 1 - DO = (1- PO)"",
with "l = 1,2, ..., which is nothing else but the minimum of"l truncated nor­
mal random variables. Note that the censoring proportion can only attain
the values p = 1/2,2/3,3/4, ....

A probability of less than 1/2 can be obtained by interchanging the roles
of the distributions Po and DO above. The IMSL routine RNNOF was used
to simulate the normal random variables.

Table 1 contains the results of 1000 trials of sample size 100 correspond­
ing to the following model~:

• Weibull models with parameters A = 1 and a =1,2,3, without censor­
ing ( denoted by W(l, 1), ,W(2, 1), and W(3, 1» and also with 25%
of censoring (denoted by GW(l, 1), GW(2, 1) and GW(3, 1».

• Gumbel models with parameters A= 1 and a = 1,2,3, without censor­
ing (G(l, 1), G(2, 1), and G(3, 1» and with 25% censoring (GG(l, 1),
GG(2, 1) and GG(3, 1».

• A truncated normal distributions with parameters p. = 1 and (7 =
0.5 for an uncensored situation and also with a censoring of 25%
(N(l, 0.5), CN(l, 0.5».

Although the only sample size in the simulations presented here is n =
100, similar results where observed in the whole simulation study carried
out also for n = 50 and n = 200.
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The values in Table 1 are the mean, the median and the standard devi­
ation of the integrated squared error

along the 1000 samples of size 100. The bandwidth it denotes the cross­
validation bandwidth, hey, -obtained by minimizing GV(M) in expression
7- or the bootstrap selector, h*, -which comes from the minimization of
AM/SE*(M) in the expression 9-. Both minimizers were taken as the
global minimizer over a fine grid. In both cases, the rounding error in the
WARP approximation was 6 =0.01 and the weighting function was:

w(u) = 1[FO-1 (0.25),Fo-1(0.75))(u).

Finally, the pilot bandwidths 91 and 92 used are given by

[J ]
-1/7

_ K,,2d-1 A-I -191 - K a1 n ,

[J ]
-1/7

_ K,,2d-1 A-I -1
92 - K a2 n ,

where al and a2 are estimators ofJ fO (3)2 and JhO(3)2 and dK = Jt 2K( t)dt.
These values are obtained by computing the exact expression of both inte­
grals (in terms of the theoretical variance) when normality is assumed in .
the underlying densities and then plugging the sample variance of the un­
censored or censored data, respectively. This corresponds to the asymptot­
ically optimal bandwidth when estimating the true curvature of the den­
sity by means of the curvature of the kernel estimator (see Cao, Cuevas
and Gonzeilez-Manteiga (1993) for details). Although the problem here is
different, it is clear that it is close related to the pilot bandwidth when
bootstrapping in the uncensored case (given by the expression of 91 above).

TABLE 1: Mean, Median and standard deviation of hey and h*.
Table 1 shows that the bootstrap selector is much more concentrated

around its mean than the cross validation bandwidth. The distribution
of both are asymmetric to the right (this is more clear for hey) and the
bootstrap bandwidth tends to be smaller than the cross validation, on the
average. In order to show the accuracy of both bandwidth selectors, Figures
2 and 3 present two kernel density estimators using the 1000 different values
of the two selectors hey and h* for the models W(I, 1) and W(3, 1), as well
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as some approximationofthe hMISEw bandwidths, computed by minimizing
the Monte Carlo approximation, based on 1000 trials, of the mean integrated
squared error

E (J(fO,h, - ro)2w) ,

in finitely many values of h, ranging from 0.1 to 1.1 with a step of 0.05.
Every integrated squared error is approximated by its WARP version:

8 L f5,M(Z)WM,h(Z) - 2 L fo,M(z)ro(z)wM,h(Z) + L ro(z)wM, h(z)
zeZ zeZ zeZ

and 8 = 0.01.
We conclude from both the numerical and graphical viewpoints that the

performance of h* is far superior to that of hev. We believe that this can
be understood theoretically by studying asymptotic rates of convergence to
hMISEw ' PatH (1990) indicates that hev has the excruciatingly slow rate of
convergence:

hev 1 -1/10
-:--~- - "" n
hMISEw - •

Based on similar rates of convergence obtained for conventional density esti­
mation by Jones, Marron and Park (1991), we conjecture that the bootstrap
bandwidth presented here has rate of convergence

and that the exponent could be improved to -1/2 by the methods presented
in that paper. These are some interesting open problems for future research.

6 Appendix: Proofs

Proof of Theorem 3.2
First check that both resamplings are equivalent. Consider a bootstrap

random observation (X'*, Ll*) chosen uniformly from the set {(Xi, Lli)}f=I
and independently draw a random variable R with density K. The CS1
resampling yields the bootstrap observation (X*,Ll*), where

X* = X'* + [9I Ll* +92(1 - Ll*)]R.
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The CS2 resampling plan involves independent draws XO* from .F;{ and
Z* from H~. These are used to construct:

and
X '* = min{Xo*,Z*}.

Independently generating R, with density K, yields the ME resampling,
(X*, ~*), where

X* = X'* + [gl~* + g2(1 - ~*)]R.

To compare these resampling algorithms, observe that the joint boot­
strap distributions of R and (X'*,~*) are the same under both CS1 and
CS2. Hence, only the equivalence of the bootstrap distributions of (X'*, ~*)
is needed to ensure that CS1 and CS2 coincide. This is a direct consequence
of Efron (1981), since the absolute continuity of the distributions imply that
there will be no ties, with probability one.

Many of the details needed for a rigorous derivation of the representa­
tion of AMI S Ew are quite standard, so we present only an outline. The
representation given by the CS1 resampling plan is most convenient. I.e.
draw Ii with equiprobability from the set {I, 2, ... , n},

Xi = XI, +~ig1Ri +(1- ~ng2Ri

and Ri' with density K, independent of h For every bootstrap resample
{(Xt, ~n}f=l' the bootstrap version of the hazard rate kernel estimator is:

n ~*
A* () -1'" K (X*) irO,h x = n ~ h x - i 1 _ F*(X~)'

1=1 n 1

where F;; is the empirical distribution function of the bootstrap resample
(Xi, X2,... ,X~). Observe that the bootstrap observations follow the boot­
strap distribution:

So
E*(fo,h(X)) =
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Var*(f* (x)) ~ Var* (n- 1 ~~_ J(h (x - X~) ,N ) =O,h LJ,-l, 1-Fn (Xn

- _1 [E* (K2 (x-X-) .!l- )
- nh2 h (1-Fn (Xn)2

-E* (K (x-X-) p._ )2]
h 1-Fn (Xn '

whose dominant term can be analyzed by standard methods:
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= _1_~J K2(z) K (X - hz - Xi) ..!..dz~. =
n2h L..J (~ )2 g g)i=1 1 - Fn(x - hz) 1 1

_ ",!",AJK2() .if'91 (X - hz) d "J- hP z 2 z_
n (1 - Fn (X - hz))

A

O
"J .!.. AJ K2 . 11,91 (X)
- P 2'

nh (1-Fn (x»)
The proof finishes using the representation of the mean integrated squared
error in terms of the integrated variance and the integrated squared bias.
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Table 1

Model mean median std. dey.
hev h* hev h* hev h*

W(l,l) 0.067 0.031 0.033 0.020 0.112 0.034
CW(l, l) 0.118 0.083 0.095 0.068 0.104 0.062
W(2,1) 0.096 0.047 0.030 0.024 0.199 0.070
CW(2,1) 0.173 0.128 0.119 0.099 0.194 0.108
W(3,1) 0.145 0.083 0.091 0.054 0.197 0.096
CW(3,1) 0.246 0.188 0.174 0.150 0.252 0.112
G(l,l) 0.101 0.054 0.032 0.027 0.198 0.088
CG(l, l) 0.182 0.134 0.115 0.104 0.249 0.112
G(2, 1) 0.169 0.081 0.058 0.047 0.375 0.101
CG(2, 1) 0.303 0.223 0.214 0.181 0.365 0.172
G(3,1) 0.217 0.122 0.096 0.076 0.393 0.144
CG(3,1) 0.375 0.299 0.287 0.246 0.349 0.223
N(l, 0.5) 0.184 0.088 0.090 0.057 0.316 0.104
CN(1,0.5) 0.236 0.184 0.164 0.144 0.274 0.150
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