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Abstract

Highly developed science and technology from the last two decades motivated the study

of complex data objects. In this paper, we consider the topological properties of a popula-

tion of tree-structured objects. Our interest centers on modeling the relationship between

a tree-structured response and other covariates. For tree objects, this poses serious chal-

lenges since most regression methods rely on linear operations in Euclidean space. We

generalize the notion of nonparametric regression to the case of a tree-structured response

variable. In addition, a fast algorithm with theoretical justification is developed. We

implement the proposed method to analyze a data set of human brain artery trees. An

important lesson is that smoothing in the full tree space can reveal much deeper scientific

insights than the simple smoothing of summary statistics.
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1 Introduction

Complex data objects, including tree-structured data, manifold data and curve data, are fre-

quently encountered in many modern statistical applications. Using terminology introduced by

Wang and Marron (2007), we call such data types Object Oriented Data. Often, object oriented

data live in non-Euclidean spaces, in which addition and scalar multiplication are typically ill-

defined. Thus, traditional statistical methods, most of which are based upon Euclidean analysis,

can not be directly implemented.

In medical image analysis, tree-structured objects are found to be an efficient data represen-

tation when the focus of the medical study involves variation in branching structures. Object

oriented data analysis (OODA) on tree-structured data objects has been studied in Wang and

Marron (2007) and Aydın et al. (2009). The first paper proposed measures of centrality and vari-

ability for populations of tree-structured objects. In addition, an analog of principal component

analysis has been developed for tree space starting with the formulation of an appropriate opti-

mization problem. A detailed study, including a fast and complete solution, of this optimization

can be found in the second paper.

Aydın et al. (2009) took OODA on trees further by studying the dependence of the principal

component scores on age through a simple linear regression analysis. Here, we take a more direct

approach to modeling the relationship between tree-structured objects and age. In the case of

a scalar response, various linear and nonlinear regression models have been widely studied; see

Davison (2003) for a recent overview. The main contribution of the present paper is the first

generalization of the notion of locally weighted smoother to tree space. Our new approach is

formulated as a particular optimization problem. Another contribution is an efficient algorithm

with which a complete solution can be obtained in linear time.
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Our motivating example is a set of human brain artery trees; see Aylward and Bullitt (2002)

for a detailed description of the data collection. The study of brain artery trees has many

target applications, including study of potential stroke victims, as well as screening for loci of

pathologies such as brain tumors, see Aydın et al. (2011). In the present data set, only normal

brains (determined by pre-screening) are considered, and the main goal is to understand general

tendencies of change in the brains of adults, over the approximate age range 20 to 70.

The tree data are very rich, with many types of information, including connectivity, location,

shape and thicknesses of the branches, all of which deserve further study. In this early analysis,

we deliberately choose to directly target just one important aspect: connectivity. To avoid

confounding this with other aspects, we reduce the data to purely topological structures, and

analyze only those. Study of the many other interesting aspects will be an important goal for

future work.

Even when studying only topological structure of the trees, there are still major mathematical

challenges. Not only are these data objects non-Euclidean, the space they reside in is even

less Euclidean than the space of manifold data. In particular, manifolds admit approximating

tangent planes, that form the basis of many suggested statistical analyses (Bhattacharya and

Patrangenaru, 2003; Fletcher et al., 2004; Bhattacharya and Patrangenaru, 2005). No such

approximation is available in topological tree space, so we term this “strongly non-Euclidean”.

A reviewer made the interesting related comment that nonlinear smoothing in this space appears

to be more straightforward to implement than simple linear regression.

The rest of this paper is organized as follows. Section 2 mainly describes the brain artery data

and the tree representation of it, in which we focus on the connectivity. The nonparametric tree

smoothing methodology is stated in Section 3, which yields an easily computed algorithm. In

Section 4, a case study involving brain artery data is discussed. Our smoothing method reveals

much deeper scientific insights than is available from nonparametric regression on the number

of nodes. A simulation study demonstrating the effectiveness of our tree smoothing method is
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given in Section 5. Section 6 describes some future work and finally Section 7 contains proofs

of the theorems.

2 Tree Representation and Brain Artery Data

2.1 Data

In this paper, we study human brain artery systems. As noted above, there are several potential

applications. In the present study, we have only healthy adults, so we focus on changes in

arterial structure as a function of age.

This data set was collected by the CASILab at The University of North Carolina at Chapel

Hill. Detailed description can be found in Aylward and Bullitt (2002) and Bullitt et al. (2005).

Magnetic resonance angiography (MRA) scans have been collected for each participant, and the

resulting images constitute a 3-D image of the brain artery system. One slice of such a 3-D image

is shown in the left panel of Figure 1. MRA is good for finding arteries because motion (e.g.,

blood flow through arteries) shows up as white. The white regions in the left panel of Figure 1

are thus slices of arteries. Aylward and Bullitt (2002) used a tube tracking algorithm to find

artery pieces, represented as a sequence of spheres. These pieces were then manually combined

into trees. An example is shown in the right panel of Figure 1. In order to maintain locality of

blood systems, the arteries have been separated into four sub-systems that feed different brain

regions. These are colored in the right panel of Figure 1 as anterior (red), posterior (gold), left

middle (cyan) and right middle (blue) cerebral artery systems.

In this study, there are 98 healthy human subjects involved. Other covariates are also

available, such as gender, handedness, and ethnicity for each subject.

The tree data are very rich, involving many types of information, such as location, branching

structure, and thickness of branches. While all of these will ultimately be of interest, in this
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Figure 1: Left: One slice of an MRA scan for one subject; Right: a 3-D graphical illustration

of the corresponding brain artery system. There are four major components: anterior (red),

posterior (gold), left (cyan) and right (blue). The original MRA images are publicly available

at http://hdl.handle.net/1926/594.

early study we choose to focus solely on the population variation of the branching structure

topology. For this reason, we reduce each tree to only its branching structure, as in Wang and

Marron (2007) and Aydın et al. (2009).

In the next subsection, we will briefly introduce some needed basic concepts of graph theory.

We will continue the discussion of the tree representation of brain artery systems in Section 2.3.

2.2 Binary Tree

A tree is a collection of nodes (or vertices) and edges, where there exists exactly one simple path

(a sequence of edges) between every pair of nodes. In a rooted tree, one node is designated as

the root, and the level of a node is the total number of edges along the path to the root. For

instance, the level of the root node is zero. Between each pair of nodes connected by an edge,

the one with higher level is the child, and the other one is the parent of the child node. A node

with no children is called a leaf node.

A binary tree is a special type of tree, and has been widely used in many scientific fields.
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Every node of a binary tree has at most two children, a left child and a right child. In this paper,

only rooted binary trees are considered. For our convenience, the set of all possible binary trees

is referred to as binary tree space, and is denoted by T .
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Figure 2: A graphical example of four binary trees t1 (upper left), t2 (upper right), t3 (lower left),

t4 (lower right). The numbers in boxes are the level-order indices and the solid line segments

indicate the edges in each tree.

To uniquely identify each node of a binary tree, we use the labeling system, from Wang

and Marron (2007), called level-order index. Simple understanding of this system comes from

Figure 2, where four example trees are depicted with different level-order index sets:

IND(t1) = {1, 2, 4}, IND(t2) = {1, 2, 3, 4, 6}, IND(t3) = {1, 2, 3, 5, 7}, IND(t4) = {1, 2, 3}.

For two binary trees t1 and t2, the Hamming metric based on their level-order index sets is

defined as

dI(t1, t2) =

∞∑

k=1

I{k ∈ IND(t1)△ IND(t2)} (1)

where I{·} is the indicator and △ is the symmetric difference between two sets. This metric is

called the integer tree metric in Wang and Marron (2007), and it counts the total number of
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noncommon nodes between two trees. As simple examples, the trees t1 and t2 in Figure 2 have

distance 2, and t2 and t3 have distance 4. A reviewer has pointed out that, in some situations, it

may not be reasonable to assume that every node can be treated equally. It is straightforward

to extend this integer tree metric by adding a weight to each node. In particular, our results

could be generalized using a weighted tree metric defined as

dwI (t1, t2) =

∞∑

k=1

αkI{k ∈ IND(t1)△ IND(t2)} (2)

where αk is a positive weight of node k. dI is the special case where αk = 1 for all k. It is easy

to check that the weighted metric is also a metric on binary tree space.

2.3 Tree-structured Objects

In this subsection, we describe how the connectivity structure is extracted to form each purely

topological data object, as in Wang and Marron (2007) and Aydın et al. (2009). An illustrative

toy example is shown in Figure 3. The parts of arteries between splits are called artery segments,

which are labeled with corresponding circled letters in each panel. Note that the artery system

in the left panel initially starts from a thick artery segment at the bottom. It grows upward, and

then branches into two segments. Each of these artery segments may continue branching into

additional artery segments. In our tree representation in the right panel, each artery segment is

denoted by a node, labeled with the same circled letters. The initial segment A is designated

as the root node. The two artery segments B and C , connected to the root node, are its

children. For definiteness, the node with more descendants is put on the left. Thus, a tree

representation for each artery system is extracted, in which each artery segment is a node and

the edges indicate connectivity of artery segments.

Two visualizations of a real data topological tree (displayed using the cyan color in the right

panel of Figure 1) are plotted in Figure 4. The left panel shows a dyadic view whose format is

the same as Figure 2. While this view is very intuitive, the dyadic nature of the display limits
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Figure 3: An example of brain artery binary tree construction. Left: An artery system with

5 segments; Right: Corresponding tree representation. The circled letters represent artery

segments, and the level order index set is {1, 2, 3, 4, 5}.

the number of levels to about 8. This is a serious limitation for our data which frequently has 20

to 30 levels. The right panel shows the more sophisticated D-L view (Descendant-Level view)

proposed by Aydın et al. (2011). The D-L view shows the same nodes and the same connected

line segments, where the nodes are positioned in R
2 according to quantities of interest. The

vertical coordinate of the node positions is the logarithm (base 2) of the number of descendants,

and the horizontal coordinate is the level of the node. This allows easy viewing of the full tree,

and focusses on these important aspects, as illustrated in Section 4. While these coordinates

are very informative, they result in substantial over-plotting because several nodes can have

the same number of nodes on the same level. For enhanced visualization, jittering of a normal

perturbation with mean 0 and standard deviation 0.05 is added to the y coordinate of each node.

3 Methodology

Regression analysis is one of the most commonly used techniques in statistics for modeling the

relationship between a dependent variable and independent variables.
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Figure 4: Tree visualizations for the left middle cerebral artery system depicted using the cyan

color in Figure 1. Left: Dyadic tree representation, truncated to the first 8 levels for illustration;

Right: D-L view showing the full structure of the same tree.

In general, a regression can be characterized as a mapping

f : X 7→ E[Y |X ]

where X is the predictor variable and Y is the response variable whose distribution depends on

X . In this paper, the regression problem between a tree-structured response, Y ∈ T , and the

covariate age, X ∈ R
1, is considered. In view of the strongly non-Euclidean nature of the tree

space, it is not straightforward to develop simple linear regression. As pointed out by a reviewer,

it is perhaps surprising that nonlinear regression by smoothing seems to be more feasible.

3.1 Nadaraya-Watson Estimate

Let {(Xi, Yi), i = 1, . . . , n} be a random sample from a population (X ,Y) ⊂ R
2. The Nadaraya-

Watson estimate, see Härdle (1990) for a good introduction, of the function f is a moving local

average of the form

f̂(x) =

∑n

i=1Kh(x−Xi)Yi∑n

i=1Kh(x−Xi)
,

where h is called a bandwidth, Kh(·) = K(·/h)/h is a kernel function which can be any proba-

bility density function symmetric with respect to zero. We will also use the fact that f̂(x) is a
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minimizer, with respect to β, of the locally weighted least squares
∑n

i=1(Yi − β)2Kh(Xi − x) for

any given x.

Several important issues need to be addressed here including the choices of kernel function

and bandwidth. Here, we use the Gaussian kernel in our computations throughout this paper

for the reasons given in Chaudhuri and Marron (2000). The choice of bandwidth for our tree

smoother is rather challenging since most existing techniques can not be easily adapted to

tree space. In the theory of classic nonparametric regression, various choices of bandwidth are

suggested to optimize some expected discrepancy or its empirical/asymptotic approximation.

While the bandwidth selection in tree space is still under development, we recommend the scale

space viewpoint on bandwidth selection, as suggested by Chaudhuri and Marron (1999, 2000).

We also implemented a cross-validation approach, see the supplemental material Section A. As

expected from classical nonparametric regression (Härdle et al., 1988), this bandwidth choice is

unreliable.

3.2 Measure of Centrality in Tree Space

A fundamental concept to all types of classical Euclidean regression analysis is conditional

expectation. Here, we develop an appropriate analog in tree space. Let T be a tree-structured

random element of T . Assume that T has a probability distribution P (θ) indexed by a parameter

θ. For instance, Banks and Constantine (1998) considered a family of probability measures on

a finite set of graphs (including trees). An interesting question is, what is the central tree of T

under the probability distribution P (θ)? Fréchet (1948) proposed the Fréchet median which is

the minimizer of Ed(X,m). In the case of Euclidean distance on R
1, this is the conventional

median. More generally, it gives a useful notion of median in other Euclidean spaces.

Here we take our centerpoint to be the Fréchet median tree denoted by µF ; that is,

µF = argmin
m∈T

EdI(T,m) (3)
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where T is a random tree drawn from the distribution P (θ) on T , and where dI is the integer

tree metric as defined in (1). The Fréchet Variation about the center is quantified by

VF = EdI(T, µF ) (4)

In Euclidean space, VF is the usual mean absolute deviation from the median, a common robust

dispersion measure.

When working with data, the empirical version of (3) and (4) are more convenient. In

particular, define the sample Fréchet median and variation as

µ̂F = argmin
m∈T

1

n

n∑

i=1

dI(ti, m) (5)

V̂F =
1

n

n∑

i=1

dI(ti, µ̂F ) (6)

where {t1, . . . , tn} is a random sample from P (θ). This problem has been considered by Wang

and Marron (2007), who proposed an algorithm, the majority rule: a median tree contains all

the nodes that appear more than n/2 times in the tree sample, and some or all nodes that appear

exactly n/2 times. As a simple example, in Figure 2, tree t4 is a median tree of {t1, t2, t3, t4}.

3.3 Tree Smoother

Continue to let T be a tree-structured random element. Our main focus with the blood artery

data is the dependence of the topological structure of T on the covariate age. This is a regression

problem in which the response is a tree-structured random element. As noted above, classical

linear regression techniques are hard to implement directly due to the non-Euclidean nature

of tree space. This is because linear operations such as addition and scalar multiplication are

not well defined. We approach this problem using nonparametric smoothing. In particular,

we express the regression problem as a general locally weighted optimization problem. The

regression relationship between the tree-structured object (T ) and the covariate of age (x ∈ R
1)

is formulated as a mapping from R
1 to T . This mapping is a functional tree-structured object
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T (·), indexed by the covariate x. Moreover, we assume a heuristic notion of smoothness for

this map in the sense that, for any pair of close enough x1 and x2, the corresponding mapped

tree objects are also close with respect to the tree metric. Thus, for each x, the “conditional

expected” tree T (x) given x can be estimated by the solution to the following optimization

problem: for any x, minimize over m

n∑

i=1

dI(ti, m)Kh(x− xi) (7)

based on the sample data (x1, t1), . . . , (xn, tn). In other words, for each x, we obtain the locally

weighted sample Fréchet center, and use it to estimate the corresponding conditional central

tree. If the random variables dI(ti, m), i = 1, . . . , n, are i.i.d., this weighted sum is an estimator

of EdI(T,m(x)) up to a scale factor. In the much different domain of diffeomorphisms as data

objects, Davis (2008) developed a related smoothing approach, called manifold kernel regression.

They worked on a manifold, which allows local Euclidean approximation, and hence is easier to

deal with than the extremely non-Euclidean tree space treated here.

Fast calculation of the minimizing tree is enabled by characterizations, based on locally

weighted average nodal occurrences, of the solutions of (7) developed in Theorems 1 and 2. In

particular, an easy-to-compute threshold value ensures a linear-time algorithm for fast compu-

tation of all solutions of this optimization problem. See Section B of the supplemental material

for a detailed algorithm to solve the minimization problem (7).

For convenience of discussion, we first introduce a data dependent score function; that is,

for a fixed node k, let

Dk(x) =

n∑

i=1

Kh(x− xi)I{k ∈ IND(ti)} −

n∑

i=1

Kh(x− xi)/2. (8)

Note that, for any x, this score function measures the difference between the weighted average

number of occurrences (the first quantity on the right hand side of (8)) and a normalization

term depending on x (the second quantity on the right hand side of (8)). Theorem 1 provides

a necessary condition for a minimizer tree of (7). In particular, if a node is included in the
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minimizer tree, then the weighted average number of occurrences is above the normalization

term, i.e., Dk(x) ≥ 0.

Theorem 1. For any x ∈ R
1, let t(x) be a minimizer tree of (7). All the nodes of the tree t(x)

must satisfy the following inequality: for any node k ∈ IND(t(x)), Dk(x) ≥ 0.

For any x, let S(x) be the collection of all nodes with nonnegative scores; that is,

S(x) = {k : Dk(x) ≥ 0}.

Using an argument similar to the proof of Theorem 1, we can demonstrate that S(x) is indeed

a topological tree by proving the following statement: for any x, if Dk(x) ≥ 0 then Dk′(x) ≥ 0

for any ancestor node k′ of k. As a direct consequence of Theorem 1, a minimizing tree t(x) is

a topological subtree of tree S(x).

Moreover, we can further decompose S(x) as S(x) = S1(x)∪S2(x), where S1(x) contains all

nodes k with positive scores, and S2(x) = S(x)−S1(x) is the set of nodes with zero scores. Next,

a sufficient condition for a minimizing tree, based on such a partition, is provided in Theorem 2.

Theorem 2. For any x ∈ R
1, any minimizer tree t(x) can be expressed as

IND(t(x)) = S1(x) ∪ S∗

2(x)

where S∗
2(x) is a subset of S2(x).

Proofs of both theorems are included in Section 7.

It can be seen that every S∗
2(x), that results in a tree, corresponds to a different minimizer

tree. Thus, the minimizing tree is unique if and only if S2(x) is empty. When S∗
2(x) is empty, we

call t(x), with the level-order index set S(x), the unique minimal solution. When S∗
2(x) = S2(x),

the tree t(x), with the level-order index set S1(x) ∪ S2(x), gives the unique maximal solution.

The minimal tree, which has the fewest nodes among all minimizing trees, is recommended as

a device for breaking any ties. It is straightforward to show that Theorems 1 and 2 continue to
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hold for a weighted analog of (7), based on a weighted distance dwI as defined at (2). Hence, the

minimizer tree does not depend on the choice of weight sequence.

The majority rule in Wang and Marron (2007) is a special case of Theorems 1 and 2, in

which we set Kh(x− xi) ≡ 1, i.e., assigning equal weight to each tree in the sample.

3.4 Alternative Smoothing Representation

Additional insight to our tree smoother comes from representing it as a conventional smoother of

indicator functions. Suppose that, for each node k, we want to model the relationship between

the occurrence of the node, Y = I{k ∈ IND(T )} (T is a random tree-structured object), and

some covariate X . A simple regression can be characterized as a mapping

mk : x 7→ E[Y |X = x] = P (k ∈ IND(T )|X = x).

In particular, we have a random sample, (x1, y1), . . . , (xn, yn), where xi is the ith observation of

the covariate X and yi = I{k ∈ IND(ti)} is the corresponding response. Thus, the Nadaraya-

Watson estimate for the mapping mk can be written as

m̂k(x) ≡

∑n

i=1Kh(x− xi)I{k ∈ ti}∑n

i=1Kh(x− xi)
.

Note that, compared with the score function Dk(x) in (8),

Dk(x) = 0 ⇔ m̂k(x) =
1

2
and Dk(x) > 0 ⇔ m̂k(x) >

1

2
.

In fact, the function m̂k(x)− 1/2 can be used as the (rescaled) score function, in the sense that

the sign indicates when the node is included. Thus, our proposed tree smoother can be simply

viewed as a Nadaraya-Watson estimator node by node. Our tree smoother will keep those nodes

whose Nadaraya-Watson estimator is greater than 1/2. Furthermore, it is worth noting that,

{k : m̂k(x) ≥ 1/2} and {k : m̂k(x) > 1/2} correspond to the maximal and minimal solution

trees of (7), respectively.
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4 A Case Study

In this section, our proposed method is implemented on the brain artery data, as described

in Section 2. There are n = 98 subjects in the study, and each individual has four artery

systems. Here, our interest centers on the relationship between the topological structure of each

artery system and age. Aydın et al. (2009) considered a principal component approach in tree

space to explore that relationship. They established a significant linear relationship between

principal component scores and age. Our tree smoother makes three important contributions.

First, this analysis directly targets the dependence on age instead of indirectly through principal

components. Second, we allow more flexible nonlinear dependence on time. Third, we regress

directly on tree objects instead of on numerical summaries, e.g., number of nodes.

To demonstrate the value of regressing the full tree objects on age, we first show a simple

linear regression of the number of nodes of each tree on age in the first panel of Figure 5.

Results from the left middle cerebral artery system are shown here. The other artery systems

give similar results as seen in Section C of the supplemental material. The other panels show the

Nadaraya-Watson estimators for different bandwidths. The slope of the linear regression line

is significantly negative, and the Nadaraya-Watson estimators all suggest an overall decreasing

pattern.

Now, we consider the deeper tree regression problem of modeling the relationship between

full tree topology and age. We focus on the left middle cerebral artery system to save space. The

results for the other brain artery systems are shown in Section D of the supplemental material.

We implemented our smoothing method for the set of bandwidths, C = {2, 3, 4, 5, 6, 8, 12, 18}.

These are approximately equally spaced on a log scale, with 2 (18) clearly undersmoothed

(oversmoothed, respectively). For each bandwidth h in the candidate set C, the predicted tree

t̂h,i is obtained for each observation (xi, ti). For our discussion, let t̂h(x) denote the fitted tree

object at age x with bandwidth h. The change in characteristics of tree structure, such as

branching pattern, as a function of age, is shown using a sequence of smoothed tree objects.
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Figure 5: Scatterplots of the number of nodes of the left middle cerebral artery trees. First panel:

Simple linear regression with a significantly negative slope. Panels 2 to 6: Nadaraya-Watson

estimators for the bandwidths 2, 4, 6, 7, 12, respectively. Note an overall decreasing trend in the

number of nodes as age increases.
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This is analogous to the conventional view of the smoothed curve in nonparametric regression

analysis. The result is shown in Figure 6, which contains six subplots. In each subplot, a

D-L view of the topological tree structure of a fitted tree at a given age, obtained by our

smoothing method with bandwidth h = 6, is depicted. The reason for choosing h = 6 will be

stated later. These subplots show the tendency of change in the topological structure of artery

trees. Figure 6 shows that the topological structures corresponding to the trees in the upper

row (younger ages) are more complicated than those of the trees in the lower row (older ages),

which is also suggested in Figure 8. Moreover, compared with t̂6(20), t̂6(30) has more branching

structure at higher levels. As age increases, t̂6(40) has less descendants than t̂6(30) at levels 1, 5

and 8. This indicates a tendency for artery segments to diminish or shrink over time. Moreover,

the maximum level of the three estimated central trees, t̂6(50), t̂6(60) and t̂6(70), continues to

decrease. Note also that, a tendency towards a larger number of descendants as age increases

from x = 50 to x = 70. This suggests that some of the artery segments have diminished while

others have split further. In addition, for older people, the increasing number of artery segments

in some subtrees is consistent with the need to fill a greater area in response to artery blockage.

A useful diagnostic for regression in Euclidean space is the residual plot. Here we develop an

analog, called the absolute deviation plot, which is shown in Figure 7 for h = 6. Age is on the

horizontal axis, and the distance between observations and fitted values is shown on the vertical

axis. Note that the absolute deviations are spread between 50 and 150 fairly randomly, which

suggests no heteroscedasticity problems for this data set.

Similar graphics, for other bandwidths, are shown in Section E of the supplemental material.

A useful summary of the results is shown in Figure 8, where tree smooths are summarized by

the number of nodes in each smoothed tree object. For each bandwidth, the corresponding

panel shows a scatterplot of the number of nodes of each predicted tree t̂h,i versus age xi for

all h ∈ C. When the bandwidth is 2, the fitted tree seems to be “undersmoothed”, since the

numbers of nodes of the fitted tree fluctuate strongly. As the bandwidth increases (3, 4 or
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Figure 6: A graphical illustration of the topological structures of the fitted tree-structured

objects at age 20, 30, 40, 50, 60, 70 when the bandwidth is 6. In each subplot, a D-L view of the

fitted tree at a given age is depicted. The variable N indicates the number of nodes of each tree.

This clearly shows an increase in structure for younger ages, followed by a decrease in structure

for older people.
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Figure 7: Absolute deviation plot for bandwidth h = 6. Vertical axis: the distance between

each observation and the corresponding fitted tree; Horizontal axis: age. This suggests no

heteroscedasticity and reasonable performance of our tree smoother.

5), there is a change in the decreasing pattern around age 50. In fact, the pattern becomes

flat beyond 50. When the bandwidth is about 6 or 8, the overall pattern is very smooth and

clear. Surprisingly, there are three distinct trends: one is increase from 20 to about 30, and

one is decrease from 30 to 50, and the third is essentially flat after 50. On the other hand,

when the bandwidth is 12 or 18, the local smoother tends to oversmooth the tree data. In

fact, the number of nodes remains constant for a range of consecutive x values. For these large

bandwidths, the dominant pattern is decreasing through the entire domain, which is different

from the behavior for smaller bandwidths. Notice that the number of nodes of the smoothed trees

are much smaller than the observed data, which suggests the smoothed estimator indeed captures

important underlying population structure. Among those bandwidths considered, h = 6 seems

to represent a reasonable trade-off between variance and bias.

As discussed in the supplemental material, we also considered cross-validation for bandwidth

selection, but the result was quite oversmoothed at h = 18. This is consistent with the large

sample variability for cross-validation in Euclidean smoothing discussed by Härdle et al. (1988).

It is also consistent with the results of Chiu and Marron (1990), who showed how autocorrelation

among data observations may cause such phenomena. In our tree regression problem, the driver
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of the cross-validation bandwidth remains unclear.

The new anatomical phenomena discovered with bandwidth h = 6 demonstrates the value of

smoothing in the full topological tree space as opposed to simply smoothing summary statistics

in Euclidean space. Figure 8 reveals deep non-monotone behavior in age. In particular the

increasing number of nodes from age 20 to age 30, seen in bandwidth h = 6, is not visible in

simple smoothing of the summary statistics.
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Figure 8: Scatterplots of the number of nodes of the smoothed (left middle cerebral artery) tree

versus age. Note mostly decreasing trends, except increasing for younger people at intermediate

bandwidths.

5 A Simulation Study

In Section 4, our proposed method has revealed three potential trends in the number of nodes

of predicted tree objects using our proposed tree smoothing method. To investigate whether
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these are spurious artifacts of the sample noise or important underlying structure, we conduct

a simulation study. We will first introduce a probability distribution in tree space.

Following the development of probability measures on a finite set of graphs by Banks and

Constantine (1998), we consider the following probabilistic framework on binary tree space T .

Define a notion of circle of radius k around the center µ in the tree space

Sk(µ) = {t ∈ T : dI(t, µ) = k}.

In our probabilistic framework, we make the following assumptions on a family of probability

measures, denoted by {Pµ,λ}:

1. The probability measure Pµ,λ is supported on T (µ), where T (µ) ⊂ T is the collection of

binary trees that contain the tree µ as a subtree; that is, in the notation of Wang and

Marron (2007), T (µ) = {t ∈ T : IND(µ) ⊂ IND(t)}.

2. For any t ∈ T (µ), the probability that it belongs to the circle of radius k is taken to be

geometric(q), i.e. Pµ,λ(t ∈ Sk(µ)) = pqk, k = 0, 1, . . . ,where q = exp{−λ} and p = 1− q.

3. Within each circle, trees are chosen uniformly.

Combining all three assumptions, it can be seen that this probability measure assigns, for each

tree t ∈ T (µ),

Pµ,λ(t) =
1− exp{−λ}

N(dI(t, µ))
exp{−λdI(t, µ)} (9)

where N(dI(t, µ)) is the total number of trees in the circle of radius dI(t, µ). Note that λ plays

the role of a precision parameter, and the tree µ is the unique modal tree.

In general, exact computation of the theoretical Fréchet median tree, µF , is rather challeng-

ing. In this simulation study, we use a numerical approximation of µF . We did this by drawing a

sample of size 701 from Pµ,λ and taking the sample Fréchet median. This was rapidly computed

using the majority rule from Wang and Marron (2007). The size 701 gave the same answer in

each of twenty replications.
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To demonstrate the performance of our smoothing method, we simulated random trees from

the distribution (9) in four different scenarios. In each smoothing scenario, the parameters µ

and λ could be functions of some covariate, for instance, age. Here, we only consider constant

λ, thus only µ changes over time, as illustrated in Figure 9. In all four scenarios, the precision

parameter λ is 0.04 for all ages, chosen to make the variation of the simulated trees visually

similar to the real data.

Scenario 1: The tree function µ(x) first grows as age increases until age x = 55, and then

shrinks.

Scenario 2: The parameter µ(x) first shrinks as age increases until age x = 55, and then

grows. This V-shape mimics the pattern we observed in the data analysis of the anterior cerebral

artery system, as shown in Section D.3 of the supplemental material.

Scenario 3: The parameter µ(x) is a constant for young ages until age x = 45, and then

grows. The flat pattern over ages 20 to 40 is motivated by what we observed in the right cerebral

artery system, as shown in Section D.1 of the supplemental material.

Scenario 4: The parameter µ(x) shrinks until age x = 35, and grows until age x = 55, then

shrinks.

For each of the four scenarios, we conduct a Monte Carlo experiment of R = 100 replicates.

In each iteration, nx = 4 trees are generated for each age x. We first generate geometric random

variables k1, k2, . . . , knx
with p = 1 − e−λ. Then, for i = 1, . . . , nx, a tree is randomly selected

from the circle Ski. Figure 9 depicts the number of nodes in the tree µF (x) versus age x, obtained

by numerical approximation, with the number of nodes from one realization overlaid.

When choosing the bandwidth, we implement a scale-space approach by looking at several

bandwidths and then choosing the one which gives a reasonable compromise between variance

and smoothness. These manually selected bandwidths for scenarios 1 to 4 are 4, 4, 5 and 3,

respectively. First, we will show the simulation results for one realization in Scenario 1. The top

row of Figure 10 shows the D-L view of all four realizations (long-dashed) at age x = 36. Each
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Figure 9: A graphical illustration of parameters µ(x) for each age x (shown as “+” symbols)

in the four scenarios, together with one realization of the data (shown as “◦” symbols). The

horizontal axis is the covariate age and the vertical axis is the number of nodes at age x. In

all four scenarios, at every age x, the numerically approximated Fréchet median tree µF (x) is

identical to the true parameter µ(x). Hence “+” symbols also represents the number of nodes

of µF (x).
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panel also contains the population Fréchet median tree µF (x) (solid) and the resulting tree from

our smoothing method (dotted). It can be seen that while the observations tend to be larger

than the tree µF (x), the fitted tree captures the pattern of µF (x) quite well. The second row

shows the corresponding results for age x = 66.
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Figure 10: Performance of our smoothing method in the simulation study. In the top row, the

D-L view of four realizations (long-dashed) at age x = 36 are given in each subplot. The bottom

row shows corresponding plots for age x = 66. The tree µF (solid) and our smooth predicted tree

(dotted) at the same age are overlaid. These show good performance of our proposed smoothing

method for this relatively high noise level.

To save space, corresponding scatterplots, similar to Figure 10, for the other scenarios are

included in Section F of the supplemental material. For each scenario, a movie version of

Figure 10 that provides a better visualization is Internet available, and is included with this

submission. A diagnostic for heteroscedasticity is provided by the absolute deviation plot in

Figure 11. As in Figure 7, the height of the circles shows the distance between each simulated
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observation and the corresponding fitted tree at the same age. We also overlaid the distance

between the fitted trees and the true Fréchet median tree µF as “+” symbols. It can be seen

that the fitted trees capture µF very well even for this high noise level.
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Figure 11: Absolute deviation plots for all four simulation scenarios indicate homoscedasticity in

the data, shown by “◦” symbols (deviations for the raw data), and good estimation performance,

shown by “+” symbols (deviations between the smooth, µ̂F (x), and the median, µF (x)).

Next, we will summarize the results from R = 100 replications. To demonstrate the per-

formance of our proposed method, a sensible measure is the expected distance between µF (x)

and µ̂F (x) for each x, i.e., EdI(µF (x), µ̂F (x)), which is called the absolute estimation error.

Note that, this measure is defined in a similar way as in the classical linear regression analysis.

Moreover, the Monte Carlo estimate of the absolute estimation error is

1

R

R∑

r=1

dI(µF (x), µ̂
r
F (x))

where µ̂r
F (x) is the estimated Fréchet median tree at age x in the rth iteration.

Another quantity to measure the overall estimation performance, which can be used together

with the estimation error, is the Fréchet variation. In our regression setting, for each x, the
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Fréchet variation VF (x) can be similarly defined as in (4) with the expectation taken over the

probability distribution Pµ(x),λ(x). The empirical estimate of such pointwise Fréchet variation is

V̂F (x) =
1

nx

nx∑

i=1

dI(ti(x), µ̂F (x)).

In addition, the Monte Carlo estimate of the pointwise Fréchet variation can be calculated as

an average of the empirical Fréchet variations, as defined above, for all 100 replicates.

In Figure 12, the Monte Carlo estimates of both estimation error and pointwise Fréchet

variation are depicted, shown as “◦” and “∗” respectively. It can be seen that the estimation

errors are quite small in contrast to the Fréchet variation, which suggests that our proposed tree

smoother captures the topological structure of the Fréchet median tree. Moreover, errors near

the boundaries and the changepoints tend to be higher, as is familiar from classical nonpara-

metric regression. We also constructed boxplots, for each x, of the estimated Fréchet variation

based on all replicates, which is included in Section F of the supplemental material. These

indicate a constant variation in all four scenarios.

6 Future Work

Statistical analysis on tree space is still in its infancy, and we envision many future improvements

over the work in this paper. First, the integer tree metric we used throughout treats all the nodes

equally, which will be improved by incorporating suitable dependence on length and thickness

of the artery segments. Second, 3-D spatial location and branch curvature will be included. A

major challenge will be correspondence between different artery systems. Third, assessment of

the statistical significance of the trends, observed in Section 4, of the brain artery system as

a function of age is another problem of great interest. Some analogs of confidence bands or a

SiZer approach may be useful here. Fourth, in Section 5, we showed empirically that, under the

given probability distribution, the parameter tree µ seems to be the Fréchet median tree. Work
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Figure 12: Absolute estimation error plot for all four simulation scenarios, shown by “◦” symbols,

and estimated Fréchet variation, shown by “∗” symbols. Note that the error is small compared

with the noise level of the data. As expected, error tends to be higher near the boundaries and

the changepoints.
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is in progress on a theoretical formulation of this. Finally, it will be of interest to develop some

goodness-of-fit tests to explore potential distributional models for tree space.

7 Proofs of Theorems

Write ωi = Kh(x − xi). Recall from (8), the score function, for any node k, can be written as

Dk(x) =
∑n

i=1 ωiI{k ∈ IND(ti)} −
∑n

i=1 ωi/2.

Proof of Theorem 1

Suppose that, there exist some nodes with negative score and assume that k0 is the node with

the largest level among these nodes. Note that the node k0 is a leaf node. Otherwise, considering

one child of k0, say k1, we have, for any tree ti, I{k1 ∈ IND(ti)} ≤ I{k0 ∈ IND(ti)}. Hence,

n∑

i=1

ωiI{k1 ∈ IND(ti)} ≤

n∑

i=1

ωiI{k0 ∈ IND(ti)} <

n∑

i=1

ωi/2.

Thus, the score of the node k1 is negative, which contradicts the maximality of the level of node

k0.

Next, consider the tree t′(x) such that IND(t′(x)) = IND(t(x)) \ {k0}. It can be seen that

n∑

i=1

ωidI(t
′, ti) =

n∑

i=1

ωidI(t, ti)−
n∑

i=1

ωiI{k0 /∈ IND(ti)}+
n∑

i=1

ωiI{k0 ∈ IND(ti)}

=

n∑

i=1

ωidI(t, ti)−

n∑

i=1

ωi + 2

n∑

i=1

ωiI{k0 ∈ IND(ti)}

<
n∑

i=1

ωidI(t, ti),

which is a contradiction with the assumption that t(x) is a minimizing tree.
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Proof of Theorem 2

We have proved that any minimizer tree t(x) has to be a subtree of S(x) in Theorem 1. Suppose

that there exist some nodes in S1(x) not contained in t(x). Moreover, assume that j0 is the node

with smallest level among those nodes. Similar to the proof of Theorem 1, we can prove that j0’s

parent has to be contained in t(x) and this makes t′′(x), with IND(t′′(x)) = IND(t(x)) ∪ {j0}, a

topological tree. It can be seen that

n∑

i=1

ωidI(t
′′, ti) =

n∑

i=1

ωidI(t, ti) +

n∑

i=1

ωiI{j0 /∈ IND(ti)} −

n∑

i=1

ωiI{j0 ∈ IND(ti)}

=
n∑

i=1

ωidI(t, ti) +
n∑

i=1

ωi − 2
n∑

i=1

ωiI{j0 ∈ IND(ti)}

<
n∑

i=1

ωidI(t, ti),

which is a contradiction with the assumption that t(x) is a minimizing tree.
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