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Abstract
The Scallop Theorem states that reciprocal methods of locomotion, such as jet propulsion
or paddling, will not work in Stokes flow (Reynolds number = 0). In nature the effective
limit of jet propulsion is still in the range where inertial forces are significant. It appears
that almost all animals that use jet propulsion swim at Reynolds numbers (Re) of about 5
or more. Juvenile squid and octopods hatch from the egg already swimming in this inertial
regime. Juvenile jellyfish, or ephyrae, break off from polyps swimming at Re greater than
5. Many other organisms, such as scallops, rarely swim at Re less than 100. The limitations
of jet propulsion at intermediate Re is explored here using the immersed boundary method
to solve the two-dimensional Navier Stokes equations coupled to the motion of a simplified
jellyfish. The contraction and expansion kinematics are prescribed, but the forward and
backward swimming motions of the idealized jellyfish are emergent properties determined
by the resulting fluid dynamics. Simulations are performed for both an oblate bell shape
using a paddling mode of swimming and a prolate bell shape using jet propulsion. Average
forward velocities and work put into the system are calculated for Re between 1 and 320.
The results show that forward velocities rapidly decay with decreasing Re for all bell shapes
when Re < 10. Similarly, the work required to generate the pulsing motion increases signif-
icantly for Re < 10. When compared actual organisms, the swimming velocities and vortex
separation patterns for the model prolate agree with those observed in Nemopsis bachei.
The forward swimming velocities of the model oblate jellyfish after two pulse cycles are com-
parable to those reported for Aurelia aurita, but discrepancies are observed in the vortex
dynamics between when the 2D model oblate jellyfish and the organism. This discrepancy
is likely due to a combination of the differences between the 3D reality of the jellyfish verses
the 2D simplification, as well as the rigidity of the time varying geometry imposed by the
idealized model.

Notes
All figures that are submitted in color should be presented in color where possible
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1 Introduction

Methods of effective locomotion must utilize and contend with both viscous and inertial
forces throughout their execution. The ratio between these two forces (inertial forces divided
by viscous forces) is famously known as the Reynolds number (Re). Re is often used when
discussing scaling effects in fluid dynamics, as systems of the same Re are dynamically similar.
Low Re flows are reversible, and a consequence of reversibility is that net fluid transport
and locomotion do not occur by reciprocal motions. This result is known as the Scallop
Theorem which was first introduced by [33]. One of the implications of this theorem is that
scallop jet propulsion is not possible at Re = 0. The theorem gets its name from an idealized
scallop which is shown to move forward upon contraction of its shell but then slides back to
its original position upon opening its shell. Other mechanisms of reciprocal locomotion such
as pectoral fin swimming in fish and flapping in stingrays are also not possible at very low
Re. High Re flows, on the other hand, are dominated by pressure and inertial forces, and
locomotion is possible using reciprocal motions such as flapping and undulating.

In the natural world, it appears that organisms do not use reciprocal methods of loco-
motion below Re of O(1). There are a number of ways to calculate Re, but for the purpose
of the following discussion we will use the following definitions:

Rem =
ρUaveD

µ
(1)

and

Rek =
ρUbodyD

µ
(2)

where Rem is the movement based Reynolds number, Rek is the kinematic based Reynolds
number, ρ is the density of the fluid, Uave is the average forward swimming velocity, Ubody is
a characteristic speed of the swimmer with respect to itself, D is some characteristic length
of the organism, and µ is the dynamic viscosity of the fluid. Flapping fins and undulatory
swimming do not appear for Rem < 10 [2, 5, 38]. Similar physical limits also appear to exist
for jet propulsion. Both squid and octopus species hatch from the eggs already swimming
at Rem > 10 and grow to higher regimes (calculated from [37, 3]). Juvenile scallops use jet
propulsion at Rem > 200 with peak performance at Rem > 3000 [24] In jellyfish, ephyrae
break off from polyps and swim at Rem > 1 [17]. Ephyrae continue to grow into the mature
medusae that swim at Rem > 100 [21, 17]. While many studies have considered jellyfish
swimming at Re > 100, it has yet to be studied how methods of reciprocal swimming break
down as viscous forces steadily increase.

In this work, an idealized model of jellyfish swimming is used to explore the effects of Re
on jet propulsion. The relatively simple design of the jellyfish bell makes it well suited for
fluid-structure interaction (FSI) studies. Several research groups have previously used FSI
finite difference and finite element methods to study the flows generated by hemielliptical
jellyfish bells [10, 22, 40]. In these these cases, the bells move with a prescribed motion so that
forward velocity is an input into the system. Moshseni and Sahin [29] used a Lagrangian-
Eulerian formulation to numerically solve for emergent forward motion in the jellyfish. Actual
bell profiles were used as inputs into the simulations. In this paper, the immersed boundary
method is used to solve the FSI problem for a two-dimensional jellyfish. Preferred contraction



and expansion kinematics are used as inputs for the simulations, but the forward motion
of the jellyfish is due to the resulting fluid motion. Given the computational demands of
solving the FSI problem for a wide parameter space, simplified bell shapes and kinematics in
2D flows are used so that the study is tractable. With this in mind, the purpose of this study
is to explore how scale and morphology affect forward locomotion velocities in jet propulsion
rather than to accurately simulate the flows generated by specific medusae.

To consider more than one form of jet propulsion, immersed boundary simulations are
performed for oblate and prolate medusae and hyperexpanding ephyrae. The resulting flow
structures produced by the computational medusae are then compared to those measured
in actual organisms. In all cases, rhythmic contractions drive the fluid out of the bell
and simultaneously move the animal forward. Depending upon the shape of the bell, the
swimming mechanism can be classified as either rowing or true jet propulsion. The rowing
or paddling mode is found in oblate medusae such as Aurelia aurita [12]. A paddling-
type mechanism of swimming is also used by the ephyrae. Although the ephyral form is a
discontinuous surface with deep clefts, viscous effects prevent flow between the lappets and
create a hydrodynamically continuous surface [30, 17]. As a result, the ephyrae swim with
a paddling motion reminiscent of oblate medusae. Prolate hydromedusae, such as Nemopsis
bachei [11], are described as using true jet propulsion. For each body form, work put into
the system and average swimming velocities are calculated for a collection of Rek ranging
from 1 to 320. For the remainder of the paper, Re will refer to Rek.

2 Methods

2.1 Simplified Jellyfish Model

The numerical simulations are constructed such that a 2D plane cuts through the axis of
symmetry of the jellyfish, generating a cross section of the bell with maximum diameter.
This cross section is then modeled as an ellipse which is erased below some lower bound.
The idea of approximating a jellyfish as a hemiellipsoid, while an idealization, has been used
by Colin and Costello [6], Daniel [14], and McHenry and Jed [25]. The additional degree of
freedom of cutting the ellipsoid anywhere along the horizontal axis is used to better capture
the geometry of the jellyfish before and after contraction.

At a given instance in time, the geometry of the bell is described using the terms a(t),
b(t), d(t), (xc, yc) (Figure 1). The shape is then given by

1 =
(x− xc)2

a(t)2
+

(y − yc)2

b(t)2
for y ≥ yc − d(t) (3)

where a(t) is the half-width of the bell as a function of time, b(t) + d(t) is the height of
the bell as a function of time, xc is the centerline of motion which remains fixed, and yc is
determined by the motion of the fluid. In order to obtain geometries for both the completely
relaxed and contracted oblate medusae, the above parameters were estimated from Figure 5
of Dabiri et al. [12] using least squares. The values obtained from this analysis are listed in
Table 1. The parameter values for ephyra and prolate jellyfish are found by adjusting the
values from the oblate data to generate reasonable shapes.
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Figure 1: Diagram of the idealized jellyfish cross section. a(t) gives the half width of the
bell as a function of time, b(t) + d(t) gives the length of the bell as a function of time, and
(xc, yc) gives the center of the ellipse that is used to make the bell.

Parameter ai bi di df pa pb pd tc
Real Oblate .051 0.0211 0.001759 - 0.3103 0.25 -3.0 .63
Ephyra .031 -.01 0.001759 0.001758 .51 2.5 - .63
Prolate .05 0.075 0.025 - .5 .2 0 2.43

Table 1: In all runs the time to refill (tr) is three times tc. Each run was swept over Re = 2n

with n = (0, 1, 2, 3, 4, 5, 6, 7) (the prolate was also run at 160 and the oblate was also run at
96, 160, 320) where the kinematic viscosity was calculated from Equations 19, 20 and 21.



To move the jellyfish bell from contracted to expanded states, time is parameterized so
that s = 0 corresponds to a completely relaxed state, and s = 1 corresponds to a completely
contracted state. The equations giving the values of a and b as functions of time during the
contraction are defined as

a(s) = ai(1− s(pa)) (4)

b(s) = bi(1− s(pb)) (5)

where ai is the initial half width of the bell and bi is the initial height of the top part of the
bell. For the cases of the oblate and prolate jellyfish, the equation for d is defined as

d(s) = di(1− s(pd)). (6)

In the above equations, bi + di is the initial height of the bell, pa is the percentage of
contraction of the half width of the bell, pb and pd are the percentages of change in b(s) and
d(s) respectively. The equations for the expansion kinematics are constructed similarly. s is
scaled to account for the difference in contraction and expansion times by the equation

s =
1

2
(1 + sin(

π(2τ − 1)

2
)) (7)

where τ is the time shifted and scaled to run linearly with respect to the real time from 0
to 1. s was chosen to vary smoothly in time like a sin function, roughly approximating the
velar diameters measured by Dabiri et al. [11]. τ is defined as

τ =
t− t0
tc

(for contraction) (8)

τ = 1− t− t0
tr

(for expansion) (9)

where t0 is the start time of either a contraction or expansion, tc is the time it takes to
contract, and tr is the time it takes to refill.

The time of contraction for the oblate jellyfish is set to tc = 0.63 seconds, and the time
of refilling was set to tr = 3tc seconds. These numbers reflect the real time of contraction
of the oblate jellyfish, Aurelia aurita [12]. The contraction time of the prolate jellyfish was
set to tc = 2.43 seconds, and time of refilling was set to tr = 3tc. This description gives the
shape and horizontal position of the jellyfish at any instant in time.

Ephyral bells are not shaped like a continuous disk but rather have deep clefts between
the lappets. Flow visualization studies [30, 17] suggest that there is little flow through the
clefts due to viscous effects at these low Re. As a result, the surface of the ephyral bell acts
as a hydrodynamically continuous surface. The ephyra are also able to hyperextend during
the expansion of the bell due to the presence of the clefts. To approximate this motion, the
equation for d is constructed as follows:

d(s) =

{
di((

1
pb
− s)pb)3 : s < 1

pb

df (
pb
pb−1

(s− 1
pb

))3 : s ≥ 1
pb

(for the ehpyra) (10)

The choice of d(s) was made to ensure that the body is flat when b(s) = 0. The times of
contraction and refilling are the same as for the oblate case (tc = 0.63 seconds and tr = 3tc
seconds).



2.2 Numerical Method

To solve the fluid-structure interaction problem, a two-dimensional version of the immersed
boundary method is used [31]. The immersed boundary method has been applied to a
wide variety of problems in biological fluid dynamics for intermediate Re including insect
flight [26, 27, 28], aquatic locomotion [16, 15], and ciliary driven flows [18]. These problems
typically involve a flexible structure immersed in an incompressible fluid.

The equations of motion for the two-dimensional, incompressible fluid are

ρ(
∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t)) = −∇p(x, t) + µ4u(x, t) + F(x, t) (11)

and
∇ · u(x, t) = 0 (12)

where u(x, t) is the fluid velocity, p(x, t) is the pressure, F(x, t) is the force per unit area
applied to the fluid by the immersed body. The independent variables are the position vector
x = (x, y) and the time t.

The interaction between the fluid and the boundary is described by

F(x, t) =

∫
f(r, t)δ(x−X(r, t))dr (13)

and
∂X(r, t)

∂t
= U(X(r, t)) =

∫
u(x, t)δ(x−X(r, t))dx (14)

where f(r, t) is the force per unit length applied to the body as a function of Lagrangian
position r and time t, δ(x) is a two-dimensional delta function, and X(r, t) gives the Cartesian
coordinates at time t of the material point labeled by the Lagrangian parameter r. Equation
13 describes how the force is spread from the boundary to the fluid. Equation 14 evaluates the
local velocity of the fluid at the boundary. In the numerical scheme the boundary is moved
at the local fluid velocity at each time step which enforces the no-slip condition. Each of
these equations involves a two-dimensional delta distribution δ that acts as the kernel of an
integral transformation. These equations convert Lagrangian variables to Eulerian variables
and vice versa.

The basic idea behind the implementation of the numerical method is as follows:

1. At each time step, calculate the forces the boundaries impose on the fluid. These forces
are determined by the elastic spring forces connecting the boundary to the target and
pairs of boundary points to each other.

2. Spread the force from the Lagrangian grid describing the position of the boundaries to
the Cartesian grid used to solve the Navier-Stokes equations (equation 13).

3. Solve the Navier-Stokes equations for one time step.

4. Use the new velocity field to update the position of the boundary. The boundary is
moved at the local fluid velocity, enforcing the no-slip condition (equation 14).

For the details of the exact discretization of the immersed boundary method used here,
please see Peskin [32].



2.3 Discretization and Structure of the Boundary

The numerical jellyfish is designed to move forward or backwards freely along the y-axis
with preferred contraction and expansion kinematics along the x-axis. In the immersed
boundary method, the interface is not represented explicitly as a boundary but rather as
a singular force acting on the fluid. To implement this method with preferred contraction
and expansion kinematics, one must specify a singular force rather than the position of the
boundary. The force required is generally not known a priori. One way to estimate this force
is to compare the location of the boundary to its desired position at each time step. A force
is then applied that is proportional to this difference. The error between the actual and
desired motion of the boundary is then controlled by this constant of proportionality [26].

The immersed boundary is discretized so that at least two node points from the La-
grangian grid lie inside a box made from the Cartesian grid. This ensures that as the body
moves through the fluid, no fluid will leak through the boundary to the other side. To
discretize this particular shape we choose the parameterization:

(±a(t)

√
1− (

((b(t) + d(t)− ε) sin(πri
2

)− d(t)

b(t)
)2 + xc,

(b(t) + d(t)− ε) sin(
πri
2

)− d(t) + yc) (15)

where ε is taken to be a small parameter that allows for an even number of node points in the
Lagrangian discretization , and ri is a discretized version of r from equations 13 and 14 that
varies from 0 to 1 (ri = i

N
where N is the number of node points). Notice that if a(t) = b(t),

one would obtain an equipartitioned circle. As long as the two values are reasonably close
to one another, the discretization should be close to being equipartitioned (with the final
requirement of choosing ε intelligently). In the ephyral case the body flattens for a part of
its motion; here the grid still meets the spacing requirements, however there are many more
node points at the end of the body than the middle.

To prescribe contraction and expansion kinematics while allowing the bell to move for-
ward and backward freely, the equations that describe the force the boundary applies to the
fluid are distinct in x and y. For the x component, a ‘target boundary’ method is used. In
the y direction, deviations from the desired shape of the bell are penalized.

For the target boundary method, a boundary that does not interact with the fluid is
attached with virtual springs to the actual immersed boundary (Figures 2 and 3). The
target boundary moves with the desired motion, and the springs are incorporated as a force
in the x-direction that is linearly proportional to the distance between the target points and
the actual points. This force is then spread to the Cartesian grid where the Navier-Stokes
equations are solved.

To ensure that the bell keeps its shape during expansion and contraction, bending and
stretching stiffness is enforced by connecting sets of adjacent points on the discretized La-
grangian grid with linear springs (see Figure 3). The number of node points, N , is chosen
to be divisible by a set of small primes. The particular value used for these simulations was
chosen to be 23 × 3 × 5 × 7. Given any node, it is connected in the y component to any
adjacent node and to nodes that are N/2, N/3, N/4, N/5, N/7 and N/8 node points away
on the Lagrangian grid. If two points that are connected move away from one another with



Figure 2: Diagram of the target boundary (x) and actual boundary (square). The zoomed
in view shows the linear springs that connect both boundaries. In the actual simulation,
springs are placed between each target and its corresponding boundary point. The distance
between the two boundaries has been enlarged for clarity.

Figure 3: Diagram showing the forces used in both the x- and y-directions. The force in
the y-direction is used to maintain the structure of the bell while allowing it to move freely
forwards and backwards. These springs (shown by the red dashed lines) are placed between
boundary points to ensure that their distances in the y-direction are preserved.

a displacement in y different from that prescribed by equation 15, a corresponding force is
applied to return the distance to equilibrium. Linking the points in this way ensures that
the shape of the bell is maintained while allowing the body to slide in the y direction.

Summarizing the above description leaves the following formula for f(r, t):

f(ri, t) = ks1 [T(ri, t)−X(ri, t)] · e1
+
∑
rj♦ri

ks(rj ,ri)sgn + ((X(rj, t)−X(ri, t)) · e2)([X(ri, t)−X(rj, t)]

−[T(ri, t)−T(rj, t)]) · e2 (16)

where ks1 is the spring coefficient between the target points and the immersed boundary,
rj♦ri means rj is connected to ri, T(r, t) describes the location of the target points, e1 =
(1, 0) and e2 = (0, 1) are the standard Cartesian basis vectors, sgn returns the sign of its
argument, and ks(ri,rj) = ks(rj ,ri) is the spring coefficient connecting the y components of two

nodes.



Once the force on each of the Lagrangian points is determined, it is then spread to the
Cartesian grid. This is done by discretizing equation 13 and using the approximation to the
delta function described in [7]. Discretizing equation 13 gives

Fi,j =
N∑
k=1

fkDh(xi,j −Xrk)∆l (17)

where Fi,j is the force on the Cartesian grid at the node labeled (i, j), fk = f(rk, t), xi,j gives
the Cartesian coordinates of the node labeled (i, j), h is the spatial step size of the Cartesian
grid, Xrk represents the coordinates of rk on the Cartesian grid, and ∆l is spatial step size
on the Lagrangian grid approximated by h/2. Finally, Dh(x) = dh(x)dh(y), where dh(x) is
the approximation of the delta distribution. The choice of dh(x) and is chosen to be

dh(x) =

{
1
4h

(1 + cos(πx
2h

)) , |x| ≤ 2h
0 , |x| > 2h.

(18)

Scaling effects are studied by varying the the kinematic viscosity of the system. For
this parametric study, the Re is defined (as mentioned in the introduction) so that the
characteristic velocity is an input into the simulation rather than an emergent property.
This Re is defined as

Re = Rek =
ρlUbody
µ

=
lUbody
ν

(19)

where ν is the kinematic viscosity, Ubody is a characteristic velocity calculated from the
contraction of the bell, and l is the diameter of the jellyfish. The advantage of this formulation
is that the Re is uncoupled from the forward velocity, and organisms with no net forward
motion are not necessarily pulsing at Re = 0. Ubody and l are given by the equations

l = ai (20)

Ubody =

√
(aipa)2 + (bipb)2

tc
. (21)

Ubody gives an estimate of the average tip velocity during contraction.
In the simulations that follow, Re is varied by changing the kinematic viscosity of the

fluid. We consider Re = 2n with n = (0, 1, 2, 3, 4, 5, 6, 7), with the addition of Re = 96, 160
and 320 for the oblate case, and 160 for the prolate case.

The system of differential and integral equations given by the above equations was solved
on a rectangular grid with periodic boundary conditions in both directions as described by
Peskin and McQueen [32]. The velocity near the outer boundary of the domain was kept
near zero on the edges of the domain by inserting four walls that were 4 grid steps away
from the edges of the fluid domain. The Navier-Stokes equations were discretized on a fixed
Eulerian grid. For all oblate and prolate runs the Cartesian domain was a 512× 512 mesh,
with the length and width scales equal to 0.25 × 0.25 meters. For the prolate jellyfish, the
system was solved on a 512× 1024 mesh with a domain width and height of 0.5× 1 meters,
with the exception of the faster cases where the mesh was changed to 512× 1536 meters and
0.5 × 1.5 meters (Re = 64, 128) to accommodate for the extra distance traveled. For the
prolate case of Re = 160 the length scales were still 0.5 × 1.5 meters but the grid size was
doubled. For this last case the number of Lagrangian points was also doubled.



3 Results

3.1 Comparing locomotion and flow with Reynolds number

Figure 4 shows the resulting average forward velocities for the oblate and prolate medusae
and the ephyrae as Re is varied. As Re approaches zero, the average forward velocity also
approaches zero. This is consistent with the predictions of the Scallop Theorem that states
that reciprocal methods of locomotion will not work in Stokes flow (Re ≈ 0) [33]. In all
cases, there is a significant decrease in forward velocity for Re < 20. For Re > 100, the
average forward velocity begins to plateau. Movies of the simulations for prolate and oblate
medusae and ephyra over a range of Re are presented in the supplemental materials. For
Re < 30, vortices are not shed from the bell margins for any of the morphologies. Vorticity
quickly dissipates, especially for lower Re. For prolate jellyfish at Re > 30, vortices separate
from the bell margin and are swept downstream, forming wakes similar to those seen in [11].
For oblate jellyfish at Re > 30, vortices are also shed from the bell margin but circulate
within and around the bell.

It is interesting to note that there is a range of Re in which decreasing viscosity actually
decreases average forward velocity for the oblate jellyfish. This effect appears at Re between
16 and 96. In the the graph for the ephyra a similar effect is seen, however it is not clear
whether or not the function ever truly decreases. To explain this dip, we examine the
differences in flow for this range of Re. Figure 5 shows the vorticity patterns for Re 32, 64,
and 96. In all cases the vortices generated by bell expansion travel back inside the bell. This
behavior becomes more exaggerated as Re increases. Higher Re simulations show stronger
and longer lasting vortices. Much of the vorticity is pulled into the bell, and this effect grows
with Re. Furthermore, as Re increases the shed vortex strength that travels down stream
also increases. We propose that it is the interaction of the starting and stopping vortices
(generated during contraction and expansion) that leads to this dip in forward velocity.

To evaluate the amount of work necessary to generate the contraction and expansion
kinematics, the total work done, W , was calculated as

W =
T∑
i=1

N∑
r=1

fr,i4ldxr,i (22)

where fr,i is the force per unit length at discrete time i and Lagrangian boundary point r,
and dxr,i is the distance traveled by the boundary point r at time i.

The total work done over four cycles is plotted in Figure 6 as functions of Re for the
ephyra, oblate, and prolate medusae. Note that the work put into the pulsations locally peaks
in all cases as the Re approaches 1. For the oblate and ephyra cases, the work decreases
as the Re increases to 40 for the oblate jellyfish and to 10 for the ephyra. Above these
values, the total work done slowly increases with Re. For the oblate case we see a dip in
work as viscosity continues to decay for Re = 320. For the prolate jellyfish, the total work is
minimized at Re = 4; it then rapidly increases until Re = 32, and finally plateaus with only
small deviations until there is a large jump at Re = 160. Given the fact that forward velocity
is also very low for Re < 10, paddling and jet propulsion do not appear to be particularly
effective mechanisms of locomotion in this range.
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Figure 4: Average forward velocity as a function of Re for the oblate and prolate medusae
and ephyra.

3.2 Forward Velocity for Different Bell Shapes

The forward velocities as functions of time for the oblate and prolate medusae and ephyral
cases are shown in Figure 7 at Re = 160, 64 and 32 respectively. These values are chosen
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Figure 5: The end of the second expansion is shown for the oblate jelly of Re 32, 64, and 96.
The dotted lines show how far the medusae will travel after four full puslse cycles.

because they are representative of biological values (see section 4.2 below). The jellyfish
moves backward during the refilling phases in ephyral cases, and moves backwards in the
oblate case during the first three refilling phases. This can be seen by the fact that the
velocity becomes negative toward the end of expansion. In all cases, the jellyfish shows
significant slowing during expansion.

To gain insight into the flow structure causing the results of Figure 7, time sequences
of vorticity generated during contraction for the oblate medusa at Re = 160 are presented
in Figure 8. Frames 4-8 show that the two shed vortices generated by contraction are only
propelled gently downstream and are primarily propelled toward the center line of the body.
Frame 8 demonstrates that the generated vortices of the first contraction are pushed less than
two full body lengths away from the jellyfish after nearly two full contractions. Furthermore,
the two vortices formed in the first refilling phase are sucked entirely into the body, preventing
another significant source of momentum from being advected downstream. The vortices that
are formed during expansion are significantly deformed by the lingering contraction vortices.
By then end of the second expansion the newly formed expansion vortices are in a similar
position to those formed after the first expansion, and similarly will be largely sucked back
into the body after the third contraction (see the supplementary material online).

Vorticity plots for the prolate case at Re = 64 are given in Figure 9 and show the motion
over the second pulsing cycle. The vortices that have formed after the first contraction
demonstrate the strong advection of vorticity downstream. The location of the vortices
generated by expansion have been sucked back into the body, however they are largely
expelled upon contraction (slides 1-3). Furthermore, we note that the vortices generated
via contraction have shed well before the end of the contraction cycle. Note that in frames
5, 6 and 7, the closer set of shed vortices contain both the vortices formed by contraction
and those generated by expansion. Figure 10 shows vorticity plots of the swimming prolate
jellyfish after four contractions for Re = 4, 8, 16, and 32. Vorticity in the wake of the
jellyfish quickly dissipates for lower Re. In addition, the separation between the body and
the generated vortices decreases with Re.

Figure 11 shows vorticity plots for a time sequence of ephyral pulsing at Re = 32. The
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Figure 6: Total work done during four pulsing cycles for oblate jellyfish, ephyra, and prolate
jellyfish as a function of Re.

model ephyra displays an inability to shed vortices in a manner that effectively produces
forward motion. This is easiest to see during refilling (frames 6,7,8) when the jellyfish moves
backwards toward the end of expansion. The pair of vortices that form at the bell margin
during contraction do not maintain a concentrated core and are not advected downstream.
Furthermore the vortices formed in earlier contractions and expansions have deteriorated
significantly.
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Figure 7: Forward velocity as a function of time for the oblate, prolate and ephyra over
four pulsing cycles (Re = 160, 64, 32 respectively). Note that the velocities become negative
for the cases of the oblate medusa and the ephyra. After the first cycle, prolate medusa
maintain continuous forward velocities.
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Figure 8: Vorticity plots of the fluid motion around an oblate jellyfish at Re = 160 during the
second contraction. The vorticity has units of seconds−1. Positive vorticity denotes clockwise
motion while negative vorticity denotes counterclockwise motion. Frames 1-3 show the full
contraction phase, and frames 4-8 show the refilling or expansion phase (at 16, 33, 50, 66,
and 83 percent of the time taken to expand). Note that the bell is fully expanded in frame
1 and fully contracted in frame 3. The vorticity patterns found in frame 1 are due to the
previous contraction.
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Figure 9: Vorticity plots of the fluid motion around an prolate jellyfish at Re = 64 during the
second contraction. The vorticity has units of seconds−1. Positive vorticity denotes clockwise
motion while negative vorticity denotes counterclockwise motion. Frames 1-3 show the full
contraction phase, and frames 4-8 show the refilling or expansion phase (at 16, 33, 50, 66,
and 83 percent of the time taken to expand). Note that the bell is fully expanded in frame
1 and fully contracted in frame 3. The vorticity patterns found in frame 1 are due to the
previous contraction.
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Figure 11: Vorticity plots of the fluid motion around an ephyra at Re = 32 during the
second contraction. The vorticity has units of seconds−1. Positive vorticity denotes clockwise
motion while negative vorticity denotes counterclockwise motion. Frames 1-3 show the full
contraction phase, and frames 4-8 show the refilling or expansion phase (at 16, 33, 50, 66,
and 83 percent of the time taken to expand). Note that the bell is fully expanded in frame
1 and fully contracted in frame 3. The vorticity patterns found in frame 1 are due to the
previous contraction.



4 Conclusions

4.1 Implications for Re limits of locomotion

These 2D simplified models provide us with a first approximation of how intermediate Re
and geometry affect forward velocities in jet propulsion and paddling. By solving the fluid-
structure interaction problem in 2D, we are able to explore a wide parameter space. This
enables us to analyze the flow patterns that form under conditions within and beyond the
biologically relevant range and to explore the role of mechanical constraints on propulsive
mechanisms. These simulations also allow us to develop insights on how the jellyfish might
use flow patterns to enhance motion and how these patterns break down with increasing
viscosity.

The numerical results in this paper show that the average forward velocities for idealized
oblate and prolate medusae and ephyrae quickly approaches zero for Re < 10. This corre-
sponds to the lower Re limit observed for medusae [20], juvenile squid [37], and octopods [3].
An examination of the vorticity plots shows that for Re < 30, vortices do not separate from
the bell margins, are not advected downstream, and as a consequence reduce the average
forward velocity of the jellyfish. For Re < 4, vorticity quickly dissipates at the end of each
contraction and expansion of the bell margin. We also find the counter intuitive result that
motion can be temporarily impeded as viscosity decreases despite having over all trends of
enhanced locomotion.

This work supports the idea that the behavior of intermediate Re flows sets physical
limits to the types of animals observed in nature. In addition to jet propulsion, Childress
and Dudley [5] suggest that below a critical Re, flapping appendages can no longer generate
enough thrust to swim or fly efficiently. Alben and Shelley [2] connect this transition to a
change in the behavior of the vortex wake behind the flapping plate or appendage. The fluid
field loses symmetry when vortices formed behind the plate are alternately shed from each
side. These vortical structures push the body into motion. Through a similar mechanism,
flapping flight does not occur for Re < 5 [26]. This is likely a result of the fact that flapping
performance (defined as the ratio of lift to drag) drastically decreases for Re < 10 [28].
This drop in performance can also be connected to the behavior of vortex wake. For these
low Re, leading and trailing edge vortices are diffuse and do not separate from the wings.
Similar vortex dynamics are observed around the bell margins for the lower Re cases with
low swimming velocities.

Intermediate Re flows also define an upper limit to ciliary and flagellar locomotion.
Below some critical Re, animals switch from reciprocal methods of locomotion to ciliary and
flagellar locomotion. In a very interesting case, Childress and Dudley [5] describe how the
Antarctic pteropod uses ciliary locomotion at low speeds and flapping locomotion at high
speeds. Boletzky [36] describes how juvenile squid use cilia to propel themselves out of the
viscous egg sac and use jet propulsion once they are free in the water. Similarly, many filter
feeders use jet propulsion and undulation to generate large scale feeding currents and use
cilia to drive small scale flows near the filtering structures and mouths [35, 19].



Species age diameter(m) Rek
Aurelia aurita newly budded 0.0036 16-45
Aurelia aurita smaller mature 0.036 160
Aurelia aurita large mature 0.102 1286
Nemopsis bachei mature 0.007 62

Table 2: Estimates of Rek using the bell diameter and average bell tip velocity during
contraction.

4.2 Comparisons to jellyfish

To compare the presented model with the jellyfish found in nature, we estimate Rek values
of real jellyfish found in nature and the results are summarized in table 2. The presented
values for the oblate case representing a large Aurelia yield Re = 1286 (taking the kinematic
viscosity of sea water to be ν = 1.05 × 10−6m2s−1 [4]). The smaller mature oblate case
in Dabiri et al. [12] is cited as having diameter of 3.6 cm with similar kinematics. Scaling
the lengths appropriately and keeping the same contraction time and precent changes yields
a Reynolds number of 160. For the prolate case we estimate Re by taking ai = .0035 m,
bi = .004 m, pa = .75, pb = .1, and tc = .15 s which gives Re = 59 [11]. Finally for
the ephyral case we acknowledge that the role of bi and pb play a dominant role in the Re
calculation, but careful measurements of ephyral bell kinematics have not been reported in
the literature. To determine the range of Re for a range of ephyrae, we estimate the upper
bound of Re by replacing Ubody with the maximum tip velocity found in Feitl [17], which
is 25mm s−1, and take a lower bound by setting pb = 0. Estimating ai = .18 cm, pa = .5,
and tc = .1 s [17], we find that a reasonable range of Re for the ephyrae is between 16 and
45. With these estimates we choose the corresponding closest Re from our simulations and
compare it to the swimming dynamics of ephyrae.

After two contractions, the oblate jellyfish at Re = 160 moves 80 percent of its body
length per contraction. This is comparable to steady state swimming velocities measured
for Aurelia that move a little over a body length per contraction [8, 13]. Note, however,
that the oblate model does not move as far as smaller mature Aurelia aurita from rest; the
model moves only two body lengths over four contractions. To understand the differences in
performance between the real and model oblate jellyfish, we examine the vortex dynamics.
Dabiri et al. [12] describe how the starting vortex ring generated during contraction and the
stopping vortex generated during expansion separate from the bell margin and travel away
from the bell together. This pair of starting and stopping vortex rings form a lateral vortex
superstructure (see Figure 12A,B). Adjacent lateral vortex superstructures then pull fluid
into the wake and downstream of the jellyfish, enhancing forward propulsion. In contrast to
this structure, the starting and stopping vortices generated by the model jellyfish are pulled
back into the body, even during the final contraction when the jellyfish is moving the fastest
(see the supplemental material). Furthermore, the vortices generated by the contraction of
the model oblate jellyfish collapse toward the centerline, unlike the vortex dynamics observed
in actual Aurelia [13]. For certain parameter values, the model oblate jellyfish moves with
negative velocity during the expansion phase. This phenomenon has been experimentally
verified in many oblate species such as Mitrocoma cellularia [6], Cyanea capillata [9], and



Aurelia aurita [8].
The differences between the vortex dynamics of the oblate model and the real jellyfish

may originate from a combination of 2D effects and from the kinematic stiffness that is
imposed. The 2D simulations imply that the generated vortices act as rigid cylinders whose
cross sections translate within the 2D plane. Once shed during the contraction phase, it
is expected that the vortices will move at the local fluid velocity in the 2D plane with no
vortex stretching [1]. In the 3D case however, one vortex ring is generated during each
contraction and each expansion. In order for the vorticity to move toward the centerline,
the single ring would have to shrink with vorticity concentrated in a small volume. In
reality, the vortex rings generated by oblate jellyfish stretch rather than shrink. The ability
of the vortices to remain a short distance from the bell margin may play a crucial role in
the complex starting and stopping vortex interactions found in [12]. It is reasonable to
suppose that if the vortices where not pulled into the centerline then the generated stopping
(expansion) vortex would help push both rings downstream. In the 2D case, the momentum
of the starting (contraction) vortices pushes the stopping vortices back into the bell. The
model also employs a stiff paddling motion of the lower bell which appears to sweep the
vortex structures generated during expansion inside the bell. In contrast, the actual jellyfish
has flexible tissue called the vellum which may allow for the vortex structures to advect
downstream rather than becoming trapped inside the bell.

In the case of the prolate medusae, such as Nemopsis bachei, a single vortex ring is
generated during the contraction that is quickly swept downstream [11] (see Figure 12C). The
complicated vortex superstructures consisting of oppositely spinning starting and stopping
vortices observed in oblate medusae are not present for the prolate species. We find the
same pattern of vortex formation and separation for the model prolate jellyfish and, in both
cases, vortices generated via contraction have shed before the end of the contraction cycle.
Due to the conservation of total vorticity [39], oppositely signed vorticity is generated during
bell expansion, but coherent stopping vortex structures do not form. It appears that the
2D approximation does a reasonable job of capturing the vortex dynamics for the prolate
jellyfish. This may be aided by the fact that complicated 3D interactions between starting
and stopping vortex rings do not need to be resolved to obtain reasonable dynamics. In the
simulations, the prolate at Re of 32 and higher move between five and eight body lengths
in four contractions after starting from rest, which is similar to what is observed by Dabiri
[11]. For Re = 64, the model prolate moves roughly six body lengths over four contractions
which is slightly larger than what is observed in N. bachei. We note however that the model
prolate is a slender body without the appendages and body girth found in nature that would
introduce added drag.

As for the ephyral case, we note that to our knowledge particle image velocimetry (PIV)
studies have not yet been carried out on the living organism for quantitative comparison.
Feitl et al. [17] visualized the flow around free swimming ephyrae. They note that pre-
dominance of viscous forces and describe how circulating vortices are not created in the
wake. This is similar to the results found in this study for lower Re. Similarly, there have
not been rigorous visualizations of vortex formation and shedding for ephyra. Nawroth et
al. [30] found that the ephyrae of Aurelia aurita travel 0.5 - 1 body length per pulsation
cycle, which is higher than the swimming speeds measured for the model ephyrae. It seems
likely that 3D effects as well as the complex structure of the bell play a role in swimming



Figure 12: (A) Flow visualization of the wake of the oblate moon jellyfish Aurelia aurita
from Dabiri et al [12]. (B) Corresponding schematic diagram of the vortex wake. P shows
the vortex ring formed during contraction, R shows the vortex ring generated during bell
expansion, and L1/L2 are label for the adjacent lateral vortex superstructures. (C) Flow
visualization of vortex formation in the prolate jellyfish N. bachei from Dabiri et al. [11]. The
starting vortex generated during contraction is rapidly swept downstream of the jellyfish.



performance for the juvenile jellyfish.

4.3 Limitations and future work

The goal of this study was to explore the performance of simplified organisms using jet
propulsion over a range of intermediate Re. Two-dimensional simulations of jetting modeled
by time varying deformations of a hemiellipsoid allow a large parameter space of shapes, kine-
matics, and Re to be explored. These simulations clearly show a sharp drop off in swimming
performance as Re decrease below about 10, but note that the work here is not a substitute
for the careful modeling of specific animals such as the work of [29, 34, 23]. The simplified
model matches well with body lengths traveled per contraction and qualitatively with the
prolate case but does not capture the complex vortex dynamics observed in oblate jellyfish.
Future work to improve the model for a targeted study could be made by adding flexibility to
the jellyfish, incorporating three-dimensional effects with an axisymmetric solver, carefully
modeling the morphology and contraction kinematics for a specific species of jellyfish, etc.

It is also worthwhile to note that simulations using Peskin’s standard immersed boundary
method [31] to resolve the shedding of vortex structures off these sharp boundaries for
Re > 1000 requires spatial grid sizes that are prohibitively small. As such the authors were
not able to explore the full range of Re for which organisms that use jet propulsion live.
Alternative methods that better handle sharp boundaries at higher Re would be valuable
for exploring the dynamics of jet propulsion at these larger scales.
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