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Regulation of the hTERT telomerase catalytic subunit by the
c-Abl tyrosine kinase
S. Kharbanda*†, V. Kumar*†, S. Dhar‡, P. Pandey*, C. Chen§, P. Majumder*, 
Z-M. Yuan*, Y. Whang#, W. Strauss§, T.K. Pandita‡, D. Weaver¶ and D. Kufe*

Background: Telomeres consist of repetitive (TTAGGG) DNA sequences that
are maintained by the multisubunit telomerase ribonucleoprotein. Telomerase
consists of an RNA, which serves as template for the sequence tracts, and a
catalytic subunit that functions in reverse transcription of the RNA template.
Cloning and characterization of the human catalytic subunit of telomerase
(hTERT) has supported a role in cell transformation. How telomerase activity is
regulated, however, is largely unknown.

Results: We show here that hTERT associates directly with the c-Abl protein
tyrosine kinase. We also found that c-Abl phosphorylates hTERT and inhibits
hTERT activity. Moreover, our findings demonstrate that exposure of cells to
ionizing radiation induces tyrosine phosphorylation of hTERT by a c-Abl-
dependent mechanism. The functional significance of the c-Abl–hTERT
interaction is supported by the demonstration that cells deficient in c-Abl show
telomere lengthening.

Conclusions: The ubiquitously expressed c-Abl tyrosine kinase is activated by
DNA double-strand breaks. Our finding of telomere lengthening in c-Abl-
deficient cells and the functional interactions between c-Abl and hTERT support
a role for c-Abl in the regulation of telomerase function. 

Background
Telomerase is a ribonucleoprotein complex that elon-
gates telomeres [1,2]. Telomeres contain distinctive
repeats of guanine-rich sequences that are replicated by
DNA-dependent DNA polymerases and by telomerase-
dependent synthesis of telomeric DNA from an RNA
template [3]. Cells deficient in telomerase have short
telomeres as a consequence of failure to synthesize
telomeric DNA ends [4,5]. The demonstration that
expression of the telomere catalytic subunit hTERT and
activation of telomerase activity can extend the life span
of normal human cells has suggested that decreases in
telomere length contribute to senescence [6,7]. Studies
in mice lacking telomerase RNA have also shown that
telomeres function in maintaining genomic stability [8].
Because telomerase activity is low in most somatic cells,
telomeres shorten as cells progress through replicative
cycles [9–13]. Telomere shortening in cells continues
until crisis and the escape of immortal cells that have
reactivated telomerase [14–19]. Other studies have
shown that telomerase activity is detectable in human
tumors [10,20,21]. Moreover, recent work has shown that
ectopic expression of hTERT in combination with two
oncogenes results in tumorigenesis of normal human
epithelial and fibroblast cells [22]. 

The ubiquitously expressed c-Abl protein tyrosine kinase
is tightly regulated in cells [23,24]. c-Abl associates with the
DNA-dependent protein kinase (DNA-PK) complex [25]
and with the product of the gene mutated in ataxia telang-
iectasia (ATM) [26,27]. The catalytic subunit of DNA-PK
(DNA-PKcs) and ATM are members of a family of phos-
phatidylinositol (PI) 3-kinase-like enzymes involved in
regulation of the cell cycle, recombination, control of
telomere length and the DNA damage response [28–30].
c-Abl is activated by DNA-PK and ATM in cells exposed
to ionizing radiation and other DNA-damaging agents
[25–27,31]. Cells deficient in DNA-PK or ATM are hyper-
sensitive to ionizing radiation [32–34], and c-Abl-deficient
cells are resistant to DNA-damage-induced apoptosis
[35,36]. The available evidence indicates that c-Abl
confers growth arrest and proapoptotic responses to DNA
damage by mechanisms that depend partly on p53 and its
homolog p73 [35,37–41]. It also functions as an upstream
effector of the Jun N-terminal kinase/stress-activated
protein kinase and p38 mitogen-activated protein kinase
pathways [26,42–44]. Other studies have implicated c-Abl-
dependent inhibition of PI 3-kinase in the apoptotic
response to DNA damage [45]. These findings have sup-
ported a role for c-Abl in converting DNA damage into
signals that control cell behavior.
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Because c-Abl is activated by DNA double-strand breaks
[31] and proteins involved in the repair of these lesions
function in telomere control [46–48], we investigated
whether c-Abl interacts with telomerase. We found that
c-Abl phosphorylates hTERT and that c-Abl functions as
a negative regulator of hTERT activity.

Results and discussion 
The c-Abl protein tyrosine kinase is tightly regulated and
expressed in 293T and MCF-7 cells [39]. To investigate
whether c-Abl associates with the hTERT catalytic
subunit, lysates from 293T cells cotransfected with c-Abl
and a haemagglutinin-epitope-tagged version of hTERT
(HA–hTERT) were subjected to immunoprecipitation
with anti-c-Abl antibody. Analysis of the immunoprecipi-
tates with anti-HA antibody showed binding of c-Abl and
hTERT (Figure 1a). The reciprocal experiment, in which
anti-HA immunoprecipitates were analyzed by immunoblot-
ting with anti-c-Abl antibody confirmed coimmunoprecipi-
tation of c-Abl and hTERT (Figure 1b). Similar findings
were obtained in HeLa cells cotransfected with c-Abl and
hTERT (data not shown). To assess whether endogenous
c-Abl associates with endogenous hTERT, lysates from
hTERT-expressing MCF-7 cells [7] were subjected to
immunoprecipitation with anti-c-Abl antibody. Analysis of
the resulting precipitates by immunoblotting with anti-
hTERT showed constitutive binding of endogenous c-Abl
and hTERT (Figure 1c). The finding that endogenous
hTERT is detectable in anti-c-Abl immunoprecipitates
from MCF-7 cells stably overexpressing a kinase-inactive
form of c-Abl, c-Abl(K-R), also indicated that the associa-
tion was independent of the c-Abl kinase function
(Figure 1c). To extend these findings to other cell types,
lysates from hTERT-expressing 293T cells [7] were sub-
jected to immunoprecipitation with anti-hTERT and the
precipitates were analyzed by immunoblotting with anti-
c-Abl antibody. As in MCF-7 cells, c-Abl and hTERT also
associated constitutively in 293T cells (Figure 1d). Taken
together, these findings indicate that c-Abl associates with
hTERT and that this interaction is independent of the
kinase function of c-Abl. 

To confirm the association of c-Abl and hTERT, lysates
from 293T cells transfected with HA–hTERT were incu-
bated with glutathione-S-transferase (GST) fusion proteins
containing c-Abl (GST–c-Abl) or the Src homology 3
domain of c-Abl (GST–Abl SH3). Analysis of the adsor-
bates with anti-HA antibody showed binding of hTERT to
GST–c-Abl and GST–Abl SH3 (Figure 2a, left panel and
data not shown). By contrast, there was no detectable
binding of hTERT to a GST–Grb2 fusion protein that
contains the amino-terminal SH3 domain (Figure 2a, right
panel). The c-Abl SH3 domain binds to proline-rich
sequences with the consensus PXXXXPXXP (in single-
letter amino acid code where X is any amino acid) [49,50].
The identification of one potential sequence for c-Abl SH3

binding in hTERT (PSTSRPPRP; amino acids 308–316)
suggested that there is a direct interaction between these
two proteins. To define regions involved in the interaction
between c-Abl and hTERT, four fragments derived from
hTERT (Figure 2b) were synthesized as amino-terminal
GST fusion proteins. Lysates from 293T cells were incu-
bated with 5 µg GST–hTERT-1, -2, -3, or -4. Analysis of
the adsorbates with anti-c-Abl demonstrated selective
binding of c-Abl to the fragment GST–hTERT-2 contain-
ing the consensus proline-rich motif (Figure 2c). To
confirm that the interaction between c-Abl and hTERT is
direct, anti-HA immunoprecipitates from HA–hTERT-
transfected cells were subjected to SDS–PAGE and trans-
ferred to a nitrocellulose filter. Analysis of the filter by
incubation with purified GST–Abl SH3 and immunoblot-
ting with anti-GST antibody showed binding of c-Abl to
HA–hTERT (Figure 2d). These findings demonstrate that
c-Abl directly associates with hTERT.

To assess whether c-Abl phosphorylates hTERT, we
incubated purified kinase-active c-Abl or the kinase-inac-
tive form c-Abl(K-R), with immunopurified hTERT in
the presence of [γ-32P]ATP. Analysis of the products by
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Figure 1

Interaction of c-Abl with hTERT. (a) 293T cells were transiently
transfected with wild-type c-Abl and HA–hTERT. Total cell lysates
were subjected to immunoprecipitation with anti-c-Abl antibody, anti-
HA antibody or preimmune rabbit serum (PIRS). The precipitates were
analyzed by immunoblotting (IB) with anti-HA antibody. (b) 293T cells
were transiently transfected with HA–hTERT. Total cell lysates were
subjected to immunoprecipitation with anti-c-Abl, anti-HA, or PIRS. The
precipitates were analyzed by immunoblotting with anti-c-Abl antibody.
(c) Total cell lysates from MCF-7 and MCF-7/c-Abl(K-R) cells were
subjected to immunoprecipitation with PIRS or anti-c-Abl antibody or
anti-HA antibody and analyzed by immunoblotting with anti-hTERT
antibody. (d) Lysates from 293T cells were subjected to
immunoprecipitation with PIRS, anti-hTERT, or anti-c-Abl antibody and
analyzed by immunoblotting with anti-c-Abl antibody.
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autoradiography showed that hTERT was a substrate for
c-Abl in vitro (Figure 3a). To find out whether c-Abl phos-
phorylates hTERT in vivo, 293T cells were transiently
cotransfected with HA–hTERT and vector, c-Abl, or
c-Abl(K-R). As a control, 293T cells were transfected with
c-Abl in the absence of HA–hTERT. Total cell lysates
were subjected to immunoprecipitation with anti-HA and

analyzed by immunoblotting with anti-P-Tyr antibody. In
contrast to vector or c-Abl(K-R), overexpression of wild-
type c-Abl correlated with tyrosine phosphorylation of
hTERT (Figure 3b). 

Because c-Abl is activated by DNA damage [31], we
investigated whether genotoxic stress affects the interac-
tion between c-Abl and hTERT. Parental MCF-7 cells
and MCF-7 expressing c-Abl(K-R) (MCF-7/c-Abl(K-R))
cells were transiently transfected with HA–hTERT. After
transfection, cells were exposed to ionizing radiation and
nuclear lysates were subjected to immunoprecipitation
with anti-HA antibody. The protein precipitates were ana-
lyzed by immunoblotting with anti-P-Tyr antibody. Expo-
sure of MCF-7 cells to ionizing radiation was associated
with increases (approximately 2.5-fold) in tyrosine phos-
phorylation of hTERT (Figure 3c). Moreover, ionizing
radiation had no detectable effect on tyrosine phosphory-
lation of hTERT in MCF-7/c-Abl(K-R) cells (Figure 3c).

570 Current Biology Vol 10 No 10

Figure 2

Direct interaction of hTERT with c-Abl. (a) The left panel shows results
for 293T cells transiently transfected with vector or HA–hTERT.
Lysates from HA–hTERT-transfected cells were incubated with
GST–c-Abl SH3 (lane 1) or immunoprecipitated with anti-HA antibody
(lane 3). Lysates from vector-transfected 293T cells were separately
incubated with GST–c-Abl SH3 (lane 2). Lysate (lane 4) and
precipitated proteins were analyzed by immunoblotting (IB) with anti-
HA antibody. The right panel shows results for 293T cells transiently
transfected with HA–hTERT. Total cell lysates were incubated with
GST–c-Abl SH3 or GST–Grb2 SH3 fusion proteins bound to
glutathione–sepharose. The precipitates were analyzed by
immunoblotting with anti-HA antibody. (b) Schematic representation of
full-length hTERT (FL) and hTERT deletion mutants (T1–T4).
(c) Lysates from 293T cells were incubated with GST–hTERT-1 (T1),
GST–hTERT-2 (T2), GST–hTERT-3 (T3) and GST–hTERT-4 (T4).
Precipitated proteins were analyzed by immunoblotting with anti-c-Abl
antibody. (d) 293T cells were transiently transfected with HA–hTERT.
Total cell lysates were subjected to immunoprecipitation with anti-HA
antibody. The precipitated proteins were resolved by SDS–PAGE and
transferred to nitrocellulose filters. The filters were incubated with
purified eluted GST–c-Abl SH3 or GST–Grb2 SH3 fusion proteins.
After incubation, the filters were analyzed by immunoblotting with anti-
GST antibody (left panels) and anti-HA antibody (right panels). 
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Figure 3

Phosphorylation of hTERT by c-Abl. (a) 293T cells were transiently
transfected with HA–hTERT. Total cell lysates were subjected to
immunoprecipitation with anti-HA antibody and the protein precipitates
were incubated with buffer (lane 1), purified kinase-active c-Abl (lane
2), or purified kinase-inactive c-Abl(K-R) (lane 3) in the presence of
[γ32-P]ATP for 15 min at 30°C. The phosphorylated proteins were
analyzed by SDS–PAGE and autoradiography. (b) 293T cells were
transiently cotransfected with HA–hTERT and vector, c-Abl, or
c-Abl(K-R). As a control, 293T cells were transfected with c-Abl in the
absence of HA–hTERT. Anti-HA antibody immunoprecipitates (IP) were
analyzed by immunoblotting (IB) with anti-phosphotyrosine antibody
(anti-P-Tyr). (c) MCF-7/neo and MCF-7/c-Abl(K-R) cells were
transiently transfected with HA–hTERT. After transfection, cells were
exposed to 20 Gy ionizing radiation (IR) or left untreated (control) and
harvested after 2 h. Nuclear lysates were isolated and subjected to
immunoprecipitation with anti-HA antibody and analyzed by
immunoblotting with anti-P-Tyr antibody (upper panel) and anti-HA
antibody (lower panel). The results are also expressed as fold induction
(mean ± SD of three independent experiments). 
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These findings demonstrate that ionizing radiation
induces tyrosine phosphorylation of hTERT by a c-Abl-
dependent mechanism.

The functional significance of the interaction between
c-Abl and hTERT was investigated by assay of telom-
erase activity in 293T cells that had been transiently
cotransfected with HA–hTERT and vector, c-Abl, or
c-Abl(K-R). Anti-HA immunoprecipitates were assayed
for telomerase activity (Figure 4). The telomerase func-
tion of HA–hTERT was inhibited in cells cotransfected
to express c-Abl compared with that in cells expressing
c-Abl(K-R). To define further the role of c-Abl in the reg-
ulation of telomerase activity, HA–hTERT was trans-
fected into mouse embryo fibroblasts (MEFs) from
wild-type (c-Abl+/+) and c-Abl–/– mice. Analysis of anti-HA
immunoprecipitates showed that, compared with c-Abl+/+

cells, there was a significant increase in telomerase activ-
ity in c-Abl–/– cells (Figure 4). These findings indicate
that phosphorylation of hTERT by c-Abl is associated
with inhibition of telomerase activity.

To investigate further the involvement of c-Abl in the reg-
ulation of telomerase activity, early-passage MEFs defi-
cient in c-Abl (derived from mice with targeted c-abl
disruption) [51] were assayed for telomere length. Telom-
ere repeat length was assessed by hybridization of two dis-
tinct fluorescently labeled peptide nucleic acid (PNA)
oligomer probes, one for telomeres and the other for the
centromere, to metaphase chromosomes (Figure 5). Com-
pared with c-Abl+/+ MEFs, the c-Abl–/– cells showed
increases in telomere length. Quantification of telomere
length by assessment of telomere/centromere ratios in ten
independent metaphase spreads show significantly higher
ratios for c-Abl–/– cells, than for c-Abl+/+ cells (Table 1).
These findings provide further support for regulation of
telomerase activity by the c-Abl kinase.

In Saccharomyces cerevisiae, the Rap1p protein binds to
telomeric DNA and negatively regulates telomere length
[52–54]. The function of Rap1p in telomere regulation is
mediated by Rap1-interacting factors, Rif1 and Rif2
[55,56]. Telomeric repeat-binding proteins implicated in
regulation of telomere length have been identified in
Schizosaccharomyces pombe (Taz1p) [57], in human cells
(hTRF1) [58] and in Chinese hamster cells (chTRF1)
[59]. Our studies demonstrate a distinct mechanism of
telomere regulation through the interaction of c-Abl with
the hTERT catalytic subunit of telomerase. The finding
that c-Abl-mediated phosphorylation of hTERT inhibits
telomerase activity supports a function in negatively regu-
lating telomere length. The results also show that DNA
damage induces tyrosine phosphorylation of hTERT by a
c-Abl-dependent mechanism. These findings are in agree-
ment with the activation of c-Abl in the response to geno-
toxic stress [25–27] and support a link between

DNA-damage-induced signals and the regulation of
telomerase activity. Reports that Ku and the
Mre11–Rad50–Xrs2 complex function in regulating telom-
ere length [46–48] have also supported the interaction of
DNA-damage-induced pathways and telomere control.

Severe combined immunodeficiency (scid) mice that are
deficient in DNA-PK have longer telomeres than those
of corresponding wild-type mice [60]. By contrast, recent
studies have shown that mice lacking poly(ADP-ribose)
polymerase (PARP) show telomere shortening [61]. The
findings in c-Abl–/– cells support a function for c-Abl in
regulating telomere length. Consistent with a role for
c-Abl in the negative regulation of hTERT, the c-Abl–/–

cells, but not their c-Abl+/+ counterparts, show telomere
lengthening. The c-Abl–/– cells used in our studies were
derived from mice with targeted disruption of c-abl at a
region corresponding to the tyrosine kinase domain and
have no detectable c-Abl expression [51]. By contrast,
homozygous ablm1/ablm1 mutant cells that express the
c-Abl–neo fusion protein with loss of the c-Abl carboxyl
terminus, but retention of c-Abl kinase activity [62], do
not show telomere lengthening (data not shown). The

Research Paper  Regulation of hTERT by c-Abl Kharbanda et al. 571

Figure 4

Inactivation of hTERT by c-Abl. MEFs from wild-type (c-Abl+/+) and
c-Abl–/– mice were transfected with HA–hTERT. 293T cells were
transiently cotransfected with HA–hTERT and vector, c-Abl or
c-Abl (K-R). Anti-HA antibody immunoprecipitates were assayed for
telomerase activity. Telomerase activity is expressed as mean of three
independent experiments; error bars indicate SD. 
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c-Abl–/– mice have pronounced defects in spermatogene-
sis at the pachytene stage [63]. The c-Abl protein is local-
ized at the ends of pachytene chromosomes and therefore

may also interact with telomerase in meiotic cells [63].
The finding of telomere lengthening in c-Abl–/– cells and
the functional interactions found between c-Abl and

572 Current Biology Vol 10 No 10

Table 1

Comparisons of telomere length between Abl+/+ and Abl–/– cells.

Abl+/+ Abl–/–

Cell number 2n T C T/C 2n T C T/C

1 38 4,858 4,038 1.20 38 5,432 1,061 5.12

2 40 4,621 3,652 1.30 36 7,056 2,365 2.98

3 38 6,922 6,079 1.14 41 5,569 2,256 2.47

4 39 6,608 5,062 1.31 40 7,294 4,638 1.57

5 30 6,631 4,647 1.43 80 5,677 3,429 1.66

6 40 6,329 4,612 1.37 39 7,171 3,382 2.12

7 35 5,829 4,688 1.24 40 6,033 3,824 1.58

8 80 3,553 3,325 1.07 38 7,049 1,891 3.73

9 40 7,574 5,406 1.40 40 8,175 3,562 2.30

10 41 4,825 3,400 1.42 41 7,504 1,844 4.07

Mean 5775 4491 1.29 6696 2825 2.76

SD 1261 896 0.12 944 1105 1.20

CV (%) 21.8 19.9 9.6 14.1 39.1 43.5

T, telomere; C, centromere; 2n, diploid chromosome number; CV, coefficient of variation. 

Figure 5

PNA fluorescence in situ hybridization to
metaphase chromosomal spreads of (a) wild-
type (Abl+/+) and (b) Abl–/– fibroblasts. Two
hybridization probes were used, one specific
for telomere and one for the centromeric
DNA, with standard PNA hybridization
conditions. Signal intensities for the red
channel (telomere), green channel
(centromere) and blue channel (4′,6-
diamidino-2-phenylindole (DAPI) stain) were
measured by custom software. Values were
averaged to compute a ratio of
telomere/centromere intensity per metaphase
(Table 1). Ratios were used to compute a
statistically significant value for each cell type. 

(a) Abl+/+ Abl–/–
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hTERT support a role for c-Abl in the regulation of
telomerase function.

Materials and methods
Cell culture
MCF-7, MCF-7/c-Abl(K-R), 293T, c-Abl–/– and c-Abl+/+ cells were
grown in DMEM supplemented with 10% heat-inactivated FBS,
100 units/ml penicillin, 100 µg/ml streptomycin, and 2 mM L-glutamine.
U-937 cells (ATCC) were grown in RPMI 1640 medium supplemented
with 10% FBS, 100 units/ml penicillin, 100 µg/ml streptomycin and
2 mM L-glutamine. Cultures were irradiated at room temperature by a
Gammacell 1000 (Atomic Energy of Canada) with 137Cs source emit-
ting at a fixed dose rate of 0.76 Gy/min as determined by dosimetry. 

Transient transfections
293T cells (1 × 106/100 mm culture dish) were plated 24 h before
transient transfection with HA–hTERT, wild-type c-Abl, and/or the dom-
inant negative c-Abl(K-R) mutant [64] by calcium phosphate precipita-
tion as described [65]. After incubation for 12 h at 37°C, the medium
was replaced and the cells were incubated for another 24–36 h.

Immunoprecipitation and immunoblot analysis
Immunoprecipitations were performed as described [66]. In brief, cells
were washed with PBS and lysed in 1 ml lysis buffer (50 mM Tris, pH
7.4, 150 mM NaCl, 1% NP-40, 1 mM sodium vanadate, 1 mM PMSF,
1 mM DTT and 10 µg/ml leupeptin and aprotinin). Total cell lysates
were subjected to immunoprecipitation with anti-c-Abl antibody (K-12,
Santa Cruz Biotechnology), preimmune rabbit serum, anti-HA antibody
(Boehringer-Mannheim), or anti-hTERT antibody [67]. The resultant
protein precipitates were analyzed by immunoblotting with anti-hTERT,
anti-c-Abl, anti-HA or anti-P-Tyr antibody (UG10, UBI).

Generation of hTERT deletion mutants
GST fusions of hTERT fragments 1 (amino acids 1–250), 2
(227–510), 3 (451–750) and 4 (701–1130) were generated by PCR
and subcloning into pGEX-4T-1. 

Fusion protein binding assays
GST, GST–c-Abl SH3 [49] and GST–Grb2 SH3 (Santa Cruz) fusion
proteins were purified by affinity chromatography with
glutathione–sepharose beads. Cell lysates were incubated with immo-
bilized GST or GST-fusion proteins for 2 h at 4°C. The resulting protein
complexes were separated by SDS–PAGE and subjected to
immunoblot analysis with anti-HA antibody. Cell lysates were incubated
with GST or GST–hTERT fragments 1–4. The resulting protein com-
plexes were analyzed by immunoblotting with anti-c-Abl antibody. 

Far-western analysis
293T cells were transiently transfected with HA–hTERT. Total cell lysates
were subjected to immunoprecipitation with anti-HA. The precipitated
proteins were resolved by SDS–PAGE and transferred to nitrocellulose
filters. The filters were then incubated with purified eluted GST–c-Abl
SH3 or GST–Grb2 SH3 fusion proteins for 1 h at 30°C. The filters were
analyzed by immunoblotting with anti-GST or anti-HA antibody. 

Phosphorylation of hTERT by c-Abl
Recombinant c-Abl and c-Abl(K-R) were prepared from baculovirus-
infected insect cells [68]. 293T cells were transiently transfected with
HA–hTERT. Total cell lysates were subjected to immunoprecipitation
with anti-HA antibody and the precipitates were incubated with buffer,
kinase-active or kinase-inactive c-Abl in the presence of [γ32-P]ATP. The
reaction products were analyzed by SDS–PAGE and autoradiography.

Telomerase activity assay
Telomerase activity was measured with the Telomerase PCR ELISA kit
(Boehringer-Mannheim) as described [69]. Cell lysates, prepared as
described, were subjected to immunoprecipitation with anti-HA antibody.
Samples were microfuged and protein concentrations of the supernatant

measured (BioRad Protein Assay kit). Cell extracts were incubated at
25°C with biotin-labeled primers. The telomeric repeats added onto the
ends of the synthetic primers were amplified by PCR. The denatured
products were bound to a streptavidin-coated plate and then hybridized
to a digoxygenin-labeled, telomeric repeat-specific probe. The biotin-
labeled PCR product was detected with peroxidase-conjugated antibody
to metabolize TMB (3,3,5,5-tetramethylbenzidine) and generate a colored
reaction product. Sample absorbance at 450 nm was measured by an
ELISA reader. Telomerase activity was determined in triplicate with nega-
tive and positive controls. A negative control was provided for each lysate
by heat inactivation at 95°C for 10 min.

Microscopic evaluation of telomere length
Cells in logarithmic growth phase were cultured in standard media.
Metaphase spreads were formed by standard conditions [70].
Hybridizations and analysis were performed as described [71,72].
Because mouse chromosomes are acrocentric, the p-arm associated
telomeres colocalize with the centromere and, as such, are often asso-
ciated with decreases in telomere fluorescence [72].
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