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T R I B U T E  TO S T A M A T I S  C A M B A N I S  

The impressive Athens-Greece scene of 1968 in education was one of brain drain to the U.S.A. 

This was already underway and is highly celebrated. At that  time, I was a high school student. 

I was preparing for my entrance to Athens University (1970), when in the private high quality 

seminary (J. Mantas) I attended, I found out (from my mentor and great geometer, the late 

J. Ioannides) about the rising megastar at Princeton University, Stamatis Cambanis. Earlier, 
Cambanis had gone through the same seminary, where not only had he excelled as a student, 

but he had authored several books in mathematics and physics which were used later by my 

generation of students as textbooks. Obviously, to many students, including myself, Cambanis 

was a shining role model. Then, later in 1979, at the peak of the Greek brain drain exodus 

to the U.S.A., I again found the name of Cambanis, through his great articles on probabilistic 
inequalities. Now, Cambanis was a gigantic authority in his many fields of expertise and a full 

professor in the famous School of Statistics at the University of North Carolina. Later, since we 

are both Greeks and have common academic interests, we established contact. For example, in 

my conference on Approximation Theory in Memphis, Tennessee in 1991, Cambanis was one of 

the main speakers as a great expert on the overlaps of probability and approximation theory. 
Obviously, I, as the younger mathematician, was very eager to publish work with Cambanis, who 
invited me to Chapel Hill in February 1993, where we started this article. This collaboration 

*Deceased. 
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continued only through the Spring of 1993. Unfortunately, Cambanis' bad illness of cancer 
stopped further collaboration. He died on April 12, 1995 at the age of only 51, in Chapel Hill, 
North Carolina. Cambanis was not only a great scientist, but he was a very pleasant, easy-going, 
simple, and friendly man, always smiling, never worrying, and always helpful and encouraging. 
That is why he had so many friends from all over the world, including myself, who now mourn 
his early death. His contributions to science are outstanding, well known, and with a lot of 
implications. Cambanis was an angel who left early; his memory among people who knew him 
will be eternal. My sorrow is even greater since our collaboration stopped only at the first paper. 
We, Greeks of diaspora, due to the fact that we are scattered here and there, find it difficult 
to work together, but when we manage to collaborate, the results usually are outstanding. So 
that is another reason I mourn Cambanis' loss--for the lost opportunities for future successful 
collaborations with another Greek. My dearest friend Stamatis, I will remember you forever with 
the highest esteem. 

G. A. Anastassiou 

1. I N T R O D U C T I O N  

Multiresolution signal decomposition and wavelet orthonormal bases of L2(R) have received 
more and more attention recently in huge numbers of mathematical, signal, and image processing 
articles; e.g., see [1-5]. However, the nonorthogonal case is, so far, less discussed. 

+oo Here, we only mention that a multiresolution decomposition of L2(R) is a sequence {Vk}k=-oo 
of closed subspaces of L2(R) such that for all k , j  E Z, 

(1) Yk c Yk+l, 
+oo 

(2) Uk=-oo Vk is dense in L2(R), 
+oo 

(3) Nk=-oo Yk = 0, 
(4) f ( t )  e Vk iff f(2t) e Vk+l, and 
(5) f ( t )  E Vk ** f ( t  - 2 -k  . j )  E Vk. 

In the orthogonal case, the approximation of f E L2(R) at resolution 2 -k is the orthogo- 
nal projection ]k of f on Vk. This is calculated by the use of a wavelet orthonormal basis 
{~k j ( t )  := 2k/2 ~O(2kt • +oo • --3)}5=_oo for Vk which is generated by the scale function ~ E L2(R). 
A simple example of orthogonal scale functions of compact support and having the partition of 
unity property is { 1 

1, 

0, otherwise. 

In many applications, such as image compression or edge detection, the orthogonal setting is not 
enough, since some natural constraints cannot be achieved. For example, it is impossible to make 
use of finite impulse response linear phase filters. To overcome such difficulties in general, we 
perform a different kind of L:2-approximation. Namely, here the approximants to f E L2(R) at 
resolution 2 -k will be the operators 

(Bkf ) (x)  := Z 
j ~ - -oo  

where ~ is a Lebesgue measurable bounded function with compact support having the partition 
of unity property, and not generating (in general) an orthonormal basis ~k,j for Vk. 

A well-known example of a nonorthogonal ~, as described above, is the m _> 2nd-order cardinal 
B-spline Nm defined through convolution 

fo Nm(x) :=(Nm-1  * N1)(x) = N m - l ( x - t )  dt, 
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where 

(i) 
(ii) 

(iii) 
(iv) 
(v) 

N1 is the characteristic function of the interval [0, 1). We obtain that  

Nm(x)  = (1/(m - 1)!). ~ = 0 ( - 1 )  r .  (7)"  (x - ' r  " ~ - ' , +  , m _> 2, 

support Nm = [0, m], 
Nm(x)  > O, for O < x < m, 

+oc ~ j = - o o  Nra(x - j )  = 1, all x • R, and 
Nm is bounded and Lebesgue measurable. 

For a greater discussion and properties of Nm, see [2, pp. 85-86]. So, we prove in Theorem 1 
that  ( B k f )  converges to f as k -+ +oo in £2 norm, under mild appropriate assumptions on f .  
In fact, we find an asymptotic expansion for ek( f )  := IIBkf -- fN2, which is the L2 approximation 
error at resolution 2 -k. This is an nth-order asymptotic expansion having certain degree of 
smoothness (the existing n derivatives of the deterministic signal f) .  

The exact rate of convergence and asymptotic constant are determined and their dependence 
on f and on qo are found. For related work about deterministic signals f in the orthogonal case, 

see [1; 4, Theorem 3; 5; 6]. 
To the best of our knowledge, no similar treatment for the nonorthogonal deterministic case 

exists in the literature. We feel that  our results will find applications especially in the areas of 
the image compression and stochastic analysis. 

2. W A V E L E T  A P P R O X I M A T I O N  AT R E S O L U T I O N  2 k 

Here is our main result. 

THEOREM l.  Let f be such that  f ,  f ' ,  f " , . . . ,  f(n) are functions in LI(R)  and f(n) • BV(R)  Q 
C(R),  n >_ 2. Let qo be a Lebesgue measurable bounded function with support ~ C_ [-a,a], 

0 < a < +oo, such that 
+oo 
E q p ( x - j )  = 1, Vx • R. (1) 

j~--oo 

Denote 

• 

( S k f ) ( x ) : =  E f . ~  ( 2 k x - j )  (2) 
j~--oo 

and 

f 
o o  

e2( f )  := ( f ( x )  - (Bk f ) ( x ) )  2 dx, k E Z. (3) 
o o  

Set 
[2a], i f2a  # integer, 

f l :=  (4) 
2a - 1, if  2a is an integer, 

where [.] is the integral part function. Set 

n 1 
n is odd, 

~:= 2 ' = - 1 ,  
n - 2  

2 ' n i s e v e n ,  
(5) 

where ['7 is the ceiling of the number. Call 

P ' ( / )  - (2~)! 
~,= 1 , . . . ,~ .  (6) 
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Call (7 = 1 , . . . , g )  

A ~ ( ~ ) : = f _  ~(u) .  -2.u2"r + ~ - ~ q 2 " y . ( ~ ( u + q ) + c p ( u - q ) )  du. 
o 0  q =  l 

(7) 

Then, for k E N, we obtain 

e~(f) =~--~p~( f ) .AT(~)  
4k~ 

~=1 

(1) 
+ o  2k(7_2 ) , (8) 

where 
g* := ~ £, i f  n is even, 

t - 1, i f n  is odd. 

REMARK 1. We observe that  ek(f)  --+ 0 as k ---+ +oo, i.e., for n > 2 we get that  Bk( f )  ~ f as 
k --+ +oo in £2-norm. 

Notice that  the odd powers of 2 -k are absent in the asymptotic expansion. In particular, when 
n = 2 we get that  ek(f)  = o(1), and when n = 3 we find that  e~k(f) = o(2-k). 

Next, we denote by 

AI(~) :=  ~ ( u ) - 2 . u 2 + ~ - ~ q 2 . ( q o ( u + q ) + ~ ( u - q ) )  du, 
q = l  

and when n = 4 we see that  

e 2 ( f ) = - A l ( ~ ) f ~ ( f ' ( t ) ) 2 d t  ( 1 ) 
22k+ 1 -4- O ~ -  . 

Furthemore, in the case of n > 4, when Al@) # 0, we obtain 

(/( t))  dt 22ke~(f) ~ --Al(~v) +~  ' 2 
2 

as k --+ +c¢, and this rate cannot be improved by additional differentiability of f greater than 
first order. 

PROOF OF THEOREM 1. Here, we would like to establish for 2 ek( f  ) the asymptotic expansion (8). 
This is done in the next four sections. 

2.1. U n f o l d i n g  

We start  by unfolding e~(f) as far as possible. Notice that  

/+# /? / e~(f) = f 2 ( x )dx  - 2 f ( x ) .  ( B k f ) ( x ) d x  + (Bk f )2(x )dx ,  k e Z. (9) 
(.X3 O0 

First, we would like to prove that  ek(f)  < +oo. Since f ,  f f ,  f , , . . . , f ( n )  E LI (R)  and f(n) C 
B V ( R )  (n > 2), by Remark 1 of [6] we have that  f ,  f ' , . . . ,  f(n-1) are all bounded, of bounded 
variation, and uniformly continuous on the real line and tend to zero as Ixl --+ +oc. Also, f(n) 
is bounded. Furthermore, f2 E LI (R)  (i.e., Ilfl12 < +o¢), along with f2 E BV(R) .  Thus, from 
Lemma 1 of [6], we get that  

f < +c¢, any k e Z, (10) 

for r = 1, 2 (for the case r = 1 notice that  Ill c LI (R)  n BV(R)) .  
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Next, we need to prove that  

+oo +c~ 

By a change of variable, we get 

where 

f_'~l~(2~x-i)l.l~(2~x-J)ld~<+co. (11) 
o o  

1 i 

i = - c ~  j = -  

• ¢ ( i  - j ) ,  (12) 

¢(q) := f $ ~  I~(y)l. I~(y + q)l dy >_ 0 (13) 

and ~(q) < +co, q E Z. Hence, we would like to prove that  

~:= ~ ~ S  ~ • . ~ ( i - j )  
i = - o o  j = -  

But (cf. (50)) 

<+co .  (14) 

+¢(-q)) 

< II/11~ f ~- - (¢(q) + ~( -q ) )  < +co. 

Therefore, again from (10), (13), and /3 being finite, we get that  ~3 < +co, equivalently that  
41 < +co. Hence, from (11) we find that  

Z Z s ~- ,s ~(2kx-i),~(2kx-~ 1 ex 
i = - o o  j = - o o  

= / $ 2 ( S k f ) 2 ( x ) d x  = IIBkfll 2 < +co, 

in particular, 
IIBkfll2 < +oo. (17) 

(16) 

earlier comments on f ,  we have that  

I (¢(q) 

k-V- ]  ~(-q)  
~=- (1~) 
+o~ i 2 

+ ~  S ~ • \ 2k ] (¢(q) +~(-q)) =:~3. 
q = l  i 

That  is, we want to prove (3 < +co (i.e., ~1 < +co iff (3 < +co)- Really, from (10), (13), and 
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And, by 

II/- Bkfll2 <_ 11/112 + IIBkfll2 < +oo, 

we get that 

ek(f) < +Oo, k e Z. (18) 

Next, we need to establish that 

+ :  f( )ll+ e,:= ~ I/(x)l. 1~(2%-j)t  dx < +~. 
j~--(X) (:X) 

(19) 

Notice that 

~ = - ~  \ 2k ) I~(y)ldy 
(20) 

1 (+=~_oo fl~ ) ) .,,filoo/:i~o(y)idy<+oo. < ~  

The right-hand side of (20) is finite by (10) and f, ~o are bounded functions. Hence, 171 < +oo. 
That is, 

f(x). (Bkf)(x) dx = E f f(x). ~ (2kx -- j) dx. (21) 
j ~- --  O0 (20 

We have established now that (cf. (9), (16), and (21)) 

e2k(S)= S2(xldx+ E E f -fi S ~(2kx--i)'~(2kx--j)dx 
i = - - o o  j = - o o  

-2 E f S(x)'~ (2kx--j) dx. 
(22) 

2.2. A Basic Asymptotic Expansion 

Here, we find the appropriate asymptotic expansion for 

f .(Bkf) dx= E f f(x).~(2kx-j) dx 
j --- - o o  

1 +°° (~)I+_~ (Y+J' = 2-~ ~ S S \ - 7 ~ - )  ~(yley 
j~--oo 

1 +oc 

- -  ~ E s (~)  l;a s (~)~(.)~. 
j ~ - - o o  

(23) 

But (by Taylor's theorem), 

(~k  j )  ~ f(r) (j/2k) y r (y/2k) n-1 
f = r! ( ~ )  + (n--  1)! 

r = 0  

I01 x ( l - s )  n-t.f(n) +~k's ds, keZ. 
(24) 
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Thus, 

f ( x ) .  ( B k f ) ( x )  dx = E f r! 2 T + 
j = - o o  a k r = 0  .s) }. 

1 1 . f(r) 
= ~ "  E f 2kr . r !  "mr 

j = - o o  £ r = 0  

1 . ~/(Jl/f~ } 
+ 2 k ( n - 1 )  • ( n  - -  1)! kn ~ / " 

yn-1  

2k(n-1) • ( n - l ) !  

(25) 

Here, 

£ mr := yr . ~(y) dy, 7" = 0 , . . . , n  - 1, ( 2 6 )  

and 

£ (I' ( ) )  ,v(j) yn-1 (1 - -  S)  n - 1  • f(n) j + y .  s -k~ ( f ) : =  2k ds • ~(y) dy, 
a 

with j E Z. Hence, 

(27) 

f ( x ) .  ( B k f ) ( x ) d x  = 2 ~r: r ! '  T~I -~- 2 k(n-li : ( n -  1)! ' 
~, r = O  

(28) 

where 

and 

T~I := E f . f(r)  
j~--O0 

(29) 

~2 := E f " 7kn (f)" (30) 
j ~ - - O O  

Equality (28) is valid given that T~I and 7~2 converge, which we prove next. Notice that  for 0 _< 
r <_ n -  1 : g : = f .  f (r) ,  g ' , 9 " , . . . , 9  (n-r) e LI(R)  and 9 (~-r) • BV(R).  From [6, aemma 2(b)], 
we obtain 

1 ~-~ (23~k) f ( r ) ( ~ k )  f / 5  ( 1 ) ~-£ f • = f ( x ) .  f ( r ) ( x ) d x  + o 2(n-_r)k , 
j~--O0 

(31) 

where 0 < r < n - 1. Again, for [6, Lemma 3] (or from [1, Lemma 2]), we get 

F {0 oo f "  f(r) dx = ( -1)  m f+-o~ ( f (m)( t ) )  2 dt, 

r is odd, 
(32) 

r = 2 m .  

Thus, 

1 

J = - ~  (--1)r" P+F {f("~)(t)} 2 dt + o r = 2,,,, 

where 0 < r < n - 1. That  is, we have proved that 7~1 converges. 
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Next, we would like to estimate 

1 1 +oo 

j = - - o o  

f ( ~ ) ( / : y n - X  ( fool ( l_s)n- l . f (n) (J  + y . s ) d s ) . ~ ( y ) d y )  2 k 

From [6, Remark 1], we get that M:= [If(n)Uoo < +co. And so, we find 

Therefore, 

/o ( io (l _ s)n_l . f(n) j + y. s M 2k < M (1 - s) n-1 ds = - - .  
n 

where 
0== lyl n - l •  I~(y)ldy < + ~ .  

a 

Since Ill ~ LI(R)  n BY(R), by Lemma 1 of [6], we get that  

~-~ f + o(1). k2k J=-~ (~) = f /5  I/(t)ldt 

Hence, 

That  is, ~2 converges, too. 
Set 

- -  < + c x ) .  

(34) 

(35) 

K:=M.O< +oo (36) 

and 

Then, 

2 k 7Z2 I • 2k(n-l) • ( n -  1)! I 

L : = / / :  If(t)l dt < +oo. 

K 
_< (L + o(1)). 2k(,,_x) " n! 

LK Ko(1) ( 1 ) ( 1 )  
- 2k( n -1 ) ' n !  +2k(  n - 1 ) . n ! - °  2k(7~_2) +O 

( 1 )  (1) (=0  1 ) 
= O ~ + o 2k(n_2 ) 2k(n_2 ) , k E N, 

So, we have proved that  

2 k • 2 k ( n - 1 )  • ( n  - -  1 ) ]  = o , k E N, n _> 2 .  

Using (31) and (38) into (28), we get 

/ S  f(x)(Bkf)(x dx 

= E 2 k r . r !  f(x).f(r)(x)dx+o 2( ~)k +o  r=0 2k( 2) ' 

(37) 

n > 2 .  

(38) 

(39) 

where k E N, n _> 2. 
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Next, we work on (39). In the case of n being odd, then n - 1 = 2g is even. So, we obtain 
(by (32)) 

/ j j  f(x)(Bkfl)(x)dx : {~l=£0 2k27"ylD'-'2(27), ( (--l!"l / j j  (f("[)(t))2 dt -~-° (2(nX2,y)k ) ) ) 
/ ~  m2,+1 ( 1 ) }  ( 1 ) 

+ 2k(2"+'~-('~ + 1)! " o 2(n_~_l) k + o 2k(n_2 ) 
k,=O 

, /y( )' = E m2, . 1__. (-1)" f (v) ( t )  dt 
(27)! 4 k" ,=0 co 

_ l _ E m 2 ,  I ( 1 )  
"r=o (27)! 2k2, • o 2(,~=-2,/k 

~-1 
+ E  m2"+1 1 , = o  + 2k(2"+U ( 1 ) ( 1 ) (27 1)! " o + o 2(n-2~- 1)k 2k(n-2) 

= E m2, 1 dt + \nz__==o (~7)t. j "o (23')! 4-~" (-1)" (f(~)(t)) 2 e 
3,=0 (~1 rrt2,+l ~ 1 + ( , w ~ > , j  • o ( ~ )  + o (~,<~_,>) 

\7=0 

n=0 (27)! 4 " J-oo 

' /2 -,:o (27)! ( -1 ) ,  (.F,)(t)) ~ 

dt + o + o  2 k ( ~ _ 2  ) 

Thus, when n is odd (n - 1 = 2g) we have proved that 

oo e 
f ( x ) ( B k f ) ( x ) d x  = E m2~ 1 (-1)" 

c¢ ~=o (27)! 4k'~ 

/ j j ( f  ))2 ( 1 ) 
x ( ' ) ( t  dt -4- 0 2k(n_2 ) , n > 2, k C N. 

(40) 

W e  continue work on (39). In the case o f  n being even, then n - 2 = :  2 .  g is even. So, we obtain 
(by (32)) 

/~  , /~(~ ,~(~-- ,~  ~ ,~, ( - ~ /  (,,~(~/~ ~+o ~ : ~  

{± o(1 //+o(1) + 
2 k(23'+1) " (23' + 1)! 2( n-2~-l)k 2k(n-2) 

/?j( ) :~ ~ ( ) e 2 X-" men 1 
= ,=0E (27) !m2~ 4 knl (-1)" f('Y)(t) dt -4- \z__==o (27)!] .o 

(~ m2~+1 ~ 1 1 
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Hence, when n is even (n - 2 =: 2.  e), we have proved that 

i/2 e 1 f(x)(Bd)(x) dx = ~ m2~ 4~4(_1 ) 
~=o (23')! 

i ; 2 (  ) 2 ( 1 ) x f (v) ( t )  dt q- 0 2k(n_2 ) , n ~ 2, k E N. 

Letting f as in (5), we finally arrive at the asymptotic expansion for 

i+_2 (1) f ( x ) ( B k f ) ( x ) d x =  m2-y 1 (_1).  r f(~)(t)  d t + o  -2) 
~=0 (23')! 4 k~ oo 2k( ' 

where k E N and n > 2. Here, 

/; m2~ := y2~. ~o(y) dy, "7 = O, 1 , . . . ,  g. 
a 

It is interesting to notice from (1) that 

m0 := f+oo ~o(y) dy = 1. 
d - o o  

Really, from (1), we obtain that 

Furthermore (from (1")), 

-t-oo 

E 
j ~ - - o o  

~0(x + j )  = 1, Vx 6 R.  

= f__ ~(z + j) ,#0 J 

proving (44). 

2.3. Third Term A s y m p t o t i c  Expans ion  Follows 

~o(x) dx = ~ ~(x) dx = ~(x + j )  dx 
oo j=-oo J J j=-oo 0 

dx (1")  L 1 = l d x  = 1, 

Next, we would like to find a suitable asymptotic expansion for 

/+_~ +oo +oo 
( B k f ) 2 ( x ) d x =  E E 

i=--oo j=--oo 

f ~ - ~ f  ~ .~o 

Equality (45) makes sense due to (16). By a change of variable, we find that  

(Bkil2(xldx= ~ ~ f -~ . f .a~_j, 
i=--oo j=--oo 

where 

F 
oo 

a~_j := ~o(u) . ~o(u + i - j )  du 
o o  

exists for any i , j  E Z. 

(41) 

(42) 

(43) 

(44) 

(i*) 

(45) 

(4~) 

(4~) 
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Since the support of ~v(u) is in [ -a ,  a], the support of ~(u + i - j )  is in [ - a  + j - i, a + j - i]. 
So, ~v(u), ~(u + i - j )  have no common support iff ]j - i I > 2a. That  is, ~(u), ~(u + i - j )  have 
common support iff ]J - i] < ~ where ~ is defined by (4). Hence, ai-j # 0 iff IJ - i] < ~. Thus, 

+c¢ +c~ 

E E = E + E  E +--+E E (~) 
i = - o o  j = - c o  i=j  i-j==t=l i - j=: l :~  

and 

for a l l l < q < D .  
Finally, we get that  

+ ~  

E E -- E E + E  E,  (49) 
i--j=-4-q i=j+q j i j=i+q 

E E = E + E + E • (~o) 
i=--oo j=--oo i=j=--oo q = '  i q j= - - c~  i=--c~ j q 

Therefore, 

:+: ()) (Bkf)2(x) dx = f2 i :+: -~ • G 0 

i 

~ {~---£(+=~-oo (~kq) (~)) 1 (2 (i) (i+q,) } +~-]" f f °~+~ f 7 f \ 2k j °-~ ' 
q = l  j \ i = - - o o  

where 
/_~oo 

a0 = ~2_u_() du. 
oo 

That  is, we obtain 

(51) 

Lemma 2b], we get 

1 +°° ( i )  : +°° ( 1 )  
2--k E f2 ~ = f2(t) dt_4_o - ~  . 

i=--O0 

By Taylor's theorem, we see that  

11 ( ) ( i + q ~  : (r ) ( i /2k)  q r (q/2')  n - '  s) '~-' i + q . s  = (~-) + ( 1 -  "f('~) ds. 

Hence, 

1 `°° (i)(i+q~ 1 ~ l(~ q" (i).f(r)(i)) q~-' 
2-'£ E f ~" " f \ - - ~ , ]  2-£ i=-ook\r=0 = 2 k r . r l  " f 2"k 2"k + 2 k(n-1) " (n- -  1)! 

i~--OO 

X (f <~-~) ~01(1--8)n-1 "f(n) (i'4-q'8) ds) k 
n--1 qr qn-1 

= ~ ~ .  E,  + 2k(~- ,) .  (n - 1)!" E~. 
r = 0  

(53) 

(54) 

(55) 

F ()) (Skf)2(x)dx= ~ f2 i F ~-~ • Cr 0 

(52) 

q = l  \ i ~ - - o o  

Notice that  f2, ( f~ ) , , . . . ,  (f2)(n) e LI(R),  all continuous and (f2)(n) e BV(R) .  Then, from [6, 
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Here, as before (33), 

1 + -  ( i ) . f ( ~ ) ( i )  E l : = ~  ~ f ~ 
i = - - .  

1 
= O(2(n--r)kl ' 

( -1 )  f_~,  (f(m)(t))2 dt + 2(n_~m)k , 

where 0 < r < n - 1. Tha t  is, Ea converges• Also, 

r is odd, 

r = 2m, 

(56) 

1 + -  ( i ) f o l  [ i +__qq ) E=:=~ ~ f ~ (1-=)"-I'I(=) "= i x - .  \ 2k ds. (57) 

We still need to prove tha t  E2 converges so tha t  (55) is valid. Again, M := ]If (n) Hm < + c o .  

Thus, 

~01 ( )ds ( l _ s ) n _ l . f ( n )  i+q's2 k <_--Mn 

and 

rE, I < f n 

= ( ~ _ ] ' [ f ( t ) ] d t + o ( l ) )  M n 

(by (35)) 

< +OO. 

Tha t  is, E2 converges. Furthermore (by (37) L < +oc),  we get 

qn- 1 M • qn- 1 T1 T2 
2k(n-1) • (n -- 1)! " IE2[ <- n!" 2k(n-l) " (L + o(1)) - 2k(n_l------y + ~ o ( 1 )  

T 1 . - -  ; i  <"~OO, T2.-- n ~  <+CO,  k E N ,  n_>2  . 

Tha t  is, we have proved tha t  

qn-1 
2k(n-1) • (n -- 1)! 

( 1 )  
• E2 = o 2k(n_2 ) , (5s) 

where k E N,  n _> 2. Next, we est imate 

< ( ) n -  1 q r  (56) 1 

E 2kr : r! " E1 = E 2kr : r[ . O 
r = 0  (r o d d = l )  2(n--r)k 

+ E 2kTTr! (--1) m f(m)(t)  d t + o  
(r even=0 2(n--2m)k 

r=2rn)  

~.I ~ + ~., ~ -~ ( -1 )  = ( / ( = ) ( t ) )  2 dt 
r o d d = l  (r even=0 ' 

r=2rn)  
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( ~ qr].o/l~ 

f n-1 ~ qr 1 m "+°° 1 
- - [ ( r r ~ ) 0 )  ~ .2"~(- -1) / -=  (f(m)(t')2dt+°(-j-~) " 

Following definition (5), we get 
n-1 qr 
E 2kr- r! 
r-~0 

' / / f (  ) '  ( 1 )  q2. 1 (-1)" f(')(t) dt+o ~ , 
- - .  E1 = E (27)! 4 a" 

7=0 

where k e N, n > 2. Thus (see (55), (58), and (59)), 

+ o o ( )  ( i + q ~  ° / + f (  ) ( ) 1 i = q2. 1 2 1 
2--~ E f 2"£ " f \  2k ] (27)! 4k.(-1)" f(')(t) dt+o 2k(n_2 ) , 

kEN, n> 2. 

Next, from (52), (53), and (60) we find (n > 2, k c N) 

/ ;  (i;; (')) '{( (Bkf)2(x)dx = f2(t)dt + o ~V~ "ao + ~ k q2. 4~4(_1). 
q=l ~=o (2"/)! 

./f (,++).,,+o(,.~_.,)).,.~+._q,} 
(/: '{{ 

= ,,+.)..o+r ~+'~:+.. 
q=l . = 0  (2A/)! 

Consequently (n >_ 2, k E N), 

,,.,,.4.. "'-')} 
• ( / f . + . ) . . o ~ o ( . : _ . / .  

And, 

/ ; f  (Bkf)2(x)dx-- {-~=~1 [(-1)'f+°~!f(')---(t))2dt) "(aq 

( / / f ) (  k ) ( 1 ) + (f(t)) 2dt ao+ (aq+a_q) +o 2k(;~_2) , n>2,  keN.  
q=l 

~o + Z (~q + ~-~) = v(~). ~(~) d~ 
q=l 

Hence, 

33 

(59) 

(60) 

(61) 
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+ E ~p(u). ~p(u + q) du + : (u) .  ~(u - q) du 
q = l  oo 

i;:{ ' ' } = :(u) :(u) + ~ ~(u + q) + Z :(u - q) du 
q = l  q = l  

=/_+°°'(u){~'(uiq)} duq=_. 

,u 

(12 f ; 5  (fl(U)" 1 du = 1, by (44), 

i.e., 

~'0 + ~ (o~ + ~-~) : L 
q = l  

Therefore (k E N, n _> 2), 

= ( "r =1 ~"~ f : " ~  ~ q2"/ . ( O'q 
q = l  

/_+oo ( 1 ) 
+ f l ( t )  dt + o oo 2k(n-2) " 

+._q>)} 

(62) 

(63) 

2.4. Wrapping Up 

Putting things together: we have that (see (22),(42),(63); k 6 N, n _> 2) 

-~=a (2~)!- 4-W q2-y. (Zq 

f_+oo ( 1 ) t 
+ f i ( t )  dt + o 2~(7~-2) - 2. ~ m2-~ 1 

o0 ~=o (27)! 4 k~ 

f_~-oo ( ) 2  ( 1 ) 
x (-1) "~ f(~)(t) dt - 2. o 2k(~-_2 ) 

oo 

e 1 ; ° ° ( )  2 ( 1 ) - 2 E m2.y (27)! 4 "Y (-1)'Y f('~)(t) dt + o 2k(n_2 ) 
,7= 1 oo 

)}' q2~,.  (O'q + O'_q) - m 2 ~  = 2 E P'~(f) 4-i-~ + o . 
'7=1 3,=1 

+.q>)} 

And(keN,  n_>2), 
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e2k( f )  = 
~ , . , p . ~ ( f )  ( 1 ) 

~/=1 q=l 3'=1 

-y=l~ { ( ~  [P~( f ) '~q=i  ~, 4k~ j "q27 . ( O q + O _ q ) ) - 2 m 2 3 ,  • P'~(f)} + 4 k - - - - -  ~- o ( ~ ~ - 2 ) ) 1  

' )}(') = ~ ~ q ~ .  ( ~  + ~_~) - : ~ )  + o ek(z-~) 

(64) 

But, 

3 3 

q=l q=l  

(I2 ) x ~p(u). ~(u + q) du + ~(u)" ~(u - q) du 
(20 

+ E q  2"~ ~ ( u ) ( q z ( u + q ) + ~ ( u - q ) ) d u  
q=l 

s:: ) - 2  f+~__ u 2"Y" ¢p(u) du + ~(u) q2*y. (~(u + q) + ~(u - q)) du 
\q=l  

f+~__ ~(u) - 2 u  2~ + E q  2"Y" (~(u + q) + ~(u - q)) du (7))%(~) < +oc, 
J-c~ q=l 

for all "7 = 1 , . . . ,g .  That  is, 

3 
E q 2~ . (aq + a_q) - 2m2~ = )%(q0), (65) 
q=l 

for all ~ = 1 , . . . ,  g. Also, from (64) we get that (k E N, n > 2) 

e [ ( ~  ) ] }  ( 1 ) (66) f P'Y(f) (O'q -~ O'_q) 2m2,v -'[- 2k(n_2) e~(f) = E I, 4k" q2~. - o . 
3'=1 q=l 

Now it is clear that (65) and (66) imply (8). l 
REMARK 2. In Theorem 1 and its proof, no orthogonality condition in any form was assumed 
for ~! The set of these ~ is very rich indeed. 
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