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1. Introduction

One of the fundamental tools for rendering and segmenting three-dimensional scalar fields is the isosurface. Isosurfaces,
the three-dimensional analogue of contour lines on a topographic map, show the surface defined by a specified value of
the scalar field, called the isovalue. An isosurface may consist of several connected components: we refer to the connected
components of the isosurface as contours.

Isosurfaces can be rendered directly, or used to define transfer functions for volume rendering. In either case, the first
task is to establish a suitable isovalue for which the isosurface captures all of the information of interest in the data set. In
many applications, a suitable isosurface is already known, especially when the task has been performed many times.

In other applications, although boundaries are still of interest, the specific isovalue of interest is unknown. An example
of this is the boundary between the heart and the rest of the body in a medical data set. In some cases, it is possible to
select a suitable isovalue automatically, based on the gradient of the field [31]. In other cases, user interaction is required
to find a suitable isovalue.

In comparison, computational fluid dynamics and molecular modelling often give rise to data sets where the specific
isovalue of interest is not immediately obvious. Where no a priori isovalue is known, successful visualization usually involves
human-directed exploration of the data. The user tries different isovalues interactively, until a suitable one is found. As a
result, interfaces that give cues to suitable isovalues can aid the human’s exploration of the data.

Specifying a single isovalue gives a set of contours that may either enclose or occlude each other. While it is convenient
to have a single-parameter control, if the enclosed or occluded contour represents the principal object of interest, the
remaining contours actually impede a user in their desire to understand the data. Moreover, the relationships between
features defined at different isovalues may also be of interest.
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Fig. 1. Example of flexible isosurface editing to isolate the brain.

This paper, therefore, generalizes from a fixed set of contours sharing a single isovalue to a flexible isosurface, or arbitrary
set of contours, and shows how to use topological analysis, in the form of the contour tree, to keep rigorous track of the
contours in the set, and how to construct an interface based on the principle that the user should be given both direct
control of the contours and their isovalues, and indirect control through the contour tree.

In essence, this paper develops the contour spectrum of Bajaj, Pascucci and Schikore [1] from an essentially passive display
of the topology of a data set to a control paradigm for actively manipulating individual contours. Although significant
portions of this work have been presented previously at conferences [4,6], each presents only a portion of the complete
interface, and this paper consolidates this work and provides further details of the semantic and topological infrastructure
necessary to achieve this.

Fig. 1 depicts images for a scenario in which a radiologist wishes to segment the brain in an MRI scan for further
processing. Using conventional isosurfaces, the radiologist might get the image in Fig. 1(a), in which the skull occludes the
brain isosurface. In our interface, the radiologist can suppress the display of this skull isosurface and make objects inside
the skull visible (Fig. 1(b)). With the occluding surface removed, the radiologist could select a particular object, such as the
one shown in grey, suppress all other surfaces (Fig. 1(c)), then vary the isovalue of the chosen surface (Fig. 1(d)).

There are many scenarios in which a user is interested in seeing some, but not all, of the features in the data. For
exploring scalar fields, our work proceeds from a basic assumption:

Assumption 1. Some interesting features of a scalar field are represented by connected components of level sets (contours),
but not all contours are interesting or important.

Because the contour tree captures the evolution of all contours for different isovalues, and their changes in topology, this
assumption leads in a natural way to employing the contour tree as part of a visualization interface. As we will see below,
the contour tree can be used to focus attention on one contour at a time or as a cue to locate features of specific interest.

In addition to using the contour tree indirectly, as in the radiology scenario just cited, we also provide the ability to use
the contour tree directly as a visual interface to specify contours of interest. Unfortunately, large experimentally acquired
data sets typically have extremely complex topology – in the case of Fig. 1, over a million edges, most of which repre-
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sent extremely small-scale topological features due to noise. Providing abstract control over the contours to be displayed
therefore relies on simplifying the contour tree in a consistent and rigorous fashion. This in turn depends on the ability to
quantify the importance of individual topological features.

The principal contributions of this paper are therefore:

1. To use the contour tree as an index structure to keep track of contours and their relationships.
2. To use path seeds to support extraction of individual contours, without extracting other contours at the same isovalue.
3. To quantify feature importance with local geometric measures.
4. To simplify the contour tree, guided by these local geometric measures.
5. To define an interface by which a user can specify which contours are interesting in a principled fashion.

We also note that although path seeds, topological simplification and local geometric measures were developed to sup-
port the flexible isosurface interface, they do not depend on it, and can be used independently to produce contour trees at
any desired level of simplification or any desired bound on the geometry of the simplification.

2. Morse theory and the contour tree

For a scalar field f : R ⊆ R
d → R, the level set of an isovalue h is the set L(h) = {x ∈ R: f (x) = h}. A contour is a

connected component of a level set. For d = 1, calculus students are familiar with the principle that the slope of a curve
must be 0 at maxima and minima, but can also be 0 at points of inflection. For scalar fields defined over arbitrary manifolds,
Morse theory [24,25] generalizes this analysis by considering the relationships between critical points: points at which the
gradient of the function is 0. These critical points are classified as peaks or local maxima, pits or local minima, and saddle
points. All other points are called regular points. Note that saddle points may correspond either to changes in the connectivity
of the contours, changes in the genus of the contours, or in general, to changes in the Betti numbers of the contours [30].

To avoid degenerate conditions, however, Morse theory assumes that all critical points have unique (i.e. different) isoval-
ues, and that there are no flat regions – i.e. regions of measure greater than zero with 0 gradient. Computationally, these
requirements are usually guaranteed by simulation of simplicity [10], which tilts the entire manifold by an infinitesimal
amount to ensure that all critical points and mesh vertices have unique isovalues.

The branch of Morse theory of interest to us in this work deals with the Reeb graph [32,33] – the graph of topological
relationships between contours that is obtained by contracting each contour to a single point while preserving continuity
between contours – i.e. any continuous path in the domain contracts to a continuous path in the Reeb graph. For simple
scalar fields whose domain is homologous to R

d , this graph is a tree called the contour tree [2]. By convention, edges in the
contour tree are referred to as superarcs and vertices as supernodes. Since the tree only forks where the contour connectivity
changes, the supernodes of the contour tree are all critical points, but not vice versa. In particular, critical points at which
the connectivity of the contours does not change need not be supernodes. Where this distinction is important, we will use
connectivity critical points to refer to critical points at which connectivity changes and connectivity regular points to refer to
all other critical and regular points.

As an example, Fig. 2 shows a scalar field in f : R
2 → R representing a volcanic crater lake with a central island.

The contour tree of f depicts the relationships of all local maxima, minima, and saddle points; individual contours are
represented uniquely as points on contour tree edges. For example, contours c1, c2, and c3 share a single isovalue but each
has a unique location in the contour tree.

Fig. 2. Surface rendering and contour tree of a volcanic crater lake with a central island. A: maximum on crater edge; B: maximum on central peak; C and
D: saddle points; E,F: minima.
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This one-to-one correspondence between the contour tree and individual contours of the underlying scalar field is the
basis for the flexible isosurface interface, in which individual contours are manipulated visually by a user. We therefore
represent a single contour symbolically as follows:

Convention 1. A contour c is a single connected component of a level set at isovalue h, and can be denoted by a pair
c = (s,h) consisting of a superarc s in the contour tree and an isovalue h. Correspondingly, we use c ⊂ s to indicate that a
contour c belongs to a superarc s.

At a supernode, the corresponding contour can be expressed as more than one pair c1 = (s1,h), c2 = (s2,h), . . . , each
of which corresponds to a specific superarc incident to the supernode. These representations are, however, redundant, as
there is only contour exactly at the isovalue of the supernode. We will use this redundant representation in Section 5, but
will otherwise assume that contours are never to be extracted exactly at the supernodes. This assumption is a form of
symbolic perturbation and is common to all isosurface extraction methods, including marching cubes [22] in which vertices
are classified as above or below the isosurface, never exactly at the isosurface.

Regardless of our representation of contours at supernodes, the 1–1 correspondence between contours and points in the
tree also implies a useful property:

Property 1. A monotone path in the domain R ⊆ R
d of f maps to a monotone path in the contour tree; any monotone path

in the contour tree is the image of at least one monotone path in R.

3. Previous work

This paper deals with the application of the contour tree in an exploratory interface. Thus, relevant previous work
includes isosurface extraction, contour tree algorithms, interfaces for scalar field exploration, local surface extraction, auto-
mated or guided isovalue selection, and transfer function design.

Isosurface extraction Isosurface extraction techniques start with two fundamental papers: marching cubes [22], and continu-
ation [44], both of which assume that a polyhedral mesh underlies the scalar field. In each case, the isosurface is separately
approximated in each cell of the mesh with a triangulated surface. Marching cubes tests every cell of the mesh but does
not in general extract one contour at a time, instead triangulating individual cells in arbitrary order. Continuation, on the
other hand, propagates outwards from an initial seed to generate the isosurface. With minor modifications, this can be per-
formed one contour at a time. Since we are interested in extracting single contours, we use the continuation method instead
of marching cubes. Subsequent researchers [14,15,42] have used the contour tree or variants thereof to generate a list of
seed cells that intersects every possible isosurface, but have not done so in a way that provides a correspondence between
individual seed cells and individual contours. We will give more details of the actual mechanics of this work in Section 4.

Contour tree The contour tree has been used in two and three dimensions to index contours [2,4,42], to describe ter-
rain [11,20,35,37] or volumetric data [1,33], to detect features [39,45], to extract isosurfaces [4,42], to simplify data [6,8], to
design transfer functions [39] and to extract contour properties [6,17]. Algorithms for computing the contour tree have been
described by Takahashi et al. [37], van Kreveld et al. [42], Carr, Snoeyink and Axen [5], Pascucci and Cole-McLaughlin [30],
Takahashi et al. [39] and by Chiang et al. [7]. Pascucci [28] and Pascucci and Cole-McLaughlin [30] have also computed topo-
logical indices called the Betti numbers while computing the contour tree. For the purposes of this paper, we will assume
that the contour tree has been computed for a simplicial mesh with one of these algorithms, although this assumption is
not necessary.

Local surface choice Silver [34] introduced object-oriented visualization, in which individual contours were defined by ex-
panding isovalued surfaces from local maxima. Manders et al. [23] described Largest Contour Segmentation in which a feature
was defined to be the largest surface containing only one local maximum. Shinagawa, Kunii and Kergosien [33] gave a visual
code for contour changes but did not use it to build a user interface. Thus, although isolation of individual contours was
feasible, the user was given little or no control over the set of contours chosen.

Isosurface selection Important isovalues can be chosen automatically or semi-automatically. Bajaj, Pascucci and Schikore [1]
described the Contour Spectrum, drawing the contour tree as a visual cue to the user that showed which isovalues cor-
responded to topological changes in the data. Variations of this have been described by Takahashi et al. [38,39]. Kettner,
Rossignac and Snoeyink [17] modified the Contour Spectrum in an interface called SAFARI, which used a color map to
represent isosurface connectivity with respect to time and isovalue, using the contour tree as an indirect cue to interest-
ing regions in the data. Pekar, Wiemker and Hempel [31] used a gradient histogram for automated detection of isosurface
boundaries with high gradient. All of these approaches, however, assume that the same isovalue is uniformly significant
over the entire scalar field.
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Transfer function design Volume rendering [21] visualizes fields as if the underlying physical system is partially opaque to
visible light. A transfer function is defined that maps isovalues to color and opacity: rendering then integrates the light
projecting to the eye through each pixel of the image. Details of the volume rendering are controlled by a transfer function
which maps isovalue to color and opacity. Kniss, Kindlmann and Hansen [19] noted that the common definition of a transfer
function assumes that a given isovalue has uniform meaning throughout the data set, and added gradient information as a
parameter. Kindlmann et al. [18] later added curvature as another parameter, but no information as to spatial or topological
locality. Similarly, Tenginakai, Lee and Machiraju [41] use statistical signatures of the local distribution of voxel values to
define a transfer function.

With few exceptions, therefore, previous authors have applied the same map of isovalue to color and opacity uniformly
across an entire dataset. As we will see later, we relax this assumption both by permitting selection of individual contours
and by providing a wide choice of geometric measures of feature importance.

4. Path seeds for single contour extraction

As we have seen above, the continuation method can be used to extract individual contours one at a time, provided that
a suitable source of seed cells is available. In this section, we will see how to replace the minimal seed sets of van Kreveld et
al. [42] with path seeds, which generate individual seeds for each contour rather than a set of seeds for an entire isosurface.

Since each cell in a simplicial mesh corresponds to a monotone path in the contour tree, van Kreveld et al. [42] selected
a minimal seed set of cells whose monotone paths covered the entire contour tree. Because a minimal seed set is guaran-
teed to intersect every contour at least once, a minimal seed set then provides a sufficient set of isosurface seeds for the
continuation method.

This algorithm has several undesirable properties. First, although the minimal seed set can be computed in polynomial
time, van Kreveld et al. [42] do not specify the polynomial. Instead, they present an algorithm which requires linear storage
and O (n log2 n) time in two dimensions, linear storage and O (n2) time in higher dimensions, and generates at most twice
the minimum number of seed cells. Second, the size of the seed set is at least Ω(t), and potentially as much as Θ(n)

for a t-supernode contour tree in a n-vertex mesh. Third, more than one seed cell can intersect a given contour, requiring
additional processing to avoid redundant contours. And fourth, while only one contour can intersect a given seed cell in a
simplicial mesh, multiple contours can intersect a given seed cell for other interpolants, making it difficult to isolate a single
contour.

Itoh, Yamaguchi and Koyamada [15] generate extrema graphs as seed sets. These graphs start with the entire mesh as
a seed set and discarding redundant cells until no more could be discarded. While not provably optimal, this algorithm is
effective and has since been improved [13]. Still, this approach stores more seed cells than a minimal seed set. It also fails
to provide individual seed cells for each contour, and may deliver multiple seed cells for a given contour.

To provide contour-specific seeds, we generate seed edges that intersect only the desired contour instead of seed cells.
We choose these seed edges so that they form a set of monotone seed paths starting at connectivity critical points. We use
paths similar to those that Takeshima et al. [37] and Chiang et al. [7] use to compute the contour tree.

For a given contour c = (s,h) at an isovalue h on a superarc s, we know from Property 1 that any monotone path in f
that passes through c in the field maps to a monotone path in the tree that passes through c in the tree, and vice versa.
We will construct a monotone path in f that intersects c based on a monotone path in the tree that starts at v , one of the
supernodes on the superarc. It is clear that the portion of the superarc from v to c is a monotone path, and we need only
construct a corresponding monotone path in the field.

We assume that the field is defined over a simplicial mesh, and that we wish to construct an ascending path to contour
c using edges of the mesh. Provided that the first edge in our path maps to superarc s, subsequent edges in the path are
guaranteed to map to s as well, until the path ascends past the supernode w at the upper end of the superarc. Thus, in
order to initialize our path, we need only associate a single mesh edge e with each superarc s in the contour tree as a
representative of all the monotone paths that map to s.

As an example, consider Fig. 3, in which the edges with black arrows mark monotone seed paths starting at connectivity
critical points. Each path maps to a single superarc in the contour tree shown in the figure. To generate seed cells for
contours corresponding to a superarc, we follow the corresponding path through the mesh until we reach the desired
isovalue. For example, to generate the contour at isovalue 49 along the superarc 30–50, we start with the edge H , then
ascend along the marked seed path until we reach the isovalue 49. Conveniently, except for the first edge in each path, we
can follow any ascending path and still generate valid seed cells. We call the first edge the path seed, and store it in the
contour tree, as shown in the right-hand figure.

Since at most two path seeds are stored for each superarc, the path seeds take Θ(t) storage for a tree of size t and
are minimal in the sense that no stored set of seed cells can be smaller, at least in a simplicial mesh, where at most one
minimum and one maximum can belong to each simplex. This being the case, in a tree of size t , there must be at least
Ω(t) simplices in the stored set.

At run-time, contour extraction using path seeds is slightly more expensive than minimal seed sets because the algorithm
has to follow the seed path through the mesh. Although this additional cost can be Ω(n) in the worst case, in practice it is
much smaller, as shown in Table 1.
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Fig. 3. Seed paths in a small simplicial mesh in 2-D.

Conveniently, these path seeds can be obtained during the construction of the contour tree. Current algorithms [5,7,
30] merge two partial structures called the join tree and split tree to obtain the contour tree. The join and split trees are
constructed by two isovalue-order sweeps through the data, detecting joins with Tarjan’s union-find structure [40]. Since
a join or split occurs when edges are added to the union-find structure, if there are two distinct directions of descent or
ascent, the very edge that is used to detect a union of two component also serves as a path seed, and is stored accordingly.
In later stages, the contour tree is computed by transferring arcs from the join tree and split tree, then collapsing arcs into
superarcs. In these steps, superfluous path seeds are discarded.

The modification also applies to optimized versions of the algorithm, and leaves the asymptotic running time unchanged
at O (n log n + tα(t)). Since there is exactly one path seed for each of t superarcs, it follows that path seeds are cheaper to
compute and store than the minimal seed sets of van Kreveld et al. [42], especially in dimensions higher than two.

While it is possible for a given superarc to have one path seed at the upper supernode and one at the lower supernode,
these are redundant. Therefore, to generate a seed for any contour on this superarc, we choose any path seed on the
superarc and use it to generate exactly one seed per contour. This is fundamental to our interface, which tracks individual
contours as separate objects. Before discussing the interface, however, we show how to compute geometric properties of
contours and how to use them to simplify the contour tree in a meaningful fashion.

5. Local geometric measures

As we saw in the introduction, path seeds are not the only innovation required for the flexible isosurface interface. We
also require topological simplification of the contour tree and the data set, and local geometric measures for guiding the
simplification. In this section we introduce these measures before dealing with simplification in the next section. These
measures will include contour length or surface area, cross-sectional area or volume, contained volume or hypervolume,
and statistical measures such as mean, standard deviation and root mean squared error of samples in regions bounded by
the contour.

In their contour spectrum paper, Bajaj, Pascucci and Schikore [1] considered regions of the form {x ∈ R
d: f (x) � h}

in simplicial meshes, and showed that geometric properties such as contour size and volume were piecewise-polynomial
functions of the isovalue h. Edelsbrunner, Harer and Zomorodian [9] computed the persistence of a topological feature:
the difference between the isovalue at which the feature is created and that at which it is destroyed, based on pairing
saddle points with local extrema. Pascucci and Cole-McLaughlin [30], Takahashi, Takeshima and Fujishiro [39] and Bremer,
Edelsbrunner and Hamann [3] have all used this measure of feature importance. Zhang, Bajaj and Baker [45] approximate
region size by counting samples along the arcs of the contour tree, as do Mizuta and Matsuda [26]. Pascucci and Cole-
McLaughlin [30] also compute Betti numbers along the arcs of the contour tree to determine topological genus of individual
contours.

We generalize these approaches by computing arbitrary geometric properties efficiently for all contours in the data set.
We call these properties local geometric measures since they are local to a given contour, geometric in nature and useful for
measuring the importance of features.

We must however be careful with terminology. Above and below do not apply to the region inside c1 in Fig. 2, which is
partly above and partly below the isovalue of c1. Inside and outside lose their natural meaning for contours that intersect the
boundary. We instead subtract the contour from the domain of f , and identify the connected components of its complement
according to whether one reaches them by ascending or descending from the contour. Since monotone paths in the contour
tree correspond to monotone paths in the space, our definition starts from the contour tree.
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For a given contour c = (s,h), we divide the inverse image of its superarc s into upper and lower regions: R+(c) =⋃{c+ = (s,h+): c+ ⊂ s and h+ > h} and R−(c) = ⋃{c− = (s,h−): c− ⊂ s and h− < h}.
We then observe that, except for contours through connectivity critical points, the entire domain can be divided into two

regions – one which can only be reached by paths that intersect the upper region, and one which can only be reached by
paths that intersect the lower region, leading to the following definition:

Definition 5.1. Let c = (s,h) be a contour of f . Define the upstart region of s at h to be: R+
s (h) = {x ∈ R − c: ∀ paths P in

R from c to x, P ∩ R+(c) 	= ∅} and the downstart region of s at h to be: R−
s (h) = {x ∈ R − c: ∀ paths P in R from c to x,

P ∩ R−(c) 	= ∅}.

Contours not belonging to supernodes thus each partition the domain into two regions; contours belonging to supernodes
divide the domain into exactly one upstart or downstart region for each incident superarc. For example, in Fig. 2, contour
c1 has an upstart region inside and a downstart region outside. At saddle D , however, there are several upstart regions, one
for each ascending superarc. We can refer to these regions by their superarcs, such as the upstart region at D for arc C D .

Upstart and downstart functions are functions computed over upstart or downstart regions. Examples include the area
of the region or the length of the contour line that bounds it. Note that the first is dependent on the sweep direction, so
is different for upstart and downstart regions, whereas the second is independent of sweep direction, so the upstart and
downstart functions for contour length are identical.

5.1. Local geometric measures in the contour tree

A local geometric measure is an upstart or downstart function of a given contour. For simplicial meshes, Bajaj, Pascucci
and Schikore [1] showed that measures such as contour length, area, volume, etc. are piecewise polynomial since they
are piecewise polynomial in each cell. Moreover, these polynomials can be tracked efficiently during an isovalue sweep by
storing the coefficients of the polynomial and changing the coefficients as we sweep past each vertex in the mesh. We
modify this approach by using locally isovalued sweeps which follow the edges of the contour tree.

For a single isovalued sweep in a consistent direction (i.e. either up or down), updating local geometric measures is
straightforward. For a sweep inwards through the arcs of the contour tree, however, we continually reverse the direction of
the sweep. If we are measuring the boundary size of the sweeping contour, this is trivial, but for other measures, it is more
complex.

At a saddle point, we must be able to combine upstart functions as we sweep a set of contours past a vertex. In Fig. 4, we
must combine the upstart functions for contours c1, c2 and c3 before sweeping past s. We must then update the combined
upstart function as we sweep past the vertex.

After sweeping past s, we know the combined upstart function d for contours d1, d2 and d3. We remove the upstart
functions for d1 and d2 from d to obtain the upstart function for d3.

We assume that we have recursively computed the upstart functions for d1 and d2 by computing the downstart functions
and then inverting them. Let us illustrate inversion, combination and removal for several local geometric measures.

Contour length (2D): Contour length is independent of sweep direction, so these operations are simple: Inversion is the
identity operation, combination sums the lengths of the individual contours, and contours are removed by subtracting their
lengths.

Fig. 4. Contours sweeping past a saddle point.
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Contour surface area (3D): This is analogous to contour length, and follows the same rules.
Cross-sectional area (2D): Area depends on sweep direction, so inversion subtracts the function from the area of the

entire field. Combining upstart functions at a saddle depends on whether the corresponding edges ascend or descend from
the saddle. For ascending edges the upstart regions are disjoint, and the upstart functions are summed. For descending
edges the upstart regions overlap, and the upstart functions are combined by inverting to downstart functions, summing,
and re-inverting. Removing upstart functions reverses combination.

Surface area (2D): If we consider a function over a two-dimensional domain as a terrain, it is clear that there are two
possible measures of area for a region bounded by a given contour: the area on the ground plane (cross-sectional area), or
the surface area on the manifold embedded in three dimensions. In the latter case, the surface area is the integral of the
contour length with respect to the isovalue and follows the same rule as cross-sectional area.

Volume (3D): In three dimensions, the analogue to area is the volume of the upstart region. As with area, we can have
either the cross-sectional volume or the hypersurface volume (the integral of surface area with respect to isovalue). This
also follows the same rule as area in 2-D: inversion is achieved by subtracting from the volume for the entire domain, while
combination requires summing the functions for the regions being combined.

Volume (2D): In two dimensions, we can also compute the volume between the surface of the function and the isovalue
cutting plane over the upstart or downstart region. For a given isovalue h, the volume between f and h over an upstart
region R is:∫

A

(
f (x) − h

)
dh =

∫
R

f (x)dh−Ah (1)

where A is the area of region R .
If f is defined over a simplicial mesh, then the first term of this is a piecewise-polynomial function and the second term

is the cross-sectional area multiplied by the isovalue of interest. Over a downstart region, the terms are reversed. Formally,
the reversal rule is that the value is multiplied by −1, and the combination rule uses addition. In practice, it is easier to
track the two terms separately, computing the volume from them at need.

Hypervolume (3D): In three dimensions, the analogue of volume in two dimensions is hypervolume. Instead of treating
the contours as individual surfaces, we view them as cross-sections of a hypersurface, and compute the hypervolume be-
tween that hypersurface and a hyperplane of the form f = h. This uses an integral of the same form just shown for volume
under a terrain, and is computed in exactly the same way.

Since these computations involved local updates during contour sweeps, they are easy to incorporate in the merge phase
of the contour tree construction algorithm [5]. However, since these computations use the fully augmented contour tree,
they cannot be computed using the optimized algorithms of [29] and [7], which discard connectivity regular points before
the merge phase.

5.2. Approximate local geometric measures

Local geometric measures are easy to compute for simplicial meshes. For meshes with bilinear or trilinear interpolants,
contours are hyperbolic in nature [27], and the integrals required for exact evaluation involve exponential terms. Moreover,
the bounds for evaluation depend on detailed analysis of the particular interpolant. And, even where these integrals are
soluble, they do not reduce to polynomials, and the sweep strategy identified by Bajaj, Pascucci and Schikore BPS97 cannot
be applied.

Since exact evaluation of these integrals is a significant task in its own right, we leave consideration of them for future
work, and instead compute approximate local geometric measures, including several measures that are common in digital
imaging: we note in passing that it is possible to compute contour trees using digital imaging connectivity [26].

Contour area (2D)/volume (3D): As we saw in Section 5.1, these measures are analogous, and measure the size of the
region in the upstart or downstart region. For regular datasets, we approximate this by counting NR , the number of sample
vertices in the region, an approximation backed by the definition of area of an irregular region as the Riemann sum of the
areas of regular patches inside the region.

NR =
∑
x∈R

1 ≈
∫
R

1 dh = Area(R) (2)

Volume (2D)/hypervolume (3D): Again, these measures are analogous, and measure the size of the region between the
function and a cutting plane. For regular data, we sum the sample values inside the region to approximate the correct value,
again noting the similarity to the Riemann sum definition of the integral:

SizeR =
∫
R

(
f (x) − h

)
dh ≈

(∑
x∈R

f (x)

)
− NRh (3)

Mean, standard deviation and RMS error: In addition to approximations of geometric measures, we can also compute
statistical properties of the sample values inside the upstart or downstart region. We can for example compute μR , the
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mean value, σR , the standard deviation, or RMSR , the root mean squared error for pruning the branch of the contour tree
corresponding to the upstart or downstart region at h:

μR =
∑

f (x)∑
1

(4)

σR =
√∑

f 2(x) − 2μR
∑

f (x) + μ2
R

NR
(5)

RMSR =
√∑

f 2(x) − 2h
∑

f (x) + ∑
h2

NR
(6)

where all summations are over all x ∈ R .

6. Contour tree simplification

Although the contour tree represents the component connectivity of the entire scalar field, it is vulnerable to noise,
which adds small scale topology, especially in empirically-acquired data. In order for the contour tree to be useful as a user
interface, it is desirable to simplify both the contour tree and the underlying topology in a meaningful fashion.

The basic mechanism for contour tree simplification has also been reported by Takahashi et al. [36,39] and by Pascucci
and Cole-McLaughlin [30]. These authors assume that all saddles are simple (i.e. degree 3) and enforce this assumption
by symbolic perturbation of the saddles. Under this assumption, simplification was performed by choosing the Y -shaped
structure adjacent to a leaf of the tree and replacing it with a straight edge between the two non-leaf vertices of the Y . We
present the mechanism in a more general form that permits multiple saddles, does not require symbolic perturbation, and
allows simplification to be guided by measures other than persistence.

We assume that the contour tree is stored as a set of edges with path seeds attached, although branch decomposi-
tion [30] could also be employed. We also assume that each edge has a simplification value (weight) that indicates the
edge’s importance. We use the local geometric measures of Section 5 for this purpose, but any other basis for computing
weights could be used.

We simplify the contour tree principally by applying two primitive operations: leaf pruning and vertex reduction. Leaf
pruning removes topology from the field (and the tree) by selecting a leaf node of low importance and removing it, while
vertex reduction eliminates connectivity regular points from the contour tree, leaving the topology unchanged.

6.1. Leaf pruning

Our principal contour tree simplification operation is leaf pruning, which removes a leaf edge of the tree. This reduces
the tree size by one vertex and one edge, deleting the leaf vertex l and retaining the interior (saddle) vertex s. In Fig. 5,
vertex 80 on the left is pruned to produce the tree in the middle. This implicitly simplifies the topology of the underlying
scalar field as well. Recall that each point on the pruned leaf edge corresponds to a single contour of the scalar field. Leaf
pruning therefore discards all contours corresponding to the pruned edge. Let A refer to the region that is the union of all
these contours. Then pruning the leaf edge is equivalent to any of the following topological operations:

1. removing A from the domain of the scalar field,
2. contracting A to the saddle s,
3. setting f (a) = f (s) for all a ∈ A, or
4. setting f (v) = f (s) for all vertices v ∈ A in a simplicial mesh with barycentric interpolation.

Although removal and contraction of A are easy to define topologically, they cause regular meshes to become irregular
either due to holes in the domain (removal) or spatial distortion (contraction). The other two operations flatten the ex-

Fig. 5. Leaf pruning levels extrema; Vertex reduction leaves scalar field unchanged.
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tremum corresponding to the leaf, resulting in a flat spot in the data, as shown in Fig. 5. The last of the four operations,
while restricted to simplicial meshes, is trivial to implement, although the boundary contour of A will deform slightly as a
result.

We note that these last two operations cause the function to become non-Morse. However, as Pascucci and Cole-
McLaughlin [30] have shown, this can be remedied by an additional perturbation step, which raises the saddle by a symbolic
epsilon and tilts the flat spot to regain Morseness.

As a side effect, leaf pruning may cause saddles to become connectivity regular points at which no topological change
occurs. These points can then be removed from the contour tree by a second simplification operation: vertex reduction,
which does not modify the field.

6.2. Vertex reduction

Vertex reduction deletes a connectivity regular point in the contour tree: a vertex with one neighbor above and one
below, replacing the two incident edges with a single edges. In Fig. 5, vertex 50 is reduced from the tree in the middle to
produce the tree on the right. Note that this does not alter the field, since any point in the unsimplified tree is still present
in the simplified tree. Because of this, we prefer vertex reductions to leaf prunes when they are available.

Pruning a leaf connected to a saddle of degree three will normally reduce the saddle to a connectivity regular point
which can then be reduced, as shown in Fig. 5. The sole exception to this is that if the domain of the scalar field is not
homeomorphic to a disk, in which case a vertex may have two upwards edges and no downwards edge, or vice versa. These
meshes are not commonly seen in practice, but even on such meshes, leaf pruning is still possible at the vertex, so this
does not hamper our simplification method.

To maximize the number of vertex reductions, we protect the last upwards or downwards edge at saddle from leaf
prunes. For example, in Fig. 5, pruning vertex 0 would needlessly flatten the lowest region upwards to the saddle value of
50, and vertex 50 would never be reduced. If we prevent 0 from being pruned, however, we will be able to reduce 50 at a
later date, as shown.

In the worst case, it might seem that all leaves could be protected in this way, causing the algorithm to stall. We show
that this cannot happen with a counting argument based on the fact that any tree must have at least one more leaf edge
than it has interior points (saddles). Since we only protect the last edge upwards or downwards, it follows that at most one
upwards and one downwards edge can be protected at a given saddle. Because each of these is the last edge in its direction,
if a saddle has protected edges in both directions, it has degree two and may be reduced, which we have assumed to have
been done already. Thus, each saddle may protect at most one edge. Since there are more leaf edges than saddles, it follows
that there is always a leaf available for pruning.

6.3. Simplification algorithm

Implementing simplification can be done efficiently by maintaining a priority queue to store the leaves of the tree with
their associated pruning cost. We assume that for each edge e of the tree we know two costs: up(e) for pruning the edge
from the bottom up: i.e. collapsing the edge to its upper vertex, and down(e) for the cost of pruning the edge from the top
downwards. We add each leaf to the priority queue, with priority of up(e) for a lower leaf and down(e) for an upper leaf.
We then repeatedly remove the lowest cost leaf edge from the priority queue and prune it. If this pruning causes a vertex
to become reducible, we do so immediately.

When a vertex is reduced, two edges e1 and e2 are merged into a simplified edge d. The cost of pruning d is based on
the costs of the two reduced edges. We note that up(d) is stored at the top supernode of the edge, and represents the cost
of pruning the edge upwards – i.e. the local geometric measure for the downstart region of the top supernode. Similarly,
down(d) is stored at the bottom supernode of the edge and represents the cost of pruning the edge downwards.

Since vertex reduction merges two edges, the downstart region at the top supernode of the new edge d is the same
as the downstart region at the top supernode of the e1, the upper of the two edges that are merged. It follows that
up(d) = up(e1), while down(d) = down(e2), the lower of the two edges merged. Having determined the pruning costs for d,
if d is a leaf edge, we add it to the priority queue. To simplify queue handling, we mark the reduced edges for lazy deletion.
When a marked edge reaches the front of the priority queue, we discard it immediately. Similarly, when the edge removed
from the queue is the last up- or down-edge at its interior vertex, we discard it, preserving it for a later vertex reduction.

A few observations on this algorithm: First, any desired level of simplification of the tree can be achieved in a number
of queue operations linear in t , the size of the original tree. Since at least half the nodes are leaves, this bound is tight. And
if the contour tree is stored as nodes with circular linked lists of upwards and downwards edges, every operation except
(de)queuing takes constant time. As a result, the asymptotic cost of this algorithm is dominated by the O (t log(t)) cost of
maintaining the priority queue.

Second, the simplified contour tree can still be used to find path seeds. Vertex reduction builds branch decompositions –
monotone paths corresponding to the simplified edges, while leaf pruning discards entire monotone paths. Thus, any edge
in a simplified contour tree corresponds to a monotone path through the original contour tree. To generate a contour at a
given isovalue on a simplified edge, we perform a search along the contour tree edges that make up the monotone path
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for that simplified edge. This search identifies the unique contour tree edge that spans the desired isovalue, and we use the
path seed associated with that edge to generate the contour.

Finally, up(e) and down(e) need only be computed at leaves. As a leaf is pruned or a vertex reduced, new values can be
computed using information from the old nodes and edges.

6.4. Simplification and perturbation

In Section 2, we stated that we would apply perturb the data using simulation of simplicity to ensure that the function
f was a Morse function. For user interface purposes, however, we wish to make sure that the simplified tree represented
removes this perturbation.

To achieve this in practice requires simplifying the contour tree using leaf pruning, vertex reduction and edge reduction.
In the same way that vertex reduction deletes a vertex and combines the two incident edges, edge reduction deletes an
edge and combines the two incident vertices. While it is possible to apply edge reduction to the tree generally, it generates
large flat spots in the data, which is why we avoid it for simplification. Where, however, a flat spot exists in the data in the
first place and the contour tree shows an edge of zero height, it is entirely appropriate to reduce the edge.

7. The flexible isosurface interface

Having dealt with the necessary algorithmic underpinnings, we now turn to the question of how we can use the contour
tree to provide finer control over contour extraction and display. We will use the path seeds in the contour tree to extract
individual contours, not all of which need have the same isovalue, and define a flexible isosurface:

Definition 7.1. A flexible isosurface is a set {c1, . . . , cτ }, of contours ci = (si,hi) of f .

This definition generalizes isosurfaces, object-oriented visualization [34] and largest contour segmentation [23], while also
permitting manipulations such as that described in Section 1. We permit at most one contour on each superarc to belong
to the flexible isosurface, to prevent confusion in the use of the interface.

Fig. 6 shows the flexible isosurface interface, which consists of panels displaying the contours, the contour tree, and the
level of simplification, as well as miscellaneous controls. Although superficially similar to the Contour Spectrum [1], there
are some important differences. The most fundamental difference is that instead of a passive display of a single level set,
the main panel in this interface allows direct user manipulation of the visible objects. We employ the conventional select
and operate metaphor for modeless user interfaces, in which the user uses the mouse to select an object, then applies a
desired operation to that object. We also support undoing and redoing operations.

Fig. 6. The flexible isosurface interface.
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In the contour display panel, we render the current flexible isosurface: we also render it in the contour tree panel. In this
panel, the contour tree is laid out either manually or with the dot package [12], with the vertical dimension representing
isovalue. Each contour c = (s,h) can therefore be represented by a rectangular tag on the superarc s at isovalue h. Each
tag is assigned the same color as the corresponding contour in the contour display to further aid the user in relating the
topology (the contour tree) with the geometry (the contours).

Since we have assumed that objects are single contours, we support the following operations: selecting a contour, de-
selecting a selected contour, adding a contour to a flexible isosurface, deleting a contour, isolating a contour by deleting all
other contours, applying attributes to a contour, evolving the isovalue of a contour, and initializing a flexible isosurface. Two
additional operations can be applied to the contour tree as a whole: simplification and unsimplification.

Selection A contour may be selected visually with the mouse: the object under the mouse pointer can be identified with
any standard picking algorithm, provided that the objects have some unique identifier. Since we use path seeds to extract
contours, we use the ID of the superarc to which each contour belongs as the unique identifier. If we have simplified the
contour tree, we use the ID of the simplified arc – as noted above, we will use the branch decomposition to descend to an
unsimplified superarc when we need to generate a path seed.

We also permit contours to be selected in the contour tree panel: if the mouse pointer is over a colored tag, the
corresponding contour is selected. In either case, we highlight the contour by changing its color. Although multiple selection
is feasible, the semantics of contour evolution become unclear, so we disallow it.

Deselection A contour is deselected when another contour is chosen, or when the user depresses the mouse button over a
region of the contour display panel or the contour tree panel which does not select a contour.

Adding Since we can only apply an operation to a contour we can see, it is not possible to add a contour to the flexible
isosurface in the contour display panel. Instead, if the mouse pointer is over a superarc s in the contour tree at isovalue h
but not over a colored tag, we add c = (s,h) to the flexible isosurface and select c immediately.

Deletion and isolation A contour may be deleted by selecting it, then using one of the buttons beneath the contour display
panel to delete it from the current flexible isosurface. A second button allows the contour to be isolated by deleting all other
contours in the current flexible isosurface.

Applying attributes In general, we can store arbitrary information for each contour in the flexible isosurface. This attribute
information can include color, texture, display list IDs for accelerated rendering, text, or any other information desired. At
present, we support display list IDs and color information: the latter can be changed with the small color palette beneath
the contour tree pane.

Evolution One of the commonest isosurface operations is to vary the isovalue of an entire level set. Evolution varies the
isovalue of a single contour, either by selecting the contour and manipulating its isovalue with the vertical slider beside the
contour tree panel, or by selecting a contour in the contour tree pane and dragging the mouse with the button depressed,
in which case the y-coordinate of the mouse pointer is used instead of the slider. We describe the semantics of contour
evolution below, as they can be fairly complex.

Initialization A flexible isosurface can be initialized to a conventional isosurface (level set) or to a largest contour segmen-
tation, controlled by a check box below the contour display pane. If no contour is currently selected, we assume that the
user may wish to re-initialize the flexible isosurface by changing the isovalue of the vertical slider next to the contour tree
panel. Moving this slider vertically thus generates conventional isosurfaces if the check box has not been checked, and a
parameterized largest contour segmentation if it has, mapping the isovalue proportionally onto each of the upward leaves
in the tree.

Simplification and unsimplification The rightmost panel is used to control the level of simplification of the contour tree, and
plots the size of the contour tree horizontally against the measure of the largest leaf pruned vertically, in a log–log plot.
A group of radio buttons beneath the panel sets which local geometric measure to apply, while sliders are provided for
major changes in simplification level and buttons for minor changes. This simplification is performed on the fly using the
simplification algorithm discussed above.

7.1. Evolving a contour

With conventional isosurfaces, changing the isovalue and observing the corresponding changes in the level set is one of
the commonest operations, since it allows the user to gain insight into the overall structure of the data. Correspondingly,
we permit evolution of a single contour:

Definition 7.2. A contour c at isovalue h evolves into the set of all contours c1, . . . , cm at isovalue h′ for which at least one
f -monotone path Pi exists in R from c to each ci .
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Fig. 7. Simple example of an evolving contour. (a) As the contour evolves upwards, we generate contours on the same superarc at progressively higher
isovalues. (b) As the contour evolves past a saddle, it splits into one contour for each of the upwards superarcs at the saddle. (c) Once past the saddle, each
contour continues to evolve upwards on its own superarc.

Fig. 8. Continuous contour evolution: Upwards, then downwards. (a) A evolves upwards into contours B and C . (b) B and C evolve into D , E and F .
(c) When the parameter is returned to a smaller isovalue of B and C , should G be shown?

This definition emphasizes the expectation of the user that they are seeing the results of increasing (or decreasing) the
isovalue of a specified contour. Since we use the contour tree as our index, we must convert this definition into one in terms
of the contour tree, an easy task given the correspondence between contours and the contour tree:

Lemma 7.3. Definition 7.2 is equivalent to the following formulation: A contour c at isovalue h evolves into the set of contours
c1, . . . , cm at isovalue h′ such that for each ci there exists a monotone path Q i from c to ci in the contour tree.

Proof. For each monotone path in either R or the contour tree, Property 1 guarantees that a corresponding monotone path
exists in the other. �

This result allows us to discuss contour evolution solely in terms of the contour tree, while still remaining true to the
user’s expectations. We show a simple example of contour evolution in Fig. 7. In this case, a single contour is chosen in
a small contour tree. As the isovalue is increased using the isovalue slider, the contour tag slides up the superarc of the
contour tree from Fig. 7(a) to Fig. 7(b). As the contour evolves past the isovalue of the join, the contour separates into two
distinct contours, one for each branch of the contour tree at the join.

Semantically, the basic meaning of this evolution is clear: the user expects to see a smooth evolution of contours as the
parameter is changed. As the parameter is changed repeatedly, however, several difficulties arise.

Continuous and reversible contour evolution For the user, contour evolution should be continuous by providing visual feedback
as the isovalue is changed, and reversible to any previous stage in the evolution. This emphasizes the assumption that the
evolving contours represent the same object at different isovalues. Consider Fig. 8, in which contour A evolves upwards to
B and C , then to D , E , and F , then back downwards. If the evolution were a sequence of progressive evolutions, G would be
included in the flexible isosurface. This is clearly not reversible, so we treat a sequence of evolutions as individual evolutions
from a common initial contour.

Giving precedence to evolving contours Fig. 9 shows a contour, A evolving past a contour B that is already present in the
contour tree. As the isovalue is increased, A evolves into A1 and A2, then into A3, A4 and A5. If, as is often the case,
contour A5 is entirely inside contour B in the contour display pane, the user will be unable to see the effect of the
evolution. We therefore assume that A5 is more important to the user than B , and remove B from the flexible isosurface.
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Fig. 9. Suppressing contours during evolution. As A evolves past B , B will normally occlude either A2 or A5 as A sweeps past B . We assume that the user
is more interested in the evolution of A through A2 and B to A5 than in B itself, and suppress B so that the evolution of A is clear.

Table 1
Path seed isosurface extraction: Large contour trees tend to have shorter paths, and vice versa. Moreover, the path lengths are much smaller than the
output cost, k.

Data set Size (n)
(samples)

Tree size (t)
(supernodes)

Longest path
(edges)

Isosurface size
(k) (triangles)

f368 30,345 915 4–6 10K–11K
marlobb 68,921 912 1–23 10K–35K
fuel 262,144 227 2–3 3K–11K
hipiph 262,144 1360 5–29 2K–22K
neghip 262,144 2063 7–10 10K–30K
lobster 489,600 17,867 4 19K–96K
teddybear 1,015,808 245,588 4–5 19K–250K
3dhead 7,143,424 2,231,900 2–5 85K–500K
3dknee 8,323,072 2,751,506 1–6 325K–1634K

In order to make this reversible, we do not actually delete B until the sequence of evolutions is complete: thus, if the user
evolves the contours back down, B will reappear.

8. Results

8.1. Path seed performance

In Table 1, we show some examples of path seed length and the corresponding size of isosurfaces. Broadly speaking, for
a data set of size n × n × n, we might expect linear features such as seed paths to be of size O (n), but areal features such
as contours to be of size O (n2). To generate this table, we tested a range of isovalues to determine the longest path length
needed to generate the contours, along with the corresponding total isosurface size. As we see, broadly speaking, the path
length is in line with our expectations, and is certainly small enough that extraction time will be dominated by the size of
the isosurfaces generated.

8.2. Comparison of local geometric measures

In Fig. 10, we show the results of simplifying the UNC Head data set with three different geometric measures: height
(persistence), volume, and hypervolume. In each case, the contour tree has been reduced to 92 edges and laid out using
dot [12] with no manual intervention. As we will see in Section 7, the superarcs in these simplified contour trees correspond
to individual features in the data set shown in Fig. 6.

In the left-hand image, height (persistence) was used as the geometric measure. All of the edges shown are tall as a
result, but on inspection, many of these edges were caused by high-intensity voxels in the skull or in blood vessels. Most
of the corresponding objects are quite small, while genuine objects of interest such as the eyes, ventricular cavities and
nasal cavity have already been suppressed because they have limited persistence. Moreover, on further inspection, the large
number of objects with large persistence tended to be fragments of larger objects, particularly the skull.

In comparison, the middle image shows the results of using approximate volume. Not only does this focus attention
on a few objects of relatively large spatial extent, but there were fewer objects of large volume than of large persistence.
Important objects such as the eyeballs are retained because they have relatively large regions despite having low persistence.
However, we note that there are also a large number of low-persistence edges at the bottom of the contour tree. These
edges turn out to be caused by noise and artifacts outside the skull in the original CT scan, in which large regions are either
slightly higher or lower in isovalue than the surrounding regions.
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Fig. 10. Comparison of simplification using three local geometric measures. In each case, the UNC Head data set has been simplified to 92 edges using the
specified measure. Trees were laid out using the dot tool [12], with no manual adjustment.

Finally, the right-hand image shows the results of using approximate hypervolume. In this case, we observed a very rapid
dropoff of importance of features, with only 100 or so regions having significant hypervolumes. This measure preserves large
low-persistence features such as the eyeballs, while eliminating most of the apparent noise edges at the bottom of the tree,
although at the expense of representing more skull fragments than the volume measure.

We examined a broad range of datasets, from medical datasets to synthetic and analytical functions, and found that
in most circumstances, the hypervolume measure was better for data exploration than either height or volume, since it
balances representation of high-persistence objects with representation of large objects.

We do not claim that this measure is universally ideal: the choice of simplification measure should be driven by domain-
dependent information. However, no matter what measure is chosen, the basic mechanism of simplification remains.

8.3. Simplification results

We used a variety of data sets to test our simplification methods, including results from numerical simulations (Nucleon,
Silicium, Fuel, Neghip, Hydrogen), analytical methods (ML, Shockwave), CT-scans (Lobster, Engine, Statue, Teapot, Bonsai),
and X-rays (Aneurysm, Foot, Skull). Table 2 lists the size of each data set, the size of the unsimplified contour tree, the time
for constructing the unsimplified contour tree, and the simplification time.

The size of the contour tree is proportional to the number of local extrema in the input data. For analytic and simu-
lated data sets, such as the ones shown in the upper half of Table 2, this is much smaller than the input size. For noisy
experimentally acquired data, such as the ones shown in the lower half of Table 2, the size of the contour tree is roughly
proportional to the input size.

As Table 2 shows, we also computed the time taken to simplify the contour tree to a single edge, as this is an upper
bound on the time taken to simplify the contour tree to any desired size. These times were obtained using a 3 GHz Pentium
4 with 2 GB RAM, and the hypervolume measure, and are shown in comparison to the time taken to compute the contour
tree itselfs. As we see from the table, simplification typically costs less than one percent of the time of constructing the
original contour tree, plus the additional cost of pre-computing local geometric measures during contour tree construction.

9. Conclusions and future work

We have shown how to use the contour tree to provide an innovative visual interface for exploring scalar data fields,
with simplification of the contour tree guided by local geometric measures of feature importance, and individual contours
extracted using path seeds.

There are a number of directions for extensions and future work. We believe that simplified contour trees can provide
seeds for level set methods or for boundary propagation methods such as T-snakes [16]. Interfaces similar to the flexible
isosurface interface have now been extended to interval volumes [36] and volume rendering [43], but further work is
possible here.

Further work is required on the best geometric measures for tree simplification, on the use of local geometric mea-
sures for automatic feature recognition, on improved methods for displaying the contour tree visually, and on methods for
simultaneous simplification of the contour tree and the contours extracted.
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Table 2
Data sets, unsimplified contour tree sizes, and contour tree construction time (CT) and simplification time (ST) in seconds.

Data set Data size Tree size CT (s) ST (s)

Nucleon 41× 41 × 41 49 0.28 0.01
ML 41× 41 × 41 695 0.25 0.01
Silicium 98× 34 × 34 225 0.41 0.01
Fuel 64× 64 × 64 129 0.72 0.01
Neghip 64× 64 × 64 248 0.90 0.01
Shockwave 64 × 64 × 512 31 5.07 0.01
Hydrogen 128× 128×128 8 5.60 0.01

Lobster 301× 324 × 56 77,349 19.22 0.10
Engine 256× 256×128 134,642 31.51 0.18
Statue 341 × 341 × 93 120,668 32.20 0.15
Teapot 256× 256×178 20,777 33.14 0.02
Aneurysm 256 × 256×256 36,667 41.83 0.04
Bonsai 256× 256×256 82,876 49.71 0.11
Foot 256× 256×256 508,854 67.20 0.74
Skull 256× 256×256 931,348 109.73 1.47

CT Head 106× 256×256 92,434 21.30 0.12
UNC Head 109× 256×256 1,573,373 91.23 2.48
Tooth 161× 256×256 338,300 39.65 0.48
Rat 240× 256×256 2,943,748 233.33 4.97

Finally, the continuation method used to extract single contours is inherently serial in nature, and we intend to investi-
gate methods for parallel or distributed methods for single contour extraction.
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