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Abstract: The cystic fibrosis transmembrane conductance regulator (CFTR) comprises ATP
binding and transmembrane domains, and a unique regulatory (R) domain not found in other
ATP binding cassette proteins. Phosphorylation of the R domain at different sites by PKA
and PKC is obligatory for the chloride channel function of CFTR. Sequence similarity searches
on the R domain were uninformative. Furthermore, R domains from different species show
low sequence similarity. Since these R domains resemble each other only in the location of the
phosphorylation sites, we generated different R domain patterns masking amino acids between
these sites. Because of the high number of the generated patterns we expected a large number
of matches from the UniProt database. Therefore, a relational database management system
(RDBMS) was set up to handle the results. During the software development our system grew
into a general package which we term Modular BioSQL (mBioSQL). It has higher performance
than other solutions and presents a generalized method for the storage of biological result-sets
in RDBMS allowing convenient further analysis. Application of this approach revealed that
the R domain phosphorylation pattern is most similar to those in nuclear proteins, including
transcription and splicing factors.
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1 Introduction

The cystic fibrosis transmembrane conductance regulator (CFTR) is unique among the

ABC (ATP binding cassette) proteins as an ion channel [1, 2]. This function necessitates

an extremely tight control of the opening of its passive permeability pathway. This is

provided by a central domain not present in other ABC proteins, termed the R domain.

Under normal conditions, several sites within this domain must be phosphorylated by

PKA for activation [3–5]. Removal of these phosphoryl groups by serine protein phos-

phatases rapidly terminates gating. Although it has been suggested previously that this

phosphorylation promotes ATP hydrolysis by the nucleotide binding domains of CFTR

[6, 7], this seems not to be the case. Although direct evidence is not yet available, it

now seems more likely that R domain phosphorylation enables conformational coupling

between the impact of ATP binding at two sites formed by the nucleotide binding do-

mains and the channel gate [8]. There is little insight into the mechanism whereby this

occurs beyond the fact that the introduction of extra negative charges plays a role [9]

and promotes interaction of the R domain with other parts of the protein [10]. The R

domain has a low proportion of defined secondary structural elements and its sequence is

much less conserved among species than that of the rest of CFTR [11–13]. Common tools

for sequence similarity searches, like blast and querying protein databases with a matrix

profile built from the R domains, have not returned proteins with significant similarity

to this domain ([11] and unpublished results).

The most conserved and distinguishing feature of the R domain is the positioning of ∼9

consensus sites for phosphorylation by PKA. The spacing of these sites in the primary

structure is identical or very similar among the species with known CFTR sequence

[11]. Therefore, we have utilized this conserved pattern of sites to attempt to identify

other R domain-related proteins which might provide additional clues to its mechanism

of action. To facilitate this approach with a large number of patterns, we set up a

relational database management system (RDBMS). During the software development,

the system grew into a general package which we term Modular BioSQL (mBioSQL)

which performs favorably compared to available systems. It required some optimization

to increase database performance, and now profits from its ability to load the analysis

results back to the RDBMS for further analysis by the Structured Query Language (SQL).

Based on the application of our approach the R domain phosphorylation pattern shows

similarity to those in nuclear proteins, including transcription and splicing factors.

2 System and methods

The local warehouse was implemented on a DELL Precision Workstation with Pentium

4 (3.00 GHz), 1 GB RAM, and 80 GB IDE hard drive (7200 rpm). The operating system

was RedHat Enterprise Linux WS 3. Python 2.3.3 version was used with BioPython 1.30

(http://www.python.org; http://www.biopython.org).

PostgreSQL 7.4.2 relational database management system (http://www.postgresql.org)
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was compiled, while MySQL 4.0.20 (http://www.mysql.com) was not according to the de-

velopers instructions. MySQLdb, PyPgSQL, and psycopg database adaptors for Python

were tested and used.

For benchmarks, SwissProt 43.3 was used with BioSQL schema 1.26 (http://obda.open-

bio.org), and EMBOSS 2.8. (http://emboss.sourceforge.net). The BioSQL schema was

populated by load seqdatabase.pl of BioPerl [14]. The final pattern search was done on

UniProt 4.4 (http://www.uniprot.org; ([15]).

All the documentation, scripts, database schema, and sample result sets are available

at http://mbiosql.biohegedus.org.

3 Results

3.1 Generation of patterns with phosphorylation sites

Although R domain sequences are not highly conserved among different species, the dis-

tances between phosphorylation sites are preserved strikingly [11]. We chose the nine

most important dibasic PKA sites involved in PKA mediated regulation to generate an

amino acid pattern corresponding to the phosphorylation sites and any amino acids with

appropriate numbers to define the distances between the phosphorylation sites (Table

1). Since this pattern is very strict other variants with decreased numbers of sites were

assigned with increasing penalty scores. The maximum penalty score was defined as six.

The resultant 340 basic patterns were used to generate three different classes of regular

expressions allowing ±1, ±2, ±4 amino acid wobble between the phosphorylation sites.

From the extensive pattern search with 1,020 motifs in the UniProt 4.4 database (Swis-

sProt+trEmbl) containing 1,825,667 proteins, a high number of matches were expected

and therefore a local warehouse with RDBMS was implemented.

3.2 Setting up mBioSQL and the pattern search as an application exam-

ple

Since we could not find a system with acceptable performance and design for this project,

we created one. The first optimization task was the population of the database from

UniProt [15] containing a large amount of data (Figure 1, arrow a). From the benchmarks

(Table 2) it is clear that the bottleneck is not the flat file parsing, but the insertion of

large numbers of rows into the database. In order to enhance the performance of the

inserts, most of the indexes were switched off during the data load and created after the

population process. This resulted in approximately a tenfold decrease in time (7 h 23 min

compared to 41 min) compared to the situation when there are existing indexes during

the inserts.
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Fig. 1 Schematic representation of mBioSQL concepts. Data from flat files were

parsed by BioPython parsers and loaded into RDBMS (arrow a). Coding of the controlled

vocabularies and optimization of the index usage resulted in higher database performance.

Sequences for level I analysis can be retrieved from either relational database (arrow b)

or flat files (arrow c) depending on the application. According to the type of the result-

set and the next analysis steps, the result can be stored either in a sequence database

(arrow d) or in a separate ’Result’ database (arrow e). By the powerful SQL merging

data from ’data’ tables and ’result’ tables (arrow f), filtering, and formatting can be easily

performed in the last analysis process (arrow f, g). See http://mbiosql.biohegedus.org for

detailed database schema and data processing workflow.

In the case of large databases the searching also needs special optimization. We

achieved increased speed of queries by coding the ’concepts’, controlled vocabularies, like

the keyword or database list of UniProt. These concepts can be stored in separate tables

referencing their entries by integers from other tables that significantly decrease the size

of the database (Table 2; see web page for detailed schema). For example, referencing

the strings of the keywords with 2 byte long integers results in a decrease from 13 MB to

3 MB. This gain is not a significant saving of disk space, but a huge saving of memory.

Application of this approach decreases both the data and the index size allowing retention

of more of them in the memory. This results in a decreased number of disk accesses, which

is the biggest limitation in RDBMS performance, thereby speeding up queries with index

usage or resource consumption joins.

When retrieving specific entries from an RDBMS, SQL can be easily used to formulate

quite complicated questions. However, because of the intensive internal administration

the data access via RDBMS/SQL is not always justified (Figure 1, arrow b). For example,

if access to all the sequence data from UniProt is required, the sequential reading and

parsing of a file will always be much faster (Figure 1, arrow c; Table 2). If a specific subset
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Loading data into RDBMS:

Parsing the SwissProt flat file by BioPython: 6 min

System Data Driver Time
BioSQL SwissProt psycopg 7h 23 min
mBioSQL SwissProt MySQLdb 48 min
mBioSQL SwissProt psycopg 41 min

Database size in the file system:

System Data Size
BioSQL SwissProt Data+Index 1,126 M
mBioSQL SwissProt Data+Index 706 M
Flat file UniProt Data 3,225 M

Index 766 M
Total 3,991 M

mBioSQL UniProt Data 3,041 M
Index 780 M
Total 3,812 M

Reading random sequences:

System Data Driver n(sequences)/sec
Flat file∗∗ UniProt 1,111,111
BioSQL SwissProt psycopg 7,142
mBioSQL SwissProt psycopg 14,556
mBioSQL SwissProt PyPgSQL 3,600

∗Please note: not only the speed and size of the database defines its quality.
∗∗Using EMBOSS tools.

Table 2 Benchmarks∗.

of a database is required, other methods used in informatics can be applied: after easy

selection of the interesting entries by SQL, the result can be written into a file (Figure

1, arrow a backward), or inserted into a separate table, and then analyzed much faster

from the file or from the temporary table.

Employing this approach, we retrieved the sequences of each protein from the Swis-

sProt and TrEMBL flat file for pattern search. R domain patterns with increasing penalty

score were searched and the locations of matching proteins were stored in a separate ’re-

sult’ table in our relational UniProt database (Figure 1, arrow d). The matched part of

the sequence was masked, and the search was continued in the same protein. We stored

the results in RDBMS since we found the analysis with SQL simple and more flexible

than from a file.

The concept of loading analysis results back to the database, making further analysis,

and generating statistics from there is generally used in informatics, and has already been

applied in some complex, specific bioinformatical applications [16, 17]. This process could
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be generalized for simple result-sets, like pattern searching, restriction mapping, etc. The

basic idea behind this is the fact that running an analysis program with the less restrictive

parameters, and storing and querying of all the results in an RDBMS, is less tedious than

running the program several times with different parameters followed by the analysis

of a set of files. We present examples of these tasks employing the EMBOSS package.

Our scripts load EMBOSS result files into mBioSQL (br load.py; Figure 1, arrow d, e),

and show examples for further, lightweight, level II analysis from the relational system

without any SQL programming knowledge (br anal.py; Figure 1, arrow f, g).

3.3 RDBMS based, level II analysis of the matched proteins

Our phosphorylation patterns matched 5,833 proteins from the total UniProt database

(0.3 % of 1,825,667 total), 644 from the SwissProt (0.3 % of 178,022), and 5,189 from

the TrEMBL (0.3 % of 1,647,645). We made detailed analysis of matches with maximum

penalty score 5 from Class ±1 and ±2, and maximum penalty score 4 from Class ±4,

respectively, accounting for 575 proteins (Table 3, bold entries). As mentioned earlier,

the id of the matched proteins, the locations of the matches and the penalty scores were

loaded into a separate ’result’ table in the relational UniProt database. Additional tables,

as a subset of UniProt, with the matched proteins above our threshold were created to

speed up the analysis. The advantage of this approach is the use of SQL for analysis.

Penalty class±1 class±2 class±4

0 15 3 5
1 0 4 20
2 1 0 43
3 0 6 56
4 4 29 236
5 21 167 1032
6 424 1035 2950

∗Total number of entries: 1,825,667.

Table 3 Number of matches from the UniProt database∗.

By SQL it is possible to generate reports in different flexible ways, merging the protein

data with the results into text, html, or other format, narrowing the result-set by applying

different filters. Two entries are shown in Figure 2 from a very simple example file, which

can be found at the mBioSQL web page containing all of the proteins above the threshold

and ordered by penalty scores and classes.

Other features of SQL usage during the analysis of biological results are the sim-

ple functions, like COUNT, in combination with different conditions to produce simple

statistics. Here we also show an example for analysis of matched proteins from SwissProt.

Investigation of individual entries in the report file (Figure 2), containing all the matches

from UniProt, showed a high number of matches with proteins with DNA, RNA, and
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other nucleic acid associated SwissProt keywords. Based on this, proteins with ’nucleic

acid-associated’ (NAA) keywords (e.g. DNA condensation, nuclear protein, alternative

splicing, etc.) and ’non-nucleic acid-associated’ (non-NAA) keywords (e.g. microtubule,

flavoprotein, antigen, etc.) were counted and categorized by the ’Rules’ section of the

SwissProt keyword list file [15]. Our result-set was significantly enriched in proteins with

NAA keywords from the “Cellular component”, “Complex”, and “Sequence diversity” cat-

egories compared to the SwissProt database (Table 4). The ratios of proteins with NAA

and non-NAA keywords in the “Biological process” category increased to the same extent

(34 % and 36 %, respectively), although the initial proportion of NAA proteins was lower

(9 % compared to 19 %). Since proteins have keywords from different categories, one

entry potentially is counted in several categories, therefore the percentage values are not

additive to 100 %. In order to calculate average values for the distribution of NAA and

non-NAA proteins, the DISTINCT clause of SQL was used indicating that the previ-

ous set of proteins was concentrated from 23 % to 59 %, while the latter collection was

depleted from 79 % to 41 % (Table 4).

Fig. 2 Two entries from the result file. The result-set of the pattern search were

stored in the relational UniProt database. This approach allowed merging of results with

data from the sequence database itself into an html file. Two entries from this file with

links to the UniProt and InterPro database, with primitive pattern (P: [RK][RK]X[ST]

phosphorylation pattern, E: any four amino acids, a-h: distances between the phosphory-

lation patterns), the class with penalty score, and the matched regions demonstrate how

the matched proteins can be visualized and analyzed individually. The full file can be

found at the mBioSQL website.
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Category; Keywords N+ N(SP++)

Cellular component
Nuclear protein 26∗ (41 %) 11517 (7 %)
Cell wall, Chloroplast, Cytoskeleton, Membrane,

Mitochondrion, Ribosomal protein 9 (14 %) 22391 (13 %)

Complex
Chromosomal protein, Nucleosome core, Spliceosome 4∗ (6 %) 1090 (0.6 %)
Microtubule 2 (3 %) 846 (0.5 %)

Sequence diversity
Alternative splicing 17∗ (27 %) 6591 (4 %)
Polymorphism 3 (5 %) 3283 (2 %)

Biological process
DNA condensation, DNA damage, DNA repair,

DNA replication, Transcription regulation,
mRNA processing, mRNA splicing 22∗ (34 %) 15756 (9 %)

Other( Pathway, Transport, etc) 23∗ (36 %) 31962 (19 %)

Ligand, Nucleotide-binding
DNA-binding, RNA-binding, rRNA-binding 21∗ (33 %) 19818 (12 %)
ATP binding, FMN, Flavoprotein, GTP-binding 20∗ (31 %) 22893 (13 %)

Molecular function
Activator, Initiation factor, Repressor, Ribonucleoprotein,

Trans-acting factor 8 (13 %) 15832 (9 %)
Antigen, Developmental protein, Photoreceptor,

Structural protein 5 (8 %) 4683 (3 %)

’Nucleic acid associated’ matches: 38∗ (59 %) 40024 (23 %)
’Non-Nucleic acid associated’ matches: 26(41 %) 135587 (79 %)

+ Matched and filtered proteins from the SwissProt; total: 64
++ All proteins with keywords from the SwissProt; total: 170971
∗ Enrichment was tested by binomial test (P < 0.001)

Table 4 Simple statistical analysis of the matched SwissProt entries.

4 Discussion

CFTR is an anion channel that plays a crucial role in secretion and absorption of salt and

fluid by epithelial tissues. To be effective in their function, ion channels such as CFTR

must be very tightly regulated. The R domain provides this control; phosphorylation of its

multiple sites by PKA is obligatory for channel gating. Despite extensive investigations

[4, 5, 10, 18–20] the mechanism whereby the unphosphorylated R domain maintains

the non-gating state is not understood. As a supplement to the various experimental

approaches that have been applied, we have attempted to obtain functional clues by

searching for similarities with other proteins.

As the R domain sequence is not conserved, but the relative distances of the phospho-
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rylation sites are preserved in this domain from different species (Table 1), we searched

the UniProt protein database for proteins with similar phosphorylation pattern distribu-

tion. Simple analysis of the matched entries revealed that the majority of these proteins

are nuclear proteins such as transcription factors, splicing factors, and antisigma factors,

etc. (Table 4). The common feature of these proteins is that their matched regions are

involved in protein-protein interactions highly regulated by phosphorylation. This is con-

ceptually consistent with the idea that CFTR dependent regulation of other transporters

might occur through direct protein-protein interaction via the R domain. Our findings

may help to interpret the nature of intermolecular interactions such as those, which may

occur with calcium-activated chloride channels [21] and SLC (solute carrier) transporters

[22], as well as the role of intramolecular interactions of CFTR R domain in the gating

mechanism [10].

The SLC proteins are bicarbonate/chloride exchangers that may be important in

understanding cystic fibrosis, as impaired bicarbonate secretion in the pancreas and small

intestine is one of the most visible phenotypes of patients [23, 24]. SLC26A3 (DRA:

Down-Regulated in Adenoma) and SLC26A6 were reported to interact physically with

CFTR R domain through their C terminal STAS (sulfate transporter and anti-sigma

factor antagonist) domains, influencing both their own function and that of the channel

[22]. DRA is believed to be a tumor suppressor. Although, not universally accepted, there

are more and more indications that it influences cell growth [25, 26]. It is most likely

that the STAS domain with high similarity to anti-sigma factor transcription regulators

interferes with signaling pathways. Similar events may account for the high number of

published regulatory interactions between CFTR and other proteins [27–29].

The non-nuclear proteins with loose matches include a voltage-gated sodium channel

(UniProt:P35498). The function of this protein is modulated by phosphorylation of an

intracellular loop [30], which acts as a regulatory domain. This sodium channel, like

CFTR, also matures inefficiently during biosynthesis [31]. Only ∼2 % of the protein

synthesized reaches the plasma membrane, far less than the ∼25 % of CFTR [32]. It

is unknown if the labile nature of these two channels is related to their regulation by

phosphorylation.

Since many nuclear proteins contain large numbers of phosphorylation sites, i.e. ser-

ine/arginine reach regions, it is also possible that R domain matches with these proteins

are coincidental. However, the low ratio of the hits compared to the total number of entries

in the UniProt database (0.3 %) and some experimental observations (like CFTR/SLC

interactions: [22]) strengthen the validity of the results of the pattern search.

To perform our analysis we set up a local warehouse system including a biological

RDBMS (Figure 1). We decided to store our data in an RDBMS, as the expected large

result-set would be analyzed more easily with SQL compared to conventional tools, like

grep and awk. Unfortunately most of the biological RDBMS are at the experimental

stage with insufficient performance, not yet ready to be used by wet biologists for a

specific problem. At the time of development we did not have the opportunity to try

the recently published Atlas data warehouse [33]. In our package, different biological
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databases were implemented in different schema, as we use a small number of different

biological databases, and do not intend to deal with the integration problem. We chose the

Python scripting language for programming because development in a scripting language

is significantly easier and faster compared to other languages like C or Java. Python has

a clean object-oriented syntax and runs on most platforms.

The individual implementation of databases permitted population of our databases

faster without indexes that were created after the loading was completed. We also could

reference certain ’concepts’ like database names, feature names, keywords with integers

that decreased the database size, and the index size resulting in significant increase in

database performance (Table 2). This approach is not used by any of the available public

RDBMS systems implementing SwissProt (BioSQL, Prose, solution of [34]). However,

it is important to emphasize that a general schema to store heterogeneous biological

data (like the BioSQL schema) is needed to help both programmers and users to make

development and querying simpler [35–37].

Similar to a productive database environment, we did not use RDBMS exclusively.

In some situations it is more reasonable to read data from files, to write the query result

into a file, and to analyze it from there. In other cases it is more efficient to select the

result into a temporary table. These types of decisions are usually made by experienced

programmers, however in some cases automated, intelligent decisions could be planned

by programs themselves.

Large results are often stored in an RDBMS system to simplify further analysis and

report generation steps. We used this approach to investigate the matched proteins in

our pattern search. Furthermore, we generalized this concept and point out that it is

worthwhile to load simpler biological results back into RDBMS in order to solve further

questions by the powerful SQL (Figure 1). Python scripts are also provided as examples of

how to implement this concept without the need of any SQL or programming knowledge

and how to integrate RDBMS with analysis packages (like EMBOSS). Several complete

software packages with relational database backend appeared recently [38–40], but none

could be easily applied to our project. Some of them are gene-centric (e.g. GeneKeyDB),

while others need large resources (a 28 CPU Linux cluster is recommended for the Pegasys

server).

In summary, in order to find proteins with similarity to CFTR R domain a large scale

pattern search was implemented based on the easy to use Python, while the analysis was

performed through an RDBMS. All the tools and solutions used are freely available and

platform-independent. During the rationalization process we faced several informatical

challenges and developed solutions that could serve as examples in development of new

packages to serve the needs of biologists. Moreover, the results generated by our local

warehouse indicate that the R domain of CFTR is similar to regions of various proteins

taking part in protein-protein interactions that are highly regulated by phosphorylation.

Their mode of regulation and action may provide new insights into structural and func-

tional relationships of the CFTR R domain.



40 T. Hegedűs and J.R. Riordan / Central European Journal of Biology 1(1) 2006 29–42

Acknowledgment

Technical help by Seth Kurtzberger and Walter Krafft is greatly appreciated. We are
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