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Abstract

We reexamine the wavelet-based simulation procedure for fractional Brownian motion proposed by A
Sellan. We clarify in what sense the wavelet-based simulation procedure works, shed light on the stru
associated fractional low- and high-pass filters, and consequently suggest some modifications to the s
algorithm.
 2005 Elsevier Inc. All rights reserved.

MSC:60G18; 41A58; 60F15

Keywords:Fractional Brownian motion; Wavelets; Low- and high-pass filters; Zero moments; FARIMA time series;
Simulation

1. Introduction

The goal of this paper is to reexamine and clarify the wavelet-based simulation procedure for fra
Brownian motion proposed by Abry and Sellan [1] and also summarized in Abry et al. [2].Fractional
Brownian motion(fBm, in short) is a stochastic process{BH(t)}t∈R, H ∈ (0,1), having an integral rep
resentation

BH(t) = kH

∫
R

(
(t − u)

H− 1
2+ − (−u)

H− 1
2+
)
dB(u), t ∈ R, (1.1)
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where{B(u)}u∈R is a standard Brownian motion,x+ = max{0, x} andkH is a normalizing constant. Th
choice of

kH =
(

2H�(3/2− H)

�(H + 1/2)�(2− 2H)

)1/2

(1.2)

leads toEBH(1)2 = 1 or standard fBm, while setting

kH = (
�(H + 1/2)

)−1
(1.3)

allows to write fBm as fractional integral of the Gaussian white noise dB(u)/du. Here,�(·) is the usual
gamma function. FBm hasstationary incrementsand isself-similar with exponentH , that is, for any
c > 0, processesBH(ct) andcHBH(t) have the same finite-dimensional distributions. Since it is the
(up to a constant) Gaussian process with these two characteristics, fBm has been extensively
in theory and also widely used in applications where its increments serve as a paradigm for lon
dependent, fractal or 1/f -noise discrete-time series. The facts stated above and more information o
can be found in Section 7 of Samorodnitsky and Taqqu [15], Embrechts and Maejima [9], and Do
et al. [8]. See also numerous references therein.

Sellan [16], Meyer et al. [12] have recently established an almost surely and uniformly on co
intervals convergent expansion of fBm in wavelets which decorrelates the high-frequencies, nam

BH(t) =
∞∑

k=−∞
ΦH(t − k)S

(H)
k +

∞∑
j=0

∞∑
k=−∞

2−jHΨH

(
2j t − k

)
εj,k − b0, (1.4)

whereΦH andΨH are a suitably chosen biorthogonal scaling function and a wavelet, respectivelyS
(H)
k ,

k ∈ Z, is a partial sum process of a FARIMA(0,H − 1/2,0) sequence with independent Gaussian
novationsN (0,1), εj,k, j � 0, k ∈ Z, are independent GaussianN (0,1) random variables andb0 is a
random variable such thatBH(0) = 0. Some of the details behind the decomposition (1.4) as we
related terminology can be also found in Section 2 below. In particular, the functionsΦH andΨH are
defined through a related orthogonal scaling functionφ and a waveletψ associated with a multiresolu
tion analysis (MRA, in short). Meyer et al. [12] have used the Lemarié–Meyer MRA functionsφ and
ψ because of their appealing smoothness properties. Other wavelet bases, for example, the Da
MRA, are possible as well (see Remark 10 in [12, p. 488]). FARIMA sequences which appear i
through their partial sums are celebrated discrete-time linear series (see, for example, [5]). The s
S

(H)
k is often referred to as a (nonstationary) FARIMA(0,H +1/2,0) rather than as a partial sum proce

of a (stationary) FARIMA(0,H − 1/2,0) sequence.
Decorrelation of the high frequencies of (1.4) which refers to independence (decorrelation)

Gaussian coefficientsεj,k , allows for a fast simulation of fBm by using pyramidal Mallat-type algorit
(fast wavelet transform). Practical implementation of the decomposition (1.4) to simulate fBm wa
posed by Abry and Sellan [1]. Let

S
(H)
k (l) = 2l(H+1)

∫ (
BH(t) + b0

)
g
(
2l t − k

)
dt, (1.5)
R
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be the conveniently normalized approximation coefficients in the wavelet expansion of fBm at th
2−l , where the functiong :R �→ R is biorthogonal to the scaling functionΦH appearing in (1.4). The
algorithm involves defining low- and high-pass filters, denoted hereafter byu(s) andv(s) with

s = H + 1

2
, (1.6)

respectively, and can be represented as

S(H)
· (l) = u(s) ∗ (↑2S

(H)
· (l − 1)

) + v(s) ∗ (↑2εl−1,·), (1.7)

where∗ stands for a convolution and the standard operator(↑2 x) inserts zeros between the elements
a sequencex. As shown by Abry and Sellan [1], the fractional filtersu(s) andv(s) satisfy the relations

u(s) = f (s) ∗ u, v(s) = g(s) ∗ v, (1.8)

where the filtersf (s) = {f (s)
n } andg(s) = {g(s)

n } are defined through thez-transformations as

f (s)(z) = (
1+ z−1

)s =
∞∑

n=−∞
f (s)

n z−n, (1.9)

g(s)(z) = (
1− z−1

)−s =
∞∑

n=−∞
g(s)

n z−n, (1.10)

respectively, andu andv are the low- and high-pass filters associated with the initial MRA correspon
to the scaling functionφ and the waveletψ . Observe that the filtersf (s) andg(s) differ from those in [1]
by a multiplicative constant. This happens (see Remark 3 at the end of Section 2) because we
conveniently normalized approximation coefficients (1.5). In practice, since the filtersu(s) andv(s) are
infinite, andg(s)

n may diverge asn → ∞, Abry and Sellan [1] suggested to set

u(s) = f (1) ∗ tf (d) ∗ u, v(s) = g(1) ∗ tg(d) ∗ v, (1.11)

where

d = H − 1

2
, (1.12)

andtf (d) andtg(d) stand forf (d) andg(d) truncated at some a priori chosen cutoff level. The idea the
to generate a FARIMA(0,H + 1/2,0) sequence of finite length and use the scheme (1.7) with trunc
filters (1.11) to generate a much longer processS

(H)
k (l) at the desired approximation levell. The suitably

normalized sequenceS(H)
k (l) is taken for the approximation of fBm at the scale 2−l .

In this work, we aim to shed more light on the wavelet-based method to simulate fBm. In Sec
we clarify in what sense the approximation coefficientsS

(H)
k (l) are suitable approximations for fraction

Brownian motion. We also revisit the Mallat-type scheme (1.7) from the perspective of time series
sis. In Section 3, we reexamine the fractional low- and high-pass filtersu(s) andv(s). In particular, we
bring into consideration the number of vanishing moments of the underlying orthogonal MRA an
investigate the decay of the resulting filtersu(s) andv(s). Modifications to the Abry and Sellan algorith
are discussed in Section 4. The interested reader may also want to see the accompanying pa
ras [14] where we explore the usefulness of the wavelet-based simulation of fBm, compare it t
simulation methods and provide further guidelines for the use of the wavelet-based simulation.
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2. Another look at the approximation coefficients

In this section, we make a few observations concerning the approximation coefficientsS
(H)
k (l) in (1.5).

The next result shows that these coefficients can be used as approximations of fBm. By the fra
of Meyer et al. [12] below, we mean that the scaling functionψ and the waveletφ entering into (1.4)
throughΦH andΨH correspond to the Lemarié–Meyer MRA considered by Meyer et al. [12].

Proposition 2.1. Under the framework of Meyer et al.[12], we have forε, 0 < ε < H ,

sup
t∈[0,1]

∣∣2−lH S
(H)

[2l t](l) − (
BH(t) + b0

)∣∣ � C2−l(H−ε) (2.1)

almost surely, where a random variableC depends onH , ε and the scaling functionφ, and [x] stands
for an integer part function ofx ∈ R.

Proof. The functionΦH is defined in [12] through the Fourier transformation

Φ̂H (x) =
(

1− e−ix

ix

)H+1/2

φ̂(x),

whereφ is the scaling function corresponding to the Lemarié–Meyer MRA. (By convention, the Fo
transformφ̂ ∈ L2(R) of a functionφ ∈ L2(R) is defined byφ̂(x) = ∫

R
e−itxφ(t)dt .) The functiong,

biorthogonal toΦH , is then defined by

ĝ(x) =
(

1− eix

−ix

)−(H+1/2)

φ̂(x)

and, under the framework of Meyer et al. [12], is infinitely many times differentiable with its deriva
decaying faster than any polynomial. Observe from the definition ofg that‖g‖L1 = ∫

R
g(t)dt = ĝ(0) =

φ̂(0) = 1 where the last equality follows, for example, from (3.1) in [12].
Relation (1.5) and‖g‖L1 = 1 imply that, fort ∈ R,

∣∣2−lH S
(H)
k (l) − (

BH(t) + b0
)∣∣ �

∫
R

∣∣BH(s) − BH(t)
∣∣2l

∣∣g(
2ls − k

)∣∣ds. (2.2)

It is then enough to argue that, for arbitrarily smallε > 0, there is a random variableC such that∣∣BH(s) − BH(t)
∣∣ � C|s − t |H−ε + C|s − t |H+ε (2.3)

for all s ∈ R andt ∈ [0,1]. Indeed, by substituting (2.3) into (2.2) and making a change of variable
would obtain that

∣∣2−lH S
(H)

[2l t](l) − BH(t)
∣∣ � C2−l(H−ε)

∫
R

∣∣w − (
2l t − [

2l t
])∣∣H±ε∣∣g(w)

∣∣dw

� C ′2−l(H−ε)

∫
R

|w|H±ε
∣∣g(w)

∣∣dw = C ′′2−l(H−ε),

since 0� 2l t − [2l t] < 1 and where|x|H±ε = |x|H+ε + |x|H−ε for x ∈ R.
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An application of the Kolmogorov’s criterion (see, for example, [10, p. 53]) yields that fBm has sa
paths which are Hölder continuous of the orderH − ε for anyε ∈ (0,H) (see also Theorem 4.1.1 in [9]
This result allows to bound the left-hand side of (2.3) byC|s − t |H−ε whens andt belong to[0,1]. On
the other hand, by the law of the iterated logarithm for fBm (see, for example, [13, Theorem 1.1
have|BH(s)| � C|s|H (ln ln |s|)1/2 ass → ∞. This result allows to bound the left-hand side of (2.3)
C|s − t |H+ε whens ∈ R \ [0,1] andt ∈ [0,1]. �

The random variableb0 can be eliminated in (2.1) by assuming that an approximating FARIMA
quence starts at 0. Hence, set

S̃
(H)
k (l) = S

(H)
k (l) − S

(H)
0 (l), k, l ∈ Z. (2.4)

Corollary 2.1. Under the assumptions of Proposition2.1, we have forε, 0< ε < H1,

sup
t∈[0,1]

∣∣2−lH S̃
(H)

[2l t](l) − BH(t)
∣∣ � C2−l(H−ε) (2.5)

almost surely, whereC is a random variable.

Proof. The bound (2.5) follows from (2.1) and the fact that, sinceBH(0) = 0,∣∣2−lH S
(H)

0 (l) − b0

∣∣ � C2−l(H−ε),

which is a consequence of (2.1).�
In practice, fBm is therefore approximated by a normalized sequenceS̃

(H)
k (l). It becomes clear from

the proof above that Proposition 2.1 and Corollary 2.1 are true in other situations as well, as long
holds and the functiong has a sufficient decay at infinity. The intervalt ∈ [0,1] in (2.1) and (2.5) can
be replaced by other compact intervals. This replacement, however, affects the random variableC in the
corresponding bounds.

Remarks. (1) The approximating process 2−lH S̃
(H)

[2l t](l), t ∈ [0,1], in (2.4) has jumps at the dyadic poin

t = k2−l , k = 0, . . . ,2l . We can also define a continuous and easy to implement approximation to
by linearly interpolating the values of the previous approximation at the dyadic points, namely, as

Ŝ
(H)
t (l) = S̃

(H)

[2l t](l) + (
2l t − [

2l t
])(

S̃
(H)

[2l t]+1(l) − S̃
(H)

[2l t](l)
)
, t ∈ [0,1]. (2.6)

By using the fact that 0� 2l t −[2l t] < 1, the relation (2.5) and the Hölder continuity of fBm of the or
H − ε with anyε ∈ (0,H), we deduce that

sup
t∈[0,1]

∣∣2−lH Ŝ
(H)
t (l) − BH(t)

∣∣ � C2−l(H−ε), (2.7)

whereC is a random variable.
(2) Results analogous to Proposition 2.1, Corollary 2.1 and the remark above in a deterministi

tion are well known. See, for example, [6, pp. 202–206]. Observe also that the approximations of
(2.7) and (2.5) are more accurate forH closer to 1. This is natural because the paths of fBm get smo
asH increases.



54 V. Pipiras / Appl. Comput. Harmon. Anal. 19 (2005) 49–60

tion of

lt. The
s well.

ocess
e

d

t also
n, the

white
t

Focus now on the pyramidal Mallat-type scheme (1.7). Since (1.4) is a wavelet decomposi
fBm (see, in particular, (1.5)), we know that the right-hand side of (1.7) defines a FARIMA(0,H +
1/2,0) sequence. We shall conclude this section by providing an alternative proof of this resu
proof sheds light on the structure of the relation (1.7) and should be of independent interest a
More generally, consider a FARIMA(0, s,0), s ∈ R, sequenceX = {Xn} and a sequenceε = {εn} of
independentN (0,1) random variables, so-called Gaussian white noise. Whens < 1/2, FARIMA(0, s,0)

sequenceX = {Xn}n∈Z is stationary and can be defined through thez-transformation as

X(z) = (
1− z−1

)−s
ε(z) (2.8)

or, element-wise, as

Xn = (
g(s) ∗ ε

)
n
=

∞∑
k=0

g
(s)
k εn−k, (2.9)

whereε is a Gaussian white noise. One can extend the definition to the cases � 1/2 by setting

X(z) = (
1− z−1

)−s
ε(z) = (

1− z−1
)−[s+1/2](

1− z−1
)−(s−[s+1/2])

ε(z), (2.10)

where thez-transformation(1 − z−1)−1 corresponds to a partial sum operation (and hence the pr
(2.10) is not stationary). Suppose that the sequencesX andε are independent. We will show that th
process

Y = u(s) ∗ (↑2X) + v(s) ∗ (↑2ε), (2.11)

is indeed another FARIMA(0, s,0) sequence with independentN (0,1) innovations. Turning to thez-
transformations, the relation (2.11) is equivalent to

Y (z) = u(s)(z)X
(
z2

) + v(s)(z)ε
(
z2

)
. (2.12)

SinceX is a FARIMA(0, s,0) sequence, we have from (2.8) and (2.10) thatX(z) = (1− z−1)−sξ(z),
whereξ = {ξn} is a Gaussian white noise sequence, independent of the seriesε. Then, by using (1.9) an
(1.10), and the identity 1− z−2 = (1+ z−1)(1− z−1), we obtain that

Y (z) = (
1+ z−1

)s(
1− z−2

)−s
u(z)ξ

(
z2

) + (
1− z−1

)−s
v(z)ε

(
z2

)
= (

1− z−1
)−s(

u(z)ξ
(
z2

) + v(z)ε
(
z2

)) =: (1− z−1
)−s

η(z). (2.13)

By Lemma 2.1 below, the sequenceη = {ηn} is a Gaussian white noise and hence the sequenceY is
indeed a FARIMA(0, s,0) sequence by definition.

Lemma 2.1. Let ξ = {ξn} and ε = {εn} be two independent Gaussian white noise sequences. Le
u andv be, respectively, the low- and high-pass filters associated with an orthonormal MRA. The
sequenceη = {ηn} defined in thez-notation by

η(z) = u(z)ξ
(
z2

) + v(z)ε
(
z2

)
, (2.14)

is a Gaussian white noise sequence as well.

Proof. Since (2.14) is a reconstruction scheme, it is enough to show that, given a Gaussian
noiseη, the sequencesξ = ↓ (u∨ ∗ η) and ε = ↓ (v∨ ∗ η), where(x∨) = x , are two independen
2 2 n −n
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Gaussian white noise sequences as well. By using the identity↓2(u
∨ ∗ u) = δ0 for the low-pass filter

u corresponding to an orthogonal MRA, the covariance functionrξ = {rξ
n } of ξ can be expressed a

rξ = ↓2(u
∨ ∗ u) = δ0, which shows thatξ is a Gaussian white noise. The same holds for the sequenε.

To show thatξ andε are independent, it is enough to prove that↓2(u
∨ ∗ v) = 0. This identity holds for

the low- and high-pass filtersu andv corresponding to an orthogonal MRA.�
Remarks. (1) The Mallat-type synthesis relation (2.13) is easy to generalize for other Gaussian sta
linear sequences. Suppose thatX = {Xn} is a Gaussian linear process given byXn = ∑∞

k=−∞ bkξn−k or

X(z) = b(z)ξ(z) (2.15)

in the z-notation, whereb(z) is thez-transform of{bn} andξ = {ξn} consists of independentN (0,1)

random variables. Then, arguing as in (2.12) and (2.13) above, the process

Y (z) = ub(z)X
(
z2

) + vb(z)ε
(
z2

)
(2.16)

with

ub(z) = b(z)

b(z2)
u(z), vb(z) = b(z)v(z), (2.17)

is a Gaussian linear sequence having the same linear representation as the processX (and, in particular,
having the same probability law as the processX).

(2) For example, ifX is an AR(1) process represented by (2.15) withb(z) = (1−a1z
−1)−1 and|a1| < 1

(see [5]), then

b(z)

b(z2)
= (

1− a1z
−2

) ∞∑
k=0

ak
1z

−k = 1+ a1z +
∞∑

k=2

(
ak

1 − ak−1
1

)
z−k.

If, for example, the filtersu andv correspond to the Haar MRA, thenub = {ub
n} andvb = {vb

n} are given by

ub
n = 21/2




an
1 − an−2

1 , if n � 3,

a2
1, if n = 2,

1+ a1, if n = 1,

1, if n = 0,

vb
n = (−21/2

)



an
1 − 2an−1

1 + an−2
1 , if n � 3,

a2
1 − 2a1, if n = 2,

1− a1, if n = 1,

1, if n = 0.

One appealing feature of the fractional filtersu(s) and v(s) in (1.8) is that they can be convenien
expressed by using (1.9) and (1.10).

(3) If one uses the approximation coefficients

s
(H)
k (l) = 2−lsS

(H)
k (l) =

∫
R

(
BH(t) + b0

)
2l/2g

(
2l t − k

)
dt

of the wavelet expansion of fBm at the scale 2−l (with s = H + 1/2), then the scheme (1.7) can
expressed as

s(H)
· (l) = (

2−su(s)
) ∗ (↑2s

(H)
· (l − 1)

) + (
2−sv(s)

) ∗ (↑22
−(l−1)sεl−1,·

)
. (2.18)

Observe that the scheme (2.18) is that considered by Abry and Sellan [1] but also note that 2−js should
be replaced by 2js in (3) of their paper andG(s)(z) should be defined as 2−s(1− z−1)−s in (10) (see also
pp. 81–82 in Abry et al. [2]). We preferred to work with the coefficientsS

(H)
k (l) rather thans(H)

k (l) for
simplicity of the formulas and also sinceS(H)

k (l) is a FARIMA sequence of the same variance for alll.
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3. Fractional low- and high-pass filters reexamined

In this section, we shed light on the fractional low- and high-pass filtersu(s) andv(s) given by (1.8),
(1.9), and (1.10). To do so, suppose that an orthogonal MRA associated with the original filtersu andv

hasN zero moments. Then, under mild assumptions on the functionsφ andψ ,

u(z) = (
1+ z−1

)N
u0(z), v(z) = (

1− z−1
)N

v0(z), (3.1)

for some filtersu0 andv0 (see, for example, [6] or [11]). By using these representations, we dedu
following elementary result.

Proposition 3.1. Suppose that an orthogonal MRA associated with the low- and high-pass filtersu and
v hasN vanishing moments and, consequently, under mild assumptions, that the relations(3.1) hold.
Then, the fractional low- and high-pass filtersu(s) andv(s) of (1.8), (1.9)and (1.10)can be represente
as

u(s)(z) = (
1+ z−1

)N+s
u0(z) = f (N+s)(z)u0(z), (3.2)

v(s)(z) = (
1− z−1

)N−s
v0(z) = g(s−N)(z)v0(z), (3.3)

whereu0 andv0 are the filters defined through the relation(3.1).

The advantage of representingu(s) andv(s) by (3.2) and (3.3), respectively, rather than byu(s)(z) =
f (s)(z)u(z) = (1+ z−1)f (d)(z)u(z) andv(s)(z) = g(s)(z)v(z) = (1− z−1)−1g(d)(z)v(z) as in (1.11) used
by Abry and Sellan [1], is that the filtersf (N+s) andg(s−N) decay much faster than the correspond
filtersf (d) andg(d) above whenN is taken large. Indeed by using the asymptotic relation

(−1)nf (−a)
n = g(a)

n =
n∏

j=1

a + j − 1

j
= �(n + a)

�(n + 1)�(a)
∼ na−1

�(a)
,

asn → +∞ (with a ∈ R not an integer), we obtain that

f
(N+s)
j ∼ (−1)j j−1−N−s

�(−N − s)
, g

(s−N)
j ∼ j−1−N+s

�(−N + s)
, (3.4)

asj → +∞. Compare (3.4) to analogous relation withs replaced byd andN = 1 corresponding to th
filtersf (d) andg(d). The decay of the filtersf (·) andg(·) is important when truncating them in practice
some a priori chosen cutoff levelε. The representations (3.2) and (3.3) allow to show that the fract
low- and high-pass filtersu(s) andv(s) can often be characterized by a fast decay as well.

Proposition 3.2. Under the assumptions of Proposition3.1, suppose thatN + s > 0, N − s > 0 and the
filters u0 = {u0,n} andv0 = {v0,n} satisfy|u0,n| � C|n|−pu and |v0,n| � C|n|−pv for pu,pv > 1. Then, for
n ∈ Z \ {0},∣∣u(s)

n

∣∣ � Cu|n|−((N+s+1)∧pu),
∣∣v(s)

n

∣∣ � Cv|n|−((N−s+1)∧pv), (3.5)

wherea ∧ b = min{a, b} and the constantsCu andCv above do not depend onn. In particular, whenu
andv (equivalently,u andv ) have finite length, the exponentsp andp in (3.5)can be removed.
0 0 u v
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Proof. Consider, for example, the fractional low-pass filteru(s). By using (3.2), (3.4) and the assumptio
of the proposition, we obtain that, forn � 2 and generic constantsC, C ′,

∣∣u(s)
n

∣∣ �
∞∑

j=−∞

∣∣f (N+s)
n−j

∣∣|u0,j | � C

∞∑
j=−∞

(
1+ |n − j |)−1−N−s(

1+ |j |)−pu

� C

∫
R

(
1+ |u − n|)−1−N−s(

1+ |u|)−pu du � Cn−1−N−s

1∫
−∞

(
1+ |u|)−pu du

+ C

n−1∫
1

|u − n|−1−N−s |u|−pu du + Cn−pu

∞∫
n−1

(
1+ |u − n|)−1−N−s

du

� Cn−(N+s+1)∧pu + Cn−N−s−pu

1−1/n∫
1/n

(1− w)−1−N−sw−pu dw � C ′n−(N+s+1)∧pu.

The casen � 2 and then that of the high-pass filterv(s) can be considered in a similar way.�
In Table 1, we give an idea on the length of truncated fractional filtersu(s) andv(s) for a chosen cutof

level ε, the Daubechies MRA’s with the number of vanishing momentsN and the choice ofs = 1.25.
More precisely, the length of a truncated filteru(s), for example, is computed as follows. Observe tha

∣∣u(s)
n

∣∣ �
k1∑

k=k0

|u0,k|
∣∣f (N+s)

n−k

∣∣, (3.6)

where{u0,k, k = k0, . . . , k1} is the finite filter associated withu through (3.1). We choose the length
a truncated filteru(s) as the smallestn0 − k0 + 1 with n0 � k1 for which the right-hand side of (3.6)
bounded byε for anyn � n0. (Note that it is enough to find the first suchn because the right-hand sid
decreases monotonically asn � k1 increases.) For the filteru0 = {u0,k} in (3.6), we chose the proper
normalized values given in Table 6.2 of Daubechies [6, p. 196]. Observe from Table 1 that the len
truncated filters become significantly smaller for largeN at small values ofε. This observation is relevan
in practice because, whenN is larger, we can choose truncated filters of significantly smaller length

Table 1
Lengths of truncated filtersu(s) andv(s) at a cutoffε with s = 1.25 and the Daubechies MRA withN vanishing moments

Filters Cutoffε N = 1 N = 3 N = 6 N = 10

u(s) 10−4 17 17 21 28
10−7 123 48 36 38
10−10 1009 164 70 56
10−15 34,769 1425 257 121

v(s) 10−4 ≈ 4× 104 38 23 28
10−7 ≈ 4× 108 422 57 42
10−10 ≈ 4× 1012 5162 171 72
10−15 ≈ 4× 1019 ≈ 3× 105 1220 206
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4. Modifications of the simulation algorithm

Recall from Sections 1 and 2 that the basic idea behind the wavelet-based synthesis of fBm is
erate an initial FARIMA(0,H + 1/2,0) sequence, apply to it the recursive Mallat-type scheme (1.7)
finally take the resulting FARIMA(0,H +1/2,0) sequence as an approximation to fBm. Since fractio
low- and high-pass filters are truncated in practice, the length of a FARIMA sequence essentially d
after each application of the scheme (1.7). Practical implementation of this simulation procedu
proposed by Abry and Sellan [1]. We suggest to make the following important modifications to
algorithm.

Modifications:

1. Fractional low- and high-pass filtersu(s) andv(s) with s = H + 1/2 which enter into (1.7), shoul
be computed by using the relations (3.2) and (3.3), and truncated at some cutoff level by us
arguments around (3.6).

2. An initial FARIMA(0,H + 1/2,0) sequence can be taken of a different length.
3. We propose to simulate an initial FARIMA(0,H + 1/2,0) sequence exactly.

We now explain each of these modifications in greater detail.
In regard to thefirst modification above, Abry and Sellan [1] computed the fractional filters thro

(1.11) which involves truncating the sequencesf (d) andg(d). Since these sequences decay very slo
fractional filters chosen by Abry and Sellan [1] are unnecessary too long. Moreover, in contrast t
there is no control over the size of their elements.

Concerning thesecondmodification above, letJ enter into the time scale 2−J at which the resulting
FARIMA (0,H + 1/2,0) sequence is taken as an approximation to fBm. Abry and Sellan [1] tak
sameJ for the number of times that the Mallat-type scheme (1.7) is recursively applied to an
FARIMA (0,H + 1/2,0) sequence. This means in particular that, if the number of desired fBm o
vationsK is large andJ is relatively small, then one needs to generate an initial FARIMA sequen
a large approximate lengthK2−J . The constraint that (1.7) is used exactlyJ times, is not necessary. I
fact, as argued by Pipiras [14], it does not really matter (in the sense specified in that paper) w
length of an initial FARIMA sequence is. If this is so, then one natural choice for the length of an
FARIMA sequence is the smallest number which make the use of (1.7) possible when accoun
boarder effect. An appeal of this choice is that the simulation of fBm then becomes truly wavelet-
For example, there is no need to generate a very long initial FARIMA sequence by using other sim
methods.

If r is the maximum length of the fractional low- and high-pass filters truncated at some cutoff
then the smallest possible length of an initial FARIMA(0,H + 1/2,0) sequence is

k0 = r + 1. (4.1)

Observe that after applying the scheme (1.7) to a FARIMA sequence of length (4.1), we would
(2k0 −1− r)+1= r +2 number of points of a new FARIMA sequence which are unaffected by bo
effect. Here, 2k0 − 1 is the number of points after the operation↑2 and (−r) takes into account th
boarder effect. By repeating this argument, the number of points of a resulting FARIMA sequenc
recursively applying (1.7)m times, isr + 2m. In practice, we choosem so thatr + 2m is larger than the
number of desired points of fBm.
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Our third modification concerns the initial FARIMA(0,H + 1/2,0) sequence. Abry and Sellan [
generate it directly by using definition through

Xn = (
g(1) ∗ tg(d) ∗ ξ

)
n
,

where tg(d) is the filter g(d) truncated at a prescribed cutoff level andξ is a discrete Gaussian whi
noise. Since the elements of the filterg(d) decay extremely slowly, the truncated filter is very long,
computation and that of the convolution withξ are time consuming and, moreover, the sequenceXn is not
exactly a FARIMA(0,H + 1/2,0) sequence. We suggest to generate the initial FARIMA(0,H + 1/2,0)

sequence exactly.
At least two exact simulation methods are available in the statistical literature: the Durbin–Le

algorithm and the circulant matrix embedding method. These methods are nicely summarized by
et al. [3] but see also Brockwell and Davis [5] for the Durbin–Levinson algorithm and Dietrich
Newsam [7] for the circulant matrix embedding method. The Durbin–Levinson algorithm is exa
time consuming when generating long time series. We can nevertheless often use it because, in
(4.1) and Table 1, the length of an initial FARIMA(0,H + 1/2,0) series may be taken quite small. T
circulant matrix embedding method, on the other hand, is considered exact and not time consum

The modified wavelet-based algorithm to simulate fBm, written in MATLAB , is available from the
author upon request. The use and usefulness of the wavelet-based simulation of fBm are further d
in [14].

Remark. Generating a FARIMA(0,H + 1/2,0) sequence is at the core of the wavelet-based algor
to simulate fBm. Starting with an initial FARIMA(0,H + 1/2,0) sequence, we recursively apply to
the scheme (1.7) to obtain each time an approximately twice longer FARIMA(0,H + 1/2,0) sequence
Would it be possible to start with a fBm sequence and then apply to it an analogous (1.7)-type sc
obtain a twice longer fBm sequence? This question is important because, in contrast to using F
sequences, we would in principle obtain not an approximation to fBm but a fBm sequence itself.
et al. [12] showed in Section 8 that generating fBm in this way is indeed possible in theory. To imp
their procedure in practice, we would need to compute associated fractional low- and high-pas
which enter into the Mallat-type scheme (1.7). This task, however, is numerically much more d
than in the case of FARIMA sequences.

To understand this, consider a fractional Gaussian noise (fGn, in short) sequence{ZH(k)}k∈Z defined
as increments of fBm{BH(k)}k∈Z at integer times. These two sequences are equivalent in the sen
starting with one of them, we can find the other one either by taking a partial sum or by takin
increments. The difference is that fGn is a stationary sequence and hence slightly easier to ma
By Proposition 2.1 in [4], fGn can be represented as

ZH(k) =
∞∑

j=−∞
bjεk−j , k ∈ Z,

where{εj }j∈Z are independentN (0,1) random variables and the sequence{bj }j∈Z is defined through its
discrete Fourier transform as

∣∣b̂(x)
∣∣2 = EB2

H (1)sin(πH)�(2H + 1)(1− cosx)

∞∑
|2πn + x|−2H−1, x ∈ (−π,π).
n=−∞
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Then, by using Remark 2 at the end of Section 2, the fractional low- and high-pass filters associa
fGn can be expressed as

ub(z) = b(z)

b(z2)
u(z), vb(z) = b(z)v(z),

whereb(z) = ∑∞
j=−∞ bjz

−j . In contrast to the case of FARIMA(0, λ,0) sequences, there is no easy w
or formula to compute the elementsbj . Moreover, the filtersub(z) andvb(z) are not easy to determine
to study either.
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