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Abstract

We reexamine the wavelet-based simulation procedure for fractional Brownian motion proposed by Abry and
Sellan. We clarify in what sense the wavelet-based simulation procedure works, shed light on the structure of
associated fractional low- and high-pass filters, and consequently suggest some modifications to the simulation
algorithm.
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1. Introduction

The goal of this paper is to reexamine and clarify the wavelet-based simulation procedure for fractional
Brownian motion proposed by Abry and Sellan [1] and also summarized in Abry et aFrfjtional
Brownian motion(fBm, in short) is a stochastic proceBy (1)},cr, H € (0, 1), having an integral rep-
resentation

BH(t)=kH/((t—u)f_% — (~w"?)dBw). 1eR, (1.1)
R
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where{B(u)},cr is a standard Brownian motion, = max0, x} andky is a normalizing constant. The
choice of

_ 1/2
Ky = 2HT(3/2— H) (1.2)
I'(H +1/2"'(2—2H)
leads toE By (1)? = 1 or standard fBm, while setting
ky = (T(H+1/2) " (1.3)

allows to write fBm as fractional integral of the Gaussian white noiBé«l/du. Here,I'(-) is the usual
gamma function. FBm hastationary incrementand isself-similar with exponen#, that is, for any
c > 0, processesy (ct) andc” By () have the same finite-dimensional distributions. Since it is the only
(up to a constant) Gaussian process with these two characteristics, fBm has been extensively studiec
in theory and also widely used in applications where its increments serve as a paradigm for long-range
dependent, fractal or/¥-noise discrete-time series. The facts stated above and more information on fBm
can be found in Section 7 of Samorodnitsky and Tagqqu [15], Embrechts and Maejima [9], and Doukhan
et al. [8]. See also numerous references therein.

Sellan [16], Meyer et al. [12] have recently established an almost surely and uniformly on compact
intervals convergent expansion of fBm in wavelets which decorrelates the high-frequencies, namely,

By(t)y=Y_ ®ut—kS"+Y > 27wy (21t —k)e; — bo, (1.4)

k=—00 j:0 k=—00

where®y and¥y are a suitably chosen biorthogonal scaling function and a wavelet, respeciﬁél,y,
k € Z, is a partial sum process of a FARIM®, H — 1/2, 0) sequence with independent Gaussian in-
novations\ (0, 1), ¢, 4, j > 0, k € Z, are independent GaussiAn(0, 1) random variables anby is a
random variable such tha, (0) = 0. Some of the details behind the decomposition (1.4) as well as
related terminology can be also found in Section 2 below. In particular, the functignsnd ¥, are
defined through a related orthogonal scaling functhosnd a wavelef associated with a multiresolu-
tion analysis (MRA, in short). Meyer et al. [12] have used the Lemarié—Meyer MRA funcgicarsd
Y because of their appealing smoothness properties. Other wavelet bases, for example, the Daubechie
MRA, are possible as well (see Remark 10 in [12, p. 488]). FARIMA sequences which appear in (1.4)
through their partial sums are celebrated discrete-time linear series (see, for example, [5]). The sequence
S,EH ) is often referred to as a (nonstationary) FARINDAH + 1/2, 0) rather than as a partial sum process
of a (stationary) FARIMAO, H — 1/2, 0) sequence.

Decorrelation of the high frequencies of (1.4) which refers to independence (decorrelation) of the
Gaussian coefficients; ;, allows for a fast simulation of fBm by using pyramidal Mallat-type algorithm
(fast wavelet transform). Practical implementation of the decomposition (1.4) to simulate fBm was pro-
posed by Abry and Sellan [1]. Let

S (1) = 2+ / (B (1) +bo)g(2't — k) dr, (1.5)
R
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be the conveniently normalized approximation coefficients in the wavelet expansion of fBm at the scale
2-!, where the functiory : R — R is biorthogonal to the scaling functichy appearing in (1.4). The
algorithm involves defining low- and high-pass filters, denoted hereaftefbgndv'® with

1
=H+ =, 1.6
s + > (1.6)
respectively, and can be represented as
S @) =u® 5 (128101 = D) + v (1o81-1,), (1.7)

wherex stands for a convolution and the standard operétter) inserts zeros between the elements of
a sequence. As shown by Abry and Sellan [1], the fractional filter$) andv'® satisfy the relations

u® = O gy, v = g@ 4y, (1.8)

where the filtersf© = { £} andg® = {g!"} are defined through thetransformations as

@ =02+z" Z AR (1.9)
gY@ =(1- Z g9z~ (1.10)

respectively, and andv are the low- and high-pass filters associated with the initial MRA corresponding

to the scaling functiop and the waveletr. Observe that the filter§® andg® differ from those in [1]

by a multiplicative constant. This happens (see Remark 3 at the end of Section 2) because we considel
conveniently normalized approximation coefficients (1.5). In practice, since the filtérandv® are

infinite, andg!*) may diverge ag — oo, Abry and Sellan [1] suggested to set

u® = fO g f @D gy v® = g® 410D 4y, (1.11)
where
1
d—=H — > (1.12)

andz @ andrg@ stand forf@ andg@ truncated at some a priori chosen cutoff level. The idea then is
to generate a FARIMAO, H + 1/2, 0) sequence of finite length and use the scheme (1.7) with truncated
filters (1.11) to generate a much longer proc@%@(l) at the desired approximation levelThe suitably
normalized sequencs” (1) is taken for the approximation of fBm at the scald.2

In this work, we aim to shed more light on the wavelet-based method to simulate fBm. In Section 2,
we clarify in what sense the approximation coefficiei’)ﬁ@ (1) are suitable approximations for fractional
Brownian motion. We also revisit the Mallat-type scheme (1.7) from the perspective of time series analy-
sis. In Section 3, we reexamine the fractional low- and high-pass fite€rand v . In particular, we
bring into consideration the number of vanishing moments of the underlying orthogonal MRA and also
investigate the decay of the resulting filte*8 andv®. Modifications to the Abry and Sellan algorithm
are discussed in Section 4. The interested reader may also want to see the accompanying paper Pipi
ras [14] where we explore the usefulness of the wavelet-based simulation of fBm, compare it to other
simulation methods and provide further guidelines for the use of the wavelet-based simulation.
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2. Another look at the approximation coefficients

In this section, we make a few observations concerning the approximation coeﬁﬁ’é}ﬂs in (1.5).
The next result shows that these coefficients can be used as approximations of fBm. By the framework
of Meyer et al. [12] below, we mean that the scaling functibrand the wavele$ entering into (1.4)
through®y andyy correspond to the Lemarié—Meyer MRA considered by Meyer et al. [12].

Proposition 2.1. Under the framework of Meyer et 4l.2], we have foe,0 <& < H,

sup |27 550 (1) — (Bu (1) + bo) | < €27/H179) (2.1)
te[0,1]

almost surely, where a random variabiedepends orf, ¢ and the scaling functiog, and[x] stands
for an integer part function of € R.

Proof. The function®y is defined in [12] through the Fourier transformation

R 1—€_ix H+l/2A
CDH(X)=( T ) d(x),

whereg is the scaling function corresponding to the Lemarié—Meyer MRA. (By convention, the Fourier
transform¢ e L2(R) of a functiong € L?(R) is defined byp(x) = fR e~ "¢ (1) dt.) The functiong,
biorthogonal to®d 4, is then defined by

1— e —(H+1/2)
g(x) = ( , > ¢ (x)
—IX

and, under the framework of Meyer et al. [12], is infinitely many times differentiable with its derivatives
decaying faster than any polynomial. Observe from the definitigntbit || g||,1 = [ g(1) dr = g(0) =
$(0) = 1 where the last equality follows, for example, from (3.1) in [12].

Relation (1.5) and g||;» = 1 imply that, forr € R,

275 (1) — (B (1) + bo) | < f}BH(s) — By (1)|2|g(2's — k)| ds. (2.2)
R
It is then enough to argue that, for arbitrarily sma# 0, there is a random variabie such that
|Br(s) — By ()| < Cls —t|"7* + Cls — t|"** (2.3)

for all s € R andr € [0, 1]. Indeed, by substituting (2.3) into (2.2) and making a change of variables, we
would obtain that

277 S0 (1) — By ()| < €279 / w— (21 — [21])|"* | g (w)]| dw
R

< C/Z—I(H—s)f |w|His‘g(w)‘ dw = C//Z_Z(H_s),
R

since 0< 2't — [2/t] < 1 and wherdx |7+ = |x|#+¢ 4 x|~ for x e R.
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An application of the Kolmogorov's criterion (see, for example, [10, p. 53]) yields that fBm has sample
paths which are Holder continuous of the ord@er ¢ for anye € (0, H) (see also Theorem 4.1.1 in [9]).
This result allows to bound the left-hand side of (2.3)®y — 7|7 —¢ whens andt belong to[0, 1]. On
the other hand, by the law of the iterated logarithm for fBm (see, for example, [13, Theorem 1.1]), we
have|By (s)| < Cls|”(Inln|s))¥? ass — oo. This result allows to bound the left-hand side of (2.3) by
C|s —t|+* whens e R\ [0, 1] andr € [0, 1]. O

The random variablég can be eliminated in (2.1) by assuming that an approximating FARIMA se-
quence starts at 0. Hence, set

Sy =85 - sy, ke (2.4)

Corollary 2.1. Under the assumptions of Propositiari, we have foge, 0 < ¢ < H;,

sup [27785) (1) — Bu(n| < €271 (2.5)
t€[0,1]

almost surely, wher€' is a random variable.

Proof. The bound (2.5) follows from (2.1) and the fact that, sidge0) =0,
271155 (1) = bo| < €271,

which is a consequence of (2.1)0

In practice, fBm is therefore approximated by a normalized sequﬁﬁ’éd). It becomes clear from
the proof above that Proposition 2.1 and Corollary 2.1 are true in other situations as well, as long as (1.5)
holds and the functiog has a sufficient decay at infinity. The intervat [0, 1] in (2.1) and (2.5) can
be replaced by other compact intervals. This replacement, however, affects the random Canretble
corresponding bounds.

Remarks. (1) The approximating process'2 S\, (), ¢ € [0, 1], in (2.4) has jumps at the dyadic points
t=k27!, k=0,...,2". We can also define a continuous and easy to implement approximation to fBm
by linearly interpolating the values of the previous approximation at the dyadic points, namely, as

S0 =3G00 + @1 = [21) B0 = S®). rel0,11 9

By using the fact that & 2/t — [2/t] < 1, the relation (2.5) and the Hélder continuity of fBm of the order
H — ¢ with anye € (0, H), we deduce that

sup |27 5 (1) — Bu(1)| < 2719, (2.7)
t€[0,1]
whereC is a random variable.

(2) Results analogous to Proposition 2.1, Corollary 2.1 and the remark above in a deterministic situa-
tion are well known. See, for example, [6, pp. 202—206]. Observe also that the approximations of fBm in
(2.7) and (2.5) are more accurate fércloser to 1. This is natural because the paths of fBm get smoother
asH increases.
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Focus now on the pyramidal Mallat-type scheme (1.7). Since (1.4) is a wavelet decomposition of
fBm (see, in particular, (1.5)), we know that the right-hand side of (1.7) defines a FAROMA+
1/2,0) sequence. We shall conclude this section by providing an alternative proof of this result. The
proof sheds light on the structure of the relation (1.7) and should be of independent interest as well.
More generally, consider a FARIMA, s, 0), s € R, sequenceX = {X,,} and a sequence= {¢,} of
independentV/ (0, 1) random variables, so-called Gaussian white noise. Whed/2, FARIMA(O, s, 0)
sequence&X = {X, },.cz is stationary and can be defined through gzkteansformation as
X@)=01-z" "¢ (2.8)

or, element-wise, as

X = (Y) ng En—k» (29)

whereeg is a Gaussian Whlte noise. One can extend the definition to the cadg2 by setting

X@)=1-zY e =1-z) 1) T e, (2.10)

where thez-transformation(1 — z~1)~* corresponds to a partial sum operation (and hence the process
(2.10) is not stationary). Suppose that the sequeicesnd ¢ are independent. We will show that the
process

Y =u® s (1,X) + v % (1,0), (2.11)

is indeed another FARIMA), s, 0) sequence with independenf(0, 1) innovations. Turning to the-
transformations, the relation (2.11) is equivalent to

Y(2) =u®(2)X (%) + v (2)e (7). (2.12)
SinceX is a FARIMA(O, s, 0) sequence, we have from (2.8) and (2.10) thi&t) = (1 — z 1) *£(2),
where¢ = {,} is a Gaussian white noise sequence, independent of the sefiken, by using (1.9) and

(1.10), and the identity + z72 = (1+ z 1)(1 — z~1), we obtain that
Y(@) = (1427 (1-27%) u@E () + (1-27) "v(@e (<)
=(1-zY " (u@E(?) +v@e(2%) = (1-zH " n@. (2.13)

By Lemma 2.1 below, the sequenge= {5,} is a Gaussian white noise and hence the sequ&nise
indeed a FARIMAQ, s, 0) sequence by definition.

Lemma 2.1. Let & = {§,} ande = {¢,} be two independent Gaussian white noise sequences. Let also
u andv be, respectively, the low- and high-pass filters associated with an orthonormal MRA. Then, the
sequence = {n,} defined in the-notation by

n(2) = u(2)€(2%) + v(2)e(z%), (2.14)

is a Gaussian white noise sequence as well.

Proof. Since (2.14) is a reconstruction scheme, it is enough to show that, given a Gaussian white
noisen, the sequences = |,(u" xn) ande = |,(v" * n), where(x"), = x_,, are two independent
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Gaussian white noise sequences as well. By using the idepity” * u) = &o for the low-pass filter

u corresponding to an orthogonal MRA, the covariance functiors- {r:} of & can be expressed as
ré = },(u" % u) = 8, which shows that is a Gaussian white noise. The same holds for the sequence
To show that ande are independent, it is enough to prove thatu" x v) = 0. This identity holds for
the low- and high-pass filteesandv corresponding to an orthogonal MRA

Remarks. (1) The Mallat-type synthesis relation (2.13) is easy to generalize for other Gaussian stationary
linear sequences. Suppose that {X,} is a Gaussian linear process givenXy= Y > _ bi&,—x or

X(2) =b(2)§(2) (2.15)

in the z-notation, whereb(z) is the z-transform of{b,} and& = {&,} consists of independeuit’(0, 1)
random variables. Then, arguing as in (2.12) and (2.13) above, the process

Y(2) =u(2)X (%) + v (2)e(z?) (2.16)
with
u’(z) = b(( %u(z) v’ (2) = b(2)v(2), (2.17)

is a Gaussian linear sequence having the same linear representation as theXpi@ceksn particular,
having the same probability law as the proc&3gs

(2) For example, ifX is an AR(1) process represented by (2.15) with) = (1—aiz )"t and|a| < 1
(see [5]), then

b(z) —k
b(z2) —a1z Zalz =1+a1z+ Z - al
If, for example, the filters andv correspond to the Haar MRA, thefi = {1’} andv’ = {v’} are given by
ai —ay~ 2 ifn>3, aji — 2011’_1 + af_z, if n >3,
MZ _ 21/2 Cl]2_, |f n= 2, ’US _ (_21/2) Cl]2_ — 2611, |f n= 2,
1+ ay, if n=1, 1-—a, if n=1,
1, if n =0, 1, if n=0.

One appealing feature of the fractional filters’ and v in (1.8) is that they can be conveniently
expressed by using (1.9) and (1.10).
(3) If one uses the approximation coefficients

sty =275y = / (Bu(t) + bo)2'%g(2't — k) dt
R
of the wavelet expansion of fBm at the scalé 2with s = H 4 1/2), then the scheme (1.7) can be
expressed as
s = (275uW) x (151 = D) + (2709) % (1527 g10)). (2.18)

Observe that the scheme (2.18) is that considered by Abry and Sellan [1] but also note trsiio2ild
be replaced by 2 in (3) of their paper and:* (z) should be defined as2(1 — z~1)~* in (10) (see also
pp. 81-82 in Abry et al. [2]). We preferred to work with the coefficiesifs’ (/) rather thars\™ (1) for
simplicity of the formulas and also sindéH)(l) is a FARIMA sequence of the same variance for all
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3. Fractional low- and high-passfilters reexamined

In this section, we shed light on the fractional low- and high-pass filtétsandv® given by (1.8),
(1.9), and (1.10). To do so, suppose that an orthogonal MRA associated with the originai féteds
hasN zero moments. Then, under mild assumptions on the funciiarsd,

w@) =1+ Y @, v =0-2Y" ), (3.1)

for some filtersug anduvg (see, for example, [6] or [11]). By using these representations, we deduce the
following elementary result.

Proposition 3.1. Suppose that an orthogonal MRA associated with the low- and high-pass filterd
v has N vanishing moments and, consequently, under mild assumptions, that the re(&tibrisold.
Then, the fractional low- and high-pass filters’ andv® of (1.8), (1.9)and (1.10)can be represented
as

U (@) = (1+ 279 Puo@) = F @uo(2), (3.2)
v @) = (1-21" 0@ =g @), (3.3)

whereuo andvg are the filters defined through the relati¢d.1).

The advantage of representing’ andv® by (3.2) and (3.3), respectively, rather thanidy (z) =
FOQu) =A+zH D u(z) andv® (2) = g9 (2)v(@) = 1 —z7H g (2)v(z) asin (1.11) used
by Abry and Sellan [1], is that the filter§V 9 and g“—") decay much faster than the corresponding
filters £ andg@ above whenV is taken large. Indeed by using the asymptotic relation

n

0 h =g =]

j=1

at+j—1  Tm+a) Nn“‘1
j T+ Dl@ T’

asn — +oo (with a € R not an integer), we obtain that

j—l—N—s (—N) j—l—N+s

e 8T s (3.4)

(=N —5) (=N +5)

asj — +oo. Compare (3.4) to analogous relation witheplaced by/ and N = 1 corresponding to the
filters £ andg@. The decay of the filterg andg® is important when truncating them in practice at
some a priori chosen cutoff level The representations (3.2) and (3.3) allow to show that the fractional

low- and high-pass filterg® andv'® can often be characterized by a fast decay as well.

f./'(Nﬂ) ~ (=1’

Proposition 3.2. Under the assumptions of Propositi8ri, suppose thav +s > 0, N —s > 0 and the
filters up = {uo,,} andvo = {vo,,} satisty|ug,| < C|n|~P* and|vg,| < C|n|~?» for p,, p, > 1. Then, for
n €7\ {0},

4| < Cyln|~ @ +s+DAP), 0| < Cyn| =M =s+DAP0), (3.5)

n

wherea A b = min{a, b} and the constant€, and C, above do not depend on In particular, whenu
andv (equivalentlyug anduvg) have finite length, the exponenis and p, in (3.5) can be removed.
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Proof. Consider, for example, the fractional low-pass filtét. By using (3.2), (3.4) and the assumptions
of the proposition, we obtain that, far> 2 and generic constan, C’,

uf| < Z Y ol <€ > (A=) T @)

j=—o00 j=—00

1
< C/(l—l— lu — n|)_1_N_S(1+ |u|)_p” du < Cn NS / (1+ Iul)_p" du

R
n—1

o
+Cf |u—n|717N7S|M|7pu du_‘l_cn*pu f(1+|u_n|)—1—N—sdu
-1

n

1-1/n
< Cnf(N+s+1)/\pu +Cn~ N—s—py / (1 w)il N— =Sw P dw < C/ 7(N+S+1)Apu
1/n
The case: < 2 and then that of the high-pass filtef’ can be considered in a similar wayd

In Table 1, we give an idea on the length of truncated fractional filtétsindv'® for a chosen cutoff
level ¢, the Daubechies MRA's with the number of vanishing momevitand the choice of = 1.25.
More precisely, the length of a truncated filté?, for example, is computed as follows. Observe that

ul| < Z ol £, (3.6)

k=ko

where{uox, k = ko, ..., k1} is the finite filter associated witla through (3.1). We choose the length of

a truncated filteu as the smallesiy — ko + 1 with ng > k; for which the right-hand side of (3.6) is
bounded by for anyn > ng. (Note that it is enough to find the first sugtbecause the right-hand side
decreases monotonically as> k; increases.) For the filtero = {uo} in (3.6), we chose the properly
normalized values given in Table 6.2 of Daubechies [6, p. 196]. Observe from Table 1 that the lengths of
truncated filters become significantly smaller for ladgat small values of. This observation is relevant

in practice because, whe¥i is larger, we can choose truncated filters of significantly smaller length.

Table 1

Lengths of truncated filters®) andv(®) at a cutoffs with s = 1.25 and the Daubechies MRA withi vanishing moments

Filters Cutoffe N=1 N=3 N=6 N =10

u® 1074 17 17 21 28
1077 123 48 36 38
1010 1009 164 70 56
10715 34,769 1425 257 121

v®) 1074 ~4x 104 38 23 28
1077 ~4x 108 422 57 42
1010 ~ 4 x 1012 5162 171 72

10715 ~4x 1019 ~3x10° 1220 206
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4. Madifications of the simulation algorithm

Recall from Sections 1 and 2 that the basic idea behind the wavelet-based synthesis of fBm is to gen-
erate an initial FARIMAO, H + 1/2, 0) sequence, apply to it the recursive Mallat-type scheme (1.7) and
finally take the resulting FARIMAO, H + 1/2, 0) sequence as an approximation to fBm. Since fractional
low- and high-pass filters are truncated in practice, the length of a FARIMA sequence essentially doubles
after each application of the scheme (1.7). Practical implementation of this simulation procedure was
proposed by Abry and Sellan [1]. We suggest to make the following important modifications to their
algorithm.

Modifications

1. Fractional low- and high-pass filtes$” andv® with s = H + 1/2 which enter into (1.7), should

be computed by using the relations (3.2) and (3.3), and truncated at some cutoff level by using the
arguments around (3.6).

An initial FARIMA (0, H 4+ 1/2, 0) sequence can be taken of a different length.

. We propose to simulate an initial FARIMB, H + 1/2, 0) sequence exactly.

w N

We now explain each of these madifications in greater detail.

In regard to thdirst modification above, Abry and Sellan [1] computed the fractional filters through
(1.11) which involves truncating the sequengé$ andg®. Since these sequences decay very slowly,
fractional filters chosen by Abry and Sellan [1] are unnecessary too long. Moreover, in contrast to (3.6),
there is no control over the size of their elements.

Concerning thesecondmodification above, lef enter into the time scale 2 at which the resulting
FARIMA (0, H + 1/2,0) sequence is taken as an approximation to fBm. Abry and Sellan [1] take the
sameJ for the number of times that the Mallat-type scheme (1.7) is recursively applied to an initial
FARIMA (0, H + 1/2,0) sequence. This means in particular that, if the number of desired fBm obser-
vationsK is large and/ is relatively small, then one needs to generate an initial FARIMA sequence of
a large approximate lengtki2=/. The constraint that (1.7) is used exacflimes, is not necessary. In
fact, as argued by Pipiras [14], it does not really matter (in the sense specified in that paper) what the
length of an initial FARIMA sequence is. If this is so, then one natural choice for the length of an initial
FARIMA sequence is the smallest number which make the use of (1.7) possible when accounting for
boarder effect. An appeal of this choice is that the simulation of fBm then becomes truly wavelet-based.
For example, there is no need to generate a very long initial FARIMA sequence by using other simulation
methods.

If » is the maximum length of the fractional low- and high-pass filters truncated at some cutoff level,
then the smallest possible length of an initial FARIMDAH + 1/2, 0) sequence is

ko=r+1. 4.1)

Observe that after applying the scheme (1.7) to a FARIMA sequence of length (4.1), we would obtain
(2ko— 1—r) +1=r + 2 number of points of a new FARIMA sequence which are unaffected by boarder
effect. Here, By — 1 is the number of points after the operatiop and (—r) takes into account the
boarder effect. By repeating this argument, the number of points of a resulting FARIMA sequence after
recursively applying (1.7} times, isr 4+ 2™. In practice, we choose so thatr 4+ 2™ is larger than the
number of desired points of fBm.
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Our third modification concerns the initial FARIM®, H + 1/2, 0) sequence. Abry and Sellan [1]
generate it directly by using definition through
X, = (g<1> %18 @D % £)

n’

wheretg@ is the filter g@ truncated at a prescribed cutoff level ahds a discrete Gaussian white
noise. Since the elements of the filigf’ decay extremely slowly, the truncated filter is very long, its
computation and that of the convolution witare time consuming and, moreover, the sequéfds not
exactly a FARIMAQO, H + 1/2, 0) sequence. We suggest to generate the initial FARIMA + 1/2, 0)
sequence exactly.

At least two exact simulation methods are available in the statistical literature: the Durbin—Levinson
algorithm and the circulant matrix embedding method. These methods are nicely summarized by Bardet
et al. [3] but see also Brockwell and Davis [5] for the Durbin—Levinson algorithm and Dietrich and
Newsam [7] for the circulant matrix embedding method. The Durbin—Levinson algorithm is exact but
time consuming when generating long time series. We can nevertheless often use it because, in view of
(4.1) and Table 1, the length of an initial FARIM®, H + 1/2, 0) series may be taken quite small. The
circulant matrix embedding method, on the other hand, is considered exact and not time consuming.

The modified wavelet-based algorithm to simulate fBm, written iaTMAB, is available from the
author upon request. The use and usefulness of the wavelet-based simulation of fBm are further discusse
in [14].

Remark. Generating a FARIMAQ, H + 1/2, 0) sequence is at the core of the wavelet-based algorithm
to simulate fBm. Starting with an initial FARIM&, H + 1/2, 0) sequence, we recursively apply to it
the scheme (1.7) to obtain each time an approximately twice longer FARIMA + 1/2, 0) sequence.
Would it be possible to start with a fBm sequence and then apply to it an analogous (1.7)-type scheme to
obtain a twice longer fBm sequence? This question is important because, in contrast to using FARIMA
sequences, we would in principle obtain not an approximation to fBm but a fBm sequence itself. Meyer
et al. [12] showed in Section 8 that generating fBm in this way is indeed possible in theory. To implement
their procedure in practice, we would need to compute associated fractional low- and high-pass filters
which enter into the Mallat-type scheme (1.7). This task, however, is numerically much more difficult
than in the case of FARIMA sequences.

To understand this, consider a fractional Gaussian noise (fGn, in short) sequenée} ..z defined
as increments of fBnjBy (k)}icz at integer times. These two sequences are equivalent in the sense that
starting with one of them, we can find the other one either by taking a partial sum or by taking the
increments. The difference is that fGn is a stationary sequence and hence slightly easier to manipulate.
By Proposition 2.1 in [4], fGn can be represented as

0
Zuk) = Z bievj, ke,

j=—00

where{e;} ;<7 are independent/ (0, 1) random variables and the sequefieg ;<7 is defined through its
discrete Fourier transform as

|z3(x)|2 = EBZ(1)sin(x H)'(2H + 1)(1 — cosx) Z 127n +x|72H7Y x e (—m, 7).

n=—oo
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Then, by using Remark 2 at the end of Section 2, the fractional low- and high-pass filters associated with
fGn can be expressed as

b
u'(2) =+ ((;))u(z), v (2) = b(2)v(2),
whereb(z) = Zji_oo bjz~/. In contrast to the case of FARIMA, 1, 0) sequences, there is no easy way

or formula to compute the elemerits Moreover, the filters”(z) andv®(z) are not easy to determine or
to study either.
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