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ABSTRACT

WENZHONG WANG. Optimal control of an epidemic model with inclusion of game
theory in vaccination. (Under the supervision of CHRISTOPHER JONES)

An SIR epidemic model is expanded to include a game theory characterization of

changes in human vaccination acceptance. Using the vaccination capacity as a

control, we apply optimal control theory to the model and minimize the infected

population and social cost simultaneously. We conduct numerical simulations and

analyze different scenarios to control COVID-19. Numerical results suggest that the

scenario with an optimal control on vaccination capacity may offer a feasible approach

for eliminating the epidemic with minimal cost and time. We give a specific vaccination

plan based on the optimal control scenario.
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CHAPTER 1: INTRODUCTION

The COVID-19 outbreak at the end of 2019 had a huge negative impact on global

public health and economic development. Scientists have been long using optimal

control on the SIR model to study the spread of epidemics and investigate various

control strategies. Some studies take education campaigns, social distancing, and

quarantine as available policies and indicate that one can find policy known as a

maximum control by using optimal control theory [3, 6, 8]. Other scientists have also

taken vaccination into consideration [7]. With limited control resources, Hansen and

Day applied bang-bang control to a combination of the optimal isolation-only policy

and the optimal vaccination-only policy, where more than one control variable was

utilized in their model [4].

Additionally, a particular approach to formulating an SIR model based on game

theory recently became popular in epidemic model studies. Human behavior changes

greatly affect the spread of diseases. An analysis on imitation dynamics and

vaccination policy showed that game theoretical models are feasible for appropriating

the population dynamics of vaccinating behaviour [2]. Poletti et al. proposed an

SIR model including eight classifications of population as well as two different time

scales in the disease transmission process and the imitation process [11]. Other studies

develop Poletti’s model and conduct a geometric singular perturbation theory analysis

to explore model performances [12].

We adapt optimal control on an SIR model and include imitation dynamics in

human behavior towards vaccination. To my knowledge, there have been no previous

uses of both optimal control theory and imitation dynamics in epidemic models. We
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are investigating a model design which includes the two techniques and reflects some

key aspects of the actual situation under COVID-19.

Chapter 2 of this thesis describes the model design and analyses the feasibility of

optimal control. Chapter 3 discusses the choice of parameter values. Chapter 4 gives

numerical illustrations and analysis on different scenarios of the model, and the last

Chapter is the conclusion.



CHAPTER 2: MATHEMATICAL MODEL

We start with an SIR model in epidemiology, where S refers to the susceptible

proportion of the population, whether vaccinated or not. I is the infected proportion of

the population, and R is the naturally immune proportion of the population. Suppose

the population will not increase or decrease. Since S + I +R ≡ 1, we could eliminate

the equation for R. In the system of differential equations of the model, the control

variable u is the maximum number of people that can be vaccinated at a time instant,

which represents the vaccination capacity. Denote α as the relative frequency of people

who accept vaccines and x as the relative frequency of vaccine coverage. We consider

an ordinary differential equation model, which describes the vaccination “game” with

imitation dynamics and control on vaccination capacity, as following:

S ′ = −[(1− η)x+ (1− x)]SIβ

I ′ = [(1− η)x+ (1− x)]SIβ − γI

α′ = kα(1− α)(fv − fn)

x′ = udx(1− x

α
)

(2.1)

Here, η is the efficacy of vaccines, supposed to be very high. β is the mean transmission

rate and γ is the recovery rate. The third equation describes the imitation dynamics

of vaccination in game theory [2]. In this equation, k is the combined imitation rate

at which individuals mimic others and switch strategies. The perceived payoff fv for

vaccinators is

fv = −rv − (1− η)rimI (2.2)



4

where rv is the perceived probability of significant morbidity from the vaccine, ri is

the perceived probability of suffering significant morbidity upon infection, and m is a

constant measuring the sensitivity of vaccinating behaviour to changes in prevalence

of people who accept vaccines. The perceived payoff fn for non-vaccinators is

fn = −rimI (2.3)

The fourth equation, which is a logistic equation, describes the relationship

between vaccine coverage, vaccine acceptance, and vaccine capacity during the whole

vaccination [13]. The number of people vaccinated will not exceed the number of

people accepting the vaccine. The parameter d is a proportion constant in this

equation.

Plugging into these equations, we have

S ′ = −(1− ηx)SIβ

I ′ = (1− ηx)SIβ − γI

α′ = kα(1− α)(−rv + ηrimI)

x′ = udx(1− x

α
)

(2.4)

We assume the control variable is bounded as ua ≤ u ≤ ub. The cost function

considers the social cost of both vaccination and treatment for people infected, which

is in the form of

J(u) =

∫ T

0

pu2 + I(t)dt (2.5)

where p is a positive constant measuring the proportion of vaccination cost to

treatment cost, in order to make the two costs comparable to each other.
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The Hamiltonian is

H =λ1S
′ + λ2I

′ + λ3α
′ + λ4x

′ + L

=λ1[−(1− ηx)SIβ] + λ2[(1− ηx)SIβ − γI] + λ3kα(1− α)(−rv + ηrimI)

+ λ4udx(1−
x

α
) + pu2 + I

(2.6)

By Pontryagin’s Maximum Principle [5, 9], we verify sufficient conditions for our

optimal control and corresponding states. We have

Hu = λ4dx(1−
x

α
) + 2pu (2.7)

Then Huu = 2p > 0, hence this optimal control problem is indeed minimization. The

optimality condition is

Hu = 0⇒ u∗ = − 1

2p
λ4dx(1−

x

α
) (2.8)

Given an optimal control u∗, there exist adjoint functions, λ1, λ2, λ3, λ4,

corresponding to the states S, I, α, x such that

λ′1 = −
∂H

∂S
= (λ1 − λ2)(1− ηx)Iβ

λ′2 = −
∂H

∂I
= λ1(1− ηx)Sβ − λ2[(1− ηx)Sβ − γ]− λ3kα(1− α)ηrim− 1

λ′3 = −
∂H

∂α
= −λ3k(−rv + ηrimI)(1− 2α)− λ4ud

x2

α2

λ′4 = −
∂H

∂x
= (λ2 − λ1)SIβη + 2λ4ud

x

α

(2.9)

Due to both necessary clinics and limited resources in vaccination, we apply bang-

bang control in the model. Since u is bounded as ua ≤ u ≤ ub, if Hu > 0, we have

u(t) = ub; if Hu < 0, we have u(t) = ua; otherwise, we have u(t) = −
1

2p
λ4dx(1−

x

α
) as
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the optimality condition above. We use Runge-Kutta method in order 4 to solve the

ODE system (2.4), (2.8), and (2.9), with initial conditions S(0) = S0, I(0) = I0, α(0) =

α0, x(0) = x0. The transversality condition is λ1(0) = λ2(0) = λ3(0) = λ4(0) = 0.

In the phase space, this dynamical system has two line segments of equilibria.

One is a disease-free, complete vaccine acceptance but pure non-vaccinator (nobody

vaccinated) line (S1, 0, 1, 0) for any 0 ≤ S1 ≤ 1. The other is a disease-free, complete

vaccine acceptance, and pure vaccinator (everybody vaccinated) line (S2, 0, 1, 1) for

any 0 ≤ S2 ≤ 1.



CHAPTER 3: PARAMETERS

We estimate the baseline parameters of the model from available COVID-19 data

and reasonable speculations. Since the real-world Pfizer-BioNTech COVID-19 Vaccine

(BNT162b2) effectiveness estimates align with the 95% vaccine efficacy in clinical trials

[10], we set η = 0.95, which is very high. For two other epidemiological parameters,

we set β = 0.1 and γ = 0.04, then the basic reproduction number R0 =
β

γ
= 2.5,

which is in line with the estimation in the early phase of the COVID-19 outbreak in

Wuhan, China [14].

Earlier research has determined the value of imitaion dynamics parameters rv

and ri for its numerical simulations [2]. However, this research has conducted

non-dimensionalization to reduce the number of parameters and to further explore

underlying Hopf bifurcation, so we are not clear about the exact values of rv and ri.

We currently set rv = 0.0001 and ri = 0.02 to make them consistent with the situation

in Bauch’s study.

For other baseline parameters, we consider k = 1,m = 10, d = 6. We use p to adjust

the influence of vaccination cost and treatment cost, and it is currently estimated to

be p = 1200. We set the baseline control bounds as ua = 0.005 and ub = 0.012.



CHAPTER 4: ANALYSIS

We conduct numerical simulations in MATLAB to solve the optimal control system.

The unit of time in simulations is days. We set initial conditions S(0) = 0.95, I(0) =

0.05, α(0) = 0.3, x(0) = 0.01, u(0) = 0.008. We use the baseline parameters except

when otherwise stated.

Figure 4.1: Results using the baseline parameters.

Figure 4.1 and 4.2 show the ‘bang-bang’ control using the baseline parameters. The
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Figure 4.2: Results using the baseline parameters. (Blue) S. (Red) I. (Purple) α.
(Green) x. The above four variables correspond to the left coordinate axis. (Black)
u, corresponding to the left coordinate axis.

bang-bang control refers the case that the control variable u switches between only

the upper and lower bounds [9]. In the numerical simulation, u stays at the upper

bound from the beginning, switches to the lower bound at t = 57.3, switches back to

the upper bound at t = 375.4, nearly one year after the epidemic breakout, then still

stays at the upper bound. In Figure 4.2, we observe that near t = 57.3, the peak of

the first wave of epidemic has just passed, so it is reasonable to reduce the vaccination

capacity from the maximum. Meanwhile, the growth rate of the relative frequency of

vaccinators has slowed down.

Recall that Hu = λ4dx(1−
x

α
)+2pu from (2.7), the switching time also depends on

the value of u, hence it is possible to have more than one switch. When 57.3 ≤ t ≤

375.4, simulation results show that Hu < 0. Near t = 375.4, the value of x is close

enough to α, then Hu becomes positive again. The adjoint function is the Lagrange
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multiplier for the constraint of the state variables [5], and the value of the function

doesn’t contain meaningful information in the actual epidemic problem. We speculate

that after the control variable reducing to the lower bound, its weight in the cost

function is also reduced. Though the infected proportion of the population is relatively

low at this time, the value of I(t) dominates the cost integral. When I(t) stays at a

very low level and the vaccine coverage almost equals to vaccine acceptance, almost

no one comes to get vaccinated, so the control variable jumps to the upper bound

again in order to further eliminate the epidemic while the vaccine cost is no longer

important. We observe that about 90% of the population choose to be vaccinated at

the end of the epidemic, which is in accordance with herd immunity [1]. We consider

two important statistics in each numerical simulation: using the baseline parameters,

the time required to reduce I below 2% is T = 150.4 days, and the cost is J = 30.6096.

Figure 4.3: Results for two cases. (Solid lines) With optimal control. (Dashed lines)
Without optimal control and u = 0.005.
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In Figure 4.3, we compare the epidemic system with optimal control to the one

without optimal control. In this case, we set the control variable u = ua = 0.005

as the constant lower bound. The peak of the wave of epidemic is higher, and the

duration is longer. Due to the increase in infected population, however, more people

choose to be vaccinated in the “game”. Though limited by the vaccination capacity,

the initial vaccination is slow, but the final vaccination coverage is higher than the

baseline case. The time required to reduce I below 2% is T = 161.3 days, extended

by 7.25%. The cost is J = 25.8295, decreased by 15.62%. This is due to the cost of

vaccination has dropped.

Figure 4.4: Results for two cases. (Solid lines) With optimal control. (Dashed lines)
Without optimal control and u = 0.012.

In Figure 4.4, we again compare the epidemic system with optimal control to the

one without optimal control, and now we set u = ub = 0.012 as the constant upper

bound. In contrast, the shape of the wave of epidemic and its duration are similar to
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the baseline case. Due to the constant high vaccination capacity, the initial vaccination

is faster, while the final vaccination coverage keeps the same. The time required to

reduce I below 2% is T = 140 days, shortened by 6.91%. The cost is J = 41.0585,

significantly increased by 34.14%.

Figure 4.5: Results for varying the imitation rate k. (Solid lines) k = 1. (Dashed
lines) k = 2.

In Figure 4.5, we compare the epidemic system with a normal combined imitation

rate to the one with a higher combined imitation rate, as k doubled. The shape of the

wave of epidemic and its duration are similar to the baseline case. At the beginning

of the epidemic, with the acceleration of the dynamics of imitation process [11], the

vaccine acceptance increased much faster than the baseline case, almost approaching

the ideal situation where everyone is willing to get vaccinated. The bang-bang control

happens again, while the second switching time is around t = 443.9 and is not shown

in the figure. The time required to reduce I below 2% is T = 145.8 days and the cost
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is J = 29.7382, not much different from the baseline case.

Figure 4.6: Results for varying the control lower bound ua. (Solid lines) ua = 0.005.
(Dashed lines) ua = 0.002.

In Figure 4.6, we assume a scenario where vaccine supply is insufficient. We compare

the epidemic system with the baseline control lower bound to a smaller control lower

bound, as ua = 0.002. The shape of the wave of epidemic is similar. After the

first switch of the control variable, the value of u is smaller, so the increase of x

is significantly slower than in the baseline control bounds case. Besides, the second

switch of the control variable comes much later, around t = 763.9, also not shown in

the figure. The time required to reduce I below 2% is T = 160.9 days, extended by

6.98%. However, the cost is J = 29.1473, decreased by 4.78%.

Lastly, we vary the constant in the cost function which measures the proportion of

vaccination cost to treatment cost. In Figure 4.7, the shape of the wave of epidemic

is still similar to the baseline case, and the duration is slightly longer. As long as
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Figure 4.7: Results for varying the constant p in the cost function. (Solid lines)
p = 1200. (Dashed lines) p = 200.

the weight of vaccination cost decreases, the system tends to make u switches to the

lower bound earlier and switches back to the upper bound later. The time required

to reduce I below 2% is T = 155.2 days, extended by 3.19%.



CHAPTER 5: CONCLUSION

We investigated optimal controls for several scenarios with an expanded SIR model.

The proposed SIR model with the inclusion of optimal control and game theory

in vaccination acceptance could reflect characteristics of the herd immunity with

appropriate parameter values under the condition of COVID-19. Compared to the

case without optimal control and having constant vaccination capacity, the optimal

control scenario achieves less cost and time needed to control the epidemic. The

vaccination strategy of this optimal control scenario is to first determine the upper

and lower bounds of the vaccination capacity, i.e. the maximum number of people

who can be vaccinated at a time instant. During the beginning stage and the peak

of the epidemic, the vaccination capacity should be kept at its upper bound. When

the infected proportion starts to decrease from the maximum, we need to continuously

calculate the partial derivative of Hamiltonian with respect to the vaccination capacity,

where the calculation requires us to collect real-time vaccinated proportion, infected

proportion, and the value of one of the adjoint functions. The vaccination capacity

should be immediately adjusted to the lower bound while the sign of the partial

derivative changes. Later, we shall adjust the capacity to the upper bound while the

sign changes again to consolidate the effect of herd immunity. In the case that vaccine

supply is insufficient, reducing the lower bound of vaccination capacity or accelerating

the imitation process are feasible strategies to control COVID-19.

In future work, we will have more classifications of population to consider the

asymptomatic infected, quarantine, social distancing, etc. We will also include vaccine

hesitancy and emergencies in the imitation dynamics equation.
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