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Abstract

In the simplest (non-quiver) unified theories, fermion families are often treated sequentially and

a flavor symmetry may act similarly. As an alternative with non-sequential flavor symmetry, we

consider a model based on the group (T
′

×Z2)global × [SU(3)4]local which combines the predictions

of T
′

flavor symmetry with the features of a unified quiver gauge theory. The model accommodates

the relationships between mixing angles separately for neutrinos, and for quarks, which have been

previously predicted with T
′

. This quiver unification theory makes predictions of several additional

gauge bosons and bifundamental fermions at the TeV scale.
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I. INTRODUCTION

In order to address the question of masses and mixing angles which occur for quarks and

leptons in the standard model, one promising direction is to introduce a flavor symmetry

that commutes with the standard model gauge group. By judicious assignments of the

particles to specific representations of the flavor symmetry, one can obtain relations between

parameters in the model. The flavor symmetry may treat the fermion families differently

so that the simplest approaches to gauge unification are inapplicable. The present article

will show how to combine the flavor group (T
′

), which has been studied previously [1–

8], with a quiver unified quartification SU(3)4 gauge group [9], while successfully keeping

results previously obtained without unification, such as the Cabibbo angle [6], as well as

tribimaximal mixing for neutrinos [10–15]. The quiver unification has the advantage of

implying further relationships between the gauge couplings.

II. THE MODEL

We first consider a quartification (SU(3)4) model with bifundamental chiral fermions in

the usual arrangement of bifundamentals, but find we can not make the necessary charge

assignments to recover the requisite T
′

family symmetry. This will lead us to add a sub-

quiver of fermions to accommodate T
′

quartification.

Quartification, from its inception by Joshi and Volkas [16], has historically been used for

gauge-coupled unification without supersymmetry and for leptonic color models [9, 17–21].

Many of these models have adapted the same unification techniques as the first GUT theo-

ries [22]. There have been several significant milestones in this approach (and several differ-

ent preferred unification scales) including partial unification [16], complete unification [17],

and intermediate symmetry breaking [18]. We choose a different style of unification com-

pared with prior work on quartification, one predicated upon the mechanism in Refs. [23, 24],

that by embedding

SU(3)C × SU(2)L × U(1)Y , (1)

in SU(3)N we naturally achieve unification in the TeV region. This is accomplished by
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replacing the logarithmic evolution of couplings, with the use of group theoretic factors.

The quartification gauge group is the quasi-simple

SU(3)C × SU(3)L × SU(3)ℓ × SU(3)R , (2)

with couplings equal up to numerical group theory factors [23, 24]. Let the family symmetry

be

T ′ × Z2 , (3)

with the minimal anomaly-free bifundamental chiral fermions:

3[(3, 3̄, 1, 1) + (3̄, 1, 1, 3) + (1, 3, 3̄, 1) + (1, 1, 3, 3̄)] . (4)

We shall assign the leptons to irreps as follows [6] :

(133̄1)3 ⊃





ντ

τ−





L

(133̄1)2 ⊃





νµ

µ−





L

(133̄1)1 ⊃





νe

e−





L























































LL(3,+1)

(1133̄)3 ⊃ τ−R (11,−1)

(1133̄)2 ⊃ µ−
R (12,−1)

(1133̄)1 ⊃ e−R (13,−1)

and N
(1)
R (11,+1)

and N
(2)
R (12,+1)

and N
(3)
R (13,+1) .

(5)

For the left handed quarks we make the assignment

(33̄11)3 ⊃





t

b





L

QL (11,+1)

(33̄11)2 ⊃





c

s





L

(33̄11)1 ⊃





u

d





L































QL (21,+1) .

(6)

Finally, we need assignments for the six right-handed quarks. They were assigned to
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tR (11,+1)

bR (12,−1)

cR

uR







CR (23,−1)

sR

dR







SR (22,+1) ,

(7)

under T ′ × Z2 in Ref. [6] (FKM). However, this assignment is inapplicable here as tR and

bR are both in the same irrep (3̄113)3, despite having different T’ assignments (likewise for

the first and second families). Without additional states, we are able to assign only three of

the six right-handed quarks.

We therefore add an anomaly-free sub-quiver representation

3[(3̄, 1, 3, 1)
′

+ (1, 1, 3̄, 3)
′

+ (3, 1, 1, 3̄)
′

] , (8)

and reassign all fermions with Z2 = −1, including the corresponding subset in Eq. (5) and

Eq. (7), to this sub-quiver:

bR ⊂ (3̄, 1, 3, 1)
′

3

CR ⊂ (3̄, 1, 3, 1)
′

1,2

τ−R ⊂ (1, 1, 3̄, 3)
′

3

µ−
R ⊂ (1, 1, 3̄, 3)

′

2

e−R ⊂ (1, 1, 3̄, 3)
′

1 .

(9)

III. YUKAWA COUPLINGS

We introduce notation in which the SU(3) groups (C,R, ℓ, L) in superscripts are assigned

to the fundamental 3, while those in subscripts are assigned to the anti-fundamental 3̄. The

SU(3) groups not denoted in subscript or superscript are designated as singlets in this

representation. Additionally, the T
′

assignment will be listed in parenthesis with the Z2

charge is given as superscript.

With this stated, the lepton Yukawas are denoted:

Σi=3
i=1Y

(i)
D LL

ℓ (3
+)N

ℓ(i)
R (1+i )H

R
L (3

+) (10)
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and

Σi=3
i=1Y

(i)
ℓ LL

ℓ (3
+)ℓ

ℓ(i)
R (1+i )H

R
L (3

−) . (11)

The quark Yukawa couplings are then given as:

YtQ
C
L(1

+
1 )t

R
C(1

+
1 )H

L
R(1

+
1 ) +

YbQ
C
L(1

+
1 )b

ℓ
C(1

−
2 )H

L
ℓ (1

−
3 ) +

YQSQ
C
L(1

+
1 )S

R
C (2

+
2 )H

L
R(2

+
3 ) +

YCQ
C
L (2

+
1 )C

ℓ
C(2

−
3 )H

L
ℓ (3

−) +

YSQ
C
L(2

+
1 )S

R
C (2

+
2 )H

L
R(3

+) , (12)

where the T
′

representations with superscript Z2 = + are in the original quiver and all those

with superscript Z2 = − are in the sub-quiver.

The Higgs scalar sector is sufficient to break to the standard model and replicate the mixing

matrices for T
′

found previously. Note that, for example, the Cabibbo angle in Ref. [6] follows

because after breaking of SU(3)ℓ × SU(3)R the H(3−)s have a common representation, and

can thus act as the appropriate messenger between the charged leptons and the first two

families of quarks. The T
′

doublet (2+3 ) of Higgs allows reproduction of the successful CKM

matrix derived in Ref. [25].

The Higgs vacuum expectation values (hereafter VEVs) follow a form highly similar to that

in [6], using the same superscript and subscript notation as above. We put the neutral

member of the Higgs doublet at αL = 3 and the corresponding VEV for (T
′

= 11, Z2 = +)

as

< H
L(αL=3)
R(αR=1)(1, 3, 1, 3̄; 1

+
1 ) >=

mt

Yt

, (13)

while we put the third family Higgs VEV at αR = 1 and the VEV for (T
′

= 13, Z2 = −) as

< H
L(αL=3)
ℓ(αℓ=1) (1, 3, 3̄, 1; 1−3 ) >=

mb

Yb

, (14)

5



with an αℓ = 1 assignment in the ℓ-sector. There remain three more VEVs, which are T
′

nonsinglets, so we now indicate their direction in T
′

- space to be:

< HL
R(2

+
3 ) > ∝ (1, 1) (15)

< HR
L (3

−) > ∝ (
mτ

Yτ

,
mµ

Yµ

,
me

Ye

) (16)

< HR
L (3

+) > ∝ (1,−2, 1) . (17)

This collection of five Higgs VEVs can break both the gauge group to the standard model

and achieve the quark and lepton masses as previously derived in Ref. [6] and elaborated on

in Refs. [2, 15]. In the most general potential involving all the scalar fields, there is such a

surfeit of parameters that stationarization of such a potential can, in general, always allow

a stable global minimum corresponding to the VEVs assumed in Eqs. (13 - 17).

IV. DISCUSSION

We have constructed a consistent quiver unified framework, based on (T
′

× Z2)global ×

[SU(3)4]local which subsumes the mixing angle predictions for the leptons and quarks pre-

viously made using T
′

flavor symmetry. Its quiver unification predicts additional gauge

bosons and bifundamental fermions at the TeV scale. The production and decay of the

lightest Higgs at LHC can be such as to facilitate discovery of H → γγ as was the case in

Ref. [26].

This model illustrates how non-family-sequential flavor symmetry (T
′

× Z2), while incom-

patible with a simple GUT model like SU(5), can be wedded successfully to SU(3)4 quiver

unification.
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